
Video for Homework H07.1 

 

Reading: Section 7.1 Functions in Susanna Epp’s book Discrete Mathematics 

 

Homework: H07.1: 7.1#5,6,7,12,14,18,25,28,32,39,42 

 

Topics: 

• Definition of Function 

• Examples of Functions 

• Function Equality 

• Images of Sets and Preimages of Sets 

  



Recall from Chapter 1: 

 

Ordered Pairs and Ordered n-tuples, definitions from Chapter 1 

 

 

 

 



The Cartesian Product of Sets, definition from Chapter 1 

 

 

 

  



Exponent notation for some Cartesian Products 

 

Just as the cartesian product 𝑹 × 𝑹 × 𝑹 is often denoted 𝑹𝟑, one can denote the Cartesian 

product of 𝑛 copies of any set 

𝐴 × 𝐴 × ⋯ × 𝐴⏟        

𝑛

 

by the symbol 

𝐴
𝑛 

 

In particular, we can denote the Cartesian product 

{0,1} × {0,1} × ⋯ × {0,1}⏟                

𝑛

 

by the symbol 

{0,1}𝑛 

 

  



Relations and Functions, definitions from Chapter 1 

 

 

 

 

. 

  



In Chapter 7, we study functions in more detail. We begin with a more complete definition of 

function, one that includes some associated terminology. Here is the Chapter 7 Definition 

 



Examples of functions 

 

Particularly Simple Function: The Identity Function  

 

The Identity Function on a Set 

Symbol: 𝐼𝑋  or  𝑖𝑑𝑋 

Spoken: the identity function on 𝑋 

Usage: 𝑋 is a set 

Meaning : a function 𝐼𝑋: 𝑋 → 𝑋 defined by 𝐼𝑋
(𝑥) = 𝑥 

 

[Example 1] (similar to 7.1#5) 

(𝒂)  𝐼𝑹
(7) = 

 

(𝒃)  𝐼𝑹(𝑒
(− sin(𝜃))

) = 

 

  



Sequences can be thought of as functions 

In Section 5.1, we discussed sequences. In the video for H05.1, I introduced a simple 

definition of sequence as a list of numbers. 

 

Definition of Sequence (from video for H05.1) 

A sequence is a list of numbers 

If the list ends, the sequence is called a finite sequence. 

If the list goes on forever, the sequence is called an infinite sequence. 

The numbers on the list are called the terms of the sequence. 

The first term of the sequence is called the initial term. 

If the last term of a finite sequence is called the final term. 

Two sequences are said to be the same if they are the same list of numbers. 

 

  



But in Section 5.1, we also found explicit formulas for lists. In other words, a sequence can 

also be thought of as a function. Here is the book’s definition of sequence, from Section 5.1. 

 

 

 

Notice that the definition allows for lists of things that are not numbers. For instance, the list 

of months of the year could be thought of as a sequence whose domain is the set {1,2, … ,12}. 

 

  



In our Examples from the video for H05.1, we saw that the form of the explicit formula 

depends on the choice of the starting index.  

 

[Example 2] (From Video for H05.1) Consider the sequence 3,6,12,24,48,96 

(a) Find an explicit formula for the sequence, using a starting index of 0. 

(b) Find an explicit formula for the sequence, using a starting index of 1. 

 

In the terminology of functions, we would say that the formula for the function depends on the 

choice of domain. That is, the questions from the example above could be rewritten: 

 

[Example 2] (revisited)(similar to 7.1#6) Consider the sequence 3,6,12,24,48,96 

(a) Find a function with domain the set 𝑍𝑛𝑜𝑛𝑛𝑒𝑔 that describes the sequence. 

(b) Find a function with domain the set 𝑍+ that describes the sequence. 

 

You have a homework problem of this sort. (7.1#6) 

  



Functions with More General Domains 

 

Most (or all) of your previous experience with functions has been with functions whose 

domains are sets of numbers. But nothing in the definition of function requires that the domain 

be a set of numbers.  

 

Often it is useful to use functions that take as input a set, rather than a number. And in those 

situations, one is interested in investigating a particular collection of sets of a certain type. It is 

helpful to have terminology that narrows down the category of sets that are being considered, 

and to have notation for that category. One term that is useful is the power set of a given set. 

