Section 2.2 Conditional Statements.

New Compound Statement Form: The Conditional (the IF THEN statement form)

[Example]

Which of these statements is true? Explain.

Remark: There is a special term for the situation where a conditional statement that is true by virtue of the fact that its *hypothesis* is false. The statement is said to be *vacuously true*.

Order of Operations

We have encountered four logical symbols so far: $\Lambda, \vee, \rightarrow, \sim$. (We won't be using the exclusive or symbol \oplus .)

What is the order of operations?

 $(), \sim, \land, \lor, \checkmark, \rightarrow$

That is,

[Example] Construct a truth table for the statement form $p \land \neg q \rightarrow r$ 3 statement Variables, so we will need $2 \cdot 2 \cdot 2 = 8$ rows $(P \land (\sim 2)) \rightarrow \Gamma$

Express the Conditional Statement Form in an Alternate form

(~P)V2

[Example] Use a truth table to prove that $p \rightarrow q$ is logically equivalent to $\sim p \lor q$

Solution:

need 2.2=4 rows because 2 statement variables P,g

Goal: Find the Negation of a conditional statement

Given that
$$p \to q \equiv \sim p \lor q$$
, use DeMorgan to find $\sim (p \to q)$.
 $\sim (P \to q) \equiv \sim (\sim p \lor q) \equiv (\sim (\sim p)) \land \sim q \equiv p \land \sim q$

[Example]

$$N(P \rightarrow q) \equiv P \wedge q$$
 Today is saturday and I do not go to know today.
Negate statement S: If Bob is green then Carol is red. $P \rightarrow q$
 $N(P \rightarrow q) \equiv P \wedge nq$ Bob is green and Carol is not red.

 $P \rightarrow q$

Defir	nition of the Converse, the Inverse, and the Contrapositive
	For a statement form $S: p \rightarrow q$
i	Symbol: contrapositive(S)
	• Spoken: the <i>contrapositive of S</i>
	• Meaning: the statement form: $\sim q \rightarrow \sim p$
i	Symbol: converse(S)
	• Spoken: the <i>converse of S</i>
	• Meaning: the statement form: $q \rightarrow p$
	Symbol: inverse(S)
	• Spoken: the <i>inverse of S</i>

• **Meaning:** the statement form: $\sim p \rightarrow \sim q$

[Example]

For the given conditional statement S: If Bob is green then Carol is red.

Write the *contrapositive*, the *converse*, and the *inverse*.

Contrapusitive: Ng -> NP If carol is not red then Bob is not green. Converse: g -> P If carol is red then Bob is green. Inverse NP -> Ng If Bob is not green then (and is not red.

Logical equivalences between the Original, Contrapositive, Converse, Inverse, Negation.

Suppose that *S* is the conditional statement form $p \rightarrow q$

Make truth tables for *S*, *contrapositive(S)*, *converse(S)*, *inverse(S)*, ~*S*

Solution:

P	2	мР	ng	s P→2	Contropositive(S) NI -> NP	$\begin{array}{c} \text{Converse}(S) \\ \mathbb{Q} \longrightarrow \mathbb{P} \end{array}$	Inverse(S) $NP \rightarrow NQ$	~5
Τ	T	F	F	\uparrow	\neg	T	Т	F
T	F	F	Т	F	F	T	T	\top
F	Τ	Т	F	T	T	F	F	F
F	F	T	T	Т	T		\top	F
				the	ic match		rese match	hele dont match

Observations

- *S* and *Contrapositive(S)* are logically equivalent
- *Converse(S)* and *Inverse(S)* are logically equiv
- S and Converse(S) are <u>not</u> logically equivalent
- *Inverse(S)* and ~*S* are not logically equivalent
- In fact, $\sim S$ is not logically equivalent to any of the others.

Remark:

- The fact that *S* and *Contrapositive(S)* are *logically equivalent* is extremely important in doing proofs. It is often overlooked.
- The fact that *S* and *Converse(S)* are *not* logically equivalent is also important. Many students make the mistake of thinking that *S* and *Converse(S)* are equivalent. They aren't.

Suppose that the $p \rightarrow q$ is known to be *true*.

Suppose that the $p \rightarrow q$ is known to be *false*.

(a)What are values of *p*, *q*?

(b) What must be the value of $q \rightarrow p$? $q \rightarrow p$ would be $F \rightarrow T$

Important observation:

Translating common language into conditional statements

What does "I will have a cookie if today is Saturday" mean?

Common language:	Pif 2
Logical Form:	IF 2 THEN P
Symbol:	2 → P

Translating common language into conditional statements, continued

What does "I will have an ice cream today only if today is Friday" mean?

Common language:	P only if 2
Logical Form:	IF P THEN 2
Symbol:	$P \rightarrow 2$

Translating *if and only if* into conditional statements B What does Sentence S: "I will go Biking today if and only if today is Wednesday" mean?

Let *B* be the phrase *I* will go biking today.

Let *W* be the phrase *Today is Wednesday*.

Then Sentence S could be abbreviated: B if and only if W

This means
$$(B : f w) AND (B only : f w)$$

But that means

$$(W \rightarrow B)$$
 AND $(B \rightarrow W)$

How would the statement form $(W \rightarrow B) \land (B \rightarrow W)$ behave?

Investigate with a truth table:

B	W	B-W	W->B	$(W \rightarrow B) \land (B \rightarrow W)$
1	+	T	T	T
\top	F	F	\top	F
F	$\overline{\mathbf{T}}$	+	F	F
F	F	T	T	

Observation:

This brings us to the definition of the biconditional

Definition of the Biconditional symbols: $P \longrightarrow 2$ P iff g spoken: p if and only if g less commonly spoken: the biconditional of P and g meaning in symbols: $(P \rightarrow 2) \land (q \rightarrow P)$ meaning, in words: $(\pm F P \pm HEN q) \land (P = 2 \pm P)$ clearer meaning, in words: P, g have the same truth value

Translating common language into conditional statements, continued

What does *"p is sufficient for q "* mean?

What does *"p is necessary for q "* mean?

The book explains this quite well in Section 2.2, and you have a couple of exercises about it.

I will leave it to you to read the book discussion of this topic.

End of Video for H02.2