Video for Homework H09.3 Counting Elements of Disjoint Sets: The Addition Rule

Reading: Section 9.3 Counting Elements of Disjoint Sets: The Addition Rule

Homework: H09.3: 9.3\#7,9,17,21,22,24,34,36

Topics:

- The Addition Rule
- The Difference Rule
- The Complement Rule for Probability
- The Inclusion/Exclusion Rule

Theorem 9.3.1 The Addition Rule
Suppose a finite set A equals the union of k distinct mutually disjoint subsets A_{1}, A_{2}, \ldots, A_{k}. Then

$$
N(A)=N\left(A_{1}\right)+N\left(A_{2}\right)+\cdots+N\left(A_{k}\right) .
$$

Theorem 9.3.2 The Difference Rule
If A is a finite set and B is a subset of A, then

$$
N(A-B)=N(A)-N(B)
$$

$N(A)=N(A-B)+N(B)$
by Adatior Rule

$$
P\left(A^{c}\right)=\frac{N\left(A^{c}\right)}{N(S)}=\frac{N(S)-N(A)}{\substack{\begin{subarray}{c}{\text { Diffecence } \\
\text { La, }} }}}=\frac{N(S)}{N(S)}-\frac{N(A)}{N(S)}=1-P(A)
$$

[Example 1] (similar to 9.1\#17)
(a) How many strings of eight hexadecimal digits do not have any repeated digits?
hexadecimal digits $\frac{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F}{16 \text { characters }}$

$$
-\frac{1}{2}-\overline{4}-\overline{6} \overline{7}-\frac{1}{8}
$$

(b) How many strings of eight hexadecimal digits have at least one repeated digit?

Let $S=$ the set of all strings of 8 hexadecimal digits
Let $A=$ the Set that have no repeated digits
then $S-A=$ the set that have at least one repeated digit.

$$
N(S-A)=\underbrace{N(S}_{\Gamma})-\underbrace{N(A)}
$$

we need to count $N(S)$.
T $\frac{1}{2}-45 \div \overline{8}$
task 1: choose character fur blank $\#$

$$
\begin{aligned}
& n_{1}=16 \\
& n_{2}=16
\end{aligned}
$$

\#2 1 " " " $\# 2$

$$
\text { So } n=n_{1} \cdot n_{2} \cdot \cdots \cdot n_{8}=16 \cdot 16 \cdot \cdots 16=16^{8}=4,294,967,296=N(S)
$$

$$
\text { So } N(S-A)=N(S)-N(A)=\ldots=3,776,048,896
$$

(c) What is the probability that a randomly chosen string of eight hexadecimal digits has at least one repeated digit

$$
\overline{P(S-A)=} \frac{N(S-A)}{N(S)}=\frac{3,776,048,896}{4,294,967,296} \approx 0,879
$$

[Example 2] (similar to 9.1\#7) Password must be from 4-6 symbols long, and may include

- upper case letters 26
$\left.\begin{array}{ll}\text { - lower case letters } 26 \\ \text { - digits } & 10\end{array}\right\} 62$ total characters to choose from
(a) How many passwords are available if repetition is allowed?

$$
\text { Let } \begin{aligned}
A & =\text { passwords with } 4 \text { characters } \\
B & =\text { passwords with } 5 \text { characters } \\
C & =\text { Passwords with } 6 \text { characters. }
\end{aligned}
$$

$$
\text { So } \begin{aligned}
N(A \cup Z \cup C) & =N(A)+N(B)+N(C) \\
& =62^{4}+62^{5}+62^{6} \\
& =57,731,144,752
\end{aligned}
$$

(b) How many passwords have no

$$
\begin{aligned}
& E=" 1 . b \\
& F=" \quad 6
\end{aligned}
$$

These are disjoint So by the Addition Rule

$$
\begin{aligned}
N(D \cup E \cup F) & =N(D)+N(E)+N(F) \\
& =62.61 .60 .59+62.61 .60 .59 .58+62 \cdot 61 \cdot 60.59 .58 .57 \\
& =45,051,562,200
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Passwords with } \\
\text { at least one } \\
\text { repeated symbol }
\end{array} \\
& =\text { All passwords }-\begin{array}{c}
\text { Passwords with } \\
\text { no repeats }
\end{array} \\
& \text { So } \\
& \begin{aligned}
\text { Number of Passwords }
\end{aligned} \\
& \begin{array}{l}
\text { with at least one } \\
\text { repeated symbol }
\end{array} \\
& =N(A \cup B \cup C)-N(D \cup E \cup F) \\
& \\
&
\end{aligned}
$$

of length 4,5,6
(d) What is probability that a randomly selected password has at least one repeated symbol?

$$
\begin{aligned}
\begin{array}{c}
P(\text { at least one repeater }) \\
\text { Symbol }
\end{array} & =\frac{N(\text { at least one repeated sybil })}{N(\text { all passwords })} \\
& =\frac{12,679,582,552}{57,731,144,752} \\
& \sim 0,22
\end{aligned}
$$

[Example 3] (similar to 9.1\#22) Consider strings of length n over the alphabet $\{a, b, c, d, e\}$
(a) How many such strings contain at least one pair of adjacent characters that are the same?

