L	A	S	T		N	A	M	E					

	F									
F	I	R	S	T		N	A	M	E	

Cover Sheet for 2014-2015 Fall Semester MATH 3200/5200 (Barsamian) Homework 1
(Due at the start of class on Friday, August 29, 2014. Staple this cover sheet to the front of your work.)

Problem:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Total	Rescaled
Your Score:							
Possible:	$\mathbf{2 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0}$				

Reading: In Chapter One, read Sections One.I. 1 and One.I.2, pages $1-22$.
Suggested Exercises: (These seventeen exercises are not to be turned in and are not graded, but you should do as many of them as possible and keep your solutions in a notebook for study. Note that detailed solutions to all of the Suggested Exercises are available in the solutions manual provided for free on the author's web site.)

Section One.I. 1 Exercises \# 18, 20, 23, 29, 30, 32, 33, 35 (from pages 9 - 12)
Section One.I. 2 Exercises \# 18, 20, 21, 22, 23, 24, 26, 27, 30 (from pages 19 - 22)
Assigned Exercises: Turn in your solutions to the following five exercises, with this cover sheet stapled to the front of your work.
[1] (20 points) (Similar to One.I.1\#18) Use Gauss's method to solve each system or conclude 'no solution' or 'many solutions'. Show all steps clearly.
(a) $\left\{\begin{array}{r}2 x+3 y=3 \\ x-y=4\end{array}\right.$
(b) $\left\{\begin{array}{l}2 x+3 y=3 \\ 4 x+6 y=5\end{array}\right.$
(c) $\left\{\begin{array}{r}x-y-z=1 \\ 4 x-2 y-z=5\end{array}\right.$
(d) $\left\{\begin{array}{r}2 x+z=3 \\ x-y-z=1 \\ 3 x-y=4\end{array}\right.$
[2] (20 points) (Similar to One.I.1\#23) True or False: A system with four unknowns and three equations always has many solutions. You must justify your answer with a proof or a counterexample!
[3] (20 points) (Similar to One.I.2\#18) Solve each system using matrix notation. Express the solution set using vectors. Show all steps clearly.
(a) $\left\{\begin{aligned} x+y & =0 \\ 2 x-y+3 z & =3 \\ x-2 y-z & =3\end{aligned}\right.$
(b) $\left\{\begin{array}{r}x+z=1 \\ 2 x-y+3 z=3 \\ 3 x-y+4 z=4\end{array}\right.$
(c) $\left\{\begin{array}{r}x+z=1 \\ 2 x-y+3 z=3 \\ 3 x-y+4 z=5\end{array}\right.$
[4] (20 points) (Similar to One.I.2\#21) Decide if the vector is in the set. Justify your answers.
(a) Is the vector $\binom{2}{-3}$ in the set $\left\{\left.\binom{4}{-6} k \right\rvert\, k \in \mathbb{R}\right\}$?
(b) Is the vector $\binom{2}{5}$ in the set $\left\{\left.\binom{-6}{15} j \right\rvert\, j \in \mathbb{R}\right\}$?
(c) Is the vector $\left(\begin{array}{c}-5 \\ -3 \\ 1\end{array}\right)$ in the set $\left\{\left.\left(\begin{array}{c}1 \\ 0 \\ -2\end{array}\right)+\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) r \right\rvert\, r \in \mathbb{R}\right\}$?
(d) Is the vector $\left(\begin{array}{c}1 \\ -2 \\ 4\end{array}\right)$ in the set $\left\{\left.\left(\begin{array}{l}2 \\ 0 \\ 1\end{array}\right) j+\left(\begin{array}{l}3 \\ 1 \\ 0\end{array}\right) k \right\rvert\, j, k \in \mathbb{R}\right\}$?
[5] (20 points) (Similar to One.I.2\#30) Make up a three equations / three unknowns system having
(a) no solutions.
(b) exactly one solution.
(c) a one-parameter solution set.
(d) a two-parameter solution set.

Either explain your answers, or provide answers that are so clear that they do not need explanations.

