
Video for Homework H09.6 Multisets 

 

Reading: Section 9.6 𝑟-Combinations with Repetition Allowed 

 

Homework: H09.6: 9.6#4,6,9,12,14,17 

 

Topics: 

• Counting collections where repetition is allowed 

• Definition of multiset  

• Counting the number of multisets 

• Counting iterations of a loop 

• Counting triples of a certain type 

• Counting 𝒓-tuples of a certain type 

 

 

  



We will use the concept of combinations from Section 9.5  

 

Definition of r-combination 

An r-combination of a set of n elements is an unordered selection of r elements taken 

from the set of n elements. That is, it is a subset of r elements. 

The number of r-combinations of a set of n elements is denoted 𝐶(𝑛, 𝑟) or (
𝑛

𝑟
). This 

quantity is spoken “n choose r”. 

 

  



[Example 1] (Similar to 9.6#18) 

A large can of coins consists of pennies, nickels, dimes, and quarters. 

(Coins of a particular denomination are indistinguishable from one another.) 

 

(a) Suppose the collection contains at least 20 coins of each type. 

How many different collections of 20 coins can be chosen? 

 

  



In order to solve this problem, it is helpful to introduce some notation and to discuss various 

ways of notating collections of coins. 

 

Introduce letters to denote the types of coins. 

Let 𝑃 denote Penny. 

Let 𝐾 denote Nickel. 

Let 𝐷 denote Dime. 

Let 𝑄 denote Quarter. 

And let 𝑋 be the set of all types of coins. That is, 𝑋 = {𝑃, 𝐾, 𝐷, 𝑄} 

 

Let 𝑛 be the number of elements in set 𝑋. So 𝑛 = 4 

 

Let 𝑟 be the number of coins in the collection that we are going to chose. So 𝑟 = 20. 

 

One such collection could be made up of the following twenty coins: 

𝑃, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃⏟        

6 𝑃

, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾⏟              

9 𝐾

, 𝐷, 𝐷, 𝐷⏟    

3 𝐷

𝑄, 𝑄⏟

2 𝑄

 



The terminology of multiset applies to this kind of collection 

 

Definition of multiset 

words: a multiset of size 𝑟 chosen from a set 𝑋 

alternate words: an 𝑟 combination with repetition allowed, chosen from a set 𝑋 

meaning: an unordered selection of 𝑟 elements taken from set 𝑋 with repetition allowed 

symbol: [𝑥1, 𝑥2, … , 𝑥𝑟
], where each 𝑥𝑘 ∈ 𝑋 and some 𝑥𝑘 may equal each other. 

 

With this notation, the collection of twenty coins from the previous page would be denoted 

[𝑃, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐷, 𝐷, 𝐷, 𝑄, 𝑄] 

And with this terminology, we can articulate the question that we have been asked: 

 

(a) How many multisets of size 𝑟 = 20 can be chosen from a set 𝑋 that has 𝑛 = 4 elements? 

  



We have to figure out a way to count the number of such multisets. 

 

It turns out that if we use a simpler method of displaying a particular collection, the counting 

is quite easy. We will work our way to a simple way of presenting collections in the next few 

pages. 

 

First, suppose there are 20 boxes to be filled with letters chosen from the set 𝑋 = {𝑃, 𝐾, 𝐷, 𝑄}. 

The sample collection discussed above would be displayed as a table.  

 

P P P P P P K K K K K K K K K D D D Q Q 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

 

Note the number 20 is the value of 𝑟. In general, the number of boxes needed to display a 

multiset in this manner would be  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑥𝑒𝑠 = 𝑟 

  



Now, instead, imagine that there are vertical bars, I, put in to separate the different types of 

letters 𝑃, 𝐾, 𝐷, 𝑄, and then simple x symbols to denote the letters filling the blanks. The 

sample collection presented above would then be displayed in the following way. 