 

In these notes, the font that I will use for the power set is a slightly different script: 

𝒫(𝐴) 

  



[Example 3] (simlar to 7.1#7) Consider the following set of people 

𝐴 = {Ann,Bill,Carol,David,Ed,Frank,Ged,Hank,Iona,James,Kelly,Larry,Mark} 

Define a function 𝑓: 𝒫(𝐴) → 𝒁 by 

𝑓(𝑆) = {
1 if 𝑆 has 3 elements

0 otherwise
 

Then  

𝑓({Carol,Hank,James,Larry}) = 

 

𝑓({Carol,Hank,James}) = 

 

𝑓(𝑆) = 

 

𝑓(ϕ) = 

 

  



Even functions that involve just numbers can be complicated by having the numbers part of 

more complicated structures. For instance, functions can have input or output consisting of 

ordered n-tuples of numbers. 

 

[Example 4] (similar to 7.1#12) Let 𝐽10 = {0,1,2,3,4,5,6,7,8,9} 

Define a function 𝑓: 𝐽10 × 𝐽10 × 𝐽10 → 𝐽10 × 𝐽10 by 

𝑓(𝑎, 𝑏, 𝑐) = ((𝑎 + 𝑏 + 𝑐)𝑚𝑜𝑑 10, (𝑎𝑏𝑐)𝑚𝑜𝑑 10) 

Then  

 

𝑓((4,7,2)) = 

 

 

 

  



Some common mathematical functions have descriptions that are not simple formulas. 

 

 

 

You have a homework question (7.1#18) involving various logarithm functions and their 

corresponding exponential functions. 

 

  



Projections 

 

We started this video with a discussion of the identity function on a set. Although it is a very 

simple function, it is often very important. Another simple but useful class of functions comes 

up when dealing with cartesian products of sets. The functions are called projections, and they 

have to do with basically leaving out some of the coordinates in a cartesian product, to 

produce a new cartesian product with fewer coordinates. We will only discuss a simple 

example of projection here. 

 

The Projection onto the 𝒌𝒕𝒉 Coordinate 

Symbol: 𝑝𝑘  or  𝜋𝑘 

Spoken: the projection onto the 𝑘𝑡ℎ coordinate 

Usage: There is a cartesian product 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑘 × ⋯ × 𝐴𝑚 in use 

Meaning : the function 𝑝𝑘: 𝐴1 × 𝐴2 × ⋯ × 𝐴𝑘 × ⋯ × 𝐴𝑚 → 𝐴𝑘 defined by 

𝑝𝑘((𝑎1, 𝑎2, … , 𝑎𝑘, … , 𝑎𝑚
)) = 𝑎𝑘 

  



[Example 5](similar to 7.1#15) Let 𝑋 = 𝒁
+ and 𝑌 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝑍 = {𝑖, 𝑖𝑖, 𝑖𝑖𝑖} 

Then 𝑝2 is the function 𝑝2: 𝑋 × 𝑌 × 𝑍 → 𝑌 defined by 𝑝2
(𝑥, 𝑦, 𝑧) = 𝑦, etc. 

 

So 𝑝2((13, 𝑑, 𝑖)) = 

  

 

and 𝑝3((13, 𝑑, 𝑖)) = 

 

  



Functions Involving Strings and Bit Strings 

Ordered n-tuples were introduced in Chapter 1. The definition is copied for reference at the 

start of this video. 

 

A string is a slight variation on the idea of ordered n-tuples. 

 

 

In the homework assignment H07.1 for this section, you have a problem (7.1#28) that is about 

functions whose domain and codomain are sets of bit strings of a certain length. That exercise 

references an example presented in Section 7.1. The point of the exercise is for you to 

carefully read the example and understand it. I won’t discuss the concepts here, except to say 

that there is no difficult math involved, just careful reading. 

 



Boolean Functions 

Boolean functions are introduced on page 432. 

 

The book’s discussion of the topic is excellent, and there is no need for me to discuss the topic 

in this video. I will point out that in the book’s discussion, you will read that there are multiple 

ways of presenting a particular Boolean function: 

• a formula 

• an arrow diagram 

• a table of values 

One of your homework exercises (7.1#32) is about finding the output values for a three-place 

Boolean function, and giving an alternate presentation of the function involving a table. 

  



When are two functions equal? 

 

The concept of function equality sounds like it would not be confusing. But in practice, many 

students do not really understand what it means. 

 

For instance, are these two functions equal? 

