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Preface

This book is intended as a first rigorous course in geometry. As the title
indicates, we have adopted Birkhoff’s metric approach (i.e., through use
of real numbers) rather than Hilbert’s synthetic approach to the subject.
Throughout the text we illustrate the various axioms, definitions, and
theorems with models ranging from the familiar Cartesian Plane to the
Poincaré Upper Half Plane, the Taxicab Plane, and the Moulton Plane. We
hope that through an intimate acquaintance with examples (and a model is
just an example), the reader will obtain a real feeling and intuition for non-
Euclidean (and in particular, hyperbolic) geometry. From a pedagogical
viewpoint this approach has the advantage of reducing the reader’s tendency
to reason from a picture. In addition, our students have found the strange
new world of the non-Euclidean geometries both interesting and exciting.

Our basic approach is to introduce and develop the various axioms
slowly, and then, in a departure from other texts, illustrate major definitions
and axioms with two or three models. This has the twin advantages of
showing the richness of the concept being discussed and of enabling the
reader to picture the idea more clearly. Furthermore, encountering models
which do not satisfy the axiom being introduced or the hypothesis of the
theorem being proved often sheds more light on the relevant concept than
a myriad of cases which do.

The fundamentals of neutral (i.e., absolute) geometry are covered in the
first six chapters. In addition to developing the general theory, these
chapters include a rigorous demonstration of the existence of angle measures
in our two major models, the Euclidean Plane and the Poincaré Plane.
Chapter Seven begins the theory of parallels, which continues with an in-
troduction to hyperbolic geometry in Chapter Eight and some classical
Euclidean geometry in Chapter Nine. The existence of an area function in
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any neutral geometry is proved in Chapter Ten along with the beautiful
cut and reassemble theory of Bolyai. The last (and most sophisticated)
chapter studies the classification of isometries of a neutral geometry and
computes the isometry groups for our two primary models.

The basic prerequisite for a course built on this book is mathematical
maturity. Certain basic concepts from calculus are used in the development
of some of the models. In particular, the intermediate value theorem as it
is presented in calculus is needed at the end of Chapter Six. The latter part
of the last chapter of the book requires an elementary course in group theory.

Courses of various lengths can be based on this book. The first six
chapters (with the omission of Sections 5.2 and 5.4) would be ideal for a one
quarter course. A semester course could consist of the first seven chapters,
culminating in the All or None Theorem and the Euclidean/hyperbolic
dichotomy. Alternatively, a Euclidean oriented course could include Section
7.1 and parts of Chapter 9. (The dependence of Chapter 9 on Chapter 8 is
discussed at the beginning of Section 9.1.) A third alternative would include
the first six chapters and the first three sections of Chapter 11. This gives the
student a thorough background in classical geometry and adds the flavor of
transformation geometry. A two quarter course allows a wider variety of
topics from the later chapters, including area theory and Bolyai’s Theorem
in Chapter 10. The entire book can be covered in a year.

Mathematics is learned by doing, not by reading. Therefore, we have
included more than 750 problems in the exercise sets. These range from
routine applications of the definitions to challenging proofs. They may in-
volve filling in the details of a proof, supplying proofs for major parts of the
theory, developing areas of secondary interest, or calculations in a model.
The reader should be aware that an asterisk on a problem does not indicate
that it is difficult, but rather that its result will be needed later in the book.
Most sections include a second set of problems which ask the reader to supply
a proof or, if the statement is false, a counterexample. Part of the challenge
in these latter problems is determining whether the stated result is true or
not. The most difficult problems have also been included in these Part B
problems.

In this second edition we have added a selection of expository exercises.
There is renewed emphasis on writing in colleges and universities which
extends throughout the four years of the undergraduate experience. Going
under the name of “writing across the curriculum”, this effort involves
writing in all disciplines, not just in the traditional areas of the humanities
and social sciences. Writing in a geometry course is discussed in more detail
in Millman [1990]. We feel that the expository exercises add another dimen-
sion to the course and encourage the instructor to assign some of them both
as writing exercises and as enrichment devices. We have found that a multi-
ple draft format is very effective for writing assignments. In this approach,
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there is no finished product for grading until the student has handed in a
number of drafts. Each version is examined carefully by the instructor and
returned with copious notes for a rewrite. The final product should show
that the student has learned quite a bit about a geometric topic and has
improved his or her writing skills. The students get a chance to investigate
either a topic of interest to them at the present or one that will be used later
in their careers. This approach is especially useful and effective when many of
the students are pre-service teachers.

A few words about the book’s format are in order. We have adopted
the standard triple numbering system (Theorem 7.4.9) for our results. Within
each section one consecutive numbering system has been used for all theo-
rems, lemmas, propositions, and examples for ease in locating references.
The term proposition has been reserved for results regarding particular
models. Reference citations are made in the form Birkhoff [1932] where
the year refers to the date of publication as given in the bibliography.

We would like to thank our students at Southern lllinois University,
Michigan Technological University, and Wright State University whose feed-
back over the past ten years has led to the changes and (we hope) the
improvements we have made in this new edition. Our sincere thanks go to
Sharon Champion and Shelley Castellano, who typed the original manu-
script, and to Linda Macak, who typed the changes for this edition. Finally,
we would like to thank our wives for putting up without us while we
closeted ourselves, preparing this new edition.



Computers and Hyperbolic Geometry

After teaching a course out of the first edition of this book for several years,
it became clear to the second author that there were all sorts of interesting
computational problems in the Poincaré Plane that were a bit beyond the
range of the average student. In addition, graphical aids could be very useful
in developing intuition in hyperbolic geometry.

Out of this realization grew a computer program POINCARE. The
program was written in Pascal over a three year period and runs on
MS-DOS computers. It allows graphical explorations in the Poincaré Plane
as well as various calculations such as finding the midpoint of a segment,
finding an angle bisector, finding the common perpendicular of two lines (if
it exists), carrying out geometric constructions, testing quadrilaterals for
convexity and the Saccheri property, solving triangles, finding the cycle
through three points, and finding the pencil determined by two lines.

All of the code is based on the theory presented in this book, with the
exception of the hyperbolic trigonometry. Except for transformation geome-
try, all topics in the book are represented. Perhaps in the near future a
module on isometries will be added to the program. POINCARE is currently
in its third major version and is ready for distribution.

Readers of this book who are interested in more information, who wish to
obtain a personal copy, or who wish to obtain it for use in their school
computer lab should contact the author:

George D. Parker
1702 West Taylor
Carbondale, IL 62901
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CHAPTER 1
Preliminary Notions

1.1 Axioms and Models

‘Our study of geometry begins with two basic concepts. One is the notion of
points, and the other is the notion of lines. These are then related to each
other by a collection of axioms, or first principles. For example, when we
discuss incidence geometry below, we shall assume as a first principle that
if A and B are distinct points then there is a unique line that contains both
4 and B. )

In the@arly developmenbof geometry the point of view was that an axiom
was a statement that described the true state of the universe. Axioms were
thought of as “basic truths.” Such axioms should be “self-evident.” Of the
basic axioms stated by Euclid in his Elements, all but one was accepted by
the mathematical community as “true” and self-evident. However, his fifth
axiom, which dealt with parallel lines, was not as well received. While
everyone agreed it was true (whatever that meant) it was by no means
obvious. For over two thousand years mathematicians tried to show that
the fifth axiom was a theorem which counld be proved on the basis of the
remaining axioms. As we shall see, such efforts were doomed to fail, With
great foresight Euclid chose an-axiom whose value was justified not only by

its intuitive co: but also by the rich theory it implied.
TheZmodern view is that an _axiom is a statement of a useful property.

Whe ually in a definition, we are saying thaf
we want.to di i i ssess. thi i pELty....
We are making no statement.as.to whether the axiom is a statement about

the real world. Rather, we are saying “accept the following as a hypothesis.”
{For a nice discussion of the modern axiomatic method see Kennedy [ 1972])
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Although we may use any consistent axioms we wish, the choice of
axioms is really g mnded hy three underlymg principles. First, the axioms
__ES}_QQ_IQM ealing” because they correspond to_some in-
tuitive R.GLLEh&MM&Q&Q.&QMQ&RX&P&J Second, the

aXigms. Sh@ulxl,b,c\.useefumdds:ad to a rich variety of theorems and hence a
rich mathematical structure, the axioms must be consistent— there

mw

must not be any internal 1ncon51§tegc¥ or _contradiction. As we shall see,
Euclid’s choice of axioms (or rather the modern_version_which we_shall
present), does safisfy._these conditions.and.Jead.te-a-rich-subjest,-Euslidean
geometry. BUT, there are.otherdiffesent.choices-of-axioms.thatalsa lead lg
rich theories_which are signi Ldifferent from. the Euclidean ones. In
particular there is an alterpative to.Euclid’s.fifth-axiom-which-develops.into-

a particularly beautiful and interesting subject, hyperboli¢ geometry. One of
The goals of this book is to investigate this alternative structure.

The moment we mentioned points and lines above you probably started
to visualize a picture, namely the plane with straight lines from high school
geometry. This is proper and also very useful in helping you understand all
the definitions that will follow. However, it does have its drawbacks. It is
very tempting to try to prove a theorem or proposition or to do a homework.
problem by looking at a picture. If this is done, the picture may be.confused
with the geometry itself. A picture maybs_ms!eadlng,ﬁﬂhsphy,nox Covering
all_possibilities, or, even worse, by reflecting our tnconscious bias as_to

“_’b_@!.ﬁ_smmﬂt” This often leads to an mcorrect “proof by picture.” It
is crucially important in a proof to use only the axioms and the theorems

whzch have ve been derived ﬁgm_{hemmandha_* depend op_gﬂy_pmcan.cmued..zdm

pomt here is that when the “final” proof of the result is written it cannot
depend on the picture.}

The discussion of pictures leads us to the idea of a model for a geometry.
A model iin_ogirlgmihan.an.axampl:iach mode} of a geometry is
determined by giving a set whose elements will be called “points” and a
collection of subsets of this set which will be called “lines.”. For instance,
if we are given the definition of an incidence geometry, we may write down
as an example the standard Euclidean geometry we met in high school. We
then must check to see if this example satisfies all the axioms that are listed
in the definition of an incidence geometry. When we are done we will have
one example. But there are many other examples of an incidence geometry
and hence many_madels, as we shall see.

Throughout this book there will be several models, but we will concen-
trate on two_particular ones: the Euclidean Plane and the Poincaré Plane.
This wilt mean that we will have at our fingertips two stnkmgly different
examples. Two main purposes will be served. The first is to insure that we
do not reason by pictures (pictures in the Pojncaré.Plane are very.different
ne). The second purpose is to give
valliable insight by allowing us to work with several examples while at-
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tacking some of the problems in the text. We can also benefit from different
examples by examining a newly defined concept in light of the definition.
For example, a circle in the “taxicab metric” of Chapter 2 is an amusing
phenomenon. This examination will add to our understanding as to what
the definition is saying (and what is is not saying).

At this point we cannot emphasize enough that the only proef that can be
given of a theorem or proposition in a geometry is one based just on the
axioms of that geometry. We must not go to a model and show that the
theorem holds there. All we would have shown in that case is that the
theorem is true in that particular model. 1t might be false in another model
{and hence false in general). There are many statements that are true in the
Euclidean Plane but false in the Poincaré Plane, and vice versa.

Whenever we introduce a new axiom system oy add axioms to an old
system, we are changing thg regg;_qments for_the system. For instance,
consider the statement that “a sfurb is a set which has only letters in it.”
The set S = {X, Y, z} satisfies this statement and so is an example or model
of a slurb. If we further define that “a big slurb is a slurb that contains only
capital letters” then the set S may or may not be a model for the new (en-
larged) axiom system. (Of course, S is not a model for this system; that is,
S is not a big slurb.) This means that if we continue to use certain models
we must prove that they obey the new axioms that are cited. Do not confuse
this With Proving an axiom. Axioms are statemgr_;gg_g[,gmable,.pmpsmes
to be stud'1ed and cannot be proved Venfymg that somethmg isa model of

caﬂed axioms, between those two_sets. On the other hand, a mod,g_lh,
geometry 18 just an example. That 1 1s amodel for a geometry is a mathema

o'lﬁgti';mc;f which 1t 1s a model

1.2 Sets and Equivalence Relations

Intuitively a set, S, is a collection of objects which are called elements. It
must be described by a very specific rule which lets us determine if any
particular object belongs to the collection. {The collection of tall people is
not a set because the terminology is not precise—it is subjective. The collec-
tion of all living people at least 2 meters tall is a set—the characteristic for
tall is made precise.) We write ¢ € S to mean that the object a belongs to S,
and read this as “g is an element of S.” Similarly we write a ¢ § to mean
that a does not belong to the set S,
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Definition. The set T is a subset of the set S (written T < S) if every element
of T is also an element of S.

The set T equals the set § (written T = S) if every element of T is in S,
and every element of S is'in T. (Hence T =S if and only if T = S and
ScT)

The. empty set is the set with no members, and is denoted . Note
& < S for every set S.

As usual, the notation T = {x € S|- - -} means that the elements of T are
precisely those elements of S which satisfy the property listed after the bar, [

Definition. The union of two sets 4 and B is the set 4 U B = {x|xe Aor
xe B}.

The intersection of two sets A and B is the set 4 " B = {x|x¢ A and
xe B}.If A n B = (7 then A and B are disjoint.

The difference of two sets 4 and B is the set A—B = {x|x € 4 and x ¢ B}.

The following example illustrates s¢veral of the above ideas. Note in par-
ticular the basic way we show two sets S and T are equal: we show that
Sc Tandthat T < S.

Example 1.2.1. Show that 4 ~ (Bu C) = (4 n B) U (4 » C).

SorLutioN. We first show that An(BuC)c(AnB)u(AnC). Let xeAn
(BuC).Thenxe Aand xe Bu C. Since xe Bu Ceither xe Borxe C
{or both!). If x e B then xe 4 n B. If x e C then x € 4 n C. Either way
xe(ANB)UANCLThsANn{Bul)c(dnByu{d4nCC).
Nextweshowthat(A nBYyu{ANnC)cAn(BuC).Letxe(AnB)u
(ANnC)lIfxednBthenxe Aand xe B.Hence xe Bu Candxe A n
(B u C). Similarly, if xe A~ C then x€ A and x e C. Hence, xe Bu C
and xe AN (Bu C). In either case, xe An{BuC). Thus (An B)u
(AnCycAn(Bu C) '
SinceAnN(BuC)c(AnB)u(AnCland(AnB)u(AnC)cA4n
(BuC),wehave An(BuC)=(AnB)u(dn ). il

Definition. Let 4 and B be sets. An ordered pair is a symbol (a, b} where
ac A and b e B. Two ordered pairs {a, b) and (c, d) are equal if a = ¢ and
b = d. The Cartesian product of A and B is the set

A x B={(a,b)llac Aand b € B}.

Because of the use of the word “symbol”, the definition above is somewhat
informal. The basic idea that the entries are “ordered” comes from the
definition of equality: (4, b) and (b, a) are not equal unless a = b. Thus,
changing the order of the entries leads to a different object. It is possible ta
give a purely set-theoretic definition of (g, b). This is done in problem B16,
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where the reader is asked to prove that (g, b) = (c, d) if and only if a = ¢ and .
b = d using the formal definition given in that problem.

Note that the notation R? to denote the set of ordered pairs of real
numbers is an adaptation of exponential notation to represent R x R.

As a first use of the concept of ordered pairs we present a way to say that
two elements in a set are related in some particular way. A motivating
example is given by the idea “less than”. The graph of the inequality x < y in
R? consists of all ordered pairs (g, b) € R? such that a < b. (See Figure 1-1)
When we say that 2 < 3, we are saying that (2,3) is part of the graph.
Conversely, since (—3,72) is-part of the graph, —3 < 2. Thus the graph
carries all the information of the “less than” relation. A binary relation is a
generalization of “less than” that is described in terms of a graph.

Figure 1-1

Definition. A binary relation, R, on a set S is a subset of § x 8. If (5, ) e R
then we say that s is related to ¢.

Example 1.2.2. Each of the following is a binary relation on the set R of real
numbers.

A={s)eRs=t +'2}.

B = {(s, 1) € R?|st is an integer}.
C={s0eRs<1}.

D={(s,)eR?s? +t* =1} O

We frequently name relations using symbols such as < (for relation
C above), =, =~, [, or ~ instead of letters. We then indicate that two
elements are related by placing the name of the relation between the ele-
ments; (3, 5) € C becomes (3, 5) € <, which becomes 3 < 5. Thus we may
make statements about “the relation ~* and write statements such as “a ~b".
Note that if two elements a, b are not related by the relation ~ we write

ar+b.
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Because the idea of a relation depends on ordered pairs, the order that we
write the symbols is important: 2 < 5 but 5 4 2. For some special relations,
like those below, the order is not important—the relation is symmetric. Note
that if ~ is a relation on § and ¢ € §, then it is possible that there i5 no
element b with a ~ b. For example, if S is the set of positive integers, and if
the relation is > (greater than) then there is no b € § with 1 > b. In this case
1 is not related to anything.

Definition. A binary relation, ~, on § is an equivalence relation if for every
a,bandce S
(i} a ~ a(reflexive)
(ii) a ~ b implies b ~ a (symmetric)
(iii) a ~ b and b ~ c implies a ~ c (transitive).

Note that an equivalence relation is a binary relation that satisfies three
axioms.

Example 1.2.3. Let Z be the set of integers and define a~b if a—b is
divisible by 2. Show that ~ is an equivalence rejation.

SoLuTION. To say that a — b is divisible by 2 means that there is an integer k
‘such that a ~ b = 2k. Thus

a~b ifandonlyifthereiskeZ witha—b=2k

(@) Letae Z. Thena —a =0 =2-0so that a ~ a and ~ is reflexive.

(i) Suppose thata, beZ and a ~ b. Then there isa ke Z with a — b = 2k.
This means that b — a = 2(—k). Since —k € Z, we have b ~ a. Thus ~ is
symmetric.

(iti) If @ ~ b and b ~ c then there are numbers k, € Z and k, € Z with

a—b=2k, and b—c=2k,.
Adding these equations we obtain a — ¢ = 2(k; + k,} and so ¢ ~c.
Thus ~ is transitive, ~ is therefore an equivalence relation. O

Definition. If @ and b are integers then 4 is eguivalent to » modulo nifa — b=
kn for some integer £ This is written a = b(r) and means that a — b is
divisible by n.

The above example shows that =(2) is an equivalence relation. In Prob-
lem A7 you will show that ={xn) is an equivalence relation for any n.

Example 1.2.4. Show that none of the binary relations in Example 1.2.2. is
an equivalence relation.

SorLuTION. A is not reflexive. It is certainly not true that a = a -+ 2 for all a.
{Neither is it symmetric or transitive.)
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B is not reflexive or transitive.

C is not symmetric.
D is not reflexive or transitive, O

In an equivalence relation we view several elements of S as being alike {or
equivalent) if they have similar properties. In Exampte 1.2.3 all the odd
numbers are related to each other and thus are equivalent. It is convenient
to have a name for the set of ali elements related (or equivalent) to a given

element.

Definition. If ~ is an equivalence relation on the set S and s € §, then the
equivalence class of s is the subset of S given by

[s)={x€eS|x ~s}={xeSs~x}

Example 1.2.5. In Example 1.2.3 the equivalence class of 3 is the set of odd
integers, and the equivalence class of 2 is the set of even integers. Note in this
case that if x, y € Z then either [x] =[y]or [x] n [¥] = &. |

Example 1.2.6. Let S = {1, 2, ..., 100} and define x ~ y if x and y have the
same number of digits in their base 10 representation. Then ~ is an equiv-
alence relation and, for example,

[5]=1{1,2,3,4,5,6,7,8,9} = [7] = [9] = [8],
[11] = {se 5|10 < s < 99} = [63] = [43),
[100] = {100}.

Note that, although different equivalence classes may have a different number
of elements, we still have the result that two equivalence classes are either
equal or disjoint. This is true in general as we now see. d

Theorem 1.2.7. If ~ is an equivalence relation on S and if s, t € S then either

[sInle]=@& or [s]=1[t]

Proor. We will show -that if the first case is not true (ie., [s] n [£] # &)
then the second holds. This is the standard way we show either. .. or. ..
results, )

Assume that [s] N [£] % J. Then thereis an x € {s] n [¢}. Hence x € [ 5]
and x e [¢]. Thus x ~ s and x ~ ¢. By symmetry s ~ x, and then by tran-
sitivity, s ~ x and x ~ ¢ imply that s ~ ¢. We use this to show [s] = [¢].

Let ye [s]. Then y ~ s and, since s ~ ¢, we also have y ~ ¢ by transitivity.
Thus y e [£]. Hence [s] < [¢]. Similarly, since ¢ ~ s, we can show [t] [s]-
Hence [s] = [¢]. |
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ProsLEM SET 1.2 Throughout this problem set, 4, B, and C are sets.
Part A.

1. IfAcBprovethat AnC<=Bn C.

2. Prove that C n (B—A)=(C n B)—A.

3. Provethat AU(BnC)=(AuB)n{4UC)

4. Subpose that A= Cand B « C. Show that A ~ B = (¥ implies that B =« C—A.
5. B = C—Ashowthat A n B= (.

6

. a. If x ~ y means that x — y is divisible by 3, show that ~ is an equivalence rela-
tion on the set of integers.
b. Whatis [3]? [6]? [9]? [11? [5]?

7. Show that =(r) is an equivalence relation on the integers for any n. What are the
equivalence classes?

8. Let R* = {P = (x, y}|x and y are real numbers}. We say that P, = (x,, ;) and
P, = (x,, y,) are equivalent if x? + y? = x% + y3. Prove that this gives an equiva-
lence relation on R% What is [(1,0)]? [(0, ]? [(2.2)]? [(0,0)]? What does an
equivalence class “look like?”

9. The height, #, of a rectangle is by definition the léngth- of the longer of the sides.
The width, w, is the length of the shorter of the sides {thus & = w > 0). If the rec-
tangle R, has height b, and width w, and the rectangle R, has height £, and width
w,, we say that R; ~ R, if h,/w, = hy/w,. Prove that this defines an equivalence
relation on the set of all rectangles.

10. Let the triangle T, have height h, and base b; and the triangle T, have height h,
and base b,. We say that T, ~ T, if b,h, = b,h,. Show that this is an equivalence
relation on the set of all triangles. Show that T, € [T] if and only if T, has the
same area as T.

Part B. “Prove” may mean “find a counterexample™.
11. Prove that (A U B)—C = (A—C) u(B—C).
12. Prove that (A—C) N (B—C) = (4 A By—C.

13. Let S be the set of all real numbers. Let s, ~ s, if 2 = s3. Prove that ~ is an
equivalence relation on §. What are the equivalence classes?

14. Let X be the set of all people. We say that p, ~ p, if p, and p, have the same
father. Prove that this is an equivalence relation. What are the equivalence
. classes?

15. Let X be the set of all people. We say that p, ~ p, if p, lives within 100 kilo-
meters of p,. Show that ~ is an equivalence relation. What are the equivalence
classes?

16. A careful definition of ordered pair would be the following: If ae 4 and b e B,
then the ordered pair (a, b) is the set (a, b) = {{a, 1}, {b, 2}}. Use this definition to
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prove that {a, b) = (¢, d) if and only if @ = ¢ and b = d. (Be careful: {{a, 1}, {b, 2}} =
{{c, 1}, {d, 2}} does not immediately imply that {a, 1} = {c, 1}.)

17. Give a careful definition of an ordered triple (a, b, ¢) and then prove that
(a,b,c)=(d, e, f)ifandonlyifea =d,b=¢,andc= f.

18. Let R® = {# =(x, y, 2)}x, y, and z € R}. Let 5, # ¢ R®—{0}. We say that ¥ ~ & if

there is a non-zero real number, 4, with # = A#. Show that ~ is an equivalence
relation on R*—{0}. What are the equivalence classes? The set of all equivalence

classes will be called the (real) Projective Plane.
19. Let X = {(x, y)ix € Z and y € Z and y # 0}. We define a binary relation on X by
] (1, Y1) ~ (x3, y2) ifand only if x,y, = x,y,.
Prove that ~ is an equivalence relation. What are the equivalence classes?

20. Let ~ be a relation on § that is both symmetric and transitive. What is wrong
with the following “proof” that ~ is also reflexive? “Suppose a ~ b. Then by
symmetry b ~ a. Finally by transitivity ¢ ~ b and b ~ e imply a ~ a. Thus ~ is
reflexive.”

Part C. Expository exercises.

21. How would you explain to a high school audience the notion of an equivalence
relation? In that context, what would an equivalence mean? Where would it occur
in their daily lives?

22. Think of a binary relation as a graph. What is the geometric {graphical) meaning
of the three axioms for an equivalence relation?

1.3 Functions

In this section we review the standard material about functions and bi-
jections. The latter notion is an important part of the Ruler Postulate which
will appear in the next chapter. We will continue to use R to denote the
set of real numbers and Z to denote the set of integers.

Definition. If S and T are sets, then a function f:S —» Tisasubset fc Sx T
such that for each s € S there is exactly one ¢ € T with (s, t} € f. This unique
element ¢ is usually denoted f(s). S is called the domain of f and T is called

the range of f.

In a very intuitive manner we may view a function as agn archer who takes
arrows (elements) from her quiver S and shoots them at a target T. In this
analogy we say that the element s € S “hits” the element f(s)e T.

Following standard conventions, we frequently describe a function f by
giving a formula (or rule) for computing f{s) from s. Note that the function
consists of this rule together with the two sets S and T.
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Example 1.3.1. Let f:R — R by the rule f{x) = x?. Let g:Z — R by the rule
g(x) = x* Note that f is not equal to g—they have different domains. Now
let R* = {x e R|x > 0} and let h1:R — R* by the rule h(x) = x2. Note that
f and h are not equal—they have different ranges. dJ

Definition. If f:S — T is a function then the image of f is
Im(f) = {te T|t = f(s) for some s € S}.