 

x x x x x x I x x x x x x x x x I x x x I x x 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

 

Note that, of course, three more boxes are needed to make room for the three vertical bars that 

are used to separate the different kinds of letters. And note that  

3 = 4 − 1 = 𝑛 − 1 

In general, the number of vertical bars needed to separate the different kinds of elements 

drawn from a set 𝑋 with 𝑛 elements would be  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑏𝑎𝑟𝑠 = 𝑛 − 1 

  



The total number of boxes is now 23. Note that 

23 = 20 + 3 = 20 + (4 − 1) = 𝑟 + 𝑛 − 1 

 

So, in general, the total of number of boxes needed to display a multiset in this way is 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑥𝑒𝑠 = 𝑟 + 𝑛 − 1 

  



Of course, the row of numbers across the bottom are not really necessary. The collection 

above could be displayed more consisely as 

 

x x x x x x I x x x x x x x x x I x x x I x x 

 

In fact, we could leave out the x symbols, and just show the vertical bars in their cells: 

 

      I          I    I   

 

 

 

  



If the vertical bars are placed in adjacent cells, that would indicate that certain elements of set 

𝑋 are not included in the collection. For instance, the following table 

 

x x x x x x I x x x x x x x x x x x x I I x x 

 

or, more concisely, 

 

      I             I I   

 

Would represent this collection 

 

𝑃, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃⏟        

6 𝑃

, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾⏟                    

12 𝐾

, 𝑄, 𝑄⏟

2 𝑄

 

  



And the vertical bars can appear at the end of the row of boxes.  For instance, the table 

 

x x x x x x I x x x x x x x x x x x x x x I I 

 

or, more concisely, 

 

      I               I I 

 

would represent this collection 

 

𝑃, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃⏟        

6 𝑃

, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾, 𝐾⏟                      

14 𝐾

 

 

  



We see that every choice of 3 of the 23 cells for the vertical bars corresponds to a particular 

multiset of 20 coins chosen from set 𝐾 = {𝑃, 𝐾, 𝐷, 𝑄}. 

 

That is, every choice of a subset of 3 cells chosen from the set of 23 cells corresponds to a 

particular multiset of 20 coins chosen from set 𝐾 = {𝑃, 𝐾, 𝐷, 𝑄}. 

 

Therefore, the number of number of multisets will be the number of 3-combinations of a set of 

23 elements. 

(
23

3
) 

This number is easy to compute. 

 

 

 

 

We have found the answer to question (a). That is, this is the number of different collections 

of 20 coins that can be chosen. 



Now, we can generalize the counting technique. Here is our goal. 

 

Goal: Count the number of multisets of size 𝑟 that can be selected from a set 𝑋 of 𝑛 elements. 

 

Imagine an empty row of cells in a table.  

• There will need to be 𝑟 cells to hold the elements chosen to be in the multiset. 

• There will need to be 𝑛 − 1 cells to hold the vertical bars, I, that separate the various 

types of elements in the multiset. 

So, the table will need 𝑟 + 𝑛 − 1 cells. 

 

         ⋯           

 

A subset of 𝑛 − 1 cells must be chosen to hold the vertical bars. 

 

  I   I I   ⋯      I  I   

 



So, the number of multisets will be the number of subsets of 𝑛 − 1 cells chosen from the row 

of 𝑟 + 𝑛 − 1 cells.  

 

In other words, the number of multisets will be the number of (𝑛 − 1)-combinations chosen 

from a set of (𝑟 + 𝑛 − 1) elements 

 

𝐶(𝑟 + 𝑛 − 1, 𝑛 − 1) = (
𝑟 + 𝑛 − 1

𝑛 − 1
) 

 

  



Compare the result that we just reached to the following theorem from the book. 

 

Notice that the book’s theorem presents a formula that looks different from our formula. 

But in fact, the two formulas are the same, as we can see if we write the factorial expressions 

that correspond to the two formulas. 

 

The formula that we reached: 

(
𝑟 + 𝑛 − 1

𝑛 − 1
) =

(𝑟 + 𝑛 − 1)!

(𝑛 − 1)! ((𝑟 + 𝑛 − 1) − (𝑛 − 1))!
=

(𝑟 + 𝑛 − 1)!

(𝑛 − 1)! 𝑟!
 

The formula in the book’s Theorem 9.6.1: 

(
𝑟 + 𝑛 − 1

𝑟
) =

(𝑟 + 𝑛 − 1)!

𝑟! ((𝑟 + 𝑛 − 1) − 𝑟)!
=

(𝑟 + 𝑛 − 1)!

𝑟! (𝑛 − 1)!
 



