Video for Homework H09.7 Pascal’s Formula and the Binomial Theorem

Reading: Section 9.7 Pascal’s Formula and the Binomial Theorem

Homework: H09.7: 9.7#7,11,30,32,39,44,46,50

Topics:
e Particular important values of C(n, 1)
e Pascal’s Formula

e Pascal’s Triangle

The Binomial Theorem

e Using the Binomial Theorem



We will use the concept of combinations from Section 9.5

Definition of r-combination
An r-combination of a set of n elements 1s an unordered selection of r elements taken

from the set of n elements. That 1s, it 1s a subset of » elements.
L : n :
The number of r-combinations of a set of n elements is denoted C(n,r) or (r) This

quantity 1s spoken “n choose r”.

Theorem 9.5.1 Computational Formula for l J

The number of subsets of size r (or r- wmhlndllons} that can be chosen from a set of
n elements, ( ) 1s given by the formula

n) - P(n, r)
r r!
(n) __n!
r)  rlin—r)!

where n and r are nonnegative integers with r = n.

or, equivalently,



And we will frequently rewrite factorial expressions in different ways

Recall the definition of factorial

nn=n-n—1mn-2)-(2)(1)!

Observe that one factorial expression can be written many ways.

nn=n-(n—1)n-2)---2)(1)
=n-(n—1)!
=n-(n—1)-(n—2)!

And realize that there are many variations on this idea.

n+1)-n'=m+1)!



[Example 1] Particular important values of C(n, 1)
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End of [Example 1]



Pascal’s Formula

Theorem 9.7.1 Pascal’s Formula

Foralln,r€Z withl <r <n, (n;l:l): (rfl)_l_(:‘l)




Algebraic Proof of Pascal’s Formula
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Combinatorial Proof of Pascal’s Formula

Combinatorics 1s an area of math having to do with the counting of sets. A combinatorial
proof is one in which we prove the value of a certain quantity by making observations about

—

counting sets.

We can prove Pascal’s Formula,

Foralln,r € Z withl <r <n, (ni—l): (rfl)-l_(:‘l)

using a combinatorial argument.



+1

Consider the symbol (n . ) on the left side of Pascal’s Formula. That symbol represents the

number of subsets of r elements that can be chosen from a set that has n + 1 elements.
Suppose X = {x1, X5, ..., X5, Xn41, } 1S a set containing n + 1 elements.

Let X, be the collection of all subsets of X that have r elements. That is,
X, ={S € Xsuchthat N(§) =r}

Observe that the collection X, is a subset of the set of all subsets of X. That is, X,. € P(X),

the power set of X.

Also observe that symbols C(n + 1,7) and (n j: 1) represent the number of sets in X;..

NG =Cn+ 1) = (" j 1)



Next, observe that X, can be described as the union of two disjoint subsets

Define the set A € X, as follows
A ={A S Xsuchthat N(A) =randx,,,; € 4}

Define the set B € X, as follows
B ={B € Xsuchthat N(B) =randx,,.; € B}




Observe that A and B are disjoint, and that X, = A U B.

Therefore, by the addition rule,

N(X,) = N(A) + N(B)

That is,

(n+1

! ) = N(A) + N(B)

Finding the values of N(A) and N (B) is fairly simple, so this formula is really useful.



To find N(A), recall that
A ={A S Xsuchthat N(A) =randx,,.; € 4}

The number of elements of A is the number of r element subsets A € X such that x,,,; € A4

To count the number of such subsets, consider the task of choosing such a subset as two tasks
Task #1: Choose element x,,,; to go in set A
The number of ways to do task #1 1s k; = 1
Task #2: Choose the remaining v — 1 elements for set A from the set {x;, x5, ..., X, }

The number of ways to do task #2 is

k2=(rf1)

So, the number of ways to choose a subset A is

k=)

Therefore,



To find N(B), recall that
B ={B € Xsuchthat N(B) =rand x,,.; € B}

Observe that if B € X and x,,., & B, then B € {xq, x,, ..., X, }
So the number of sets in B will be the number of 7 element subsets of a set with n elements.

That is,
vw = ()

r



Substitute expressions for N(A) and N(B) into earlier equation involving N(X,.)

Our earlier equation

N(X,) =N(A)+ N(B)
becomes
"T=GI)+ ()
(
which 1s Pascal’s Formula

End of Combinatorial Proof of Pascal’s Formula



Pascal’s Formula can be visualized in Pascal’s Triangle
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The Binomial Theorem

A sum of two terms, such as a + b is called a binomial. The binomial theorem gives an

expression for nonnegative integer powers of a binomial, (a + b)™.

Theorem 9.7.2 Binomial Theorem

For all real numbers a, b and all nonnegative integers n,

k=
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Pascal’s Formula can be used in the proof of the Binomial Theorem.

(There 1s also a simpler combinatorial proof. See the book for both proofs.)




[Example 2] Using the Binomial Theorem
(a) Find the expansion of (a + b)* by using the Binomial Theorem.

e @Y
\ ﬂ ‘-0 ) ”b +(‘//)0 [9 - H)q +(L{)

7-‘/ 9
\.Mm\‘" L{ 0 I "f

\Q« S ( q b (
ot

la |+‘1ab+éalo FYa b | b

+Lla3(o Yoa b +Y4a bs?‘y

(/t( H/ Hgtl'g:é

e

G Q,\(wm‘ 212l 2




(b) Find the coefficient of x® when (2x + 3)° is expanded by the Binomial Theorem.
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(¢) Find the coefﬁ01ent of u8 10 when (u? — v?)? is expanded by the Binomial Theorem.
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End of [Example 2]



Recall the definition of a Closed Form Expression from the video for Homework H05.2

Definition of Closed Form Expression
A closed form expression is a mathematical expression that involves a known

(finite) number of standard operations.




[Example 3] Use the Binomial Theorem to simplify the sums, writing each in closed form
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End of [Example 3]
End of Video for Homework H09.7