Thus, Im(f) consists of the elements of T that are actually “hit” by f. Of
course, Im(f) = Range(f), but these sets need not be equal. In Example 1.3.1,
Im(f) = R* but Range(f) = R. (Some mathematicians use the word “range”
to mean “image”. They then use “codomain” to mean what we call the
“range”.)

Definition. f:S — T is surjective if for every te T there is an se § with

f =t

In keeping with the target analogy above, this means that all elements of
the target T are “hit.” Of course, an element may be hit more than once.
That is, there may be several s € § such that f(s) = ¢..It is common usage to
say that a function is “onto” instead of “surjective”. In this text we shall use
the more correct terminology “surjective”.

Example 1.3.2. Show that f:R—R by f(x})=x>~1 is surjective while
g:R - Rby g(x} = x* — 1 is not surjective.

SoLumioN. To show that f is surjective we must show that for every
t € Range(f) = R there is an s € Domain(f) with f(s) = ¢. That is, we must

show that the equation
s$—1=1 (3-1)

has a solution for every value of 1. Since every real number has a cube root,
we may set s = /¢t 4+ 1. Then

fO=(Ft+1)P-1=t+1-1=1¢

Hence f is surjective.
To show that g is not surjective we need only produce one value of ¢ such

that the equation

1=t (3-2)
does not have a solution. Let ¢t = -2, Then a solution to Equation (3-2)
must satisfy
s2—1=-2 or &#=-1.

This clearly cannot occur for any real number s. Hence g is not surjective. [
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Example 1.3.2 illustrates how we actually attempt to prove that a function
is surjective. We set up the equation f(s) = ¢ and try to solve for s (given ¢).
At least one solution for every value of z must be found.

Example 1.3.3. Let T = {t e R}t > ¢""*} and h:R — T be given by h(s) =

¢ 7%, Prove that k is surjective.

SoLuTION. Given te T, note that Inz > —4. Thus 1 +41In¢t > 0. Let s be

the “obvious choice”:
14+./1+4Int
— s 3-3)

Itis easy enough to show that Equation {3-3)definesan se Rwith h(s}=t. [

The above represents an absolutely correct (and totally unmotivated)
solution to the problem. The way that we came up with the “obvious choice”
(and the way to attack the problem) is to attemipt to solve the equation
h(s) = t. Thus on scrap paper you might write: For fixed ¢, solve for s:

&=t
First take the natural logarithm of both sides to get

s?~s=Int or s*—s~Int=0.

An application of the quadratic formula gives

R E VBT
==y

Because we only need to exhibit one solution, we take the “+” sign:
s =41 + /1 + 41n t). Of course, taking s = 3(1 — /1 + 4 In ¢) would also
show that f is surjective. Once we have found what we believe is the
solution, we must verify that it is correct as in Example 1.3.3. This is similar
to solving an equation in algebra and then checking the solution to be sure
that we have not found an extraneous solution. Note that it was crucial that
we verified that 1 + 4 In ¢t > 0. 1f the range had included numbers t < e/
we would not always have 1 + 4 In ¢ > 0 and the function would not have
been surjective. :

The concept of a surjective function deals with whether ot not an equation
can be solved. Another important idea is the notion of an injective function,
which deals with the number of solutions to an equation. Thus “surjective”
deals with existence of a solution while “injective” deals with uniqueness.

Definition. f:S — T is injective if f(s,) = f(s,) implies s; = s,.

In terms of the target analogy, f:S — T is injective if no two arrows hit
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the same place on the target. (Note that this says nothing about whether all
of the target is hit.) It is common practice to use the term “one-to-one” to
mean injective. In keeping with our practice regarding the word “surjective”
we shall only use the term “injective” and not “one-to-one.”

An alternative way of defining injective would be: f is injective if 5, # s,
implies f(s,) # f(s,). While this is not as convenient to use, there are times
(e-g., Theorem 1.3.8) when it is helpful.

Example 1.3.4. Let f:R - Rbegiven by f{(s) = ¢”>*!, Show that f isinjective.

SoLuTION. We assume that there are real numbers s; and s, such that
et = gttt (34

We must show that the only way that this occurs is if 5, = 5,. If we take the
natural logarithm of both sides of Equation (3-4) we obtain

st+t=53+1 or st=3s.

Since every real number has a unigue cube root we must have s, = s,. Thus
f is injective. O

Example 1.3.5. Show that #:R* —» R* by A{(x) = x? is injective.

SOLUTION. Assume that h(s;)} = h(s,) so that s? = s3. Then by taking square
roots we have s, = +s,. However, since the elements of R* are not negative,
both 5, and s, must be greater than or equal to zero. Hence 51 # —5,
(unless both are 0) and so s; = s,. Thus k is injective. O

The words “injective” and “surjective” are adjectives. If we wish to have a
noun it is common to say “injection” for “injective function” and “sur-
jection” for “surjective function.” Note that in Example 1.34 the function
was an injection but not a surjection, whereas in Example 1.3.5 the function
was both a surjection and an injection. The function % of Example 1.3.3
gives an example of a function which is a surjection but not an injection
{since h{0) = h{1) = 1). There are many examples of functions which are
neither injective or surjective. However, a function which is both has a
special name.

Definition. /:§ — T 1s a bijection if f is both an injection and a surjection.

Example 1.3.5 is a bijection. The term “one-to-one correspondence” is also
common, but we shall not use it here because readers have a tendency to
confuse the term with the idea of “one-to-one.”

Recall the definition of the composition of functions.

Definition. If f:S — T, g:U — ¥V, and Im(f) = U, then the composition of
f and g is the function g » f:S — ¥ given by (g o f)(s} = g(f(s)).
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Notice that the domain of g must contain the image of f in order for the '
composition of f and g to be defined.

Example 1.3.6. If f :R—R—{0} is given by f(s)=2+sin{s) and g:R—{0} >R
is given by g(t) = 1/t find g - f.

SOLUTION. g o f:R — R is given by

1
(g° f)s) =g(f(s)) = 70
2+ sin(s)’

Theorern 1.3.7. If f:S— T and g.:T — V are both surjections then g f is
also a surjection.

PrOOF. Let v € V. We must show that there is an s € S such that (g » f)(s) = v.
Since g is surjective, there is a t € T with g(t) = v. Then since f is surjective
there is an s € S with f(s) = t. Now

(gef)s)=g(fisN=glsi=v
~ so that g o f is 2 surjection. O
The next two results are left as Problems A6 and A7.

Theorem 1.3.8. If f:S— T and g: T - V are both injections then g o f:S > V
is an injection.

Theorem 1.3.9. If f:S — T and g: T —V are both bijections then g - f:S -V
is also a bijection.

If £:8— T is a bijection then for each ¢ e T there is a unique s € § with
f{(s) = t. This allows us to assign to each t € T a corresponding element s € S.
Thus we have manufactured a new function (called the inverse} which goes
backwards. More formally we have

Definition. If f:S — T is a bijection, then the inverse of f is the function
g: T — S which is defined by
gity=s, where s is the unique element of S with f(s) =¢  (3-5)

The function g is frequently denoted .

If £ is the natural logarithm function given by f(s) = In(s), then the inverse
of f is the exponential function g given by g(t) == ¢ since "™® = 5.

Definition. If S is a set, then the identity function ids: S — S is given by
idg(s) = s.
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Theorem 1.3.10. If f:S — T, then f is a bijection if and only if g f = idg
and f o g = idy for some function g: T — S. Furthermore, the inverse of f is g
in this case.

ProoF. First we shall prove that if there is a function g: T — S with fog =
idy and g o f = idg then f is a bijection and g is its inverse.

Assume there is a function g: T — S with fog=id; and go f =ids. If
te T then g{t)e S and f(g(r)) =id#{f) = t. Hence t e Im{f) and f is sur-
jective. If f(s,) = f(s,) for sy, 5, €S, then g(f(s()) = g(f(s;)) or ids(s;) =
idg{s,) of 5, = 5;. Thus f is injective and hence is a bijection. Finally ift = f{s)
then g(f) = g(f(s)) = idg(s) = s, so that g satisfies Equation (3-5). Thus g is
the inverse of f.

Next we shall show that if f is a bijection then there is a functiong: T — S
with f o« g = idy and g o f = id. Since f is a bijection it has an inverse. Call
this inverse g: T — S. Then g{t) = s wheunever f(s) = ¢.

In particular, if ¢ € T then

flg(®))=fls)=1t forailteT
so that f o g = id;. Also if s e T let ¢t = f(s). Then by Equation (3-5), g(t) = s

so that
g(f(s))=5s forallseS.

Thus g o f = ids. O
Example 1.3.11. Let P* = {e R|t> 0} and set f:R—P"* by f(s)=¢"
What is f~1:P* - R?

SoruTioN. Equation (3-5) says that we must find a functiong = f~1:P* —
R with the property that g{f) = s whenever & = ¢. This function is g(t) = In .
Since

e*'=t and Inée&=s,

Theorem 1.3.10 gives a formal proof that our solution is correct. O

Theorem 1.3.10 may be used to prove the next result.

Theorem 1.3.12. If f:S— T and h:T -V are bijections then (ho f)! =
flop™.

ProBLEM SET 1.3
Part A.
1. Prove that each of the following functions is surjective.

a fR—{0}->R—{2}; f(s) =2+ 1/s
b. g:R->R; g(s) = s® — 65
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c. h:R?— R; h(x, y) = xy
d IR {x[-2<x<2}; () =2cost

. Prove that each of the following functions is injective.

a fIRoRby fs)=F1

b. g:R—{0} - R by g(x) = 3 — 1/(2x)

c. :R2> R%by h(x,y) = (", xy* + x + 1}

d. 1:P*— R? by [(t) = (¢, In 1), where P+ is the set of positive real numbers

. Which of the functions in Problem 1 are bijections? In these cases, find the inverse.
. Which of the functions in Problem 2 are bijections? In these cases, find the inverse.
. Give aﬁ example of a function f:R — R which is neither injective nor surjective.

. Prove Theorem 1.3.8.

. Prove Theorem 1.3.9.

. Prove Theorem 1.3.12.

If f:S — T is a bijection prove that f~1:T — § is also a bijection.

Part B. “Prove” may mean “find a counterexample”.

10.

1.

12.

13.

14,

15.

16.

17.

Ifg:T—Vand f:S— T and if g o f is surjective prove that both g and f are
surjective.

Ifg:T—Vand f:S—> T and if g o f is injective, prove that both g and f are
injective.

If S — T we define a binary relation on S by s; ~ 5, if f(s,) = f(s,). Prove that
~ is an equivalence relation on S.

h:X - Yand g:Y— Z and g o h is a bijection, prove that g is surjective and k
is injective.

Iff:X » Yand A c B < X, prove that f(B—A) < f(B}—f{(4).
If f:5S— R and g:S — R are both injective and h:S — R is defined by h(s) =
f(s)+g(s), prove that h is injective.

If f:S—R and g:S—R are both sutjective and h:S >R is defined by h(s)
f(s) + g(s), prove that h is surjective.

Prove that the set of all bijections from S to S forms a group. (Hint: Use
composition for the multiplication.)

. Let S be the set of all polynomials. Let f:S— S by f(p(x)) = d/dx(p(x)) and

g:S — § by g(p(x)) = {3 p(¢) dt. Show that f o ¢ = idg but that f is not a bijection.
Does this contradict Theorem 1.3.10?
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Part C. Expository exercises.

19. Discuss at an intuitive level what injective and surjective functions are. How
would you explain them to an engineering student? to your parents or spouse? to
high school students? Note how your answer changes depending on your audience!



CHAPTER 2 __
Incidence and Metric Geometry

2.1 Definition and Models of Incidence Geometry

In this section we shall define the notions of an abstract geometry and an
incidence geometry. These are given by listing a set of axioms that must be
satisfied. After the definitions are made, we will give a number of examples
which will serve as models for these geometries. Two of these models, the
Cartesian Plane and the Poincaré Plane, will be used throughout the rest of
the book. :

As we discussed in Section 1.1, a ' r s a set & of points and a
set..22 of lines. .together. with. relationships.. between,the <POILS3 nes.
What relationship shall we insist on first? We would certainly want every
two points to be on some line, and we would want to avoid the pathology
of a line with only one point. We will add more relationships between points
-and hines later and so change the _nature of the geometry.

If o ={%, £} is an abstract geometry with Pe ¥, lc.¥ and Pel,
we say that P.lies on the line I, or that | passes through P. In this language
the first axiom of an abstract geometry reads: “every pair of points lies on
some line.” A word of warning is necessary, however. Just because we use
the word “line,” you should not think “straight line.” “Straight” is a biased

- 17
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term that comes from your previous exposure to geometry, and particu-
larly Euclidean geometry. To us a “line” is just an element of &. See Proposi-
tion 2.1.2 below, where the “lines” do not “look straight.”

Proposition 2.1.1. Let & = R? = {(x, y)|x,y € R}. We define a set of “lines”
as follows. A vertical line is any subset of R? of the form
L, = {(x, y) € R*|x = a} (1-1)

where a is a fixed real number. A non-vertical line is any subset of R* of the
Sform

Ly = {06,0) € R |y = mx + b} (12

where m and b are fixed real numbers. (See Figure 2-1.) Let %y be the set of
all vertical and non-vertical lines. Then €.= {R? % }.is.an.abstract.geometry.

Proor. We must show that if P =(x,,y;) and Q = (x,,y,) are any two
distinct points of R? then there is an ! € %5 containing both. This is done
by considering two cases.

Case 1. If x; = x; let a= x, = x,. Then both P and Q belong to /=
L,e %s. '

Case 2.1f x; # x, weshow how to find mand b with P, Qe L,, ,. Motivated
by the idea of the “slope” of a line we define m and b by the equations:

m=22"01 and b=y, — mx,.
X2 ™ Xy

‘1t is easy to show that y, = mx, + b and that y, = mx, + b, so that both
Pand Qbelongto [ =L, , e L.

Itis easy to see that each line has at least two points so that % is an abstract
geometry. O

Definition. The model € 5 {R2, %} is.called the Cartesian Plane;(The nota-
tion L, and L,, , will be reserved for the lines of the Cartesian Plane and
certain other models that are developed later using the same set of points’
and lines.)

y=mx+b

/‘b

: .

m.b

Figure 2-1
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We use the letter E in the name of the set of Cartesian lines (%) to
remind us of Euclid, the author (c. 300 B.C.E.) of the first axiomatic treat-
ment of geometry. Later we shall add the additional structures of distance
and angle measurement to the Cartesian model to obtain the familiar
Euclidean model of geometry that is studied in high schdol. The name
Cartesian is used to honor the French mathematician and philosopher René
Descartes {1596—1650), who had the revolutionary idea of putting co-
ordinates on the plane. Qur verification that ¥ satisfied the axioms depended
heavily on the use of coordinates. Descartes is also responsible for many of
our conventions in algebra, such as using x, y, z for unknown quantities and
a, b, ¢ for known quantities, and for introducing the exponential notation x”.

Recall from your elementary courses that there are other ways to describe
straight lines in R% The way chosen above (that is, through L, and L, ;)
is the best suited for this chapter. In Chapter 3, the results are proved most
easily if the vector form of the equation of a line is used, and so we will
start to use that approach there. Another approach is included in Problem
Al4.

Proposition 2.1.2. Let & = A 201 As in the case of the
Cartesian plane, we shall describe two types of Tines. A type I line is any subset
of H of the form

L={xyeH|x=al : (1-3)
where a is a fixed real number. A type 1Y line is any subset of H of the form
Lo={pellx - +y =r1 (1-4)

where ¢ and r are fixed real numbers with r.> 0. (See Figure 2-2.) Let Ly
be the set of all type I and type II lines. Then HKom fuoLpbds. anabstract
- geomelry :

ProoF. Let P =(xy,y,) and Q = (x5, y,) be distinct points in H so that
“y1>0andy, > 0.

Case 1. If x; = x, then P and @ both belong to = ,L €%y where
a=X; = Xj.

Case 2. If x, # x, define ¢ and r by

D Tl i G Bk (1-5)
2x; — x4)

Gy — o + 1. | (1-6)

(In Proposition 2.1.5 below we will see what led to this choice of ¢ and r.)
In Problem A6 you will show that P and Q both belong to [ = L, € &

Itis easy to see that each line has at least two points so that .3 is an abstract
geometry. O
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Definition. The model .= {H, Ly dmill.be.called.the. ﬁoinc_ére...\.lzlan ) (The
notation ,L and L, will be used only to refer to lines in )

# is called the Poincaré Plane in honor of the French mathematican
Henri Poincaré (1854-1912) who first used it. Poincaré was a prolific re-,
searcher in many areas of pure and applied mathematics. He is particularly
remembered for his work in mechanics, for his study of elliptic functions
which tied analysis and group theory together, and for his work in geometry
which led to the development of modern topology. The letters 3, H, and H
are used to remind us of the word “hyperbolic”. We shall see later in this
chapter that the hyperbolic functions are important in this model, just as the
trigonometric functions are important in Euclidean geometry. Once we have
added more structure to # it will be a model of what we call a hyperbolic
geometry. ' 8

In the models given in Propositions 2.1.1 and 2.1.2 it seems clear that
through any two points there is a unigue line. This need not be the case
in all abstract geometries as we see in the next example. This example will
have a particular subset of R* = {(x, y, z)|x, y, z € R} as its set of points, &.

Definition. The wunit.sphere. in R is

S ={xnne X 1y
A plape in R? is a set of the form

+z

{(x02eRax £ by tez=4d}

where a, b, ¢, d are fixed real numbers, and not all of g, b, ¢ are zero.

Note that in the definition of a plane if the constant d = 0, then the plane
goes through the origin (0,90,0).

Definition. A greay circle, % of the sphere S2 is the intersection.of $Z with a
plane.through the origin. Thus ¢ is a great circle if there are g, b, c € R, not
all zero, with

% ={(x,.9,.2) € §?|ax + by + ¢z = 0}.
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ax +by+cz=0

Figure 2-3

Proposition 2.1.3. Let & = 52 and let. %y be the set of great circles on S.
{85 Za)dis.an.abstract geometry.

Proor. We must show that if P = (x,, ¥,2;) €8 and Q = (x5, y5, 2,) € §* .
then there is a great circle % with Pe % and @ € 4 Thus we must find g,

b, ¢ real numbers (not all zero) such that
ux; + by +cz;=0 and ax, + by, +cz,=0. 1-7

View Equations (1-7) as two equations in the three unknowns g, b, c.
Since two homogeneous linear equations in three unknowns always have
a non-zero solution (in fact, infinitely many solutions), we may always
find a, b, and ¢ solving Equations {(1-7). Thus, there is a great circle 4 with
P ¢ ¢ and Q e ¢ Finally each great circle has at least two points. 0

Definition. The ®iemann Spheresis. the.abstract, seometry. #.= {2 L}

X

The Riemann Sphere is named after G. B. F. Riemann (1826-1866)
who wrote foundational papers in geometry, topology and analysis. His
paper on geometry, Uber die Hypothesen, welche der Geometrie zu Grunde
liegen (On the Hypotheses which lie at the Foundation of Geometry),
which was writtén in 1854 (see Spivak [1970, vol. I] or Smith [1929]),
provided geometry with a great unifying idea, that of a Riemannian metric.
This concept, which is quite advanced, is the basis for modern differential
geometry (see Millman and Parker [1977]) and the mathematics of Einstein’s
theory of general relativity. The name Riemann Sphere comes from Rie-
mann’s work in functions of a complex variable and not from his work in
geometry.

Note that it is “geometrically obvious” and was proven above that any
two points on S2 lie on a great circle. However, unlike the first two examples,
two_points on_S? may have more than one great circle joining them, Con-
sider the north and south poles N and § as in Figure 2-4. There are infinitely
many great circles joining N to S. The uniqueness of lines joining two points
is such an important concept that it is singled out in the definition of in-
cidence geometry.
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r

Figure 2-4

Definition.

Notation, If {&, ¥} is an incidence geometry and P, Q€ ¥,
unique ling [ on which both P and.Q lie will be.written

It is useful to restate the second axiom-of an incidence geometry in terms
of the concept of collinearity.

Definition. A set.of points.2.is_Collinear)f there is a ling .such.that. 2 <./,
- 2.is non-collinear if 2 is not.a.collinear.set. '

Sometimes we will say that “4, B, and C are collinear” instead of saying
“{4,B, C} is a collinear set.” This abuse of notation and language makes it
easier to state some results. Axiom (ii) of the definition above can be restated
as-

(ily There exists.a set of three.non-collinear. points.

Although t it n.Sphere.is.mot.an. incidence geometry both the
Cartesian.Blane.an ,Lh.ejggmmdzlm as we shall now see.

Proposition 2.1.4. The Cartesian Plane % is an incidence geometry.

‘ProoF. We must show that two distinct points uniquely determine a Car-
tesian line. Let P = (x,, y,) and Q = (x,, y,) with P # Q. We shall assume
that P, Q belong to two distinct lines and reach a contradiction.

Case 1. Suppose P, Q belong to both L, and L, with a # a’. Then a =
X, = x, and @ = x, = x, so that a = &', which is a contradiction.
Case 2. If P, Q belong to both L, and L,,,, then P ={(a,y,} and Q =
{a, y;). Since both belong to L, ; we also have
yi=mx,+b=ma+b and y,=mx,+b=ma+b.

Thus y, = y,, which contradicts (g, y;) = P # @ ={a, y,).
Case 3. Suppose that P, Q belong to both L, ; and L, and that L,, , #
L, .. Then
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yi=mxs+b,  yy=mx; +b (1-8)

By Case 2, P, Q cannot both belong to a vertical line so x, # x,. Hence we
may solve Equation {1-8) for m:

m=22_"%1 (1-9)
X2 — Xy

From this value of m we obtain b:
b=y, —mx, (1-10)
A similar calculation for the line L, . yields

y2—)
n=22 "1 c=y —nx,.

Xz — Xg

But this implies m = n and b = c, which contradicts L., # L, .

Thus in all cases, the assumption that P, Q belong to two different lines
leads to a contradiction so that P, Q belong to a unique line. In Problem
AS you will show there exists a set of three non-collinear points. Hence
% is an incidence geometry. ]

Note that in the above proof we did not depend on any pictures or “facts”
we already know about “straight lines.” Instead we were careful to use only
the definition of the model and resuits from elementary algebra.

Proposition 2.1.5, The Poincaré Plane 3 is an incidence geometry.

PROOF. Let P, Q € H with P # Q. If P and Q lie on two type I lines ,L and
oL then we can show that @ = &’ just as in Proposition 2.1.4. Thus P and Q
cannot lie on two different type I lines. In Problem A7 you will show that P
and Q cannot lie on both a type I line and a type I line.

We are left with proving that if P = (x,, y,) and Q = (x,, y,) are on both
L, and ,L, then L, = ;L. We will show that ¢ = 4 and r = 5. This will be
done by deriving Equations {1-5} and (1-6) and so will motivate the choice
of ¢ and r in Proposition 2.1.2. Since P and @ are on .L,,

s — P +yi=r* and (x;— P +y;=1r=~
Subtracting, we obtain (x; — ¢)> — (x; — ¢)* = y3 — y? or
x2 —2¢xy — x3 4 2ex, = yi— )2

We then solve for ¢:
y: —yi+x3—x}

2(x; — xy)
which is Equation (1-5). An identical computation using the fact that P and
Q are on 4L, will yield

C =

2 25 2 2
Y2 —yi+x3 — X3

2(xy — xy)

d=
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so that ¢ = d Since
r=J&x; — "+ ~«/(x1—d +yi=s

we see that r = sand so L, = 4,L,. o
In Problem A8 you will show thereis a set of three non-collinear points. [J

Theorem 2.1.6. Let 1y and 1, be lines in an incidence geomerry. If I 0 1, has
1oL Igepoints then Lz o

Proor. Assume that P#Q, Pel, nly, and Qe!; N I,. Then since both
Pand Qareonl;, PO = l,. However, P and Q are also on I, so that PO = I,.
Hence [, = I,. (|

.ara.llu: fols

Definition. If [, and [, are lines in an abstract geometry then I,.is

The study of parallel lines has a central place in the history of geometry.

It and its history will be dealt with in detail later in this book. In Problems A10,
A11,and A12 the different “parallel properties” of our models are highlighted.

- Theorem 2.1.6 can be restated in terms of parallelism as the next result shows.

Corollary 2.1.7. In_an-incidence-geometry,.two.lines.-are-.either..parallel..or
they.intexseclinLxacily. ane.point.., '

PROBLEM SET 2.1

ind the Poincaré line through (1, 2) and (3, 4).

ind the Poincaré line through (2, 1) and (4, 3),

3. Find a spherical line (great circle) through (4, 3, ./3) and (1, 0, 0).

4. Find a spherical line (great circle) through (0, 3, 4,/3) and (8, —1, 0)

5. Show by example that there.are (at .least) three non-collinear points in the
Cartesian Plane.

6. Verify that P = (x,, y,) and Q@ = (x,, y,) do lie on L,, where ¢ and r are given by
Equations (1-5) and (1-6). .

7. Prove that if P and Q are distinct points in H then they cannot lie simultaneously
on both L and .L, )

,/‘\
{ 8. fhow by example that there are (at least} three non-collinear points in the
Poincare Plane.

9. Let P and Q bein H and P = _L.. Use your knowledge of Euclidean geometry to
prove that ¢ is the x~-coordinate of the intersection of the Euclidean perpendicular
bisector of the Euclidean line segment from P to Q with the x-axis. (Hint: Use
Equation (1-5).) '
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\
R\
// \
// \
// \
o \
_/’; __________ R\
Figure 2-5

OFmd all lines through (0, 1) which are parallel to the vertlcal line Lg in the
Cartesian Plane.

@F ind all lines in the Poincaré Plane through (0, 1) which are parallel to the type I
line ¢L. (There will be infinitely many?)

12. Find all lines of & through N = (0,0, 1) which are parallel to the spherical line (great
circle), €, defined by the plane z = 0.

13. Let & = {P,Q,R} and % = {{P,Q}, {P,R}, {Q,R}}. Show that {#, %} is an
incidence geometry. Note that this example has only finitely many (in fact, three)
points. It may be pictured as in Figure 2-5. It is called the 3-point geometry. The
dotted Enes indicate which points lie on the same line.