 

Because the two formulas are the same, and because there is potential confusion, it is 

worthwhile to give a more complete presentation of Theorem 9.6.1 

 

Theorem 9.6.1 

The number of multisets of size 𝑟 that can be chosen from a set of 𝑛 elements is 

𝐶(𝑟 + 𝑛 − 1, 𝑛 − 1) = (
𝑟 + 𝑛 − 1

𝑛 − 1
) =

(𝑟 + 𝑛 − 1)!

(𝑛 − 1)! 𝑟!
= (

𝑟 + 𝑛 − 1

𝑟
) = 𝐶(𝑟 + 𝑛 − 1, 𝑟) 

 

 

  



(b) Suppose the collection contains at least 20 coins of each type. 

How many different collections of 20 coins can be chosen that contain at least 15 pennies? 

  



(c) Suppose the collection contains at least 20 coins of each type. 

How many different collections of 20 coins can be chosen that contain at most 15 pennies? 

  



(d) Suppose the collection contains only 15 pennies, but least 20 coins of each other type. 

How many different collections of 20 coins can be chosen? 

  



(e) Suppose the collection contains only 10 nickels, but least 20 coins of each other type. 

How many different collections of 20 coins can be chosen? 

  



(f) Suppose the collection contains only 15 pennies and 10 nickels, but least 20 coins of each 

other type. How many different collections of 20 coins can be chosen? 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of [Example 1]  



[Example 2] (Similar to 9.6#9) Counting iterations of a loop. 

Consider the following algorithm segment 

for 𝑘 ≔ 1 to 10 

for 𝑗 ≔ 𝑘 to 10 

for 𝑖 ≔ 𝑗 to 10 

[Statements in body of inner loop. 

None contains branching statements that lead outside the loop.] 

next 𝑖 

next 𝑗 

next 𝑘 

 

How many times will the innermost loop be iterated when the algorithm segment is run? 

  



The key to this problem is to realize that the inner loop will be iterated once for each triple of 

integers (𝑖, 𝑗, 𝑘) such that 10 ≥ 𝑖 ≥ 𝑗 ≥ 𝑘 ≥ 1 

 

Examples of such triples are (6,5,3) or (9,1,1), or (10,3,2), etc. 

 

So, our question has become the following: 

 

How many triples of integers (𝑖, 𝑗, 𝑘) are there such that 10? 

 

It turns out that if we use a visual method of displaying a particular triple, the counting is quite 

easy. We will work our way to a simple way of presenting collections in the next few pages. 

 

  



Consider ten cells holding the integers from 1 to 10. 

 

1 2 3 4 5 6 7 8 9 10 

 

Now consider those ten cells being separated by nine cells holding the letter I, to signify 

dividers separating the integers from 1 to 10 

 

1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 

 

Now imagine the white cells being empty, but still being the spots where the integers from 1 to 

10 would go. 

 

 I  I  I  I  I  I  I  I  I  

 

  



Now consider inserting letters into those empty white cells to indicate the value of a variable.  

 

For example, the table 

 I  I  I  I  I  I  I k I  I  

indicates that 𝑘 = 8 

 

And the table 

k I  I  I  I  I  I  I  I  I  

indicates that 𝑘 = 1 

 

  



We can insert three letters into the empty white cells to indicate the value of a triple. 

 

For example, the table  

 I k I  I  I j I  I  I i I  I  

represents the triple (𝑖, 𝑗, 𝑘) = (8,5,2) 

 

and the table  

 I kj I  I  I  I  I  I  I  I i 

represents the triple (𝑖, 𝑗, 𝑘) = (10,2,2) 

 

  



Realize that because the integers 𝑖, 𝑗, 𝑘 must satisfy 𝑖 ≥ 𝑗 ≥ 𝑘, we don’t really need the letters, 

themselves. We can just use a placeholder like the symbol x. 

 

For example, the table  

 I x I  I  I x I  I  I x I  I  

represents the triple (𝑖, 𝑗, 𝑘) = (8,5,2) 

 

and the table  

 I xx I  I  I  I  I  I  I  I x 

represents the triple (𝑖, 𝑗, 𝑘) = (10,2,2) 

 

 

 

   



Now, realize that we don’t need to show the empty white cells. We really only need to show 

the positions of the three x symbols in relation to the nine I symbols. 

