Solutions to Induction Problems about Inequalities

2017-2018 Spring Semester MATH 3050 Section 101 (Barsamian) Homework 6

Prove Statement A: $\forall n \in \mathbb{Z}, n \geq 4(n^3 < 3^n)$.

Preliminary work:

Starting value: a = 4

Predicate: P(n) is the inequality $n^3 < 3^n$.

Predicate with k inside: P(k) is the inequality $k^3 < 3^k$.

Predicate with k + 1 inside: P(k + 1) is $(k + 1)^3 < 3^{(k+1)}$.

Basis Step: P(4) is the inequality $4^3 < 3^4$. That is, 64 < 81. True.

Induction Step

Suppose that $k \ge 4$ and that P(k) is true.

That is, $k \ge 4$ and $k^3 < 3^k$ is true. (This is the Inductive Hypothesis) Start by building the left side of the inequality P(k+1) and show

that it is less than the right side.

п	\mathfrak{g}_{n^3}	3^n	№ n!
0	0	1	1
1	1	3	1
2	8	9	2
3	27	27	6
4	64	81	24
5	125	243	120
6	216	729	720
7	343	2187	5040
8	512	6561	40320
9	729	19683	362880
10	1000	59049	3.6288 × 10 ⁶
11	1331	177147	3.99168 × 10 ⁷
12	1728	531441	4.790016 × 10 ⁸
	1		

left side =
$$(k + 1)^3$$

= $k^3 + 3k^2 + 3k + 1$ (expanded)
 $< k^3 + 3k^2 + 3k + 3k$ (because $1 < 3k$ since $4 \le k$)
= $k^3 + 3k^2 + 3(2k)$ (arithmetic)
 $< k^3 + 3k^2 + 3(k^2)$ (because $2 < k$ since $4 \le k$)
 $< k^3 + k^3 + k^3$ (because $3 < k$ since $4 \le k$)
= $3 \cdot k^3$ (factored)
 $< 3 \cdot 3^k$ (because $k^3 < 3^k$ by the Inductive Hypothesis)
= $3^{(k+1)}$ (rule of exponents)
= right side

We have shown that P(k + 1) is true.

Conclusion: By the Principle of Induction, $\forall n \in Z, n \ge 4(n^3 < 3^n)$

Prove Statement B: $\forall n \in \mathbb{Z}, n \geq 6(n^3 < n!)$.

Preliminary work:

Starting value: a = 6

Predicate: P(n) is the inequality $n^3 < n!$.

Predicate with k inside: P(k) is the inequality $k^3 < k!$.

Predicate with k + 1 inside: P(k + 1) is the inequality $(k + 1)^3 < (k + 1)!$

Basis Step: P(6) is the inequality $6^3 < (6+1)!$. That is, 216 < 720. This is true.

Induction Step

Suppose that $k \ge 6$ and that P(k) is true. That is, $k^3 < k!$ is true. (This is the Inductive Hypothesis) Start by building the left side of the inequality P(k+1) and show that it is less than the right side.

left side =
$$(k + 1)^3$$

= $k^3 + 3k^2 + 3k + 1$ (expanded)
< $k^3 + 3k^2 + 3k + 3k$ (because $1 < 3k$ since $6 \le k$)
= $k^3 + 3k^2 + 3(2k)$ (arithmetic)
< $k^3 + 3k^2 + 3(k^2)$ (because $2 < k$ since $6 \le k$)
< $k^3 + k^3 + k^3$ (because $3 < k$ since $6 \le k$)
= $3 \cdot k^3$ (factored)
< $3 \cdot k!$ (because $k^3 < k!$ by the Inductive Hypothesis)
< $(k + 1) \cdot k!$ (because $3 < (k + 1)$ since $6 \le k$)
= $(k + 1)!$ (property of factorial)
= right side

We have shown that P(k + 1) is true.

Conclusion: By the Principle of Induction, $\forall n \in Z, n \geq 6(n^3 < n!)$

Prove Statement $C: \forall n \in \mathbb{Z}, n \geq 7(3^n < n!).$

Preliminary work:

Starting value: a = 7

Predicate: P(n) is the inequality $3^n < n!$.

Predicate with k inside: P(k) is the inequality $3^n < k!$.

Predicate with k + 1 inside: P(k + 1) is the inequality $3^{(k+1)} < (k + 1)!$

Basis Step: P(7) is the inequality $7^3 < (7+1)!$. That is, 2187 < 5040. This is true.

Induction Step

Suppose that $k \ge 7$ and that P(k) is true. That is, $3^k < k!$ is true. (This is the Inductive Hypothesis) Start by building the left side of the inequality P(k+1) and show that it is less than the right side.

left side =
$$3^{(k+1)}$$

= $3 \cdot 3^k$ (rule of exponents)
< $3 \cdot k!$ (because $3^k < k!$ by the Inductive Hypothesis)
< $(k+1) \cdot k!$ (because $3 < (k+1)$ since $7 \le k$)
= $(k+1)!$ (property of factorial)
= right side

We have shown that P(k + 1) is true.

Conclusion: By the Principle of Induction, $\forall n \in \mathbb{Z}, n \geq 7(3^n < n!)$.