14. Let & = R? and, for a given choice of a, b, and ¢, let
Ja.b.c = {(x, }’) € Rzlax + by = c},

Let ., be the set of all J, , . with at least one of ¢ and b nonzero. Prove that
{R?, &} is an incidence geometry. (Note that this incidence geometry gives the
same family of lines as the Cartesian Plane. The point here is that there are
different ways to describe the set of lines of this geometry.)

15. Let & = R>—{(0, 0)} and & be the set of all Cartesian lines which lie in .V
Show that {&, #} is not an mcndence geometry.

U S Y SN S —— +
P _ RI \?F\\ RT }ﬁw‘\\ R|
I | I >~ | I ~~ |
lo sl de gl sl
| 3 | ~
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16. Prove that the Riemann Sphere is not an incidence geometry.
17. Show that the conclusion of Theorem 2.1.6 is false for the Riemann Sphere. Explain.

18. Prove Corollary 2.1.7.

Part B. “Prove” may mean “find a counterexample”.

19. Some finite geometries are defined pictorially (as in the 3-point geometry of
Problem A3) by Figure 2-6.

i. In each example list the set of lines.
ii. Which of these geometries are abstract geometries?
iit. Which of these geometries are incidence geometries?

*20. Let {&, £} be an abstract geometry and assume that &, — &. We define an
&, -line to be any subset of %, of the form | n ¥, where [ is a line of & and where
[~ &, has at least two points. Let %, be the collection of all. & -lines. Prove that -
{%, £} is an abstract geometry. {¥,, &, } is called the geometry induced from
(#,2). |

21 If {&,, &, } is the geometry induced from the incidence geometry {¥, £}, prove
that {¥,, %,} is an incidence geometry if & has a set of three non-collinear
points.

22. Let {¥;, %} and {¥,, %,} be abstract geometries. Let ¥ = #, v &% and & =
&, U %, Prove that {&, 2} is an abstract geometry.

23. Let {#;, &} and {SPZ, %,} be abstract geometries. f ¥ =%, n% and & =
& 0 %, prove that {&, £} is an abstract geometry.

24. Let {&, &} be an abstract geometry. If I, and /, are lines in & we write I, ~ I, if
l, is parallel to I,. Prove that ~ is an equivalence relation. If {&, £} is the
Cartesian Plane then each equivalence class can be characterized by a real
number or infinity. What is this number?

25. There is a finite geometry with 7 points such that each line has exactly 3 points
on it. Find this geometry. How many lines are there?

26. Define a relation ~ on S2 as follows. If A = (x,, y,, z;) and B = (x,, y,, z;) then
A ~ Bifeither A = Bor A = —B = (~Xx,, —¥,, —z,). Prove ~ is an equivalence
relation.

27. Let P = {[X]{X e §2} be the set of equivalence classes of ~ in Problem B26. If
% is a great circle (spherical fine) let [#] = {[X]{X € ¥}. Let & = {[€]|% € Z&}.
Prove that # = {P, &} is an incidence geometry. (2 is the Projective Plane.
There is a natural bijection between P’ and the set described in Problem B18 of

Section 1.2.)

28. Prove that there are no distinct parallel kines in # (i.e., if {, is parallel to I, then
L=10)

Part C. Expository exercises.

29. Discuss the mathematical career of René Descartes.
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30. Discuss the statement “parallel lines meet at infinity” in terms of the three models
that are given in this section. Is there event a meaning to the phrase “at infinity”
in the Poincaré Plane or the Riemann Sphere? .

2.2 Metric Geometry

At this level there are two fundamental approaches to the type of geometry
we are studying. The first, called the spsthetic. approach, involves deciding
what arc the important. properties of the- concepts. you- wish to study and
then defining these concepts axiomatically by their properties. This approach
was used by Euclid in his Elements (around 300 B.C.E.) and was made
complete and precise by the German mathematician David Hilbert (1862
1943) in his book Grundlagen der Geometrie [1899; 8th Edition 1956; Second
English Edition 1921]. Hilbert, as did Poincaré at the same time, worked in
many areas of mathematics and profoundly affected the course of modern
mathematics. He put several areas of mathematics on firm axiomatic footing.
In an address to the International Congress of Mathematicians in 1900 he
proposed a series of seventeen questions which he felt were the leading
theoretical problems of his time. These questions {not all of which have been
answered yet) directed mathematical research for years.

) The second approach, called the metric.approach, is due to the American
mathematician, George David Birkhoff (18841944} in his paper “A Set of
Postulates for Plane Geometry Based on Scale and Protractor” {1932]. In
this approach, the.concept of distance (or a metric) and angle measurement
is added to that of an incidence geometry to obtain basic ideas of betweenness,
line segments, congruerice, etc. Such an. approach brings some analytic tools
(for example, continuity) into the subject and allows us to use fewer axioms.
BirkhofY is also remembered for his work in relativity, differential equations,
and dynamics.

A _third approach, championed by Felix Klein (1849-1925), has a very
different flavor—that of abstract algebra—and is more advanced because it
uses group. theory. Klein felt that geometry should be studied from the
viewpoint of a group acting on a set. Concepts that are invariant under this
action are the interesting geometric ideas. See Millman [1977] and Martin
[1982]. In Chapter 11 we will study some of the ideas from this approach,
which is called transformation geometry.

In this book we will follow the metric approach because the concept of
distance is such a natural one. {(Modern treatments of the synthetic approach
can be found in Borsuk and Szmielew [1960] or Greenberg [1980]. We will
briefly outline the synthetic approach in Section 6.7.) Intuitively, “distance” is
a function which assigns a number d(P, Q) to each pair of points P, Q. It
should not matter whether we measure from P to @ or from @ to P (ie,
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a(P, Q) = d(3, P)). Furthermore, the only time the distance between two
points is zero should be when the points are actually the same. More
formally we have the following definition. .

ction d: & x & — R such
thatioIJa.lLE, Q£ K
(i) dB2. >0,

(ii) 4(P.0)=0ifand only if P =0;and
(i) 4(P, Q) = d(Q, P).

The following definition gives a distance function for the Cartesian Plane.
Sce Problem Al.

Definition. Let & = i, P = (x}, y1)and @ = (x, y2). The Eudidmdistgg@g,
dy is given by

P =, P T g @)

To give an example of a reasonable distance function in the Poincaré
Plane requires more thought. Suppose that P and Q belong to a type 1 line.
A reasonable guess for the distance between P =(q,y,) and ¢ = (a Va)
might be |y, ~ y,|. However, this is somewhat displeasing because it means
that as y, tends to zero (and thus Q goes toward the x-axis or “edge”) the
distance from P to @ tends to y,, which is a finite number. It would be “nicer”
if the “edge” were not a finite distance away. One way to avoid this is to use
a logarithmic scale and say that the distance from (a, y;) to (a, y,) is [In(y,) —
In(y,)] = In(y,/y,)]- (Note that as y, ~ 0, In(y,/y,) — o0.) This gives some
justification for the following definition (which looks rdther artificial.) The
“reasons for this definition will be clearer after we discuss the Ruler Postulate.

Definition. If P = (x,, y,) and @ = (x,, y,) are points in the Poincaré Plane
#, the Roingaré distance. ds is given by

dy(P,Q) = m(ﬁi)’ if Xpm xp , 2-2)

X1 — ct+r

Y1 ; .
dy(P,Q) = [Inf —— i -
i k Q)=|in prpunorned | IR Pand Qlieon L, (2-3)

J2

The verification that dy, as defined by Equations {2-2) and (2-3), actually
satisfies axioms (i) and (iii} of a distance function is left to Problem A2.
Axiom (ii) is more difficult, especially for points on a type II line. Essentially,
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we need to show that the function f: L, — R given by f(x, y)=1In ()—c-—_—;‘i) '

is injective. We will do this in the proof of Proposition 2.2.6.

We shall now present an example with a different twist. This example,
called taxicab distance, comes from thinking of a taxi driving on the rectangu-
far grid of a city’s streets. The taxicab distance measures the distance the
taxi would travel from point P to point Q if there were no one way streets. See
Figure 2-7.

Definition. If P = (x;, y;) and Q = (x,, y,) are points in.R? the taxicab
.distance between them is given by
AP, Q) = Ix) — X5| + |1 — yal. (2-4)

Tan

" Proposition 2.2.1. The taxicab distance is a distance function on RZ.

Proor.Note that d(P,Q) = 0 since it is a sum of absolute values, each of
which is always nonnegative. Thus axiom (i} for a distance holds.

The second axiom states that d(P,Q) = 0 if and ouly if P = Q. Clearly
if P = Q then d(P, @} = 0 by Equation (2-4). On the other hand, if d-(P, Q) =
0 then |x; — X5| + |y, — y2| = 0. Since each of these two terms is at least
zero, they must both be zero: |x, — x,| = Oand |y, — y,| = 0. But this means
X, = x, and y; = y,. Therefore, if d+(P, @) = 0 then P = Q.

Finally axiom (iii), 4-(P;Q) = dr(Q,P), holds because |a — bj = |b — a|.

O

Note that dr-and dg are-both distance functions on the same underlying
set.R2, In.general, a set may have many.different.distance functions on- it
(see, for example, Problem B16). Thus, when we want to talk about a
property of distance on a set, we need. to specify both the set & and the
distance function 4.

The concept of a ruler is central to the remainder of this book. This was
the idea introduced by Birkhoff to move geometry away from the very

Qe
|
|
A ! ly2 = il
)
P |
@ = s ot -4
{
IX2— Xll

Figure 2-7
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synthetic methods. Intuitively, a ruler is a line that has been marked so that
it.can be used to measure distances. We shall “mark” our lines by assuming
that for every line there is a bgectlon between that line and R in such a way
that the “markings” measure distance.

Definition. Let [ be a line in an incidence geometry {&, &}. Assume that
there is a distance function d on . A function fi.;l_:z,[&.iﬁsma_ P(or.coordinate
system).for./ if

() f is.a.bijection;
(i) foreach pair.of points P and O on !

JP) - ()] = (P, 0). 2-5)
Equation (2-5) is called the Ruler Equation and f(P) is called the coordinate of
P with respect to f.

Example 2.2.2. Let / be the nonvertical line L, 5 in the Cartesian Plane ¥
with the Euclidean distance. Show that if Q = (x, y) then f{(Q) = ﬁx gives
a ruler f for  and find the coordinate of R = (1, 5) with respect to f.

SoLUTION. f is certainly a bijection so alf we need verify is the Ruler Equation.
Note that (x, y) € L, 5 if and only if y = 2x + 3 so that if P = (x,, y,) then

d(P, Q) = /01 = X+ (= PP = /e, — xF + 4x; — xP?

=/51x; — x| = f(P) — fQ)
Thus the Ruler Equation holds.
The coordinate of R = (1, 5) is f(R) = /5. : 1

Some comments are in order. The terms ruler and coordinate system are
typically used interchangeably in the literature, and we will use both. Note
also that since a point may lie on more than one line it may have different
“coordinates” with respect to the various lines or rulers used. In particular,
if.Plies.ontheline ', and if ' has a ruler f*, then there-need not be any rélation
between the coordinate of P with. respect to,/.and the coordinate of P with
respect. to. /. (See Problem A4.) In addition, we shall see that if a.line has
one_ruler f, it has many rulers and thus.many. possible.coordinates. for P..
(The analogous situations for coordinates in analytic geometry are that the
rectangular coordinates of a point may be quite different from its polar co-
ordinates and that by translating the origin we also get different coordinates.)

| Definition. An. mc1dence geometry {9’ ,9} together with a distance function
d satlsﬁes the Ruler. : YL Le ERREB NG In this case we

Why do we study metric geometries? It is because many of the concepts
in the synthetic approach which must be added are already present in the _
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metric geometry approach. This happens because we can transfer questlons '
about.a line Lin &, to the real numbers R by using a Tuler f Tn R we under-
stand concepts like “between” and so can transfer them back (via f Yol
 This is the advantage of the meiric approach alluded to in the beginning of
the section. After we have more background (ie., in Chapter 6), we will
return to the question of a synthetic versus metric approach to geometry.
The definition states that in order to prove {&, &, d} is a metric geometry,
we need to find for each € % a function f:!/— R which is a bijection and
which satisfies Equation (2-5). However, because of the next lemma, we do
not really have to prove that f is an injection. This lemma will then prove
useful in the problems at the end of the section as well as in Propositions 2.2.4
and 2.2.7.
Lemma 2.2.3. Let.le . Z.and. ;1= satisfy. Equation (2-5).
Then.f.is.a.hijection.and hence.a o

Proor. Since we assume that f is surjective we need only show that it is
injective. Suppose that f(P) = f(Q). Then by Equation (2-5) we have
AP, Q)= |f(P)— f(Q)| =0

so that P = Q by the second axiom of distance. O

Proposition 2.2.4. The.Cartesian..Plane with the Euclidean distance, dg, is a
metric geometry.

ProoOF. Let [ be a line. We need to find a ruler for /. This will be done in
two cases.

Case 1. 1f | = L, is a vertical line then P € L, means P = (g, y) for some y.
We define f:1— R by

JP) = fa, ) =y. - (2-6)
[ is clearly surjective. If P = (ﬁ, yi}and Q = (a, y,), then
B = SO = ys ~ yal = d(P, D).
Therefore f is a ruler by Lemma 2.2.3.

Case 2.1f] =L, , then P € L, , means that P = (x, y) where y = mx + b.
Define f:L,,, — R by

S(P) = f((e, ) = x/1 + m’. (2-7)
IfteRlet x=t/\/1+m?, y=(mt/./1+m*)+b. Certainly, P=(x, y)e L,, .

Furthermore,
t
P)=—="J1+m* =t
4 J1+m?

so that f is surjective.
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Now suppose that P = (x,, y,) and Q = (x3, ;). Then
|/(P) = £(Q)] = bx,/1 + m® = x54/1 + m?|
= /1 +m?|x; = x,|.
On the other hand

ds(P,Q) = Jlx; — x> + (y1 — y2)*
= \/(xx - xz)z + m*(x; — x,)°

=41+ szCxl - x,)

=1 +m?x; — x5

~Combining these two sets of equations we have |f(P) — f(Q)| = dx(P, Q).
Hence by Lemma 2.2.3, f'is a ruler. : O

Definition. The Englidean. Rlane is the model

Our next step is to show that the Poincaré Plane with the Poincaré dis-
tance is a metric geometry. To do this it will be useful to use hyperbolic
functions. Recall that the hyperbolic sine, hyperbolic cosine, hyperbolic tan-
gent and hyperbolic secant are defined by .

-t r -1
sinh(f) = d 2e ; cosh(t) = ¢ +2e ;
inh() & —e* . . ®Y
sin e —e
h = = M h (==
tanh(?) cosh(t} & +e™" sgc © cosh(f) & +e”’

From the above it is easy to prove

Lemma 2.2.5. For every value of t.

(i) [cosh()]?> — [sinh(1)]? = 1;
(i) [tanh(r)]? + [sech()]? = 1.

The first equation of Lemma 2.2.5 is particularly suggestive. Whereas the
trigonometric (or circular) functions sine and cosine satisfy sin? ¢ +cos? t=1
and remind us of a circle: x? + y* = 1, the hyperbolic sine and cosine lead
to an equation of a hyperbola: x? — 32 = 1. We should also note that if
x = tanh(¢) and y = sech(¢) then (x, y) lies on the circle x* + y? = 1.
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Proposition 2.2.6, dy is a distance function for the Poincaré Plane and
{H,. L, di} is 0. metric geometry.

PRrOOF. By Problem A2, dy, satisfies axioms (i) and (iii) of a distance function.
We must verify axiom (ii) and find appropriate rulers. Clearly, if P = @ then
dy(P, @) = 0. We need to show that if dy(P, Q) = 0 then P = @. To do this
we consider two cases depending on the type of line that P and ¢ belong to.

Suppose that P, Q belong to a type I line ,L with P =(a,y;) and
0 = (&, y,). I dy(P, Q) = O then [In(y,/y)| = 0 so that y,/y, =1 and y, =
y,. Thus if P, Q belong to a type I line and dgy(P, Q) =0 then P = Q. In
Problem A8 you will show that the function g: .L —= R given by g(a, y) =
In{y) is a bijection and satisfies the Ruler Equation. Thus ¢ is a ruler for L.

Now suppose that P, Q belong to a type I line .L, and that dy(P, Q) = 0.
Let fi.L.= R begivenby f(x, ) = In[ 2"
that f is a ruler. First we must show it is a bijection. (Lemma 2.2.3 cannot be
used because we do not yet know that dy is a distance function.) To show
that f is bijective we must show that for every ¢ < R there is one and only
one pair (x, y).which satisfies

(x—cP+y*=r? y>0, and f(x,y) =t (2-9)

. We will eventually show

We try to solve f(x, y) = ¢ for x and y.

Iff(xsy)=ln(———x_c+-r)=tthen—-—x—C+r=e'.Thus

y y

S _ Hx—ec—r) _Yx—e-n _yx—c—n
X—c+r (x—c+nx—c—r) {x—cpF—1r —y?

xX—c—r
y

since (x, y) € .L,. Hence

., o X—C+r x—c-—r _2r
et tel = - =—
y y y
or
y = rsech(2).
Also ’
X—c+r x-—c-—r )
e —et y y 2kx—¢) x-—c
e +et 2r T2
y
or

x — ¢ = r tanh(¢).
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Hence the only possible solution to Equation (2-9) is
x =c + rtanht, y=rsecht. (2-10)

A simple computation using Lemma 2.2.5 shows that x and y as given in
" Equations (2-10) satisfy (x — ¢)* + y* =r? and that y > 0. Thus Equations
(2-10) define a point in _L,. Finally, a straightforward substitution verifies
that for this x, y we have f(x, y) = t. Thus Equations (2-9) have one and only
one solution for each ¢t € R and therefore f: L, — R is a bijection.
Next, if P = (x,, y;) and Q =(x,, y,) belong to .L,, then by Equation
(2-3) and the properties of logarithms

dy(P, Q) = | f(x1, y1) — f(x2, ¥2)l-

Hence, f satisfies the Ruler Equation. Finally, if dy(P, Q)=0, then f(x,,y,)=
f(x4, ¥2). Since f is bijective, this means (x,, y;) = (x,, y,) and dy satisfies
axiom (i) of a distance function. ‘

Since we have proved that dy, is a distance and each line in # has a ruler
(g and f above) {H, Fy, d;;} is a metric geometry. [

Convention. From now on, the terminology Poincaré Plane and
the symbol 5 will inciude the hyperbolic distance dy:

Note that with the given rulers in 5%, if P, Q € I and if we let Q tend to the
“edge” (i.e., the x-axis) along I, then f(Q) tends to + oo so that
d(P,Q) = | f(P} — f(Q)] - 0.
That is, the “edge” of the Poincaré Plane is not a finite distance away from
any point P. To a creature living in the geometry the edge is not reachabie,
hence not observable. The x-axis that we sketch in our pictures of the
Poincaré Plane is the “horizon”.

Proposition 2.2.7. The.Cartesian. Plane with the taxicab distance is-a.metric
geometry.

Proor. If I is a vertical line L, we define f:/—-> R by f((a,y)) =y. Iflis a
nonvertical line L,,, we define f:1— R by f((x, ) = (1 + [m(x). We leave
the proof that these really are coordinate systems to Problem A12. O

Definition. The model Z = {R? %z, d;} will be called the Taxicab Plape,

Note that we started with a single incidence geometry (the Cartesian
Plane), put two different distances on it, and obtained two different metric
geometries. Thus we have two metric geometries with the same underlying
incidence geometry. In general, there are many metric geometries .which
have the same underlying incidence geometry.
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How do we actually construct models of a metric geometry? In our three -
examples we started with an incidence geometry, defined a distance and
hunted for rulers so that Equation (2-5) was satisfled. We can reverse this

- process in a certain sense. That is, we can start with a collection of bijections
from the lines to R and use them to define a distance function which has
these bijections as rulers. In fact, this method (which is described in Theorem
2.2.8 below) is really how we decided what the “right” definition was for a
distance in H.

Theorem 2.2.8. Let {&.,. L} be.an.incidence, geometry.. Assume. that.for.each
line-d.e: L there -exists.a. bijection. . Then there.is.a.distance-d-such
tha _ach Jel—Risaruler.

Proor. If P, Qe 9” we must deﬁne d(P,0). U P=0 let d(P.O)=0. I
P # @ let | be the unique line through P and Q, and f;:1 —» R be the bijection
described in the hypothesis. Define d(P, 0) = | f;(P) — — £(Q)|. In Problem A13
you will verify that d satisfies the three properties of a distance. Finally
each f; is clearly a ruler for the line /. _ O

The opposite problem in which we start with a distance and ask if there is
metric geometry with that distance is more subtle. In Problem B15 we give
an example of a distance on the incidence geometry, R%, which does not have
rulers and hence does not give a metric geometry.

We close this section with a table which summarizes the rulers which we
have discussed for the three major models of a metric geometry.

Standard Ruler or

Model Type of line coordinate system for line
Euclidean L,={ay|yeR} ' flay=y
Plane, & Ly = {(x, ) € R?]y = mx + b} o6,y = xJT+m?
Poincaré L={ayet|y>0} fla,y)=tny
Plane, #

L= {{x,y) e Hltx — o + y* =%} fouy)=In (x —; + r)

Taxicab Ly={ey|yeR} flayy=
Plane, 7 Ly = {{x, y) € R?|y = mx + b} 3 = (1 +|m)x

Convention. In discussions about one of the three models above,
the coordinate of a point with respect to a line I will always mean
the coordinate with respect to the standard ruler for that line as
given in the above table.

In the next section we will discuss some special rulers for a line. These
should not be confused with the standard rulers defined above.
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PROBLEM SET 2.2
Part A.

1. Prove that the Euclidean distance function as defined by Equation (2—1).is a
distance function.

" 2. Verify that the function d, defined by Equations (2-2) and (2-3) satisfies axioms (i)
and (i) of the definition of a distance function.
3. Prove Lemma 2.2.5.

4\ n the Euclidean Plane, (i) find the coordinate of (2,3) with respect to the line
x = 2; (ii) find the coordinate of (2,3) with respect to the line y = —4x + 11. (Note
. that your answers are different.)

\ .
3F1nd the coordinate of {2,3) with respect to the line y = —4x + 11 for the Taxicab
~ Plane. (Compare with Problem 4.)

6. Find the coordinates in H of (2,3) (i) with respect to the line (x — 1)* + y? = 10;
.. (ii) with respect to the line x = 2.

Y

7. Find the Poincar¢ distance between

" i. (1, 2) and (3, 4) (See Problem Al of Section 2.1.)
ii. (2, 1) and (4, 3) (See Problem Al of Section 2.1.)

8. Show that the function g:,L ~ R given by g(a, y) = In(y) is a bijection and that it
satisfies the Ruler Equation. Show that the inverse of g is given by g~1(£} = (a, ¢°).

9. Find a point P on the line L, _ in the Euclidean Plane whose coordinate is —2.
10. Find a point P on the line L, _; in the Taxicab Plane whose coordinate is —2.
11. Find a point P on the line ;L 7 in the Poincaré Plane whose coordinate is In 2.
12. Complete the proof of Proposition 2.2.7.

13. Complete the proof of Theorem 2.2.8.

Part B. “Prove” may mean “find a counterexample”.
14. We shall define a new distance 4* on R? by using d;. Specifically:

. dy(P, Q) ifdg(P, Q)< 1
(P, Q) = { if d(P, 0) > 1.

(i) Prove that d* is a distance function. (i) Find and sketch all points P € B2 such
that d*((0, 0), P) < 2. (iii) Find all points P € R? such that d*({0, 0), P) =

15. Let d* be the distance function of Problem B14. Prove that there is no incidence
geometry on R? such that {R% % d*} is a metric geometry. (Thus not every
distance gives a metric geometry.) Hint: Suppose by way of contradiction that
there is a ruler f: I — R and that P, & I has coordinate zero. Consider the set of all
points on [ with coordinate +2.

16. If dy and d, are distance functions on &, prove that if s >0 and ¢ > 0, then
sd, + 1d, is also a distance function on &.
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17. If {&, . d} is a metric geometry and P e &, prove that for any r > 0 there is a-
point in & at distance r from P.

18. Define the max distance (or supremom distance), d;, on R* by
ds(P, Q) = max{|x; — x,l, [y; = yal}

where P = (x4, y,) and Q = (x,, ¥,).
i. Show that d; is a distance function.
ii, Show that {R? %, dg} is a metric geometry.

19. In a metric geometry {&, &, d} if P e & and r > 0, then the circle with center P
and radius r is € = {Q € £|d(P, Q) = r}. Draw a picture of the circle of radius 1
and center (0, 0) in the R? for each of the distances dg, dy, and dg.

20. Let {¥, &, d} be a metric geometry, let Pe &, letl e & with P e, and let ¥ be a
circle with center P. Prove that ! n € contains exactly two points.

21. Find the circle of radius IIWith center {0, ¢) in the Poincéré Plane. Hint: As a
set this circle “looks” like an ordinary circle. Carefully show this.

22. We may define a distance-function for the Riemann Sphere as foliows. On a great

- circle ¢ we measure the distance dg(A, B) between two points A and B as the

shorter of the lengths of the two arcs of # joining 4 to B. (Note dg(d, —A) = =)
Prove that dy is a distance function. Is {52, %, d,} a metric geometry?

23. On the Projective Plane (see Problem B26 of Section 2.1} define dp([A4], [B]) =
minimum of the two numbers d,(A, B) and dp{4, — B). Prove that d; is a distance
function. Is {P, %, dp} a metric geometry?

Part C. Expository exercises.