 

For example, the table  

I x I I I x I I I x I I 

represents the triple (𝑖, 𝑗, 𝑘) = (8,5,2) 

 

and the table  

I x x I I I I I I I I x 

represents the triple (𝑖, 𝑗, 𝑘) = (10,2,2) 

 

We see that the table representing a triple (𝑖, 𝑗, 𝑘) will always have 12 cells: Three cells to 

hold x symbols and nine cells to hold I symbols. 

 

 

 

  



We see that every choice of 3 of the 12 cells for the x symbols corresponds to a particular 

triple of integers (𝑖, 𝑗, 𝑘) such that 10 ≥ 𝑖 ≥ 𝑗 ≥ 𝑘 ≥ 1 

 

That is, every choice of a subset of 3 cells chosen from the set of 12 cells corresponds to a 

particular triple of integers (𝑖, 𝑗, 𝑘) such that 10 ≥ 𝑖 ≥ 𝑗 ≥ 𝑘 ≥ 1 

 

Therefore, the number of number of triples will be the number of 3-combinations of a set of 10 

elements. 

(
10

3
) 

This number is easy to compute. 

 

 

We have found the answer to our original question! 

The number of times that the inner loop will be iterated is equal to the number of triples of 

integers (𝑖, 𝑗, 𝑘) such that 10 ≥ 𝑖 ≥ 𝑗 ≥ 𝑘 ≥ 1, which is 

End of [Example 2] 



Generalize this result to counting 𝒓-tuples of a certain type 

We can generalize the counting technique. Here is our goal. 

 

Goal: Count the number of 𝑟-tuples of integers (𝑚1, 𝑚2, … , 𝑚𝑟
) such that  

𝑛 ≥ 𝑚1 ≥ 𝑚2 ≥ ⋯ ≥ 𝑚𝑟 ≥ 1 

 

Imagine an empty row of cells in a table.  

• There will need to be 𝑟 cells to hold the x symbols denoting the integers 𝑚1, 𝑚2, … , 𝑚𝑟. 

• There will need to be 𝑛 − 1 cells to hold the vertical bars, I, that separate the spots 

representing possible integer values from 1 to 𝑛. 

So, the table will need 𝑟 + 𝑛 − 1 cells. 

         ⋯           

 

  



A subset of 𝑛 − 1 cells must be chosen to hold the vertical bars. 

  I   I I   ⋯      I  I   

 

So, the number of multisets will be the number of subsets of 𝑛 − 1 cells chosen from the row 

of 𝑟 + 𝑛 − 1 cells.  

 

In other words, the number of multisets will be the number of (𝑛 − 1)-combinations chosen 

from a set of (𝑟 + 𝑛 − 1) elements 

 

𝐶(𝑟 + 𝑛 − 1, 𝑛 − 1) = (
𝑟 + 𝑛 − 1

𝑛 − 1
) 

  



Equivalently, a subset of 𝑟 cells must be chosen to hold the x symbols. 

x x I x x I I x  ⋯  x x x x I x I x x 

 

So, the number of multisets will be the number of subsets of 𝑟 cells chosen from the row of 

𝑟 + 𝑛 − 1 cells.  

 

In other words, the number of multisets will be the number of 𝑟-combinations chosen from a 

set of (𝑟 + 𝑛 − 1) elements 

 

𝐶(𝑟 + 𝑛 − 1, 𝑟) = (
𝑟 + 𝑛 − 1

𝑛 − 1
) 

 

 

  



These two approaches yield the same result: 

 

Theorem about the number of a certain type of 𝒓-tuple 

The number of 𝑟-tuples of integers (𝑚1, 𝑚2, … , 𝑚𝑟
) such that 𝑛 ≥ 𝑚1 ≥ ⋯ ≥ 𝑚𝑟 ≥ 1 is 

𝐶(𝑟 + 𝑛 − 1, 𝑛 − 1) = (
𝑟 + 𝑛 − 1

𝑛 − 1
) =

(𝑟 + 𝑛 − 1)!

(𝑛 − 1)! 𝑟!
= (

𝑟 + 𝑛 − 1

𝑟
) = 𝐶(𝑟 + 𝑛 − 1, 𝑟) 

 

 

 


