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Class Drill 17: The Fundamental Theorem of Calculus” - o @

")

Given a continuous function f that is defined on a closed interval a < x < b, consider these two
numbers that can be obtained.

The first number is the number A = f;:; f(x)dx. This number is called the signed area between

the graph of f and the x-axis from x = a to x = b. It can be visualized using a graph of f and in
some simple cases it can be computed using geometry. But in general, the signed area is a calculus
concept: it is defined as the limit of Riemann sums.

The second number is the number F(b) — F(a), where F is an antiderivative of f. Notice that this
second number also involves calculus, because it uses the antiderivative of f.

These two numbers seem to have nothing to do with one another. But the Fundamental Theorem of
Calculus says that they are related to one another in a surprising way: they are equal!

In this class drill, you are given a continuous function f that is defined on a closed interval a < x < b.
Your job will be to compute the first number (using geometry) and then compute the second number.
Finally, you will compare the two numbers that you computed. They should turn out to be equal.

The given function is f(x) = 2x — 4 and the given interval is 1 < x < 5.

Part 1: Find the First Number - %
AN

(a) Draw the graph of f(x) = 2x — 4 from x = 0 to x = 6.
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(b) On your graph, shade the region between the graph of f and the / [ / \

x-axis from x = 1 to x = 5. The shaded region should be made up ! ’ / ,! J

of two triangles IRTAW IR
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(¢) Using the geometric formula for the area of a triangle, find the area of each of the two triangles. The
areas of triangles are positive numbers.
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(d) Using the known areas of the two triangles, find the signed area of the shaded region. That is, find ’3\
e

the value of
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x=5

R f f(x)dx

It is obtained by first putting plus or minus signs 1n front of the positive numbers that are the areas of the
two triangles, depending on whether the triangles are above or below the x-axis, and then adding the
signed numbers together. The resulting number A is your first number.

g"fl\da/‘tq SA= -1 + 9 = 1

Part 2: Find the Second Number

() Use the antiderivative formulas to find an antiderivative F (x) for f(x). That is, use the
antiderivative formulas to find n=|

F(x) = Jf(x)dx— x — 4dx IH
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(f) Check: Does F'(x) = f(x)? If not, then go back to step (e) and check your work.

Chek fo)-*-z(x ~4XtC3) = AX =4 + O = K = ¥x)

v

(g) Using the function F(x) that you found in part (e), compute F(5) — F (1). The resulting number is
your second number.

FG) = (-5 5) 2 (2520 4¢3) = 516
FOY = (01 -401) r¢5) = (=4 #€3) = =31

F(s\- F@)= (‘3 f@-—- (-3 1‘@) =95-(3)=8

Part 3: Compare The Two Numbers

(h) Does your answer to question (d) match your answer to (g)? That is, is the following equation true?
xX=5

[ reoax=re-rFa)

x=1
(The Fundamental Theorem of Calculus says that this equation is true.)
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