24. Compare and contrast the definition of the taxicab metric as given in this section
with that of Byrkit [1971].

2.3 Special Coordinate Systems

In this section we shall prove the existence of a special kind of coordinaie
system. This coordinate system will play an important role in our study of
betweenness in Chapter 3. We shall also see that, as a consequence of the
Ruler Postulate, every line in a metric geometry must have infinitely many
points,

Theorem 2.3.1. Let f be a coordinate system for the line | in a metric geometry.
IfacRandeis x1andif wedefine hoo:l—> Rby

ha c(P) = 8(f(£) —‘.Q) .
then.h...is.a.coordinate.system. for.l,

ProoF. By Lemma 2.2.3 we need only show that &, is surjective and satisfies
the Ruler Equation. If € R is given we know that there is an R e[ with
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J(R) = t/e + a since f is surjective. But then

hao(R) = 8(f(R) — a) = a((: + a> - a> _

so that h, , is surjective.
As for the Ruler Equation,

Iha,o(P) — by, (Q)} = le(f(P) — a) — &(f(Q) — a)|

= |¢]|7(P) — 1(Q)|
= |f(P) - f(Q)]|
=d(P,0)
since f is a coordinate system for /. ‘N
Geometrically, when a = 0 and ¢ = —1 the coordinate system of Theorem

2.3.1 interchanges the positive and negative points of / with respect to
. More precisely, if P, is that point of [ with f(P,) = 0 then hy _, is the
resultof reflecting the ruler f.about P, See Figure 2-8. We may also.translate
.a.coprdinate. .system by..an.clement. ¢ €-R. This amounts to changing the
origin (ie., the point which corresponds to Q). In Figure 2-9, we asswme
that f/(P,) = a and f(P,) = 0 so that P, corresponds to a and P, corresponds
to the origin in the coordinate system f. If we apply Theorem 2.3.1 with
¢ =1 then P, corresponds to the origin and P, to —a in the new coordinate
system h, ;.

P P P P

o -— ! ¢
I -

e B .

- 0 + + 0 - R
Figure 2-8

P, P P, )

> L 7 - — /
l f 1 ha,l

e R —e &R

0 a -a 0

Figure 2-9
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Theorem 2.3.2 (RulerPlacement Theorem). Let  be a line inametric geometry
and let A and B be poznts on the line. Theye is a.cogrdingte system g.on Lwith

g(4).=0.and 9(B).> 0.
ProoF. Let f:1— R be a coordinate system for { and let a = f(A). f f(B) > a
let¢ = + 1. If f{B) < alete = —1. By Theorem 2.3.1 g = h, . is a coordinate
system for [, and

g(A) =k, (A) = e(f(A) —a) =&-0=0;

9g(B} = h, ((B) = &(f(B) — a) = | (B} — a] > 0.

Thus g is a coordinate system with the desired properties. d

The special coordinate system of Theorem 2.3.2 is so useful that it merits
a special name.

Definition. Let | = AB. If g:1 - R is a coordinate system for ! with g(4) =
and g(B) > 0, then g.is .called. a coordinate system with.. 4. as origin and . B

positive.

It is reasonable to ask if there are any other operations (besides reflection
and translation) that can be done to a coordinate system to get another
coordinate system; that is, is-every. coordinate. system_of the form h,,?
The next theorem says the answer is yes. This result will not be used in the
rest of the book. It is included for the sake of completeness and is optional.

Theorem 2.3.3. If 1 is a line in a metric geometry and if-f-:d=>R.and.g:l — R..
are both coordinate.systems for.l,.then. there is.an.a € R.and. an e = +1 with
9(P).=e(f(P)~a) forallPel

'Proor. Let P, €! be the point with g{P;) = 0. Let a = f(P,}. Since both f
and g are rulers for [, we have for each P € [ that

lg(P)| = 19(P) — g(Po)] = d{P, Fy)

= |f(P}— f{Po)l
= |f(P) - al.

Thus foreach P e/, .
g(P) = £(f(P})— a). 3-1

We claim we can use the same sign for each value of P.
Suppose to the contrary that there is a point P; # Py with g(P,) =
+(f(P,) — a) and another point P, # P, with g(P;) = —(f(P,) — a). Then
APy, P,) = |g(Py) — g(P)|
={f(P) — a+ f(P,) - al
= |f(Py) + f(P;) — 2a.
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But
d(Py, Py} = | f(P,) — f(P).
Thus L
AP} — f(P)l = | (P} + f(Pp) — 2a
and either
f(P) = f(P2) = f(P) + f(P;) — 2a
or

fP) — f(P} = —f(P) — f(P;) + a.

In the first case f{P,) = a = f(P,) and in the second case f(P )= a=f(Py).
Either way we contradict the fact that f is injective: Thus by Equation (3-1),

either
gP)=f(P)—a forallPel

or
gP)= -(f(P)-a) forallPel

Thus for an appropriate choice of ¢ (either 41 or —1), g(P) = &(f(P) — a) for
alPel ]

A metric. geometry always-has an.infinite.number. of points (Problem AS5).
In particuiar, a-finite.geometry (Problems A13, B19, and B25 of Section 2.1)
cannot.be.as metn&geomctry. On the other hand, Problem A6 shows that
not.every.distance.on.an.i nee.geomeiry gives rise.to am metr1c§eometry
evendfithasinfinitely.many.points. The points must “spread out.” (Prob]ems
B14 and B15 of Section 2.2.) The Ruler Postulate is therefore a very strong
restriction to place on an incidence geometry.

PROBLEM SET 2.3
Part A.

@n the Euclidean Plane find a ruler { with f(P) = 0 and f{Q) > 0 for the given pair
P and Q: -
= (213), Q = (2) _5)
i. P=(2,3), 0 ={4,0).
3 the Poincaré Plane find a ruler f with f(P) = 0 and f(Q) > 0 for the given pair
P and Q:
i P=(23),0=(21)
i, P=(2,3,0Q=(—16)
3. In the Taxicab Plane find a ruler f with f(P) =0 and f(Q) > O for the given pair
Pand Q: '
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i P=(23,0=(2,-5)
il. P=1(2,3),0=(4,0).

. 4. Let P: zgld Q be points in a metric geometry. Show that there is a point M such that
M e PQ and d(P, M) = d(M, Q).

5. Prove that a line in 2 metric geometry has infinitely many points.

6. Let {&,%,d} be a metric geometry and Q ¢ &. If | is a line through Q show that
for each real number # > O there is a point P e ! with d(P, Q) = r. (This says that the
line really extends indefinitely.)

Part B.
7. Let g:R — R by g(s) = s/(is| + 1). Show that g is injective.

8. Let {¥, &, d} be a metric geometry. For each ! € # choose a ruler f;. Define the

function d by .
d(P, Q) = |g(£i(P)) — g( /O

where ! = PQ and g is as in Problem B7. Show that d is a distance function.

9. In Problem B8 show that {&, &, d} is not a metric geometry.



CHAPTER 3
Betweenness and Elementary Figures

3.1 An Alternative Description of the
Cartesian Plane

In Chapter 2 we introduced the Cartesian Plane model using ideas from
analytic geometry as our motivation. This was useful at that time because it
was the most intuitive method and led to simple verification of the incidence
axioms. However, treating vertical and non-vertical lines separately does
have its drawbacks. By making it necessary to break proofs into two cases,
it leads to an artificial distinction between lines that really are not different
in any geometric sense. Furthermore, as we develop additional axioms to
verify we will need a more tractable notation. For these reasons we introduce
an alternative description of the Cartesian Plane, one that is motivated by
ideas from linear algebra, especially the notion of a vector.

Definition. If 4 = (x,, y,), B = (x5, y,) € R? and r € R then

() A+ B=(x; + X3, y1 + y5) € R?

(i) 74 = (rx1, 7y ) € R?
(i) A —B=A+(-1)B=(x; — X3,y = y3)
(iv) <4,B) =xx, + y1y,€R

M 4=V A er.

For those of you familiar with the ideas, all we are doing is viewing R?
as a yector space with.its.standard additien, scalar. multiplication,.and.inner
product. (Note that you probably wrote (A, B) as 4 - Bbefore.) The following
results are easily verified and are left as Problem Al.

42
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Proposition 3.1.1. For all A,B,C e R*andr,seR

() A+B=B+ A ({) (A+B)+C=4+ B+ C)
(iii) (A + By=rA +rB (iv) r +s) A =rA + 54
(v) <A,B) = (B, A> (vi) <rA,B) =r{4,B)>

(vii) (A -+ B, C)=<A,C) +(B,C>  (viii) |r4
@x) |4l > 0if 4 #(0,0).

| =il -

Using this notation we make R? into an incidence geometry by defining
the line through the distinct points 4 and B to be L,z where

Lip={XeR* X =A1+ 1B~ A)forsomete R} (1-1)

Proposition 3.1.2. If &’ is the collection of all subsets of R? of the form L 45,
then {R?, &'} is the Cartesian Plane and hence is an incidence geometry.

PrOOF. Let % be the set of Cartesian lines as given in Chapter 2. We will
show that & « ¥’ and &' < %;.

Step 1. Let le Z; be a Cartesian line, If ! is the vertical li.ne L, choose
Atobe(a,0)and Biobe(a,1). A,Bel.

I={(a0|teR} = {0 +10,1)]teR} =Lyze &

Thusle &’
If 1 is the non-vertical line L, , choose A4 to be (0,5) and choose B to be

(Lb+m). 4, Bel

I={(x, |y = mx + b} = {(x,y) = (t, mt + b)|t € R}
={x,)=(0,b)+ {l,m)|teR} = Ly &

Thus l € &' and hence ¥y < &',

Step2.Let L, pe & with A = (x,,y,), B =(x;, y5),and 4 # B.If x, = x,,
then (since 4 # B) y, — y; # 0 and

Lyp = {(x1, 1) + 0, y2 — py)|t e R}
= {(x1, y; + t(y2 — y1))|te R}
={eeR|x=x} =L, € L

Thus L 45 € Z5.
If x4 # x, then x, — x; # 0, and we let

m —
m=22"Y1 anq b=y, —mx,.
X2 ™ X
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Then
Lag = {{(x1, ¥1) + tlxs — x5, y2 — y1)|t e R}
= {(x1, mXy + b) + t{x; — x1, m(x, — x1))[t € R}
= {(x; + KXy — xq), m(x; + H{x; — x41)) + b)|t € R}
= {(x, mx + b}|x e R}
={xneR|ly=mx+b}=L,, €L
Hence L pye Lpand &' < Z;.

Thus we have shown that % = &' so that {R? %'} is the Cartesian
Plane. 0

In Problem B6 you are asked to prove directly that {R? £’} is an
incidence geometry without any reference to the initial model {R?, %;}.

In terms of our new notation, the distance function dg is described
slightly differently as you will show in Problem A2. We also have a nice
description of some rulers.

Proposition 3.1.3. If 4, B € R? then dg(4,B) = ||4 — B||.

Proposition 3.1.4. If L,z is a Cartesian line then f' L 5 - R defined by
A+ UB - A =thB - Al
is.aruler for {R? L, dg}.

ProoF. The function f makes sense only if for each point P L 5 thereisa
unique value of ¢ with P = A + t{B — A). This can be seen to be true as
follows.

Suppose P= A + r(B — A)yand P = A + s(B — A). Then
0,0)=P—-P=(A4+r(B—A))—(A+s(B— A))
=(r—s)(B ~ A)

so that eitherr —s =00or B — 4 = (0,0). Since A # B, B — A # (0,0) and so
r —s = 0. That is, » = s and there is a unique value of t with P= 4 + t(B — A4).
Hence the function f makes sense.

The proof that f actually is a ruler is Problem A3. O

In a college algebra or linear algebra course you probably learned that
the dot product of two vectors is given by the product of the lengths of the
vectors and the cosine of the angle in between:

a-b = |a]| | cos 6.
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Since |cos 8] < 1, we have |a - b| < ||a]| [b]|. The Cauchy-Schwarz Inequality

_(Proposition 3.1.5) is a careful statement of this result without any reference
to angles or the measurement of angles. It will be used in Chapter 5 when we
develop angle measurement. We will apply it in this section to prove a special
property of the Euclidean distance function (Proposition 3.1.6).

Proposition 3.1.5 (Canchy-Schwarz Inequality). If X, Y € R? then
KX, Y3 < X Y- (1-2)

Furthermore, equality holds in Inequality (1-2) if and only if either Y = (0,0)
or X = tY for someteR. k .

ProOF. If Y = (0, 0) we clearly have |[(X, Y )| = 0 = || X[| - || Y], and Inequality
(1-2) is true. Hence we assume Y # (0,0). Consider the function g:R — R by
g(t) =X — tY|j*. Then ,

g =(X —tY, X —tY) = (X, XD — 26X, Y + ¥, Y.

Because Y # (0,0), (Y, Y) # 0 and 4(¢) is a quadratic function. Now g(t) > 0
for all ¢ so that g cannot have two distinct real zeros. Since a quadratic
function at® + 2bt + ¢ has distinct real zeros if and only if b% — ac > 0, it
must be that

X, YD = (Y, YXXX,X><0 |

KX, V)| < YK XT, T3 = ||x]) - Y]l

This gives the desired inequality.

When do we get equality in Inequality (1-2)? If Y # 0 then equality holds
only when g(t) = 0 has a repeated real root. But g(f) =0 if and only if
|X — tY|| =0, ie, X = Y. Thus equality holds if and only if either ¥ =
(0,0)or X =tY forsometeR. . ‘ O

or

So far all our results about distance concerned points on a single lirie. The
more important results of geometry will involve non-collinear points. The
first property we will discuss is called the triangle inequality. It is so named
because it says that the length of any side of a triangle is less than or equal
to the sum of the lengths of the other two sides.

Definition. A distance function 4 on & satisfies the triangle ineg

A4, C) < dA4.B) .+ dB.C). Joralld.B.Ce .

Proposition 3.1.6. The Euclidean distance function dr setisfies the triangle

ingquality.
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Proor. First we use Proposition 3.1.5 to show that if X, Ye R? then
X + ¥) < lIx]l + {|¥]]-
”X + Y“2 =X +Y,X+Y)= X+ 2XXY)+LYY>
= IX|]” + 2¢X, Y + [{|?
< X7 + 21X, Y[ + )Y
< |[x]? + 2{|xq|iyi] + fi¥®

= (1x]| +il¥i)
Hence X + YII* < (Ix]| + ¥}y
or X + Yl < || Xl + Y]l
"To complete the prooflet X =4 — Band Y=B-C. [}

We shall see later that the triangle inequality is a consequence of certain
other axioms that we will want our geomeiries to satisfy. In particular, it,
wilLhold in_the Poincaré. Plane. (A direct proof of this fact is for the mas-
ochistic.) However, i ot _hold_in every.metric. geometry as Problem
B9 shows.

PROBLEM SET 3.1

Part A.-

1. Prove Proposition 3.1.1.

2. Prove Proposition 3.1.3.

3. Complete the proof of Proposition 3.1.4.
4. Complete the proof of Proposition 3.1.6.

5. Show that the ruler in Proposition 3.1.4 is a coordinate system with 4 as origin
and B positive.

Part B. “Prove” may mean “find a counterexample”.

6. Let % be the collection of subsets of R? of the form given by Equation (1-1). .
Prove directly that {R?, &'} is an incidence geometry without using our previous
model of the Cartesian Plane.

7. Prove that the Taxicab distance d satisfies the triangle inequality.

8. Prove that the max distance ds on R? satisfies the triangle inequality. (See Problem
B18 of Section 2.2.)

9. Define a function d. for points P and Q in R by



3.2 Betweenness 47

(] ifP=0
dp(P, Q) =<dg(P,Q) if Lpy is not vertical
3dx(P,Q) if Lpg is vertical.

a. Prove that d is a distance function on &2 and that {R? %;,d;} is a metric

geometry.
b. Prove that the triangle inequality is not satisfied for this distance, dy.

Part C. Expository exercises.

10. What other descriptions of the Cartesian Plane can you find in various mathe-
matic books? Why is it useful to have more than one description of an object
such as the Cartesian Plane? (The answer could deal with either technical
reasons or the leve] of the intended audience.)

11. Another example of different descriptions of the same mathematical concept is
given by the notion of a “vecior”. Discuss different definitions of a vector, why
they are the same, and what their possible uses are. (Note: a use need not be an
application of vectors to another subject—it might be to use vectors to do
mathematics.)

3.2 Betweenness

The concept of one point being between two others is an extremely important,
yet at the same time, an extremely intuitive idea. It does not appear formaily
m Euclid, which leads to some logical flaws. (Euclid made certain tacit
assumptions about betweenness. These often occurred as he reasoned from
a figure—a shaky practice at best!) These flaws were first rectified by Pasch
[1882] who axiomatized betweenness. Without a precise definition of between
it is possible to produce erroneous “proofs.” (What would Euclid have
thought of the fallacious “proof” which will appear in Problem Set 6.4B that
every triangle is isosceles?) In this section we shall use the distance function
to define betweenness. In turn, betweenness will allow us to define elemen-
tary figures such as segments, rays, angles, and triangles.

Definition. B lsQetwee_mA and Cif A, B, and C.
ric.geometry (. %, d).2nd if

(A4, B) + d(B,C) = d(A,C). (@2-1)

Note that the definition of between requires.that.the.three points all lie
on.the same. line. (See Problem A10.) Because we will be using betweenness
and distance constantly throughout the rest of the book we adopt the fol-
lowing simplified notation.
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Notation. In a memc geometry {&, .2, d}
e,

(i) w@mme,mgp,d@m

Thus in this notation, Equation (2-1) becomes, for distinct collinear points,
A—B—C ifandonlyif AB+ BC= AC. 2-2)
The axioms of the distance function are written in this notation as

(1) PQ=0;
(i) P@ =0ifand only if P = Q;
(i) PQ = QP;and

@iv) PQ = |f(P) — f(Q)| for a ruler f on PQ. (2-3)
Note that by using PQ for the distance we have dropped all reference to
which distance function we are using. Since an incidence geometry may have
more than one distance function, whenever we use the notation PQ for
-d(P, Q) it. must be clear which. distance.is-involved. In our basic models we
will continue to use the notation dg, dy, and -dT

Example 3.2.1. Let 4 = (—4,./3/2), B= (0 1) and C = (4, /3/2) be points
in the Poincaré Plane. Show that A—B—C.

SOLUTION. A4, B, and C are on the type Il line oL, = {(x,y) € H|x* + y*=1}..
From Equation (2-3) of Chapter 2

~3+1
AB =dy(4,B) =In ‘{:)/2 =1In./3
BC =duy(B,C) = ln*?:ln\/}' and AC =dy(4,C)=1In3.

Thus dy(A4, B) + dy(B, C) = dgz(A4, C) and A—B—C. Note that in Figure 3-1
the point B “looks” like it is between 4 and C. O

Figure 3-1
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Theorem 3.2.2. If A—_B.—C then C—B—A.

ProoF. If 4, B, and C are distinct and collinear, then so are C, B, and A4.
Since A—B—C, Equation (2-2) shows that AB + BC = AC. Since PQ = QP
for all P and Q, we have BA + CB = CA or

CB 4+ BA=CA

which is what we needed to show. |

~ Iflisaline with a ruler, the.next theorem will allow us to.interpret-between-
ngss.on /in terms of a corresponding notien.of betweenness for.real numbers..
This will be a useful method of proving certain results involving betweenness.
Thus we will be using the notion of betweenness on the real line to help
us with the betweenness in a metric geometry.

Definition. If x, y, and z are real numbers, then y.isbefween.x.and.z (written

Xaap&.2)1f either
X< N<KZ..00 Z.< ).

Note that if x, y, and z are distinct real numbers then exactly .one. is
between_ the other .twg: one is Iargcst one is smallest, and the other
between them.

Theorem 3.2.3. Let I be a line and f a coordinate system for 1. If A, B, and. C
are-three-points-of -L.with-coordinates-x;-y; and-z-respectively, then AzmBezC.

" PrOOF. Note that if 4, B, and C are not distinct then both 4—B—C and
X + y % z are false. Hence we may assume 4, B, and C are dxstmct We first

provethat x  y+ zif A—B—C.
We are given that x = f(4), y= f(B), and z= f{C),and that AB+ BC=AC.
The Ruler Equation (2-3) indicates that

=|f(4) - fB)=|x—y, BC=|y—z, and AC=|x—4

so that
x=y+ly=z=x—14 24

We shall show that Equation (2-4) implies thateitherx < y < zorz<y<x.
Since A4, B, C are distinct then so are x, y, zand cxactly one of the following
cases must oceur:

(i)x.<y<z () z<y<x
@) y<x<z (ivz<x<y
W)x<z<y (V)y<z<x

We will show that case (iii} leads to a contradiction. Similar arguments
dispose of cases (iv), (v), and (vi).
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Case (iii) implies that
=y =x-y ly—27=z—yp and |[x—2=z-x
If we substitute these equations into Equation (2-4) we obtain

xX—ytz—y=z—x

x=y. (2-5)

This contradicts the fact that x, y, z are distinct. Hence case (iii) does not
hold. By Problem A4 neither do cases (iv), (v}, or (vi). Thus x # y * z (cases
@) and (i1)).

We now show that if x % v z then 4—B—C. Assume that x <y < z.
(The case z < y < x is similar) In this case |[x — y| =y — x, |x — 2| =z - x,
and |y — z| = z — y so that

so that

=yl +ly—2d=lx—1

or
|f(4) ~ f(B)| + | f(B) — f(C)} = | f(4) — A(C)|
or '
. AB + BC = AC. _
Thus since A, B, and C are collinear and distinct, A—B—C. O

Corollary 3.2.4. Given three distinct points.on a line, one and only one of. these
points.is.between. the.other two.

PrOOF. This is immediate since the corresponding statement is true for three
distinct real numbers. a

Note that this result says that if we have three distinct points on a line,
we may name them as A4, B, and C with A—B—C. However, if the points
are already named A4, B, C in some way, then all we can say is that one of
A—B—C, B—A—C, or A—C—B is true.

The next result (whose proof is left as Problem AS5) gives a useful charac-
terization of betweenness for the Euclidean Plane.

Proposition 325, In the. Euclidean plane A—B—C if _qnd only if there is a
number t withO <t < 1and B= A + t{C - 4). :

Theorem 3.2.6. Lf-4.and.B are distinct points in a metric geometry then
() there.is.apoint.Cwith.A==B=C, and

(ii) there.isa.pointDywith 4 D—B.
PROOF. Let f be a ruler for the line AB with f(4) < f(B) and set x = f(4)
and y = f(B). To prove@]et z=y+1and C= f"(z). Then A—B—C
since x <y < z
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To prove@ we define we Rand De ABby w=(x+ y)/2' and D = .
f~Y(w). Then A—D—B since x <w < y. O

In the next section we will define what is meant by a segment. Once we
have that terminology we will se¢ that Theorem 3.2.6 (i) says that a segment
may be extended (one of Euclid’s axioms). Part (ii) says that given two
points, there is always at least one point between them. In fact, a careful
examination of the proof of part (ii) shows that we could prove that there
are infinitely. many.points between 4 and.B.

Definition. 4—B—C—D means_that A—B—C, A—B—D, A—C—D,
and B—C .

This definition can be visualized as meaning that 4, B, C, and D lie on
the same line (see Problem A6) and are in forward or reverse order as in
Figure 3-2. To remember the four conditions of the definition merely drop
one letter out of A—B—C—D. The resuiting betweenness relations are
the conditions of the definition. Actually only the conditions A—B—C
and B—C—D are needed (se¢ Problem A7). Note that this definition does
notsay.that A-——B——C—D.if 4, B, C,.and.D.are.collinear and. 4B + BC +
CD.=..4D. The reason for this is that the latter statement is not strong enough
to prove that 4—B—C.

Given four distinct collinear points can we name them A4, B, C, D so that
A—B—C—D? This seems obvious, but a careful proof requires the use of a
ruler.

A B C D . D CB A
—_—— D S —— ]

Figure 3-2

PrOBLEM SET 3.2
Part A.

I Let A =(x,,y), B=(x,,¥,), and C=(x, ) be three coliinear points in the
Euclidean Plane with x, < x,. Prove that 4-~C—B if and only if x, < x < x,.

2. Formulate and prove a condition for A—C—B if 4 and B are on the same type
Iline in the Poincaré Plane.

3.fA=(4,7), B=(1,1), and C = (2, 3) prove that A—C—B in the Taxicab Plane.
4. Prove that cases (iv), (v), and (vi} of Theorem 3.2.3 also lead to contradictions.

5. Prove Proposition 3.2.5.
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6. If A—B—C—D in a metric geometry, prove that {4,B,C,D} is a collinear set.

7. Prove that if A—B—C and B—C—D in a metric geometry, then A—B—D and
A—C—D also so that A—B—C—D.

8. Let A, B, C be three (not necessarily distinct) collinear points in a metric geometry.
Give all possible betweenness relations (4 =B or A—B—C or...).

9. Let four distinct collinear points be given in a metric geometty. Prove that they
can be named 4, B, C and D in such a manner that 4—B—C—D.

10. In the Taxicab Plane, find three poinis 4, B, C which are not collinear but
d+(4,C}=d (A, B) + d,(B,C). This problem shows why the definition of between

requires collinear points,

Part C. Expository exercises.

11. Discuss the problems that can result if one is not careful with the notion of
“between”. An excellent reference is Chapter 3 of Greenberg [1980]. How would
you present this subtlety to high school students? What mistakes did Euclid

himself make?

12. What are the Hilbert axioms for betweenness (see Greenberg [1980])? Why do
we not have to use all these axioms in our development? Which way do you
prefer, and why?

13. Let A, B, and C be three points on a great circle on the Riemann Sphere.
Doesn’t it look like any one of them is between the other two? How would you
explain this apparent contradiction of Corollary 3.2.4? There is a fundamental
concept of betweenness involved here.

3.3 Line Segments and Rays

The notion of a line is an integral part of geometry. We are now in a position
to talk about parts of a line: line segments and rays. In the next section the
concept of a triangle will be defined in terms of line segments, while angles
will be defined in terms of rays. In this section we will develop some of the
basic properties of segments and rays and will introduce the idea of con-
gruence of segments, This concept will be needed for the study of congruence
of triangles and is fundamental in geometry. g

Definition. If 4 and B are distinct points in a metric geometry {£,%,d}

Example 3.3.1. Let A =(x4, y,}and B = (x,, ¥,) lie on the type Il line L, in
the Poincaré Plane. If x; < x, show that
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ZF = {C = (xiy)Echlxl £x< -xz}.

