Class Drill for Section 2.2: Justifying and Illustrating a Proof of Fano's Theorem #3

Axiom System:	Fano's Geometry
Primitive Objects:	point, line
Primitive Relation:	The point lies on the line.
Axioms:	<f1> There exists at least one <i>line</i>.</f1>
	<f2> For every <i>line</i>, there exist exactly three <i>points</i> that <i>lie on</i> the <i>line</i>.</f2>
	<f3> For every <i>line</i>, there exists a <i>point</i> that does not <i>lie on</i> the <i>line</i>.</f3>
	<f4> For any two <i>points</i>, there is exactly one <i>line</i> that both <i>points lie on</i>.</f4>
	<f5> For any two <i>lines</i>, there exists a <i>point</i> that <i>lies on</i> both <i>lines</i>.</f5>

Fano's Geometry Theorem #3: There exist exactly seven points.

Justify the steps in the following Proof of Fano's Theorem #3

Part 1: Show that there must be at least seven points.

Introduce Line L_1 and points A, B, C, D.

(1) There exists a line. (justification: ______ We can call it L_1 . (Make a drawing.)

(2) There are exactly three points on <i>L</i> ₁ . (justification:	_)
We can call them A, B, C. (Make a new drawing.)	

)

(3) There must be a point that does not lie on L_1 . (justification:)
We can call it D. (Make a new drawing.)	

Introduce Line L_2 and point E.

- (4) There must be a line that both A and D lie on. (justification:
- (5) The line that both A and D lie on cannot be L_1 . (justification:

So it must be a new line. We can call it L_2 . (Make a new drawing.)

(6) There must be a third point that lies on <i>L</i> ₂ . (justification:)
(7) The third point on <i>L</i> ₂ cannot be <i>B</i> or <i>C</i> . (justification:	

So it must be a new point. We can call it *E*. (Make a new drawing.)

Introduce Line L₃ and point F.

(8) There must be a line that both *B* and *D* lie on. (justification: _____)

(9) The line that both *B* and *D* lie on cannot be L_1 or L_2 . (justification:

So it must be a new line. We can call it L_3 . (Make a new drawing.)

(10) There must be a third point that lies on L_3 . (justification: _____) (11) The third point on L_3 cannot be A, C, or E. (justification: _____)

So it must be a new point. We can call it *F*. (Make a new drawing.)

Introduce Line *L*⁴ and point *G*.

(12) There must be a line that both *C* and *D* lie on. (justification:

(13) The line that both *C* and *D* lie on cannot be L_1 or L_2 or L_3 . (justification:

_)

So it must be a new line. We can call it L_4 . (Make a new drawing.)

(14) There must be a third point that lies on *L*₄. (justification: _____)
(15) The third point on *L*₄ cannot be *A*, *B*, *E*, or *F*. (justification: _____)

So it must be a new point. We can call it G. (Make a new drawing.)

Part 2: Show that there cannot be an eight point.

(16) Suppose there is an eighth point. (justification: _____

_____) Call it *H*.

- (17) There must be a line that both *A* and *H* lie on. (justification: _____)
- (18) The line that both A and H lie on cannot be L_1 or L_2 or L_3 or L_4 . (justification: ______

So it must be a new line. We can call it L_5 .

- (19) There must be a third point that lies on *L*₅. (justification: _____)
- (20) Line L_5 must intersect each of the lines L_1 and L_2 and L_3 and L_4 . (justification:
- (21) The third point on L_5 must be D. (justification (Be sure to explain clearly): _____

- (22) So points A, D, H lie on L_5 .
- (23) We have reached a contradiction. (explain the contradiction:

Therefore, our assumption in step (16) was wrong. There cannot be an eighth point. **End of proof**