I I

2017 - 2018 Spring Semester MATH 3050 Section 101 (Barsamian) Homework 7, Due Fri March 30, 2018

Problem:	1	2	3	4	5	6	7	8	9	10	Total	Rescaled
Your Score:												
Possible:	10	10	10	10	10	10	10	10	10	10	100	20

[1] A *bit string* is a string of zeros and ones. A *4-bit string* is bit string with four digits. We need an organized way of listing all the 4-bit strings. The standard way is to count from 0 to 15 in binary. Fill in the table:

number in	representation							
base 10	by a 4-bit string							
0								
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								

[2] Fill in the following table by rotating your list of 4-bit strings 90° counterclockwise. The finished table shows the outputs of all possible two-place Boolean functions.

	output of f_0	output of f_1	output of f_2	output of f_3	output of f_4	output of f_5	output of f_6	output of f_7	output of f_8	output of f_9	output of f_{10}	output of f_{11}	output of f_{12}	output of f_{13}	output of f_{14}	output of f_{15}
(0,0)																
(0,1)																
(1,0)																
(1,1)																

[3] (a) What is $f_{11}(0,1)$?

Input

- (b) What is $f_{11}(1,0)$?
- (c) For what input (a, b) is $f_4(a, b) = 1$?
- (d) What is is $f_3^{-1}(1)$?

[4] The function g shown at right is a two-place Boolean function. $g(x_1, x_2) = (4x_1 + 3x_2) \mod 2$ (a) What is g(0,0)?

- (b) What is g(0,1)?
- (c) What is g(0,1)?
- (c) what is g(1,0):
- (d) What is g(1,1) ?
- (e) Which of the sixteen two-place Boolean functions in your table from exercise [2] is g?

[5] Let A = {-3, -2, -1,0}, B = {0,1}, and let f: R → R be defined by the formula f(x) = x².
(a) What is A ∩ B?

- (b) What is $f(A \cap B)$?
- (c) What is f(A)?
- (d) What is f(B)?
- (e) What is $f(A) \cap f(B)$?
- (f) Prove or disprove: \forall sets A and B and for all functions $f, f(A \cap B) = f(A) \cap f(B)$.

[6] Define $f: \mathbb{Z} \to \mathbb{Z}$ by f(n) = 2n + 7.

- (a) Is f one-to-one? Prove or give a counterexample.
- (b) Is f onto? Prove or give a counterexample.
- (c) Is f a one-to-one correspondence? If it is, find the inverse function.

[7] Define $g: \mathbf{R} \to \mathbf{R}$ by g(x) = 2x + 7.

- (a) Is g one-to-one? Prove or give a counterexample.
- (b) Is g onto? Prove or give a counterexample.
- (c) Is g a one-to-one correspondence? If it is, find the inverse function

[8] (a) Circle the statements that mean "f is one-to-one"

Statement S: $\forall x_1, x_2 (If x_1 = x_2 then f(x_1) = f(x_2)).$ Converse of S: $\forall x_1, x_2 (If f(x_1) = f(x_2) then x_1 = x_2).$ Inverse of S: $\forall x_1, x_2 (If x_1 \neq x_2 then f(x_1) \neq f(x_2)).$ Contrapositive of S: $\forall x_1, x_2 (If f(x_1) \neq f(x_2) then x_1 \neq x_2).$ (b) Circle the statements that mean "f is onto"

$$\forall x (\exists y (f(x) = y)). \exists x (\forall y (f(x) = y)). \forall y (\exists x (f(x) = y)). \exists y (\forall x (f(x) = y)).$$

[9] Let $f(x) = \frac{x+a}{x+b}$ for all real numbers $x \neq -b$. (a) Find f^{-1} .

(b) What is the domain of f^{-1} ?

[10] (a) Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ that is one-to-one but not onto. To get credit for this, your function cannot be the same as the function of anybody else in the class.

(b) Give an example of a function $g: \mathbb{R} \to \mathbb{R}$ that is onto but not one-to-one. To get credit for this, your function cannot be the same as the function of anybody else in the class.