SoLUTION. Since x = x; corresponds to C = 4 and x = x, corresponds to
C = B we must show that A—C—B if and only if x, < x < x,, where
= (x, y) € .L,. Recall that for [ = _L,, the standard ruler f:! - R s given by

'x—c+r
f(X,Y)—ln( y )

as in Equation (2-12) of Chapter 2. Now Theorem 3.2.3 says that if A—C—B

then
S(4) * (C)  fB). €SY

The inverse of f is the function g: R — _L, given by
g(t) = (¢ + r tanh(z), r sech(z)).
(See Equation (2-10) of Section 2.2.) If we let f(A) = t,, f{B) = t,,and f(C) =
t; then Equation {3-1) becomes
fy % t3% £y, (3-2)
Since tanh(z) is a strictly increasing function, Equation (3-2) implies that

(¢ + r tanh(t,)) * (c + r tanh(t3)) = {c + r tanh(z,))
or
Xy * X % X;. (3-3)
Since x, < x, by hypothesis, we have x; < x < x,. Hence if C € AB with
= (x, y), then x, < x < x,. The other direction of the proof (x; < x <
x, implies C € AB) is left to Problem Al. See Figure 3-3 for a sketch of
AB. . O

A
@B

Figure 3-3

_ Deﬁmtlon Let o be a subset of a metric geometry A 'nt_Bg 4 les a

The concept of extreme points and the next result allow us to define the
end points of a segment. :



54 3 Betweenness and Elementary Figures

Theorem 3. 3 2. If A and B are two points in a metric geometry then the.only
. AB are. 4, ond B themselves, In particular, jf

Proor. We use proof by contradiction to show that A4 is not a passing point

®of AB. Suppose that A is between two points X, ¥ of 4B so that X —A—Y.
The proof hinges on the fact there is then no place for B. There are six
possibilities: B—X—A4—Y, B=X, X —B—A4—Y, X—A4—B—-Y, B=Y,
or X —A—Y—B The first three cases imply that  B—A—Y(sothat Y ¢ AB) .
and the last three cases imply that X—A—B (so that X ¢ AB). Either way,
we have a contradiction of X, Y € AB. Thus A js not between two poiuts of
AB_Similarly, B is not between two points of AB. Thus 4 and B are extreme
points.

= .We next show that any other point of 4B is a passing point of 4B. If
ZecABand Z + A, Z # B, then A—~Z—B. Hence Z is between two points
of AB and js a passing point. Thus A and B are the only extreme points
of AB.

o Finally, suppose that 4B = CD. Then
{A, B} = {Z € 4B|Z is an extreme point of 4B}
= {Z € CD|Z is an extreme point of CD}
~{c, D}, 0

The importance of this result is the following. AB.is.defined as a set.
When we say that AB = .CD we are saying that the two segments are equal
as.sets.. The. theorem. says.that the two points.4,.B.used in.defining. 4B-are
important geometrically and.are determined by the set. AB. For this reason
we may singie them out and give them a special name.

Definition. The.end.poi

' .)agfaihci.mgut;@;mﬁégm_& The
Gagth.)of the.segment. AB.is.AB ;B

3-4)

Note the ray 4B.is.a. sybset of the line AB. Rays in the Euclidean Plane
and the Poincaré Plane are illustrated in Figures 3-4 and 3-5.
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e

i\

Figure 3-4
The next two results are left as exercises.

Proposition 3.3.3. In the %Mmgme, line segments and rays are given by
AB={CeR*|C= A+ B — 4) for somet with0 <t < 1}
4B (CeRAC AT UB = Al forsomet > O}

Theorem 3.3.4. In a metric geometry

Aud ot dnthendC.=.45;
) hen é §o
Theorem 3.3.4 (i} tells us that a given ray can be named in many ways.

Part (ii) says that one point of AB is special. (4 can be shown to be the only
extreme point of AB.) For this reason we can give it a special name.

Definition. T,h‘._(oL.initial-_-.innt) .of.the ray.dR.is.the.point. A.

Theorem 3.3.5. . If A and B are distinct points in a metric geometry then gﬁﬁr_fz
is a ruler £ AB — R.such that T

AR e

AB={XAB|f(X) > 01

PROOF. Let [ be the special coordinate system thh origin A and B positive.

We claim that this ruler f is the one we desire. We first show that
{X e 4B| f(X) 2 0} = 4B. : (3-3)

Suppose X € 4B with f(X) > 0. Let x = f(X) and let f(B) = y, which is
positive by assumption. If x =0 then X = 4 and X € 4B. If x = y then
" X = B and X € 4B. There are only two possibilities left. Either 0 < x < y,
in which case A—X—B so that X € ABand X e AB,or0 < y < X, in n which
case A—B—X and so X e AB by Equation (3-4). In ail cases, X € AB and
Condition (3-5) is proved.
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To finish the proof we need to show that
AB < {X e AB|f(X) = O}. (3-6)

Let D e 4B (so that D € AB) and assume that x = f(D) < . Since f(A) =
0 and f(B) = y > 0, we have x < 0 < y. This means that D—~A—B which
~ is impossible if D & AB. Hence all elements of AB have 2 nonnegative co-
ordinate with respect to f. ']

Note that Theorem 3.3.5 says there is a ruier with a certain property.
However, there.was..only.one possible .choice for f:.it.must-be the ruler
which is.zero. at-the.(unique).vertex and positive elsewhere on the ray.

One of the most familiar (and most basic} topics in geometry is the study
of congruences, especially the congruence of triangles. In order to reach
the point where we can develop this rigorously, we must consider the
congruencanfline-segments-and-hecongreenceof:angles. We consider the
former here and the latter in Chapter 5.

B

Definition. Two.Jing,.

gments.. A&,andmcngmmmetnc\geo:netry are@
e:rJengthwc,equaL that i 15

AB~CD _ifAB=CD.

The next result will be used continually when dealing with congruence in
triangles. It allows us to mark.off (or construct) on a_ray a unique.segment
which.is.congruent.to.a-given.segment.

Theorem 3.3.6 (Sppemne : _ T
semmw.azweomﬁryhth@aﬁtm_ksa,quug,p

PrOOF. Let f be a special coordinate system for the line AB with A as origin
and B positive. Then f(4)=0 and AB={X e AB[f(X)>0}. Let r=
PQ and set C = f~(r). Since r = PQ > 0, we have C € 4B. Furthermore,

C=lfa) - f(C) =0 —r{=r=PQ

so that AC ~ PQ. Thus we have at least one point C on AB with AC = PQ.
Now suppose C' e AB with AC’ =~ PQ. Then since C'€ 4B, f(C}>0
and

J(C) = fIC) — fl4) = | £(C) — fl4)|
= AC' = PQ = f(C).
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Since f is injective, C' = (_Z and so there is exactly one point C e AB with
. AC ~ PQ. O
Example 3.3.7. In the Poincaré Plane let 4 =(0,2), B=(0,1), P=(0,4),
0=(7,3.FindCe AB so that AC ~ PQ.

SoLuTioN. First we must determine PQ. Both P and Q lxe on 3L so that

—-3+5

. 4
PQ = dH(P, Q) =iln -‘Z‘+—5

3

Since C = (0, ) is on the type 1 line 4B, dy(4,C) = [In y/2|. In order that
AC ~ PQ we need In y/2 = +1n 6. Hence

=In6.

1
= h!'é

y 1
Y_¢ y_o.
2 o 27%
Thus
i2 or L
= or y= 3
Since we want C € 4B we must take C = (0,3). See Figure 3-6. O
‘P/-\
Q
oA
®B
__*C
Figure 3-6

Note that in this example a segment from a type I line is congruent to a
segment from a type II line. Of course, two such segments could never be
equal but they can be congruent. Do not confuse “congruent” and “equal”!
Congruence of segments means “equal in length” whereas equality of
segments means “equal as sets.”

Theorem 338 ( ST ). In a metric geometry, if _4—B—C,..
P—O—R, ABa I %MQMQ&»&@&%wM

Theorem 3.3.8 says that we.create. congruent segments. by “adding”
- congruent segments.. The following theorem, whose proof is also left as an
exercise, says we may also “subtract” congruent segments.
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Theorem 3.3.9 (Segmg
P0R4B.~.PQ,andAC.

EESubtiaedsh). In a metric geometry, if. A—B—C,

ProBLEM SET 3.3

Part A,

- 1. Complete the solution of Exampie 3.3,1.
2. Prove Proposition 3.3.3.
3. Prove Theorem 3.3.4.

*4, Prove that “congruence” is an equivaleace relation on the set of all line segments
in a metric geometry.

5. Prove Theorem 3.3.8.
6. Prove Theorem 3.3.9.

7. In the Taxicab Plane show that if 4 = (~3,2), B=(3,2), C=(22), P= (0,_0),
Q=(2,1) and R = (3, 3)then A—B—C and P—Q—R. Show that 4B =~ PQ,
BC ~ QR and AC ~ PR. Sketch an appropriate picture.

8. Let A=(0,0), B=(g.1),and C=(1, 1) be points in Rz_yith the max distance
ds(P, Q) = max{|x, — x,|, |y, — y.|}. Prove that AB ~ AC. Sketch the two seg-
ments. Do they look congruent? (d; was defined in Problem B18 of Section 2.2.)

o
@I In the Poﬂcaré PEC letP=(1,2)and @ =(1,4). f A =(0,2) and B = (1, \/5),
find C € AB with AC ~ PQ.

CIO/.in the Taxicab Planelet P = (1, —~2),0 =(2,5), A = (4, —1) and B = (3, 2). Find
C e AB with 4C ~ PQ.
C/*-;DSuppose that 4 and B are distinct points iri-a metric geometry. M € AR s called
a midpoint of AB if AM = MB.
a. If M is a midpoint of AB prove that A—M—B. .
b. If 4 =(0,4) and B = (0, 1) are points in the Poincaré Plane find a midpoint,
M, of 4B, Sketch 4, B and M on a graph. Does M look like a midpoint?

*12. If 4 and B are distinct points of a metric geometry, prove that
a. the segment AB has a midpoint M. (Se¢ Problem A11.)
b. the midpoint M of 4B is unique.

13. Prove that AB = B4 for any distinct boints A and B in a metric geometry.
14. D e AB—4BH in a metric geometry, prove that 4B = 4B u AD.
15. If A # B in a metric geometry, prove that AB = AB w B4 and 4B = 4B n BA.

Part B. “Prove” may mean “find a counterexample”.

16. Prove that in a metric geometry, AB is the set of all points C € 4 B such that 4 is
not between C and B.
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17. Prove that in a metric geometry any segment can be divided into n congruent parts
for any n > 0. More formally: Let 4 and B be distinct points in a metric geometry.
a. Prove there are points X, X, ..., X, on AB such that Xg = A4, X, = B, X —
Xiw1—Xiupfori=0,1,...,n—2; X.X;,, = AB/n, and AB = {Ji; X.X., .
b. Prove that the points X; given by the above are unique.

18. If AB = CD in a metric geometry, prove that A = C and B = D.
19. If D ¢ 4B in a metric geometry, prove that 4D N AB = {4}.

—. — ——

20. If D € A B in a metric geometry, prove that either AD = ABor ADuU AB = AB.

21. In a metric geometry suppose that A—B—C, 4B ~ PO, AC ~ PR, BC ~ QOR.
Prove that P—Q—R.

Part C. Expository exercises.

22. Rays, segments, and points can be quite beautiful. Go to an art book such as
Feldman [1981] or McCall {1970} and identify pictures with significant geometric
content. The work of artists such as Seurat, Mondrian, and Kandinski show
manifold geometric 1deas. See Millman-Speranza [1990] for a presentation of
these ideas at the elementary or middle school level.

. Discuss the statement “Congruent triangles are the same” on both a mathematical
and a philosophical level.

W
U2

3.4 Angles and Triangles

In this section we will define angles and triangles in an arbitrary metric
geometry. Just as in the case of segments and rays, they will be defined as
sets using the concept of betweenness. We will also show that the idea of a
vertex of an angle or a triangle is well defined. It is important to note that
apangle is,a sef, not a number like 45°. We will view numbers as properties
of angles when we define angle measure in Chapter 5.

For us an.angle. will consist.of two.rays which are.not.collinear but have

the same, initjal point.

Definition. If_4,.B8_and..C.are.nongollinear. points. in..a..metric.geometry
~ABC.is the '

ool Pttt R 8

Note that a.line.is.ngt.permitted to_be an angle nor js.a.ray since
{4, B, C} in the definition must be noncollinear. This.is far.convenience:.If
“straight. angles”. or.“zero.angles?.were. allowed, we would .have.to.make

hose. special. cases..when. stating theorems. Some
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Figure 3-7 Figure 3-8

angles in the Euclidean and Poincaré Planes are sketched in Figures 3-7
and 3-8.

It is customary to talk about the vertex of / ABC as the point B,
However, a priori, it is not clear that the point B is well defined. After all, it
might be possible for £ ABC = ¢ DEF without B = E. (Of course, we will
prove that B does in fact equal E.) If this seems unnecessarily pedantic, ask
someone if £ ABC = [ DEF implies that A = D and C = F. Theorem 3.4.2
below contains the “well defined” result referred to above and is similar in
spirit to Theorem 3.3.2. Its proof needs a preliminary lemama.

. Lemma 3 4.1. In a metric geometry, B is the only exireme.

» PROOF. We first show that f Z ¢ / ABC and Z # B then Z is a passing pomt
of LABC.1fZ e / ABC and Z # B then either Z € BA or Z € BC. Since the
two cases are similar we may assume Z e BA Since Z # B, Theorem 3.3.4
implies that . BA = BZ. There exists a D € BZ such that B—Z—D. (Why?)
Thus D € BA and Z is between two points of £ ABC, namely B and D.

e Next we show that B is not a passing point of / ABC. We do this with a
proof by contradiction. Suppose that X—B—Y with X, Ye L ABC. X
belongs to either BA or BC. Both cases are similar so that we may assume
that X e BA. Since X # B, BA = BX by Theorem 3.34. Since Y—B—X,
Y¢ BX = BA. Since Y € £ ABC, this means that Y € BC and BC = BY. But
then Ac BA=BX « XY,Be XY < XY, and Ce BC = BY < XY. Thus 4,
B,-and C are collinear, which is impossible since we are given £ ABC. Thus
B is not between two points of LABC and is the only extreme point
of £ ABC. . . Oa

011EL Qfend ol

Theorem 3.4.2. In a metric geometry, j
PROOF.
"{B} = {Z € L ABC|Z is an extreme point of /. ABC}
= {Z ¢ 1 DEF|Z is an extreme point of L DEF }
={ E} _ | 0
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After Theorem 3.4.2 we may make the following definition without any
ambiguity.

Definition. The.vertex.of the.angle £.4BC inametric.geometry.isthe point B..

Defipition. If {4,.B,.C}.are noncollinear-points.in a metric. geometry then the

Triangles in the Euclidean Plane and the Poincaré Plane are given in
Figures 3-9 and 3-10. The Poincaré triangles certainly do not look standard!

Figure 3-9 Figure 3-10

We now know that the vertex of a ray, the pair of endpoints of a segment,
and the vertex of an angle are all uniquely determined by the ray, segment or
angle. We shall show that the points 4,.B.and C of.AABC are.also uniquely
determined. in Theorem 3.4.4. This also needs 2 preliminary resuit.

Lemma 3.4.3. In a metric geometry, if- A, _B,.and.C.are nat.collinear.then. A.is
apexireme.point. ol NABC. ..

Proor. Our proof is by contradiction. Suppose that D—A—E with D,
E e AABC. We show that this implies that both D and E are in BC, which
leads to a contradiction.

1f D € AB then either D = B so that E—A—B or D # B so that E—A—
D—B and E—A—B (D # A because D—A—E). Either way E¢ AB. H E
belongs to AC or BC then either C—E—A—B or C = E so that C—A—B.
But A, B, C are not collinear. Hence we cannot have D € AB because E must:
belong to one of 4B, AC, or BC.

In a similar fashion D ¢ AC. Since D € AABC it must be that D e BC. A
similar proof shows that E € BC also. Thus D, E € BC.

But D—A—E implies A € BC also, which is contrary to the hypothesis
that A4, B, C are noncollinear. Hence it cannot be that A is between two points
of AABC. : O
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Theorem 3.4.4. In a metric geometry, if AABC = NDEF then {4,B,.C} =

PROOF. If X € AABC and X ¢ {4, B, C} then X is in one the segments AB,
BC, or AC but is not an end point. Then X is a passing point of that
segment and hence a passing point of A4BC. By Lemma 34.3 we have
{4, B, C} = {X € AABC|X is an extreme point of AABC}
= {X € ADEF|X is an extreme point of ADEF}
={D,EF 1 ]

The exercises suggest several alternative proofs of Theorem 3.4.4.

ProaLEM SET 3.4A

Part A.

1. Prove that L. ABC = £ CBA in a metric geometry.

In problems 2 through 8 do not use Lemma 3.4.3 or Theorem 3.4.4. .
2. Let D, E, and F be three noncollinear points of a metric geometry and let ! be a line

that contains at most one of D, E, and F. Prove that each of DE, DF and EF inter-
sects [ in at most one point.

3. Prove that if AABC = ADEF ina metric geometry then 4B contains exactly two
of the points D, E and F.

4. Use Problem A3 to give an alternative proof of Theerem 3.4.4.

5. In a metric geometry, prove that if A, B and C are not collincar then 4B =
ABn AABC.

6. Use Problem A5 to prove-Theorem 3.4.4.

7. Prove that, in a metric geometry, if AABC = ADEF then AB contains two of the
three poiuts D, E, and F.

8. Use Problem A7 to prove Theorem 3.4.4.

Part C. Expository exercises.

9. Prior to Lemma 3.4.1 there is a discussion of the idea of what it means for a
concept to be “well defined”. What examples do you know about from your
previous mathematics courses where a concept needed to be well defined? What
concepts in this course need to be well defined? Explain what the notion of “well
defined” is in your own words. :



CHAPTER 4
Plane Separation

4.1 The Plane Separation Axiom

The Plane. Separation. Axiom.is a.careful statement of the very. intuitive
idea that.every line has “two_sides.” Such an idea seems so natural that we
might expect.it.to be a consequence of our present axiom system. However,
as we shall see in Sectlon 4.3, there are models of a metric geometry. that.do

foIlow from the axioms. of a metrxc geometry, and xt is. therefore necessary to
o our. list.of axioms. if. we-wish.to. use. it. In this section we will
infroduce the concept of convexity, use it to state the Plane Separation
Axiom, and develop some of the very basic results coming from the new
axiom. In the second section we will show that our two basic models, the
Euclidean Plane and the Poincaré Plane, do satisfy this new axiom. In the
third section we will introduce an alternative formulation of plane separation
in terms of triangles. This substitute for the Plane Separation Axiom is calied
Pasch’s.Postulate. We shall see that it is equivalent. to the Plane Separation
Axiom: any. metric. geometry. that, satisfies.one.of these axioms satisfies the
other..

Deﬁmfl}‘..l._,et (&, £,d} be a metric geometry and let &, < &. &, is said

to.be donvex if for every.two. points. P,-Q €.%, the segment. PQ_is. a_subset
of.&..

In Figure 4-1 each of the individual subsets of R? is convex while each of
those in Figure 4:2 is not convex. In Figure 4-2 the segment PQ is contained
in ¥, but the segment P'Q is not. This means that % is not convex:
convexity requires that the segment between any two points of &, be in &,

63
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/ O

Figure 4-1 F igurc 4-2

not just some. To show.that a set is-convex-we.must show that for every pair
' poi _set,. the segment. joimng. them .is contained. in.the.set. To
show.a-set.is not: convex;:we need- only find one pair. of points such that the
line segment.joining them is not.entirely-contained-in the set.

We should also note that thesconcept-eficonvexity.depends.on.the. metric
geometry. This is because. convexity involves line segments, which in turn
involve betweenness, which is defined in terms of distance. Thus a change
in the distance function. affects which sets. are. convex. For example, consider
the set of ordered pairs (x, y) with (x ~ 1) + y*=9,0<x<4and 0 < y
(see Figure 4-3). This set is not convex as a.subset of the Euclidean Plane.
However it is convex as a subset of the Poincaré Plane. (This is because a
line.in 2. metric.geometry.is.always convex. See Problem A2.) In this example
we changed both the set of lines and the distance function. See Problem B20
for an example where a set &, is convex in {¥, &, d} but not in {&, &, dy}.

Figore 4-3

Definition. A metric. geometry {&,.%,d} satisfies the W paration
@BSA) if for every L e & there are two subsets H,;.and H, of & {called
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‘half planes.de termined by.7) such that

The definition demands that the line { have two.sides (H; and H,) both
of which are convex. Further, condition (iii) says that you cannot get from
ong side to_the other. without cutting across. 1 Of course 4B.0 l.can only
have one point.in it, otherwise AB = I In Figure 4-4 we see the situation in
the Euclidean Plane whereas Figure 4-5 gives the picture for a type II line
in the Poincaré Plane. Note.there.is.no.way.to.distinguish..H, .from. H,.
Th;:y____grc,,_d_j__s,ti_qct,\_h_l,,l,t_:..rio.. geometric. property. makes one. different. from the

other.

Figure 4-4 ) Figure 4-5

To be pedagogically correct, we should now prove that both the Euclidean
Plane and Poincaré Plane satisfy PSA. However, to do this requires a bit of
work, which is left to the next section. Thus we will illustrate our theorems
and definitions in this section by using the Euclidean and Poincaré Planes
and assume that they satisfy PSA. In the next section, we will prove that
they really do. In_Section 4.3 we will give an example, the Mlssmg Stnp
Plane, which does not satlsfy PSA

: First, we want to show that a. pa‘ half..plane:
-unique. Then it will make sense to talk about the pair.of:
'mincd-:.--byvl;

etermined..by..L.is.
half:planes.deter-

Theorem 4.1.1. Let l be a line in a metric geometry. If both H,, H, and H\,
i of P A for the line | then eztherH =H (and H 2=

).
PrOOF. Let Ae H,. Since A ¢, either Ae H; or A€ Hj. Suppose that

Ae Hj. We will show that in this case H, = H;. The case where 4 € H)
yields H . = Hj in a manner similar to what follows.
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To show that H, < Hj let B H,. We must prove that B e H;. This is
obviousif B = A. Suppose that B # A.1f B ¢ H; then B € H since B ¢ I. This
means that ABN1 # & since A € H, and B € Hj. On the other hand, 4 and
B belong to the convex set H, so that AB = H, and ABn ! = . This
contradiction shows that B € H; and thus H,  Hj.

The proof that H; « H, is similar. Thus H, = H}, Finally H, =% —I—H, =
S—1—H) = H). O

‘We may now formalize the idea of two points being on the same side of
a line.

Definition. Let {&, %,d} be a metric geometry which satisfies PSA, let
le Z, and let H; and H, be the half planes determined by /. Two_ points 4
and B lie on the same side of / if they both belong.to H, or both belong to

ides.of [if one belongs.to H,.and. one.belongs
-1t 4 e Hy, we say that H is the side of / that contains 4.

Figure 4-6 shows two poinis on the same side of a type II Poincaré line
while Figure 4-7 shows two points on opposite sides of a Euclidean line.

Figure 4-6 Figure 4-7

An alternate but useful interpretation of “same side”/“opposite side” is
contained in the next result whose proof is left to Problem Aé.

Theorem 4.1.2. Let {7, %, d} be a metric geometry which satisfies PSA. Let A
and B be two points of & not on a given line I. Then

(i) A and B are on opposite sides of 1 if.and only if AB N1+ (3.
(i) Aand B.are onthe same side of Lif and.onlyif either A= Bor AB n I = (.

The next two results will be used frequently. Their proofs are left as
Problems A9 and A10.
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Theorem 4.1,3. Let [ be a line in a metric geometry which satisfies PSA. If. P
and Q .are on opposite. sides.of 1 and if-Q and R are on.opposite sides of | then
P and R are on the.same side of L.

Theorem 4.1.4. Let | be a line in a metric geometry which satisfies PSA. If P
and Q. are on opposite.sides. of .1 .and.if Q and R are on the same.side of | then
P and R are.on opposite. sides of L.

In Theorem 4.1.1 we showed that a line / had a unique pair of half planes
;associated with it. Now we will show that a given half plane.comes.from just
song line.

Theorem 4.1,5. Let [ be a line in a metric geometry with PSA. Assume that H,
is a half plane determined by .the line I, If H, is.also a half. plane:determined by
the linel, thenl=1.

ProOF. Suppose that [  I'. Then ! n I' has at most one point. Since every
line has at least two points, there must be a point P & [—I' and a point
0 e I'—(. Note that P # Jand PQ # I'since Q ¢ land P ¢ J'. ThusPO N[ =
{P}and PQ n I' = {Q}. Choose points A and B on PQ with 4—P—Q and
P—Q—B,sothat A—P—Q—B. See Figure 4-8. Since A—P—B, Pe ABn L
On the other hand, AB n!< PQ n1={P}. Hence AB nI= {P}. By
Theorem 4.1.2, A and B are on opposite sides of I. Hence either 4 € H, or
Be H,. We assume A € H, and leave the case that B e H, to Problem A7

Now AP~ I « PQ n I' = {Q). Since A—P—Q, 0 ¢ APand AP~ I = (.
Thus by Theorem 4.1.2, A and P are on the same side of 7, and that side is
the half plane H, since A € H,. But this means P € i, which is impossible
since P € [. This contradiction implies I = /'. O

Definition, If H, is a half plane determined by the line /, then the.edgeof. H,
isl

Figure 4-8
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The point of Theorem 4.1.5 is that a.half plane has.exactly one edge. Thus
we have shown that a line uniquely determines its half planes and a half
plane uniquely determines its edge.

Youshould note that nowhere have we said that H, and H, are nonempty.
However, this is true as you will prove in Problem A4.

Martin [1975] uses the suggestive term “scissors geometry” to refer to a
metric geometry which satisfies PSA. The idea is that a line “cuts™ thié plane
into two parts,

ProBLEM SET 4.1
Part A.

