Statements with Multiple Quantifiers

Reading: Section 3.3 Statements with Multiple Quantifiers
Homework: 3.3 \# 2, 3, 6, 17, 19, 20, 23, 26, 30, 38 HO3, 3

Important Result from Section 3.2: Negating Quantified Statements

Negating a Universally Quantified Statement

$$
\sim(\forall x \in D(P(x, y))) \equiv \exists x \in D(\sim P(x, y))
$$

Negating an Existentially Quantified Statement

$$
\sim(\exists x \in D(P(x, y))) \equiv \forall x \in D(\sim P(x, y))
$$

Negating Statements with Multiple Quantifiers
[Example 1] Consider Statement $S$ :
There is a program that gives the correct answer to every question posed to it.
(a) Rewrite the statement formally (in symbols) using variables and quantifiers.
(b) Find the negation of the formal statement.
(c) Rewrite the negation informally (in words).
(a) Let A he the st ot comparer programs Let $p$ he a vmiate with domain $A$.
Lit B he che set of all questions.
Wi que a raciable with domain B

$$
\begin{aligned}
& \text { Let }(1 p, q) \text { he the dedicate "pcorgan } p \text { corceetly ansmess question } q \text { " }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sim S & \equiv \sim \underbrace{(\exists p \in A(\forall q \in B(C(p, q))))} \\
& \equiv \forall p \in A(\sim(\forall q \in B(c(p, q))) \\
& \equiv \forall p \in A(\exists q \in B(\sim C(p, q)))
\end{aligned}
$$

(C) Pewrite this hintrmally
this is the firmal negation.
 $p$ grees the wring nimpwis to $q$.

## Changing the Order of Multiple Quantifiers

[Example 2] In the following examples, Consider Statement $A$, and Statement $B$ obtained by changing the order of the quantifiers in Statement $A$.

For each pair of statements, do the following:
i. Which of the statements are true? (might be none, one, or both) Explain
ii. Some of the statements are famous properties of real numbers. Which statements, and what is the name of the property? Explain
iii. Find the negation of any of the statements that are false.
[Example Ra]
Statement $A: \underbrace{\forall x \in \boldsymbol{R}}(\exists y \in \boldsymbol{Z}(x<y))$
Statement $B: \widehat{\exists y \in \boldsymbol{Z}}(\overparen{\forall x \in \boldsymbol{R}}(x<y))$

4 treatment $A$ is time.
Given any real number $x$
Lit $y=[x\rceil+1$, then $y$ will he an integer coilingfintion $\quad$ and $x<y$.
leatinteys
Statements sims the we wits an integer this is greeter than every real numbers. This is false. Given any 'integer $y$, we conn hit $x=y+1$. Then $x$ is a cell number and $x$ is not lis than $y$.

Find the nation of $B$

$$
\begin{aligned}
\sim B & \equiv \underbrace{[\exists y \in \mathbb{Z}}(\forall x \in \mathbb{R}(x<y))] \\
& \equiv \forall y \in \mathbb{Z}(\underbrace{\sim(\underbrace{(\forall x \in \mathbb{R}}(x<y)))} \\
& \equiv \forall y \in \mathbb{Z}(\exists x \in \mathbb{R}(\sim(x<y))) \\
& \equiv \forall y \in \mathbb{R}(\exists x \in \mathbb{R}(y<x)
\end{aligned}
$$

[Example 2b]
Statement $A: \overparen{\forall x \in \boldsymbol{R}}(\widetilde{\exists y \in \boldsymbol{R}}(x+y=x))$

Statemat $A$ is tive: Lit $y=0$
Statemnk B is trac: Let $y=0$
[Example 2c]
Statement $A: \forall x \in \boldsymbol{R}(\exists y \in \boldsymbol{R}(x+y=0))$
Statement $B: \exists y \in \boldsymbol{R}(\forall x \in \boldsymbol{R}(x+y=0))$
Stathmert A is true?
Ggiven a real numher $X$,

$$
\text { let } y=-x
$$

Then $x+y=x+(-x)=0$
stanment is the strament of in andatiw invere for erich realimmac.

B is false! Find as negation

$$
\begin{aligned}
& \text { is fave!. Find as negalun } \\
& \sim B E=\underbrace{(\exists y \in \mathbb{R}(\forall x \in \mathbb{R}(x+y=0)))} \\
& \\
& \equiv \forall y \in \mathbb{R}(\sim(\forall x \in \mathbb{R}(x+y=0))) \\
& \\
& \\
& \equiv \forall y \in \mathbb{R}(\exists x \in \mathbb{R}(\sim(x+y=0))) \\
& \\
& \\
& \equiv \forall y \in \mathbb{R}(\exists x \in \mathbb{R}(x+y \neq 0))
\end{aligned}
$$

[Example 2d]
Statement $A: \forall x \in \boldsymbol{R}^{*}\left(\exists y \in R^{*}(x y=1)\right)$
Statement $B: \exists y \in \boldsymbol{R}^{*}\left(\forall x \in R^{*}(x y=1)\right)$
Statement A intact. Given any $x \in \mathbb{R}^{*}$, It $y=\frac{1}{x}$.

$$
\text { Then } y \in \mathbb{R}^{*} \text { and } x \cdot y=x \cdot \frac{1}{x}=1
$$

This is the property of the existence of a multiplicative inverse for every ma-zero red member.
Statement bis false.
4trienent $B$ say that there is one single special real number $y$ shin is the addition intis for celery reel nmmixe $x$, NotQreve!

$$
\sim B \equiv \forall y \in \mathbb{R}^{*}\left(\exists x \in \mathbb{R}^{*}(x y \neq 1)\right)
$$