Let $S=$ Set of all Strings of length n over the alphabet $\{a, b c, d, e\}$
$A=$ Set of all strings of length n with no pairs of adjacent characters the same.
we are being asked to find $N(S-A)$
Strategy: Find N(S)
Find $N(A)$

$$
\text { compute } N(S-A)=N(S)-N(A)
$$

To find $N(s)$, consider these tasks

$$
-\frac{1}{2} \overline{3}^{\cdots} \bar{n}
$$

task description
number ot was
\#1 chooseletferfornlank \#1

$$
n_{1}=5
$$

$$
n_{2}=5
$$

Total number of ways $=n=n_{1} \cdot n_{2} \cdots \cdots n_{n}=\underbrace{5 \cdots 5 \cdots 5}_{n}=5^{n}$

$$
N(S)=5^{n}
$$

To find $N(A)$, consider these tasks

Task Description
\#1 choose letter for blank \#1
number of ways

$$
n_{1}=5
$$

\#2 choose letter for blank \#2

$$
n_{2}=4
$$ $n_{3}=4$

 $n_{1}=4$
\#n choose letter for blank \#n

$$
\begin{aligned}
& \text { So the total number of strings is } \\
& n=n_{1} \cdot n_{2} \cdot n_{3} \cdot \cdots \cdot n_{n}=5 \cdot \underbrace{4 \cdot 4 \cdot \cdots \cdot 4}_{n-1}=5 \cdot 4^{n-1} \\
& N(A)=5 \cdot 4^{n-1}
\end{aligned}
$$

$$
\text { So } \begin{aligned}
N(S-A) & =N(S)-N(\theta) \\
& =5^{n}-5 \cdot 4^{n-1}
\end{aligned}
$$

(b) If a string of length 7 over the alphabet $\{a, b, c, d, e\}$ is chosen at random, what is the probability that it contains at least one pair of adjacent characters that are the same?

$$
\begin{aligned}
P(S-A) & =\frac{N(S-A)}{N(S)}=\frac{N(S)-N(A)}{N(S)}=1-\frac{N(A)}{N(S)} \\
& =1-\frac{5.4^{n-1}}{5^{n}} \quad \text { with } n=7 \\
& =1-\frac{5.4^{7-1}}{5^{7}}=1-\frac{5.4^{6}}{5^{7}}= \\
& =1-\frac{4^{6}}{5^{6}}=1-\left(\frac{1}{5}\right)^{6}=1-(0.8)^{6}= \\
& =0.737856
\end{aligned}
$$

[Example 4] (similar to 9.1\#21) Seven people, denoted by letters a, b, c, d, e, f, g, are seated randomly in 7 seats in a row. What is the probability a and b are not be seated together? Let $S=$ the set of permutations of the set $\overline{\{a, b, c, d, e, f, g\}}$ Let $A=$ the permutations that have a, b seated together. We are being asked for $P(S-A)=P\left(A^{c}\right)$

$$
\begin{aligned}
& P\left(A^{c}\right)=P(S-A)=\frac{N(S-A)}{N(S)}=\frac{N(S)-N(A)}{N(S)}=\frac{1-N(A)}{N(S)} \\
& N(S)=\text { number of permutations }=7!
\end{aligned}
$$

Let $B=$ Seatings with a, b together a nd a on left
$C=$ Seating with a, b together and b on left.
Then $A=\underbrace{B \cup C}_{\text {disjout union. }}$
So $N(A)=N(B)+N(C)$ by Araditio Rule.
Find $N(B)$ Consider tasks task description
\#1 Choose scat for a
\#2 " " "b
\#3 choose letter for left-mort empty sat $n_{3}=5$

* 4 choose letter for next sent
\# 5

$$
n_{4}=4
$$

\# 6

$$
n_{5}=3
$$

$$
n_{b}=2
$$

\#7

$$
1>=1
$$

So total number of ways is $N(B)=6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=6$!

Similarly, $N(C)=6!$ as well

$$
\text { So } \begin{aligned}
N(A) & =N(B)+N(C)=6!+6!=2 \cdot 6! \\
\text { So } P\left(A^{c}\right) & =1-\frac{N(A)}{N(S)}=1-\frac{2 \cdot 6!}{7!}= \\
& =1-\frac{2 \cdot(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)}{(7.6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)}=1-\frac{2}{7} \\
& =\frac{5}{7} \approx 0.714
\end{aligned}
$$

[Example 5] (Similar to 9.3\#9) Counting iterations of a loop.
Consider the following algorithm segment

$$
\begin{aligned}
& \text { for } i:=1 \text { to } 1000 \\
& \quad \text { for } j:=1 \text { to } i
\end{aligned}
$$

[Statements in body of inner loop.
None contains branching statements that lead outside the loop.]
next j
next i

How many times will the innermost loop be iterated when the algorithm segment is run?
The innermost loup gats iterated once for every pair (i, j),

$$
\text { Where } 1 \leq i \leq 1000 \quad \text { and } \quad l \leq j \leq i
$$

Wined to count all those nairs

$$
\begin{aligned}
& A=A_{1} \cup A_{2} \cup A_{3} \cup \cdots \cup A_{1000}
\end{aligned}
$$

This is a disjoint union, So

$$
\begin{aligned}
N(A) & =N\left(A_{1}\right)+N\left(t_{2}\right)+N\left(A_{3}\right)+\cdots+N\left(A_{1000}\right) \\
& =\underbrace{1+2+3+\cdots+1000}_{\text {Sum }+15+1000 \text { positive inregeoss }} \\
& =\frac{1000(1000+1)}{2}=500(1001)= \\
& =500,500
\end{aligned}
$$

One more new topic for this homework assignment: Khe Inclusion/Exclusion Rule

Theorem 9.3.3 The Inclusion/Exclusion Rule for Two or Three Sets
If A, B, and C are any finite sets, then

$$
N(A \cup B)=N(A)+N(B)-N(A \cap B)
$$

and
$N(A \cup B \cup C)=N(A)+N(B)+N(C)-N(A \cap B)-N(A \cap C)$

FIGURE 9.3.5

This concept is used is used in the solution to homework probletns $9.3 \# 24,34$. Book examples 9.3 11. 9.3.6. and 9.3.7 discuss almost identical problems. Because of that, I won't present similar examples in this video.