1. If &, and &, are convex subsets of a metric geometry, prove that &, N &, is
convex.

2. If lis a line in a metric geometry, prove that ! is convex.

[T

- If H, js a half plane determined by ! prove that H, U ! is convex.

4. If H, and H, are the half planes determined by the line /, prove that neither H,
nor H, is empty. :

5. IfH 1' is a half plane determined by the line /, prove that H, has at least three non-
collinear points.

6. Prove Theorem 4.1.2.

7. Complete the proof of Theorem 4.1.5 in the case Be H,.

*8. Let { be.a line in a metric geometry {¥, %, d} which satisfies PSA. We write
P~ Qif P and Q are on the same side of I. Prove that ~ is an equivalence
relation on —I. How many equivalence classes are there and what are they?

9. Prove Theorem 4.1.3.
10. Prove Theorem 4.1.4.

Part B. “Prove” may mean “find a counterexample”.

11. If &, and & are convex subsets of a metric g'eometryi, prove that 4, LU Y is
convex. :

12. Let {¥, %, d} be a metric geometry and assume that &) ¢ % < ¥, that %, is
convex, and that both &, and % — &) have at least two points. Prove that
Y5 — H, is not convex.

13. If A, B, C are noncollinear in a metric geometry, prove that AABC is convex.

14. Let ¥ be a subset of a metric geometry which satisfies PSA. % is a passing set if
every point of | is a passing point of &,. Prove that a line is a passing set.
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15.
6
17.
18.

19.

If %, and &, are passing sets in a metric geometry which satisfies PSA, prove that -
SV & is a passing set.

If & and %, are passing sets in a metric geometry which satisfies PSA, prove
that &, n ¥, is a passing set.

Prove that if & is a convex subset of a metric geometry which satisfies PSA and
has more than one point, then ¥ is a passing set.

Let #(%}) denote the set of all passing poinis of % where ¥ is a subset of a
metric geometry which satisfies PSA. Prove that 2(#,) is convex.

We define a new distance on the Cartesian Plane {R? %} as follows. Let
[ Ly—»Rby
y iy is not an integer
JO.»= {— y if y is an integer.
a. Prove that f is a bijection.

For every other line of R2 choose a Euclidean ruler. By Theorem 2.2.8 this col-
lection of bijections determines a distance function ¢y which makes {R?, %, d\}
into a metric geometry. Now )

b. Prove that {(0,y)|4 <y <3} is convex in the Euclidean Plane but not in

{RZ, g Es dN }'
¢. In {R? #;,dy}, what is the segment from (0,3} to (0,3)? Show that this set is

convex in {R?, ¥z, dy} but not in the Euclidean Plane.

d. Show that {R? %, dy} does not satisfy PSA. (Hint: Consider the line I = L ,
and the three points (0,3), (0,3), (1,2). Use Problems Ag, A9, A10.)

Part C. Expository exercises,

20.

Perform the following experiment and then write up what happened. If you have
access to middle or high school students, show it to them and record their
reactions. What conclusions can you draw from the way they responded? The
purpose of what follows is to show the sort of non-intuitive difficulties that can
occur if concepts are not defined carefully or if geometries do not satisfy some of
the axioms we would like.

Take a long narrow strip of paper and draw a line down the middle of it on
both sides. On one side mark both ends with the letter X. Tape or glue the two
ends together, twisting the strip so that the two Xs are touching and not visible.
Note that you have a line drawn on the new figure (which is called a2 M&bius
Strip). With a pair of scissors carefully cut the strip along the line and see what
happens. Ar¢ you surprised? What happens when you cut the Euclidean or

_ Poincaré Plane along a line? Is there a difference in the qualitative behavior of

these constructions?
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4.2 PSA for the Euclidean and Poincaré Planes

In this section we will show that both.the:Euclidean.and. Poincaré Planes
satisfy PSA, as was promised in the last section. As a homework problem
(Problem AS5), you will show that the Taxicab. Plane. also..satisfies. PSA.

For the Euclidean Plane, it is useful to have the following notation.

Notation. If X = (x, y) € R? then X* (read “X perp”) is the
element

Xt =({—y,x)eR% (2-1)

Intuitively, X* is obtained by rotating the vector X counterclockwise
about the origin 90°. Note that this is just an infuitive idea—we have not
defined what is meant by “90°.” The reason for the name is that X L is per-
pendicular to X in the following sense.

Lemma 4.2.1. (2) If X € R? then (X, X'y = 0.
(b)If XeR? and X # (0,0) then {Z,X*> =0 zmplzes that Z = tX for
some te R.

ProoF. We leave part (a) to Problem Al. For part (b) we proceed as follows.
Let X = (x, y)and Z = (z, w) so that X* = (—y, x). Then {Z, X*> = 0 means

—zy+wx=0. (2-2)
Since X # (0,0) one of x and y is not zero. If x # 0 then we may solve Equa-

tion (2-2) for w = zy/x so that Z = tX with t = z/x. If y %0 then z = xw/y
so that Z = tX with ¢ = w/y. Either way Z = ¢tX for some t € R. O

Using X* we can give an alternative description of a line in R2. Qur mo-
tivation here is the idea from linear algebra that a line can be described by
giving one point on the line and a vector normal to it. See Figure 4-9.

Proposition 4.2.2. If P and Q are distinct points in R* then

PQ = {4 R?|(4A— P,(Q— Py> =0} (2-3)
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Q-m*

A

Figure 4-9

* ProoF. First we show that PQ < {4 € R*|<4 — P,(Q — P)*> =0}. Let 4

€ PO so that A = P + t(Q — P) for some t € R. Then
(A-P,(Q—-P)*>=1{Q0 - P,(Q~ P)*> =0.

Thus PO < {4 e R*|{4 ~ P,(Q — P)*)> = 0}.

To prove the reverse containment assume that 4 € R* with {4 — P,
(Q — Py> = 0.Now @ — P # (0,0) since Q # P. Thus by Lemma 4.2.1 there
is a real number t with 4 — P = ¢(Q — P). Hence

A=P+#Q~P)ecPQ.

Thus {4 € R*|<4 — P,(Q — P)*> = 0} =« PJ. We now have containment
in both directions so the sets are equal. 0

Definition. Let / = PQ be a Euclidean line. The Euclidean half planes. deter-
mined by Lare

Ho—ide R2l Y R o) (2-4)

(See Figure 4-10.)

Figure 4-10
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Proposition 4.2.3. The Euclidean half planes determined by | = PQ are convex.

ProoF. We will handle only the case of HY and leave H~ as Problem A2.
Let A, Be H™ so that

{(4-P,(@-P*>>0 and {(B-P,Q-PH>0 (29

We must show that if C € AB then Ce H*. Since 4, Be H* we need only
consider the case A—C—B. Thus by Proposition 3.3.3 we may assume that
there is a number ¢t with 0 < t < 1 so that C = 4 + t(B — A). Therefore

C=(1-1A+tB withO<r<l
Then
{(C~P)L{Q— P> =<(1~-1n4+1tB-P),Q—-P*)
=1 -4~ P)+tB~P)(Q—- P>
=(1 - 04— P),(Q— P>+ KB-P),(Q- P

Since 0 < t < 1, Inequalities (2-5) show that each term on the right of the
last equality is positive. Thus {(C — P), (Q — P)*> >0and Ce H*. O

Proposition 4.2.4. The Euclidean.Plane satisfies PSA.

PrROOF. Let [ = PQ be a line. If 4 € R? then {(4 — P), (Q — P)*) is either
positive (so that A € H™), zero (so that 4 € | by Proposition 4.2.2), or negative
(so that Ae H™). Thus R? — = H* v H™. Since H* and H™ are clearly
disjoint and Proposition 4.2.3 says they are convex, we need only show that
condition (iii) of PSA holds.

Let Ae H* and Be H™. To show that AB n I # & we must find ¢ with
O<t<1 and A+ t(B— A)el We could at this point write down the
explicit formula for ¢. (It is given by Equation (2-9).) However, it is more
illuminating to see how the formula for ¢ is derived.

According to Proposition 4.2.2, 4 + t(B — A) e [ if and only if

{(A+tB-A)—P,Q—-P))>=0 (2-6)

Equation (2-6) may be rewritten as
{4 —=P),(Q— Py = —t(B—A)(Q - P
=1t{(A—B),(Q— P> 27
Since A€ H*, the left hand side of (2-7) is positive. We now show that

{(A — B), (Q — P)*> is also positive.
Since A — B=(A — P) — (B — P) we have

{(A=B),(@-P))={A-P,Q~P">—B-P,Q—-P*" (28

The first term on the right is positive because 4 € H*, whereas the second
term is negative because Be H™. Thus the difference is positive. Hence
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we may divide Equation (2-7) by {(4 — B), (Q — P)*) to obtain

{(4—P),(Q—-P)*"
>0 (2-9)

{(4-B),(Q—-P)")
To finish the proof we must show that the value of ¢ in Equation (2-9)
is less than one. Note that Equation (2-8) implies that the numerator of t

is less than the denominator. Hence t < 1. With the value of t given by
Equation (2-9) we have a point X = A+ ¢(B - A)eABn L 0

=

An alternate proof that condition (iii) is satisfied is given in Problem A3.

Now we turn our attention to the Poincaré Plane. In this proof we shall
use calculus. A reader who has not had calculus should skip the proof and
go on to Section 4.3. The results we need from calculus are

i) if £'(t) > O for all ¢ then f(t) is an increasing function;
(u) the Intermediate Value Theorem, which says that if f(z) is a continuous
function and f(a) < r < f(b) then there is a point ¢ between a and b

with f(c) =

Definition. If | = ,L is a type I line in the Poincaré Plane then the Poincaré
half planesdetermined by [ are
H, ={(,yeH|x>a
H_={(x,y)eH|x<a}.

(2-10)

If I = L, is a type II line then the Poincaré half planes determine by [ are

He={0)eH|(x -0+ >}
H_= {(xsy)e H'(x — ¢)? + )P < r2y.

The half planes for a type II line were sketched in Figure 4-5.

(2-11)

Proposition 4.2.5. The Poincaré-Plane satisfies. PSA.

PROOF. Let [ be a line in 5. Let H, and H. be the Poincaré half planes
determined by [ Clearly from the definition of Poincaré half planes,
H—I=H,VH_and H, n H_ = . We must show that each half

« plane is convex and that condition (i11) of the definition of PSA holds.

Case 1. | is a type I line. This is left to Problem A4.

Case 2. Let | = L, be a type II line and suppose that 4 and B are distinct
points of H—I. We shall parametrlze the line segment AB. The form of this
parametrization depends on whether AB is type I or type II. This parametri-
zation is used to show H, and H _ are convex. We write 4 = (x,,y;)and B =
(x5, y,). If AB is a type I line then we will assume that y, < y,. If ABis a
type I line then we will assume that x; < x,. Our plan is to show that, no

matter where 4 and B are, a certain function g(t) is either always increasing,

always decreasing, or constant. This function will be zero at points of I.
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If AB = ,L is a type I line then A B may be parametrized by (x, y) € AB
if and only if (x, y) = (g, ¢') for some € R. Define f;(z) = (a, €'). f; is the
inverse of the standard ruler for ,L. We let

g)=(x—-0c*+y —r’*=(@a—-c>+e*—r"

Since g;(t) = 2¢* > 0, g; is always increasing,
If AB = ,L, is a type I line we parametrize AB by (x, y) € AB if and only
it T
(x,y) = (d + s tanh(z), s sech(t)) = fi(2).

fi1 is the inverse of the standard ruler for ;L. Again we let

gu=(-0 )7 =1’
= (d — ¢ + s tanh())* + (s sech(t))® — r?

and find that
gi(t) = 2(d — ¢ + s tanh(8))s sech(?)
+ 2(s sech(?))(— s sech(f)tanh(z))
= 2(d — ¢)s sech?(t),

so that g;, is either increasing (d > ¢) or decreasing (d <'c) or constant
(d=c).

We let f = f; and g = g, if AB is a type I line and we let f = f;,; and
g =gy if AB is a type 1l line. Thus we have a function f from the real
numbers to A B and real numbers t, < t, with f{t;) = 4 and f(t,) = B. We
also have a continuous real valued function g such that g(f) > 0if f(t) e H,,
g(t) < 0if f() e H_, and g(t) =0if f()€el.

We now prove that H_. is convex. Suppose 4, Be H, and let f, g be as
above so that 4 = f(¢,) and B = f(¢t,) with t; <t,. f A—C—B then C =
Sf(t3) with t, <ty <t,. Since ¢ is strictly increasing, strictly decreasing,
or constant, this means g(t5) is between g(¢;) and g(¢,) (or equal to both if
g is constant). Since 4, Be H,, g(t,) and g(z,) are both positive. Thus g(z,) is
positive and C € H,. Thus H, is convex. Similarly H_ is convex.

# Finally suppose that one of 4 and B is in H, and the other is in H_.
We show that AB n [ # (J. Using f and g as before, 4 = f{t,), B = f{(t,)
and one of g(t;) and g{t,) is positive while the other is negative. Since g is
continuous, the Intermediate Value Theorem implies that there is a number
ty between ¢t; and t, with g(t;) = 0. But then C = f{(t;) is a point on AB

since ¢; < t; < t, and is a point on I since g(t;) = 0. Thus Ce AB n 1 # .
) O

PROBLEM SET 4.2
Part A.
1. Prove Lemma 4.2.1(a).

2. Prove that the Euclidean half plane H~ is convex.
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3. Let I be a line in the Euclidean Plane and suppose that Ae H* and B e H™. Show
that 4B n I # (J in the following way. Let

g)=<A+t(B—A)—P,(Q—-P*> ifteR
Evaluate g(0) and g(1), show that g is continuous, and then prove that ABnl# (.

4. If 1 = ,Lis a type I line in the Poincaré Plane then prove that
a. H, and H_ as defined in Equation (2-10) are convex.
b. fAeH, and Be H_then ABnl # (.
(Hint: One way to do this is to mimic what was done when ! was a type 11 line,
but use a different g. Another way involves Example 3.3.1.)

5. For the Taxicab Plane {R? %y, d;} prove that
a. If A=(xy,y;), B=(x,,y,) and C =(x3, y;) are collinear but do not lie on a
vertical line then A—B—C if and only if x; * X, * x3.
b. The Taxicab Plane satisfies PSA.

4.3 Pasch Geometries

We are now ready to prove our first important theorem. Roughly, it will
say that in a metric geometry which satisfies PSA, a line which intersects
one side of a triangle must intersect one of the other two sides. Despite the
simplicity of its statement and proof, this result is remarkably powerful. Its
importance was initially noticed by Pasch [1882] when he gave the first
modern axiomatization of geometry.

One remark is in order about Pasch’s Theorem. It is easy not to realize
that there really is something to prove here—after all, the situation is so
obvious geometrically! In fact it is this kind of result (which involves be-
tweenness) that Euclid “forgot” to prove. We will use Pasch’s Theorem to
end this section with an example of a metric geometry which doesn’t satisfy
PSA.

o T e e

| Definition. A metric geometry satisfie/ i_’asch’s‘l?ostulatg(g_l’_) if for any line

A any triangle AABC, and any point D € I such that A—D-—B, then either
INnAC # g orIn BC # . (See Figure 4-11)

{Theorem 4.3.1 (Pasch’s-Theorem). If a metric geometry satisfies PSA then it
!also satisfies PP.

Proor. Let AABC and a line / be given. Assume that there is a point D e !

with A—D—B. We will show that either I n AC # ¢J or I n BC # (.
See Figure 4-11.
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s
A/D

Figure 4-11

& ¢

Suppose that AC n[ = ¢J. We will show that BC1# . Now [ # AB
since A€ ACn AB. Thus A_and B are not on I and must be on opposite
sides of I since ABNnl={D} # . A and C are on the same side of [
(AC n1 = ). By Theorem 4.1.4, B and C are on opposite sides of I. Hence
BC 1+ . Thuseither ACnl+# Jor BCnl# Q. O

Note that another way of stating Pasch’s Theorem is that if a line inter-
sects a triangle, then it intersects two sides of the triangle, possibly at the
common vertex. Even when a line intersects the interior of a side, the second
point of intersection could be a vertex. See Figure 4-12.

A ID B

Figure 4-12

We now turn to a kind of result which we have not discussed before. By
assuming the Plane Separation Axiom we got Pasch’s Postulate for free. We
now show that the reverse is true: If a metic geometry satisfies Pasch’s
Postulate then it also satisfies PSA. Logically, PSA.and PP are equivalent
and either may be assumed as an axiom with the other then becoming a
theorem. Before we explore the logical equivalence involved we make the

following definition.

Definition. A Pasch GeonTEfg} is a metric geometry which satisfies PSA. ‘
ST

Theorem 4.3.2. Let {&, %, d} be a metric geometry which satisfies PP. If A, B,

C are noncollinear and if the line | does not contain any of the points A, B, C,
then | cannot intersect all three sides of AABC.
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ProOF. In search of a contradiction, we assume that [ does intersect all
three sides in points other than vertices, ie, ABn{={D}, ACnl=
{E}, BC = {F} with A—D—B, A—E—C, and B—F—C. Since D,
E, and F all lie on [, one is between the other two. We assume D—E—F.
(The other cases are similar.) The situation is illustrated in Figure 4-13
(which looks funny because it is an impossible situation!).

Figure 4-13

Now B, D and F are not collinear (or else 4, B, C are collinear). Thus we
have a triangle, ABDF. Since AC nDF = {E}, we know that Efinters_e&@
either BD or BF by Pasch’s Postulate applied to ABDF.

First note that

AC nBD < AC n B4 = {4}.
Since 4 ¢ BD (because A—D—B) we have AC n BD = (.
On the other hand,
AT ~ BF < AC n BC = (C}.

Since C ¢ BF we have 4 C n BF = . This contradicts Pasch’s Postulate (ap-
plied to ABDF) which says that AC ~BF # ¢ or ACABD # . Hence,
our original assumption that ! intersects ali three sides at points other than
the vertices is erroneous and the theorem is proved. O

Theorem 4.3.3. If a metric geometry satisfies PP then it also satisfies PSA.

Proor. Let I be a line and let P be a point not on I (P exists because a
metric geometry has at ieast three noncollinear points!) We shall define two
sets H, and H, and show they satisfy the axioms for half planes. Define sets
H, and H, as follows:

={0e¥|Q=Por QP nl= g}
={Qey|Q¢zandQPnl¢@}.
Clearly H, nH2 & and ¥—I=H; v H,. We need to show that H,

and H, are convex and that condition (iii) of PSA holds.

(-1)




78 4 Plane Separation

Step 1. First we show H, is convex. Let R, § € H, and suppose R—T—S.
We must show T € H,. We shall need two cases.

Case la. R, S, P are collinear. In this situation either R=P, §= P,
R—S—P, S—R—P, or R—P—S. In all of the possibilities

RS <« PR UPS. (3-2)

Since Re H,, PR n | = . Hence any element F € PR has the property
PFnl= (. Thus PR c H,. Similarly PS < H,, and thus by Equation
(3-2), RS < H,.

Case 1b. R, S, P are not collinear. Then we have a triangle ARSP (Fig-
ure 4-14). Since /" PS = & and I n PR = (¥, Pasch’s Postulate teMs that
InRS = ¥ also. Now consider ARTP. Since InRS=¥ and RT RS,
RTnl= also. Since RPnl= (¥, another application of Pasch (to
ARTP)yields PT 1 = (J. But then T € H, and so H, is convex as required.

P
R T S
/
Figure 4-14

Step 2. Next we show that H, is convex. Let R, S€ H, so that RP n |l # J
and SP n | # .

Case 2a. R, S, P are collinear (and distinct). Then RPn =8P nl=
{Q} for some Q and either P—Q—R—=S or P—Q—S—R.Hence if S—T—R
then P—Q—T and TP n ] # (. Hence RS < H,.

Case 2b. R, S, P are not collinear. Then if R—T-—S, Theorem 4.3.2
says that T ¢ | (or else [ intersects all three sides of APRS). Another applica-
tion of Theorem 4.3.2 shows that RS n I = ¥, so that RT nl= . But
PR 1 # &so PP (applied to ARPT) implies PT 1 # . Thus T € H, and
RS < H,. Hence H, is convex.

Step 3. Finally, suppose R e H, and Se H,. We must show RS n [ # (.
If R=P then RSn!l=PSnl+# ¢ and we are done. Hence we assume
R #P.

Case 3a. R, S, P are not collinear. Then since RPn!= ¥ and SPni# &,
PP implies RS N1 # (.

Case 3b. R, S, P are collinear. Then since SP n ! # J we may let SP n
I={Q} with P—Q—S. Since Re SP and R# P, R # S, R # Q, either

P—Q—R, R—P—Q, or P—R—Q.
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The first situation cannot occur since R € H, implies PR n [ = ¢, If the
second situation (R—P—@) occurs then R—P—Q—S and RS n 1 ={Q}.
In last situation, P—R—0Q, we have P—R—Q—S and again RS n | = {Q}.
Hence RSn 1# &.

We have thus shown that H, and H, are convex in steps ! and 2 and that
any segment from a member of H, to a member of H, must intersect / in
step 3. Hence the geometry satisfies PSA. O

We now give an example of a metric geometry where PSA fails to hold.
What we will really show is that the geometry does not satisfy PP, which is
equivalent to PSA. This geometry can be found in Martin [1975].

Definition. The Missing Strip Plane is the abstract geometry {&, £} given by

S ={kxy) eRx<0orl<x}
¥ = {ln &|lis a Cartesian line and I n & # F}.

You are asked to prove in Problem A4 that the Missing Strip Plane is an
incidence geometry. To make the Missing Strip Plane into a metric geometry
we need to define a ruler for each line. If I = L, , is a nonvertical line, recall
that f;:1 — R which is given by

fitx,y) = xJ1 + m*

is the standard Euclidean ruler for I. We cannot use f; as a ruler for the line
In% of the Missing Strip Plane because f, is not a bijection. (f(in &)
omits the half open intervai [0, \/1 + m?).) We remedy this by defining a new
function g, which is f; before the strip (i.e., x < 0) and which moves every
point after the strip to the left by f;(1, m + b) = /1 + m®. More precisely,
define g;:1 n ¥ - R by

filx, ) ifx<0
gilx, y) = {

filx,y) —J1+m? ifx> 1L

The next result is Problem AS.

Proposition 4.3.4. If {&, ¥} is the Missing Strip Plane and | = L,,, then
gi:l n &% — R is a bijection.

The coordinates of several points on the lines Loy n&¥ and Ly, _, n &
are shown in Figure 4-15.

For each vertical line ! in & let g, be any Euclidean ruler. By Theorem
2.2.8 this collection of rulers g, determines a distance d’ on & that makes
{¥, £, d'} a metric geometry.
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Figure 4-15
Proposition 4.3.5. The Missing Strip Plane is not a Pasch geometry.

Proor. Consider AABC where A =(2,0), B=(2,3) and C=(—-2,0).
The line I~ &, where [ = L, ,, intersects AB at D = (2,2). However,
(In¥)nAC # Fand (In ¥)n BC = (J, contradicting PP. See Figure 4-16.

a

Figure 4-16

Note that if PSA were to follow from the axioms of a metric geometry
then every model of a metric geometry would satisfy PSA. Proposition
4.3.5 gives a model of a metric geometry which doesn’t satisfy PSA. Thus,
Proposition 4.3.5 shows us that PSA really is an addition to our list of axioms
and cannot be deduced from the previous ones. In Problems B6 and B8
there are two more examples where PSA is not satisfied.

PrROBLEM SET 4.3

Part A.

1. (Peano’s Axiom) Given a triangle A ABC in a metric geometry which satis{i_e_g PSA
and points D, E with B—C—D and A—E—C, prove there is a point F € DE with
A—F—B,and D—E—F.
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2. Given AABC in a metric geometry which satisfies PSA and points- D, F with
B—C—D, A—F—B, prove there exists E € DF with A—E—C and D—E—F.

3. Given AABC and a point P in a metric geometry which satisfies PSA prove there
is a line through P that contains exactly two points of AABC.

/ 4,\_Provc that the Missing Strip Plane is an incidence geometry.

h 5 Prove Proposition 4.3.4.

Part B. “Prove” may mean “find a counterexample”.

6. Let {R% %, dy} be the metric geometry of Problem B20 of Section 4.1. Prove that
PP is not satisfied.

7. Given AABC in a metric geometry and points D, E with A—D—B and C—E—B,
prove AENCD # (. .

8. Let®® = {(x, y, 2)|x, y, z€ R}. If A, B e R* define L .5 = {A + t(B ~ A)|t € R}. Let
¥ ={LsplA, BeR3, A+#B}. If A, Be R® let d(4, B)= [|[A — B|. Prove that
{R3, &, d} is a metric geometry but that it does not satisfy PSA.

Part C. Expository exercises.

9. We have just shown (Theorems 4.3.1 and 4.3.3) that two axtoms are equivalent.
Write a short essay on the equivalence of axiom systems using as a reference an
appropriate book on mathematical logic.

10. Find some middle or high school students, ask them to draw a triangle and to
pick a point on the triangle. Then ask them to draw a line through the pomnt.
They will probably construct it so that it crosses one of the other sides. Ask them
how they know it would cross the side and write up their reactions. (The answer
that Euclidean geometry satisfies Pasch’s Postulate will be too subtle for them.)
After the experiment be sure to tell them not to feel bad about not knowing the
answer—neither did Euclid!

4.4 Interiors and the Crossbar Theorem

In this section we will be interested in interiors—the interior of a ray, of a
segment, of an angle, and of a triangle. These concepts will aid us in proving
the main theorem of this section which says that a ray starting at a vertex
of a triangle and which passes through a point in the interior of the angle at
that vertex must intersect the opposite side; that is, it must “cross the bar.”

Theorem 4.4.1. In a Pasch geometry if o/ is a nonempty convex set that does
not intersect the line I, then all points of o lie on the same side of 1.
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PROOF. Let 4 € o7 and let B be any other point of <. Since &/ is convex,

AB < . Since o N l= &, ABn =& Thus A and B are on the same

side of [. Thus every point of &/ is on the same side of [as A is. O

Definition. The interior of the ray 4B in a metric geometry is the set
int(4B) = AB—{A}.

egment AB in a metric geometry is the set

The interior of

int(AB) = AB—{4,B}.