Changing the Domain in Quantifiers
[Example 3] Consider statement $S$ :

$$
\begin{aligned}
& \begin{array}{l}
\text { Write the negation for } S . \\
\sim S \equiv \sim(\exists x \in D(\forall y \in D(x y<y))
\end{array} \\
& \equiv \forall x \in D(\sim \forall y \in D(x y<y)) \\
& \equiv \forall x \in D(7 y \in D(\sim(x y<y))) \\
& \equiv \forall x \in D(\exists y \in D(x y \geq y))
\end{aligned}
$$

Is Statement $S$ true when the domain is $D=\boldsymbol{R}^{+}$? Explain
s: $\exists x \in \mathbb{R}^{+}\left(\forall y \in \mathbb{R}^{+}(x y<y)\right)$
This is true!.
Let $x=\frac{1}{2}$, for example
Then $\quad x<1$ is a true inequality
Let $y$ be any positive real number.
Multiply note sines of the inequality by $y$

$$
x \cdot y<1 \cdot y
$$

$x+y<y$ a man the ingemity

Is Statement $S$ true when the domain is $D=\boldsymbol{R}^{*}$ ? Explain
Statement $S$ is not tical!.
The trike of letting $x=\frac{1}{2}$ whit work.
then if $y=-3$, we find that

$$
x \cdot y=\frac{1}{2} \cdot(-3)=-\frac{3}{2}
$$

So the inequality $x y<y$ would

$$
\text { become }-\frac{3}{2}<-3 \text {, which is false! }
$$

I think you cha bee why sher possible values of $X$ wist work either.

Is Statement $S$ true when the domain is $D=\boldsymbol{Z}^{+}$? Explain
5: $\exists x \in \mathbb{Z}^{+}\left(\forall y \in \mathbb{Z}^{+}(x y<y)\right)$
Notice: we wist he able to choose $x$ between $0 \delta 1$,
Go we wort he ale to find un $X$ that works. So $S$ is false.
consider $\sim S$

$$
\left.\left.\begin{array}{l}
\text { (onside } \sim S \\
\sim S \equiv \forall x \in \mathbb{Z} \\
\sim y
\end{array} \right\rvert\, y \in \mathbb{L}^{+}(x y \geq y)\right)
$$

this k free. let $x$ be ping positive integer
thin $x \geq 1$
Thu let $y=2$ fir example.
Multidy both sides of ane x rue iagpalit) by $y=2$

$$
\begin{aligned}
& x \cdot 2 \geq 1.2 \\
& x \cdot 2 \geqslant 2
\end{aligned} \text { so } x \cdot y \geqslant y \text { is tune. So ns intone }
$$

[Example 4]
Consider Statement $A$, and Statement $B$ obtained by interchanging $\forall, \exists$ in Statement $A$. Statement $A: \forall x \in R^{+}\left(\exists y \in R^{+}(y<x)\right)$ Statement $B: \exists x \in R^{+}\left(\forall y \in R^{+}(y<x)\right)$
Is either of these statements true? Explain.
Statement Aistrucl. Given some $x \in \mathbb{R}^{+}$
Let $y=\frac{1}{2} x$
Then $y<x$ will be toul.
Shames $B$ sing this there exist a positive real number $x$ that is greeter pram all pristine real numbers y.
this is false. To see why, wite the ny aton it 8 and show that vb is xcul.

$$
\begin{aligned}
\sim B & \equiv \sim[\underbrace{\exists x \in \mathbb{R}^{+}}(\forall y \in \mathbb{R}^{+}(\underbrace{y<x)})] \\
& \equiv \forall x \in \mathbb{R}^{+}\left(\exists y \in \mathbb{R}^{+}(y \geq x)\right)
\end{aligned}
$$

To bee wim NB is tal,
Smpere $x \in \mathbb{R}^{+}$is youn
Let $y=x$
Then $y \geq x$ is tive.
This shour thas NB is tue , yo B is false.

Interchanging $x$ and $y$ in multiple quantifiers
[Example 5]
Consider Statement $A$, and Statement $B$ obtained by interchanging $x, y$ in Statement $A$.
Statement $A: \forall x \in D(\exists y \in D(y=2 x+1))$
Statement $B: \forall y \in D(\exists x \in D(y=2 x+1))$
Let the domain $D$ be the set $\boldsymbol{R}$. Is either of the statements $A, B$ true? Explain.
Statement A is teal. Gwen any $x$, jaunt let $y=2 x+1$ then the equation $y=2 x+1$ is tine! Garment Risasotrue

Given a $y$, what should you use for $x$ ? Solve fine equation $y=2 x+1$ for $x$ in ter $m$ of $y$
$y=2 x+1$

$$
\begin{aligned}
& y=2 x+1 \\
& y-1=2 x \\
& \frac{y-1}{2}=x
\end{aligned}
$$

then the equition $y=2 x+1$ becones

$$
\begin{aligned}
y & =2\left(\frac{y-1}{2}\right)+1 \\
& =(y-1)+1 \\
& =y \text { this is tane! }
\end{aligned}
$$

Let the domain $D$ be the set $\boldsymbol{Z}$. Is either of the statements $A, B$ true? Explain.
Statement At is still true

$$
\text { given any } x \in \mathbb{Z} \text {, lat } y=2 x+1
$$

then $y$ is an integer, and the equation $y=2 x+1$ is tone.
Statement Bis not true
Green $y \in \mathbb{Z}$, the only $x$ that an possibly work is $x=y \frac{-1}{2}$ Rout that might ant he an miles.
for instance when $y=4$, $x$ wound have to be $x=\frac{4-1}{2}=\frac{3}{2}$ and $\frac{3}{2}$ is nit an integer.
so for $y=4$, the is on $x$ that will wick.
End of Video