 

 

 

 

 

Many students will say that these two functions are equal. But they are not equal. 

 

Why aren’t they equal? What is the criterion for function equality? 

 

  



The key is to remember that a function is a relation, which means that a function is a subset of 

a Cartesian product that satisfies a certain requirement. 

 

That is, a function 𝑓: 𝐴 → 𝐵 is a subset of the Cartesian product 𝐴 × 𝐵 with the property that 

for every 𝑎 ∈ 𝐴, there is exactly one ordered pair (𝑎, 𝑏), where 𝑏 ∈ 𝐵, in the set. The element 

𝑏 in the set (𝑎, 𝑏) is denoted 𝑓(𝑎). Using this symbol, we would say that for every 𝑎 ∈ 𝐴, the 

set 𝑓 contains exactly one ordered pair (𝑎, 𝑓(𝑎)), where 𝑓(𝑎) ∈ 𝐵. 

 

So a function 𝑓 is a set of ordered pairs. 

 

And a function 𝑔 is a set of ordered pairs. 

 

  



We already know what it means to say that two sets are equal: they contain exactly the same 

elements. Therefore, to say that two functions 𝑓 and 𝑔 are equal means that they contain 

exatly the same ordered pairs. But that means that they have to have the same domain 𝐴 and 

codomain 𝐵, and for every 𝑎 ∈ 𝐴, the elements 𝑓(𝑎) = 𝑔(𝑎). 

 

We see that the functions 

𝑓(𝑥) =
(𝑥 + 3)(𝑥 − 2)

(𝑥 − 2)
  𝑎𝑛𝑑 𝑔(𝑥) = (𝑥 + 3) 

are not equal because they do not have the same domain. 

 

The domain of 𝑔 is the set  

 

The domain of 𝑓 is the set  

 

So the functions are not equal. 

  



You have a homework problem (7.1#14) involving two functions whose formulas involve the 

floor and ceiling functions, which were introduced in Section 4.6 

 

 

For example,  

 

 

Your homework problem involves the question of whether two given functions involving floor 

and ceiling are equal. I won’t discuss a similar example here.  



Images and Preimages 

The book has the following definition of the image of a set and the inverse image of a set. 

 

A more common term for inverse image is preimage. 

 

There is some subtlety here, because the notation can be misleading. 

 

  



[Example 6] For the function 𝑓: 𝑹 → 𝑹 defined by 𝑓(𝑥) = 𝑥
2 

 

(a) Find the image of {−5,4} 

 

(b) Find the image of (−5,4) 

 

(c) Find the inverse image of 9 

 

(d) Find 𝑓−1(0) 

 

(e) What is the inverse function? 

 

(f) Find the preimage of −5 

 

(g) Find the preimage of (−5,4) 

 



Note that the symbol 𝑓−1 in general does not denote a function in the ordinary sense. It does 

not take as input a number and produce as output a number. 

 

For instance, the 𝑓(𝑥) = 𝑥
2 does not have an inverse function in the ordinary sense. It can’t 

because 𝑓(𝑥) = 𝑥
2 is not one-to-one. 

 

But sometimes the symbol 𝑓−1 in does denote a function in the ordinary sense. For instance, 

the function 𝑔(𝑥) = 𝑥
3 has an inverse function 𝑔−1(𝑥) = 𝑥

1/3 

 

It is interesting to realize that for any function 𝑓: 𝐴 → 𝐵, the symbol 𝑓−1 does actually denote 

a function of a different sort. 

• The domain of 𝑓−1 is the set of all subsets of 𝐵. 

• The codomain of 𝑓−1 is the set of all subsets of 𝐴. 

That is, 

𝑓
−1

: 𝒫(𝐵) → 𝒫(𝐴) 

 



[Example 7] (similar to 7.2#42)  

(a) Prove or Disprove: ∀𝐹: 𝑋 → 𝑌 (∀𝐴, 𝐵 ⊆ 𝑋(𝐹(𝐴) ∩ 𝐹(𝐵) ⊆ 𝐹(𝐴 ∩ 𝐵))) 

 

  



[Example 7], continued  

(b) Prove or Disprove: ∀𝐹: 𝑋 → 𝑌 (∀𝐴, 𝐵 ⊆ 𝑋(𝐹(𝐴) ∪ 𝐹(𝐵) ⊆ 𝐹(𝐴 ∪ 𝐵))) 

 

 

  