In Problem Al you will show that the interior of a ray or a segment is
convex. Theorem 4.4.1 can then be applied in a number of interesting cases.
The proof of the next result is left to Problem A2.

Theorem 4.4.2. Let & be a line, ray, segment, the interior of a ray, or the
interior of a segment in a Pasch geometry. If lis a line with of N | = (& then
all of o lies on one side of I. If there is a point B with A—B—C and AC n | =
{B} then int(BA) and int(BA) both lie on the same side of | while int(B4) and
int(BC) lie on opposite sides of 1.

i Theorem 4.4.3 (Z Thcorem) In a Pasch geometry, if P and Q are on opposite
{ sides of the line 4. B then BP A AQ =& . In particular, BP n AQ = (.

PrOOF. See Figure 4-17. By Theorem 4.4.2, int(BP) lies on one side of AB
and 1nt(AQ) lies on the other (since P and Q are on opposite sides). Thus
int(BP) 0 int(AQ) = ¢F. Since B ¢ AQ (because 4, B, @ are not collinear) we

have BP . int(AQ) = = (. Since f_1_¢BP we have_BP N AQ = . The rest
follows from BP — BP and A0 < AQ. 0

Figure 4-17

Theorem 4.4.3 is surprisingly useful. The key to using it is to recognize a
“Z configuration” in the picture you have sketched. With a little imagination
Figure 4-17 looks like a Z. The name of the theorem comes from this observa-
tion. The Z Theorem will be used repeatedly in the proof of the Crossbar
Theorem.
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Definition. In a Pasch geometry the interior of / ABC, written int(£ ABC),
is the intersection of the side of 4B that contains C with the side of BC that
contains A4. (See Figure 4-18 for a picture in &.)

Figure 4-18

Note that the definition of int(/ ABC) uses the points 4 and C. However,
/. ABC can be named in more than one way, say as /£ A’'BC’. How do we
know we get the same interior when we use 4, C as when we use A’, C'?
This is a question of “well-defined.” Does the definition depend on our
choice of name? The answer is no, as the next theorem shows. Philosophically
this is similar to Theorems 3.3.2 and 3.4.2.

Theorem 4.4.4. In a Pasch geometry,if /. ABC= ([ A'B'C’ then int(/, ABC)=
(L A'B'C).
PRrOOF. By Theorem 3.4.2, B = B’ and B4 is either B'4’ or B'C’. Assume that
BA = B'A’ (so that BC = B'C’). Then A, A’ € int(BA) and by Theorem 4.4.2
both A and A’ lie on the same side of | = BC = B'C'. Thus the side of BC = |
containing 4 is the same as the side of BC' = I containing A’. Similarly the
side of B 4 containing C is the same as the side of B4’ containing C'. Hence
the intersection of the sides giving int( /. ABC) is the same as the intersection
of the sides giving int(/ A’B'C’).

If BA = B'C’ then we may repeat the above argument with 4’ and C’
interchanged. OJ

The following two theorems, whose proofs are left as exercises, as well as
Problems A9 and A10, give tests for when P € int(/ ABC).

Theorem4.4.5. In a Pasch geometry, P € int(L ABC) if and only if A and P
are on the same side of BC and C and P are on the same side of BA.

Theorem 4.4.6. Given AABC in _a Pasch geometry, if A—P—C then
P e int(/. ABC) and therefore int(AC) < int(/ ABC).

We can now prove the theorem we have been working towards, the
Crossbar Theorem. Both Pasch’s Theorem and the Crossbar Theorem deal
with what happens after a line enters a triangle. Pasch’s Theorem can be
thought of as saying that when a line enters through a non-vertex, it must
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pass out one of the other two sides (possibly at a vertex). The Crossbar
Theorem tells us what happens if the line enters through a vertex—it must
pass out the opposite side. Of course, “enters” must be made precise because
a line may intersect a triangle just at a vertex. ‘

Theorem 4.4.7 (Crossbar Theotem). In a Pasch geometry if P e int(/ ABC)
then BP intersects AC at a unique point F with A—F—C.

ProOF. Let E be a point such that E—B-—C (see Figure 4-19). P and C are
on the same side of 4 B by Theorem 4.4.5. C and E are on opposite sides of
A B by Theorem 4.4.2. Thus P and E are on opposite sides of 4 B. By the Z
Theorem, BP n AE = (. Let t 0 be a point such that P—B-—0. Then @ and
A are on opposnte sides of BC = E C. By the Z Theorem again BONAE=(.
Hence BP 0 dE = (. Applying Pasch’s Postulate to AECA we see that
BP N AC # (. Since 4, B, C are not collinear, BP 0 AC = {F} for some F.

F # A (or else BP n AE # &) and F # C (or else B, P, C are collinear).
Thus F e int(4(). Finally P, 4, and F are all on the same side of BC so that
F € BP implies F e BP. Hence BP intersects AC at a unique point F with

A—F—C. 1
A
P
E B C
g
Figure 4-19

The following two results will be used frequently to verify that a point is
in the interior of an angle. Their proofs are left to Problems A9 and A10.

Theorem 4.4.8. In a Pasch geometry, if CP n AB = (J then P € int(£ ABC) if
and only if A and C are on opposite sides of BP.

Theorem 4.4.9. In a Pasch geometry, if A—B—D then P € int(£L ABC) if and
only if C € int(, DBP).

Definition. In a Pasch geometry, the interior_of A\ABC, written mt(AABC),
is the intersection of the side of AB which contains C, the side of BC which

contains A, and the side of CA4 which contains B.



4.4 Interiors and the Crossbar Theorem 85

The next result, as well as two other characterizations of int(AABC), is

left to the problem set.

Theorem 4.4.10. In a Pasch geometry int(AABC) is convex.

PROBLEM SET 4.4

Part A.

£l

L
2.
3.
4.

5.
*6.

11.
12.
13.

14.

15.
16.
17.

18.
19.

20.

Prove that in a metric geometry, int(4B) and int(4B) are convex sets.
Prove Theorem 4.4.2.
Prove Theorem 4.4.5.
Prove Theorem 4.4.6.
In a Pasch geometry, if P e int(~ ABC) prove int(BP) < int(L ABC).

In a Pasch geometry, given AABC and points D, E, F such that B—C—D,
A—E~-C, and B—E—F, prove that F € int(£ ACD).

. Prove the strong form of Pasch’s Theorem: In a metric geometry which satisfies

PSi\_,'if A—D—B and C and E are on the same side of XE, then DE n AC O
or DE n BC # &. How is this different from Pasch’s Theorem?

. In a Pasch geometry, if P e int(2 ABC) and if D e AP n BC, then prove that

A—P—D.

. Prove Theorem 4.4.8.
10.

Prove Theorem 4.4.9.

In a Pasch geometry, if CP n AB = &, prove that either BC =BP, or Pe
int(£ ABC), or C € int(, ABP).

Given £ ABC and a point P in a Pasch geometry, prove that if BP N int(AC) # &
then P € int(£ ABC). (This is the converse of the Crossbar Theorem.)

In a Pasch geometry, if . ABC = / DBE and BF n int(AC) # & then prove
BF n int(DE) # &.

In a Pasch geometry, if int(~ ABC) = int(, DEF), prove /. ABC = / DEF.
Prove that in a Pasch geometry, int(£ ABC) is convex.
Prove that in a Pasch geometry, int(AABC) is convex.

Prove that if / is a line in a Pasch geometry and ! nint(AABC) # & then I~
AABC has exactly two points.

In a Pasch geometry, prove int(AABC) = int(£ ABC) nint(/, BCA)nint(L CAB).

In a Pasch geometry, prove int(AABC) = {P|there exists a D with B—D-—C and
A—P—D}.

In a Pasch geometry, prove that AABC v int(AABC) is convex.
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21. Show that the conclusion of the Crossbar Theorem is false in the Missing Strip
Plane. Explain.

Part B. “Prove” may mean “find a counterexample”.
22. Prove that int(4B)  int(4B) in a metric geometry.
23. Prove that in a Pasch geometry if  nint(£ ABC) # ¥ thenln L ABC # .

24. In a Pasch geometry, given AABC and two points P, Q with A—P—B and
B—Q—C, prove that if R € PQ n int(AABC) then P—R—Q.

25. In a metric geometry define the crossbar interior of . ABC to be cint(/ ABC) =
{P|D—P—E for some D eint(BA) and some Eint(BC)}. Prove that cint(, ABC)=
int(, ABC) in a Pasch geometry.

26. In a Pasch geometry if P € int( £ ABC) prove that there is a line through P which
intersects both BA and BC but which does not pass through B.

4.5 Convex Quadrilaterals

We end this chapter with a short section giving an application of the Cross-
bar Theorem. The main result will be that the diagonals of a convex quadri-
lateral intersect in.a Pasch geometry. The preliminary results are left to the
exercises. This material will not be needed until Chapter 7 and may be
postponed until then.

Definition. Let {4, B, C,D} be a set of four points in a metric geometry no
three of which are collinear. If no two of int(4B), int(BC), int(CD) and
int(DA) intersect, then

e [ JABCD = ABw BC U CD U DA
dr)

isa 6;]8 ilatgé_l:
In Figure 4-20, parts (a) and (b) represent quadrilaterals while part (c)
does not. Note that although we use a square as the symbol for a quadri-

lateral, you should not think that [JABCD is a square. In fact we don’t
even know what a square is yet!

B A A
C

D

(a) (b) ()
Figure 4-20
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Theorem 4.5.1. Given a quadrilateral (JABCD in a metric geometry then

OJABCD = (JBCDA = [JCDAB = (JDABC = (JADCB
= JDCBA = (JCBAD = []BADC.

If both CJABCD and [(DABDC exist, they are not equal.

. R R,
Definition. In_ :ihe quadrilateral []4BCD,.the sid;eg.,ére AB, BC, CD, and
DA; the {ertices arc %a;nd D; the(angles arc £ ABC, . BCD, £ CDA,
and / DAB; and the dfagonals are AC and BD. The endpoints of a diagonal

are called Qgpgﬁi_tg!&ﬁmj:lf two sides contain a common vertex, the sides. .

are adjacent; otherwise they are .apposite..If two angles contain a common
side, the angles are adjacent; otherwise they are gpposite.

Just as for earlier geometric forms (segments, angles, triangles) we must
show that the angles, sides, vertices, etc. of a quadrilateral are well defined.

Theorem 4.5.2. In a metric geometry, if [JABCD = [JPQRS then {A,B,C,
D} = {P,Q,R,S}. Furthermore, if A =P then C =R and either B=Q or
B = S so that the sides, angles, and diagonals of [JABCD are the same as
those of C1PQRS.

Definition. A guadrilateral (JABCD in a Pasch geometry is a @gzgqﬁad—
E@a if each side lies entirely in a half plane determined by its opposite
side.

In Figure 4-20 (a) is convex while (b) is not.

Theorem 4.5.3. In a Pasch geometry, a quadrilateral is a convex quadrilateral
if and only if the vertex of each angle is contained in the interior of the
opposite angle.

Q‘.ﬁﬂ N

Theoremd4.5.4. In a Pasch geometry, the diagonals of a convex quadrilateral
intersect.

ProoF. Let [JABCD be a convex quadrilateral. We must show that AC N
BD # (J. By Theorem 4.5.3, D € int(/ ABC). By the Crossbar Theorem,
BD intersects AC at a unique point E with A—E—C. (See Figure 4-21.)
We must show that E e BD (not just E € BD). C e int(, DAB) so by the
Crossbar Theorem, AC intersects DB at a unique point F with B—F—D.
Then {E} = AC n BD = AC ~ BD = AC n BD = {F} since AC # BD.
Thus E = F and AC n BD = {E}. . O
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=]

Figure 4-21

The last result will be extremely useful in Chapter 7. It says that a
“trapezoid” is a convex quadrilateral.

Theorem 4.5.5. Let [1ABCD, be a quadrilateral in a Pasch geometry. If
BC ”AD then (JABCD is a convex quadrilateral.

PrOOF. Since BC||AD, BC lies on one side of AD and AD lies on one side of
BC. See Figure 4-22. We now show that AB lies on one 51de of CD. Suppose
to the contrary that ‘AB does not all lie on one side of CD. Then int(4B) N
CD # . Let H, be the side of BC that contains 4 and let H} be the side
of AD that contains B. Int(4B) c H, n Hf by Theorem 4.4.2. Therefore
@ #int(AB)n CD c H nH¥*CD =int(CD). Hence int(4B) N int(CD) #
&, which contradicts the definition of a quadrilateral. Thus AB lies all on
one side of CD. Similarly CD lies all on one side of 4 B. Therefore CJABCD
is a convex quadrilateral. O

Figure 4-22

PrOBLEM SET 4.5

Part A.

1. Prove Theorem 4.5.1.
2. Prove Theorem 4.5.2.
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3. Prove Theorem 4.5.3.

,f"N-\ l B .
4. Sketch two quadrilaterals in the Poincaré Plane, one of which is a convex quadri-
lateral and the other of which is not.

5. Prove that the quadrilateral (JABCD in a Pasch geometry is a convex quadrilateral
if and only 1f each side does not intersect the line determined by its opposite side.

6. Give a “proper” definition of the interior of a convex quadrilateral. Then prove
that the interior of a convex quadrilateral is a convex set.

7. Prove that in a Pasch geometry if the diagonals of a quadrilateral intersect then
the quadrilateral is a convex quadrilateral.

Part B. “Prove” may mean “find a counterexample”.
8. Prove that a convex quadrilateral in a Pasch geometry is a convex set.
9. Prove that for any quadrilateral [JABCD in a Pasch geometry either AB n CDh =
@ForABNCD = (.
10. Prove that in a Pasch geometry at least one vertex of a quadrilateral is in the
interior of the opposite angle.

11. Prove that in a Pasch geometry the lines containing the diagonals of a quadri-
lateral intersect. How does this differ from Theorem 4.5.4?

12. 1f the quadrilateral [ AEED in a Pasch geometry is not a convex quadrilateral,
prove that either BC n AD # J or BCnAD # (.

13. Let (JABCD be a quadrilateral in a Pasch geometry with ABnCD ={E},ACn
BD = {F},and AD n BC = {G}. Prove that E, F, G are not collinear.

14. Suppose that (1ABCD and (14ABDC are both quadrilaterals in a Pasch geometry.
Prove that netther one is a convex quadrilateral.



CHAPTER 5
Angle Measure

5.1 The Measure of an Angle

As we have progressed through the first four chapters, we have built up an
axiom system piece by piece. Starting with the underlying set structure in
an abstract geometry, we added the incidence axioms, the ruler postulate, and
the plane separation axiom. Now we add another axiom to make our geome-
try look more like the geometry that is studied in high school. In this section
we shall define what is meant by an angle measure and indicate how angle
measures are defined in our two basic models. In the second section we shall
develop a new model with some very interesting properties. In the third
section, some of the basic results associated with angle measure are discussed.
The last section is devoted to the technical details of verifying the existence
of angle measure on R? and H.

After we have an angle measure our geometry will look very much like
“high school geometry.” However, we will still be missing one important
assumption. That assumption is the Side-Angle-Side (SAS) congruence
axiom. Without it, some results can occur which are very unusual for someone
accustomed only to Euclidean geometry. In particular, we will see in examples
that without SAS it is possible for the sum of the measures of the angles of
a triangle to be greater than 180 degrees, or for the length of one side of a
triangle to be longer than the sum of the other two. The SAS axiom will be
formally introduced in Chapter 6.

Definition. Let r, be a fixed positive real number. In a Pasch geometry, an
angle measure (or protractor) based on r, is a function m from the set .« of
all angles to the set of real numbers such that

(i) If L ABC e o then 0 < m(L ABC) < rq;

90
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C
A D
a+f
2]
a
B C B A
Figure 5-1 Figure 5-2

(ii) If BC lies in the edge of the half plane H, and if § is a real number with
0 < 8 < ro, then there is a unique ray B4 with A € H, and m(/ ABC) = 6
(see Figure 5-1);

(iif) If D € int(£ ABC) then (see Figure 5-2)

m( /. ABD) + m(/ DBC) = m(, ABC). (1-1)

We should note that the definition of an angle measure does not even
make sense unless we have PSA (or equivalently, Pasch) since we must use
the idea of the interior of an angle. If ro, =-180, m is called degree measure. If
ro = 7, then m is called radian measure. If ro = 200, then m is called grade
measure. Traditionally, degree measure is used in geometry. Radian measure
is used in calculus because it makes the differentiation formulas most natural.
The origin of degree measure is not really known. Perhaps it was chosen
because a year has (almost) 360 days and in degree measure, a complete
revolution is one of 360 degrees. Another possible explanation is that 360 has
many factors so that there are many “natural” subdivisions of a circle into
equal parts. Although the precise value of r is not crucial (see Problem A4)
we adopt the following convention.

Convention. Except in Section 5.4, we shall always use degree
measure (r, = 180) without further assumption.

Definition. A protractor geometry {&, &, d,m} is a Pasch geometry {#, &, d }
together with an angle measure m.

The various axioms contained in the definition of an angle measure are
worth discussing. One of the consequences of the first axiom is that an angle
cannot have measure O or measure 180. What we might intuitively think of
as an angle of measure 0 is not an angle—it is a ray. Likewise, what we might
think of as an angle of measure 180 is also not an angle—it is a line. /7 ABC
makes sense only if A, B, C are not collinear. Note we never use the word
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“degrees” or the symbol for degrees in our measure. The measure of an
angle is a number.

The second axiom is called the angle-construction axiom (or ray construc-
tion axiom). It says that if we are given a number 8 between 0 and 180 then we
can construct a2 unique angle of measure 6 lying on a particular side of a
given ray (see Figure 5-1). If we do not specify on which side of BC the angle
is to lie, then there are two choices (see Figure 5-3). The emphasis in the axiom
is on both the construction and the uniqueness, not just the construction.
The term “construction” should not be confused with the notion of “compass
and straight edge construction.” The axiom does not say we can build an
angle in that fashion. Rather, it is really postulating the existence of an angle
of any particular measure between 0 and 180 with no indication as to how
it is found.

Figure 5-3

The third axiom is called the angle addition axiom and reflects the familiar
statement that the whole is the sum of its parts. Note in Figure 5-2 we illus-
trated this by marking the various angles with lower case Greek letters which
denote their measure. This will be our standard procedure.

The Euclidean Plane has an angle measure which we have been accus-
tomed to using since high school. Yet to carefully show that there really is
an angle measure in R? can be quite involved. The basic idea is to use the
familiar formula for the scalar product of two vectors

<a,b) = |[a]|||bl|cos 8 (1-2)

when 6 is the measure of the angle between the vectors. If we solve Equation
(1-2) for 8 we have
_; <a,b)

0= o8 T ol

This is fine, provided we know what the function cos ™ !(x) is. Unfortunately,
cos(x) (and cos ™ !(x)) is usually defined in terms of angle measures and so
cannot be used to define angle measure. The main work involved in defining



5.1 The Measure of An Angle 93

an angle measure for R? is to develop the function cos(x) without reference
to angles at all. This will be done in Section 5.4. However, those readers who
are willing to accept the existence and standard properties of cos™!(x) may
omit Section 5.4 and assume Proposition 5.1.2.

Definition. In the Euclidean Plane, the Euclidean angle measure of / ABC is

{(A-B,C—B)
T4 —B]-[c— B ) (-3

mg(L ABC) = cos_1<
Example 5.1.1. In & what is mg(/ ABC)if A=(0, 3), B=(0,1)and C =(\/§, 2)?

SOLUTION. A — B = (0,2) and C — B = (y/3,1) so that
(A-B,C-B) 2 1

[4-B[-lc-B] 2-2 2
mg(/L ABC) = cos '(3) = 60. O

The following proposition will be proved carefully in Section 5.4.
Proposition 5.1.2. my is an angle measure on {R?, L, dg}.

Since the Poincaré Plane as a set is a subset of the Euclidean Plane, and
since its lines are defined in terms of Euclidean lines and circles, it should not
be surprising that we define Poincaré angle measure in terms of Euclidean
angle measure. The basic idea is to replace the Poincaré rays that make up
the angle by Euclidean rays that are tangent to the given Poincaré rays. The
measure of the angle formed by the Euclidean rays will be used as the
measure of the Poincaré angle.

The Euclidean tangent rays are determined by finding tangent vectors of
the given Poincaré rays when those rays are viewed as curves. In the case
of a type I ray BA, there is a natural choice for the tangent vector to BA at B:
If A= (x,,y,) and B = (xp, yg) belong to a type I line, then x, = x5 and
A — B =(0, y, — yp) is the tangent vector. See Figure 5-4.

A
Tga C
B Tep

Figure 5-4
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We now investigate what the tangent to a type II ray should be in order
to motivate the definition of Poincaré angle measure. Suppose that BA is
part of the type II line .L, so that if (x, y) € BA then

(x—or+yr=rk (1-4)
The slope of the tangent to the curve in R? whose equation is given by

Equation (1-4) at the point B = (xg, yg) should be given by the derivative
(dy/dx){B). This is found by implicit differentiation of Equation (1-4):

2(x—c)+2y%=0

or
dy c¢—x

dx  y

Thus the slope of the tangent at B should be (¢ — xg)/yp. The vectors
+(yg, ¢ — xg) have this as their slope and so are prime candidates for the
tangent vector. The + sign reflects whether A is to the right (+) or left (—)
of B. See Figure 5-5.

Figure 5-5

If Ty, denotes the tangent vector to BA as found above and if A’ =
B + Ty, then the Euclidean ray BA’ is parallel to the vector Ty, and is the

desired Euclidean tangent ray.
The preceding discussion is summarized and formalized in the following
definition.

Definition. If BA is a ray in the Poincaré Plane where B = (x5, yg) and 4 =
(x45 y4), then the Euclidean tangent to BA at B is

(0, y4— yg) if ABis a type I line
Tpa=<{ (yp, c—xg) ifABisatypeIlline L,, x5 < x4
—(vp, ¢ — xp) if ABis a type Il line .L,, x5 > x,.
The Euclidean tangent ray to B4 is the Euclidean ray BA’ where A’ = B +
Ty,
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Definition. The measure of the Poincaré angle / ABC in H is
(Tpar Tac) ) w5
I Tsall I Tl

where A'= B+ Tp, and C' = B + T, and mg(L A'BC’) is the Euclidean
measure of the Euclidean angle /. A'BC’. (See Figure 5-6.)

my(L ABC) = mg(L A'BC) = cos“(

Figure 5-6

Note that in Equation (1-5), we do not really need A’ and C’ to compute
my(L ABC), only Tp, and Ty

Example 5.1.3. In the Poincaré¢ Plane find the measure of /. ABC where
A=(0,1,B=(0,5),and C = (3, 4).
SoLuTioN. It is easy to see that BC = ,Ls, that CA = 4L 7, and that

BA = (L. Hence
Tpa=1(0,—4) and Ty =(5,0).

Thus mg(/L ABC) = 0 where

(Tea,Tpey _ O

cos 0 = =—.
[ Toall[[Tcl| 20

Hence
cos(@) =0 and my(L ABC)=90.

In Problem Al you will find the measure of the other angles of A ABC
and will show that the sum of the measures of all three angles is approximately
155. Thus the angle sum of a triangle in the Poincaré Plane need not be

180! O
The proof of the following Proposition will be left to Section 5.4.

Proposition 5.1.4. my is an angle measure on {H, ¥y, dy}.
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Convention. From now on the terms Euclidean Plane, Poincaré
Plane, and Taxicab Plane will refer to the protractor geometries
& = {R?, Ly, dg, mg} '
H = {H, Ly, dy, my}
T = {R?, Ly, dr,mg}.

PROBLEM SET 5.1
Part A.

f;l,et A=(0,1), B=(0,5),and C = (3, 4) be points in the Poincaré Plane 5. Find
~" the sum of the measures of the angles of AABC.

—~
92/Repea: Problem 1 with 4 = (0,5), B = (0,3), and C = (2,,/21).
.-3/.>Repeat Problem 1 with 4 = (5,1), B = (8,4),and C = (1,3).
4. Let m be an angle measure for {&, %, d} based on a. Let t > 0 and define m, by
m,( /. ABC) = t-m(/, ABC).
Prove that m, is an angle measure for {¥, %, d}. What value is m, based on?

5. Assume that m; is an angle measure for Euclidean metric geometry {R?, %, dg}.
Prove that m; is an angle measure for the Taxicab Plane {R? %, dr}.

6. Show that Euclidean angle measure is well defined; ie., if £ ABC = £ A'BC’ prove
that mg(/ ABC) = mg( /. A’BC’) by using Equation (1-3).

Part B. “Prove” may mean “find a counterexample”.

7. Let 6 be a real number with 0 < 6 < 180 and let BC lie in the edge of a half plane
H, in a protractor geometry. Prove that there is a unique point A € H, with
m(L ABC) = 6.

8. Assume that m; is an angle measure for the Euclidean Plane. Prove that
{R?, %, ds, mg} is a protractor geometry, where dy is the max distance defined in
Problem B18 of Section 2.2.

Part C. Expository exercises.

9. Write an essay contrasting degree, radian, and grade measure. You should include
information on their practical use, history, and development.
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5.2 The Moulton Plane

In this section whose details are optional we shall develop another model
of a protractor geometry—the Moulton Plane. This model was introduced
by the American mathematician Forest Moulton [1902] and is an important
example in the study of projective geometry. It will have some strange
characteristics. In fact, we will eventually see (Problem A10) that the sum
of the measures of the angles of a triangle in the Moulton Plane may be
more than 180.

The underlying set of the Moulton Plane will be R?, but the set of lines
will not be Z;. Some lines will be Euclidean and the rest will be in the form
M,,, as follows.
y=mx+bifxs0}

M,, = R2 )
mb {(x,y)e y=imx +bifx>0

The Moulton line M, , is sketched in Figure 5-7. One way to view a
Moulton line M, , is as the path of a ray of light that is bent or refracted
as it crosses the y-axis. (Not every line of the form M,,, will be used, only

those with m > 0.)

Figure 5-7

Definition. The Moulton Plane is the collection .# = {R?, %,,} where
Ly ={Lic L} U {Lppe Lelm< 0} U {M,,|m>0}.

Proposition 5.2.1. The Moulton Plane is an incidence geometry.

Proor. It is clear that {(1, 0), (0, 0), (0, 1)} is a noncollinear set and that each
line has at least two points. We need only prove that there is a unique line
between any two distinct points 4 and B. We shall show that there is at least
one line and leave the proof of uniqueness to Problem A2. The proof
proceeds by examining cases which depend on the relative positions of 4

and B.



98 5 Angle Measure

If A # B then 4 and B lie on a unique Euclidean line le &p. If =L,
orl=1L,, with m <0 then [ € %), Hence we need only consider the case
where [ = L, , withm > 0. ,

Let A = (ay,a;,) and B = (by, b,). We may assume that a; < b;. Note that
since m > 0, a, < b,. See Figure 5-8 for three possible situations.

B
B A B A
/ / /
case 1 case 2 case 3
Figure 5-8

Case I. a; < b; < 0.In this case A, Be M,, ;.
Case 2. 0 < a; < b,. In this case A, Be M,,, ;.

Case 3. a; <0 < b;. In this case we must work harder to find what
Moulton line 4 and B lie on. We want to show that 4, Be M,  for somen, c.
If4, Be M, . we must have

a,=na, +c and b, =43nb, +c.

Since a; < 0 < by, by # 2a, and so these equations have a unique solution

n= Ll;z_a_z and c¢=a,— na;. (2-1)
20, —a

Since a, < b,, a; <0 and b, > 0, we have n > 0. Thus in the given case

A, Be M, e %) where n and c are given by Equations (2-1).

We have shown that in all cases, if A # B then there is at least one line
le %, with A, B e l. Hence 4 is an abstract geometry. Once you show that
the line through A and B is unique, we will know that .# is an incidence
geometry. ]

The next step is to make .# into a metric geometry. We will define the
distance between two points to be the Euclidean distance unless the two
points lie on opposite sides of the y-axis on a “bent line”. In this case we will
view the Moulton segment joining the points as the union of two Euclidean
segments and add their lengths. Note the condition x;x, < 0 in the next
definition means that (x,, y,) and (x,, y,) lie on opposite sides of the y-axis.

Definition. The Moulton distance between the points P = (x4, y;) and @ =
(x2, y,) in R? is given by
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dg(P,(0,b)) + dg((0,b),Q) ifP,QeM,, ,withx;x, <0

dy(P,Q) = {dE(P, 0) otherwise.

Example 5.2.2. Find the lengths of the sides of AABC in the Moulton
Plane, where A = (—1,0), B=(2,—1),and C =(2,2).

SOLUTION.
du(A, B) = dg(4,B) = /10
du(B,C)=dg(B,C)=3
A, C lie on M ; by Equation (2-1). Hence if D = (0, 1) then
dr(A, C) = dg(A, D) + dg(D,C) = /2 + /5.
See Figure 5-9. O

]
AT~

C

B

Figure 5-9

Proposition 5.2.3. {R2, #,;,d\} is a metric geometry.

Proor. In Problem A3 you will show that d,, actually is a distance function.
Thus we need only show that each line has a ruler. We may use a Euclidean
ruler for each line of the form L, or L, ,. Hence we need only consider the
lines M, ;.

Deﬁnef:Mm,b*Rby x /1_+_m2 ifx<0 22
Sl = -2 22
1+— ifx>0.
4
In Problem A4 you will show that f is a ruler. O

Proposition 5.2.4. {R?, %, d,,} satisfies the plane separation axiom.

ProOE. We must verify the three parts of PSA for every line I The proof
breaks into three cases depending on the line [ € %,,.
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Case 1. | = L, € &%. In this case the half planes determined by [ are the
Euclidean halfplanes H* and H~ determined by I. Clearly R>—I=H* v H".
Also, we see that H* n H™ = (Jf and that both of H* and H~ are Moulton
convex. '

All that remainsistolet A€ H* and Be H™ andshow that AB n L, # J.
If AB is a segment of a Euclidean line then this follows from the fact that
Euclidean geometry satisfies PSA. Suppose that AB = M,, ,. If a <0 then

=(a,ma+b)eABN L, If a>0 then X = (a,3ma+b)e ABN L,. In
either case, AB n L, # & so that H* and H ™~ are half planes for L,.

Case 2. I =L, , with m < 0. Again we let the half plane determined by
! be the Euclidéan half planes H* and H ~ determined by [ Clearly R*—I =
H* UH™ and H* n H™ = ¢J. We leave the proof that H* and H~ are
Moulton convex to Problem AS.

Suppose that A€ H* and Be H™ where H* = {(x,y)|mx + b < y}. If
the Moulton segment AB is actually a Euclidean segment then AB N [ # .
Thus we assume that AB is the union of two Euclidean segments AC and
CB where C = (0,r) for some r. If C € [ we are done because then AB n | # .
If C¢ | then either r > b so that Ce H* and CB n | # ¢ because C and
B are on opposite Euclidean sides of [, orr < bsothat Ce H™ and AC n | #
. Ineithercase ABN I=(ACUCB)ni# &.

Case 3. I= M, ,. In this situation we have to be quite explicit in our
definition of H* and H . Let

Hy ={x,y)|mx+b<y},  Hi={(x))|mx+b>y}
HF ={(,y)3mx +b<y}, H; ={(xy)|imx+b>y}

We define H' = H v HY and H™ = H{ n H; (H" is shaded in Figure
5-10). By Problem A6, R*—I=H* UH and H* nH™ = (.

Figure 5-10

We must show that H* and H~ are convex. Suppose that 4, Be H*.
If A and B lie on the same (Euclidean = Moulton) side of the y-axis or on
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the y-axis then 4 and B either both belong to H{ or both belong to H .
In either case the Moulton segment AB is actually Euclidean so that AB
iseither in Hf orin H5. Hence AB< H™.

If A and B lie on opposite sides of the y-axis, Ly, we may assume that
A is in the left half plane of L, and hence in H{ while B is in the right half
plane of L, and hence in H. The Moulton segment AB intersects L, at
some point C by Case 1. If C € H* then the Euclidean segment AC < H{
and CB < HJ so that the Moulton segment AB=AC U CB< H*.

We will now show that C ¢ H™. M, , is the union of two Euclidean rays
PO and PR with Q to the right of L, and R to theleft. If C € H™, the Euclidean
Crossbar Theorem applied to AAPC and the ray PR shows that PR n
int AC # &. Likewise PO r int CB # . Hence the Moulton line RQ =
L, intersects the Moulton segment AB = AC U CB in two points, which
is impossible. See Figure 5-11. Hence C¢ H™. We leave the proof that
C¢ M,,, to Problem A7.

Figure 5-11

The proof that H™ is convex is left to Problem A8. Finally, the proof
thatif 4 € H* and B € H™ then AB intersects M,, , 1s left to Problem A9. [J

Next we want to define an angle measure for the Moulton Plane using
the Euclidean angle measure. If B is not on the line Lo, then given £ ABC
we may choose A’ € int(BA) and C’ € int(BC) so that 4’, B, and C’ all lie
on the same side of L. Then we set my (/£ ABC) = mg(£ A’BC’). See Figure
5-12.If B € L, we proceed as follows. For each b € R and each P = (x, y) let

_jx,2y—b) fx>0andy>b
b= (x, y) otherwise.
Then if B=(0,b) € L, set

my(L ABC) = mg(L A,BC,).

See Figure 5-13. Note that if B = (0,b) € L, what weare doingis “unbending”
AB before we compute the angle measure.
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e .
1 /

A’ c=¢,

A

Figure 5-12 Figure 5-13

The detailed proof that m,, actually is an angle measure is lengthy but not
hard. It is left to Problem B11.

Proposition 5.2.5. .# = {R?, %, dy, my} is a protractor geometry.

Convention. From now on the term Moulton Plane and the
symbol .# mean the protractor geometry # = {R?, Zy;, dy, My}

The main value of studying the Moulton Plane is that it supplies us with
counterexamples of familiar results in Euclidean geometry. In Problem A10
we have a triangle for which the sum of the measures of the angles is greater
than 180. We also will have problems with existence and uniqueness of lines
through a given point, perpendicular to a given line. This illustrates our need
for an additional axiom in order to obtain familiar results. This triangle
congruence axiom will be introduced in Chapter 6.

PROBLEM SET 5.2

Part A.
TN }
l./F'md the Moulton lines through the following pairs of points:

—"a (2,3 and (3, 1)

b. (1,4) and (2,6)

¢ (—1,3)and(~3,-2)

d. (—1,4)and (2,7)

e (—4,—4)and (4,4)

2. Complete the proof of Proposition 5.2.1 by showing that for every pair of points
A # B there is exactly one line | € %, through A4 and B.

3. Prove that d,, is a distance function for {R?, %,}.
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. Complete the proof of Proposition 5.2.3 by showing that f as defined by Equa-

tion (2-2) s a ruler.

. Complete the proof of Proposition 5.2.4 in Case 2 by proving that H* and H™

are Moulton convex.

. In Case 3 of the proof of Proposition 5.2.4 show that R*—I = H* U H™ and that

H*nH =¢.

. In Case 3 of the proof of Proposition 5.2.4 show that C ¢ M,, ;..

. In Case 3 of the proof of Proposition 5.2.4 show that H ™ is convex.

Complete the proof of Proposition 5.2.4 in Case 3 by showing that if 4 € H* and
B e H™ then the Moulton segment AB intersects M,, ;.

*10\\In the Moulton Plane let 4 =(-5,0), B =(0,5), C = (10,10}, D = (-5,10), E =

(5,0), and F = (2,6)as in Fxgure 5-14.

a. Show that A—B—C and D—B—E.

b. Find the sum of the measures of the angles of ABFE.
¢. Repeat part (b) for ABFD.

Figure 5-14

Part B. “Prove” may mean “find a counterexample”.

11.
12.

13.

Prove that m,, is an angle measure for .#.

Prove that d, does not satisfy the triangle inequality. (Hint: Consider A4ABC
where A =(—1,0), B=(2,2)and C = (0, %))

In the Moulton Plane show that it is possible to have three points 4, B, C which
are NOT collinear but AC = AB + BC. (This illustrates again why we insist on
collinearity in the definition of between.) If you have access to a computer algebra
system (program) such as DERIVE, MAPLE, or MATHEMATICA, let A =
(=1,0), B=(0,b), and C =(2,2). Find the exact value of b so that AC =
AB + BC and A, B, C are not collinear. (The calculation may be done by hand if
you so desire and have the time.)

. Show that the Moulton Plane satisfies Pasch’s Postulate directly. This gives an

alternative proof that .# is a Pasch geometry.
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Part C. Expository exercises.

15. Write a short essay which gives a description of the Moulton Plane and describe
its important properties. What is relevant here is what you think is important
about the model.

5.3 Perpendicularity and Angle Congruence

In terms of angle measure there is some standard terminology for angles. This,
in turn, can be related to certain configurations of angles. This section will
deal especially with one such configuration—that of a right angle.

Definition. An acute angle is an angle whose measure is less than 90. A nght
anglo is an angle whose measure is 90. An obtuse angle is an angle whose
"measure is greater than 90. Two angles are supplementary if the.sum of .their
measures is.180. Two angles are mmplementary if the sum of their measures
is 90.

Definition. Two angles / ABC and / CBD form alinear pair.if A-—B—D
(see Figure 5-15). Two angles / ABC and . / A’BC’ form a vertical pair if
their union is a pair -of intersecting lines. (See Figure 5-16. Alternatively,
£ ABC and /£ A’'BC’ form a vertical pair if either A—B—A4’' and C—B—C,
or A——B—C'and C—B—A4')

O — &

D B A
Figure 5-15 Figure 5-16

Theorem 5.3.1. If C and D are points of a protractor geometry and are on the
same side of AB and m(( ABC) < m(/ ABD), then C € int(/. ABD).

ProoF. Either 4 and C are on the same side of BD, or C € BD, or A and C
are on opposite sides of BD. We eliminate the latter two cases as follows. If
Ce BL BD, then since C and D are on the same side of AB, then C e mt(BD)
Hence £ ABC = /£ ABD and m(/_. ABC) = m(/_ ABD) which isa contradiction.

If A and C are on opposite sides of BD, then by Problem A9 of Section 4.4,
D € int(£ ABC). This means that

m(/ ABD) + m(/ . DBC) = m(/ ABC) < m({ ABD).

Hence m{/_DBC) < 0, which is impossible. Thus the only possibility is that
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A and C are on the same side of BD and so C € int(/ ABD). O

The next theorem is sometimes taken as an axiom (for example, in Moise
[1990]). However, as we shall now see, it is a consequence of the other

axioms.

. Theorem 5.3.2 (Linear Pair Theorem)..If / ABC and / CBD form a linear
{ pair in a protractor geometry then they are supplementary.
ProoF. Let m(/. ABC) = a and m(, CBD) = . We must show that o + f =
180. We do this by showing that both « + f < 180 and o + f§ > 180 lead to

contradictions.
Suppose o + B < 180. By the Angle Construction Axiom, there is a

unique ray BE with E on the same side of 4B as C and with m(/ ABE) =
o + B.See Figure 5-17. By Theorem 5.3.1, C e int( /. ABE)so that m( /. ABC) +
m(, CBE) = m(/, ABE). Thus

o+m(LCBEYy=a+f or m(.LCBE)=§
On the other hand, E € int(£ CBD)(Why?) so thatm(/. CBE) + m(/. EBD) =
m( £ CBD). Thus

B+ m(LEBD)=f or m(LEBD)=0

which is impossible. Thus o + § < 180 cannot occur.
e Now suppose o + 8 > 180. Since both o and f are less than 180, « + f <
360 and 0 < a + § — 180 < 180. Then there exists a unique ray BF with F

on the same side of 4B as C and m(/ ABF) = a + § — 180. See Figure 5-18.
Since B < 180, o0 + B — 180 < a and so F € int(~ ABC). Hence m(/. ABF) +

m(L FBC) = m(,L ABC). Hence
o+ B —~180+ m(L FBC)=0a or m(,LFBC)=180— .
On the other hand, C € int(£ FBD)(Why?)so thatm(/ FBC) + m(/ CBD)=
m( ., FBD). Thus
180 — f + B =m(L FBD) or m(LFBD)=180

which is also impossible. Hence o + f§ > 180 is false.
Thus the only possibility is that o + 8 = 180. O

®

E a+p C
LAQ
D B A
Figure 5-17 Figure 5-18

Now we can prove the converse of axiom (iii) for an angle measure.
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Theorem 5.3.3. In a protractor geometry, if m(, ABC)+ m(/ CBD) =
m(, ABD), then C € int( . ABD).

ProoF. We shall show that C and D are on the same side of 4B by con-
tradiction, Suppose that C and D are on opposite sides of AB. Now neither
Anor D lies on BC.If A and D lie on the same side of BC then A4 € int(/ CBD).
(Why? See Figure 5-19.) But then

m(/ CBA) + m(/. ABD) = m(/,. CBD) < m(, ABD)

which is impossible. Hence_A4 and D are on opposite sides of BC (see
Figure 5-20). Choose E with E—B-—A4 and note that E and D are on the same

side of BC. Then E ¢ int(/ CBD) (Why?) and so
m(/, CBE) + m(/ EBD) = m(/ CBD).

S oL

Figure 5-19 / Figure 5-20

/

Since £ ABC and /. CBE form a linear pair, m(/ CBE) = 180 — m(/. ABC)
and therefore

180 — m(, ABC) + m( . EBD) = m(, CBD)
or
180 + m(£ EBD) = m(/ ABC) + m(, CBD) = m(/ ABD).

But this means m(/ ABD) > 180, which is impossible. Thus C and D cannot
be on opposite sides of AB, so they must be on the same side. The result then
follows from Theorem 5.3.1. O

Note that the result about distance that corresponds to Theorem 5.3.3 is
false. If AB + BC = AC it need not be true that B € int(4B). We have seen
examples in the Taxicab Plane and in the Moulton Plane.

The next result, whose proof is left to Problem A2, is the converse of
Theorem 5.3.2.

Theorem 5.3.4. In a protractor geometry, if A and D lie on opposite sides of
BC and if m(, ABC) + m(, CBD) = 180, then A—B—D and the angles
form a linear pair.

Definition. Two lines [ and !" are perpendxcular (written ! L I'yif | U I’ contains
a right angle. Two rays or segments are perpendicular if the lines they deter-
mine are perpendicular.
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The existence and uniqueness of a perpendicular to a line through a point
on the line is guaranteed in the next theorem, whose proof is left to

Problem A3.

Theorem 5.3.5. Given a line | and a point B € | in a protractor geometry, there
exists.a unique line I’ that contains B such that | L I'.

Example 5.3.6. In the Poincaré Plane, find the line through B = (3, 4) that
is perpendicular to the line

oLs = {(x,y) € H|x* + y* = 25}.

SoLuTioN. We use our knowledge of analytic geometry as motivation.
Clearly the solution 1s a type II line. Its tangent at B must be perpendicular
to the tangent to oL at B. Thought of as a semicircle in R, the desired line
must have its radius through B tangent to oLs. Hence the slope must be —3.
The Euclidean line of slope —3 through (3,4) has equation

(y=49=-ix-73).

This line crosses the x-axis at x = %2>. Hence the desired line should be L,

where ¢ =2 and r=/(&)? +4* =22, See Figure 5-21. We leave the
verification that L, actually is the desired line as Problem A8. 0

Figure 5-21

We should note at this time that if B¢ [ we do not know if there is a
unique line through B perpendicular to I In fact, there may not be any such
line unless we add another axiom relating protractors and rulers. Also note
that the familiar Pythagorean Theorem may not be true in this setting. You
will show in Problem A9 that the triangle AABC of Example 5.1.3 has a
right angle at B but (4C)? # (AB)? + (BC)2.

The remaining results of this section are left to the problems.

Corollary 5.3.7. In a protractor geometry, every line segment AB has a unique
perpendicular bisector; that is, a line | 1 AB with |~ AB = {M} where M is the
‘midpoint of AB.




108 5 Angle Measure

Theorem 5.3.8. In a protractor geometry, every angle /. ABC has a unique angle
bisector that is, a ray BD with D € int(L ABC) and m( . ABD) = m(, DBC).

Recall that two line segments in a metric geometry are said to be congruent
if they have the same length. We mimic this idea to define the congruence of

angles.

Definition. In a protractor geometry {&, %, d,m}, /. AB,C,Hi_s_'congr”uent_ to
L DEF (written as / ABC ~ / DEF)if m(/ ABC) = m(( DEF).

Many of the results of this section can be stated in terms of the notion
of congruence and are very easy to prove. Be careful, however, not to confuse
“congruent” with “equal.”

Theorem 5.3.9 (Vertical Angle Theorem). In a protractor geometry, if  ABC
and (. A’BC’ form a vertical pair then { ABC ~ [ A'BC'.

Theorem 5.3.10 (Angle Construction Theorem). In a protractor geometry,
given /. ABC and a ray ED which lies in the edge of a half plane H,, then
there exists a unique ray EF with Fe H, and { ABC ~ [/ DEF.

Theorem 5.3.11 (Angle Addition Theorem). In a protractor geometry, if D €
mt(/ ABC), Seint(, PQR), { ABD ~ [ PQS, and / DBC ~ LSQR then
L ABC ~ [/ PQOR.

Theorem 5.3.12 (Angle Subtraction Theorem). In a protractor geometry, if D €
int(£ ABC), S eint(, POR), (. ABD ~ [ PQS, and / ABC ~ [ PQR, then
L DBC ~ [ SQR.

PRrROBLEM SET 5.3
Part A.
(1

. Prove Theorem 5.3.4.

Prove that any two right angles in a protractor geometry are congruent.

. Prove Theorem 5.3.5.
. Prove Corollary 5.3.7.
. Prove Theorem 5.3.8.

. Prove Theorem 5.3.9.

[ NV OO SR e

. Let L ABC and /. A'BC’ form a vertical pair in a protractor geometry. Prove
that if / ABC is a right angle so are / A'BC, [ A'BC' and [ ABC'.

N

yVerxfy that the line found in Example 5.3.6 really is perpendicular to ,Ls at (3,4).

_/lShow that if AABC is as given in Example 5.1.3, then (AC)? # (4B)? + (BC)~.

Thus the Pythagorean Theorem need not be true in a protractor geometry.
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10.
1L
12.
13.
14.
15.

16.
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Prove Theorem 5.3.10.

In 2 find the angle bisector of £ ABC if A =(0,5), B=(0,3) and C = (Z,ﬁ).
Repeat Problem 11 with 4 = (1,3), B =(1,\/3) and C =(,/3,1).

Prove Theorem 5.3.11.

Prove Theorem 5.3.12.

Prove that in a protractor geometry /. ABC is a right angle if and only if there
exists a point D with D—B—C and £ ABC ~ [ ABD.

In the Taxicab Plane let 4 = (0,2), B=(0,0), C=(2,0), @ =(—2,1), R=(—-1,0)
and S = (0, 1). Show that 4B ~ QR, £ ABC ~ /. QRS, and BC ~RS.Is AC ~ Q5

Part B. “Prove” may mean “find a counterexample”.

17.

18.

19.

20.

21.
22.

23.

A trisector of / ABC is a ray BD with De int(Z ABC) such that either
m(, ABD) = $m(, ABC) or m(, CBD) = 4(, ABC). Prove that for every angle
£ ABC in a protractor geometry there are exactly two trisectors.

Let AABC be a triangle in a protractor geometry with AB ~ CB. Prove
/. BAC ~ [ BCA.

Suppose that in the Poincaré Plane the line ! is perpendicular to the line L.
Prove that /is a type II line and that its “c” parameter is equal to a.

Prove that if two angles in a protractor geometry are supplementary then they
form a linear pair.

Prove that any two right angles in a protractor geometry are equal.

In a protractor geometry assume that D € int(~ ABC) and that /. ABD ~ / PQS,
(. DBC ~ ([ SQR,and /£ ABC ~ [ PQR. Prove that S € Int(£L PQR).

In the Moulton Plane .# find a line / and two points P, Q such that there are
two lines through P perpendicular to / and no lines through Q perpendicular to 1.
(Hint: Figure 5-14))

Part C. Expository exercises.

24.

To do this exercise you will need the computer program POINCARE which is
described in the preface. Prepare a demonstration of geometry in the Poincaré
plane for high school students using the program. As the written part of the
work, first describe what you would hope to accomplish, how you would go
about it, and then how you would determine if you were successful.

5.4 Euclidean and Poincaré Angle Measure

In this optional section we shall carefully verify that the Euclidean and
Poincaré angle measures defined in Section 5.1 actually satisfy the axioms
of an angle measure. The key step will be the construction of an inverse
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cosine function. This will involve techniques quite different from those of
the rest of the book. As a result, you may choose to omit this section knowing
that the only results that we will use in the sequel are that mg and my are
angle measures and that the cosine function is injective. On the other hand,
it is interesting to see a variety of mathematical techniques tied together to
develop one concept as is done in this section. The material on the construc-
tion of Euclidean angle measure is taken from Parker [1980].

Precisely what are we assuming in this section? We are assuming the
standard facts about differentiation and integration but nothing about
trigonometric functions. This will force us to consider the notion of an
improper integral in order to define the inverse cosine function. Since general
results about differential equations may not be familiar to the reader, we
shall need to develop some very specific theorems regarding the solutions
of y" = —y. (In calculus we learned that both sin(x) and cos(x) are solutions
of this differential equation. That is why we are interested in this equation.)

Definition. Let f(¢) be a function which is continuous for ¢ <t <d and
which may not be defined at ¢t =d. Then the improper integral {? f(r)d:
converges if lim,_,- [* f(r)dr exists. In this case, we say lim,_,- [* f(t)dt =

{4 fwyat.

Lemma 5.4.1. The improper integral [} dt/\/1— t* converges.

Proor. Since we are trying to develop the trigonometric functions and we are
assuming nothing about them, we cannot use the “fact” that sin™!(¢) is an
antiderivative of 1/,/1 — t2. Instead, we note that

f J’l/z b dt
J—f Nl v

for every choice of b with § < b < 1, so that to show that [§dt/,/1 — t* con-

verges we need only show that [i,dt/./1 —t* converges. We proceed by
integrating by parts:

tdt

fll2 /___ fll2 \/—__
_JITEp o ISP
= _L/szt

vi-b Vi-t

Al el i

Now./1 — t?/t? is continuous on the interval [4, 1] (including at ¢ = 1) so
its integral over that interval exists. Thus

1
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42
lim [* 2 =v6—0—f‘vl2tm
b1 JU2 [T 12 2t

exists. Hence the improper integrals {,, dt/\/1 ~ t* and {§ dt/\/1 — > both
converge. J

A similar argument shows that the improper integral {°, dt/\/1 — 12

converges so that (o ! dt/\/1 — t? also exists.
We define a number p to be twice the value of the integral in Lemma 5.4.1:

d d d d
P=2f01ﬁ=fflﬁ+fol¢1—i7=fjlﬁ'

Of course, from calculus we know that p = z but that will be irrelevant for
our purposes. All that matters is that p > 0.

We wish now to define a function which will turn out to be the inverse
cosine function. Motivated by calculus, we feel the inverse sine of x can be
given as [§ 1/4/1 —t* dt. Since cos™ (x) = n/2 — sin™}(x), we will define a
function I(x) as in Equation (4-1).

Lemma 5.4.2. The function I(x) given by

I(x) = for —1<x<1 4-1)

I_? _ J‘x dt
2 0 /1 Y
is a bijection from [ —1,1] to [0, p].

ProoF. By the Fundamental Theorem of Calculus, I(x) is differentiable
for —1 <x<1 and, in fact,

I() = (4-2)

1—x*

Since a differentiable function is continuous, we know that I(x) is continuous
for —1 < x < 1. Since the improper integrals that define I(1) and I(—1)
converge, I(x) is actually continuous for —1 < x < 1.

Equation (4-2) shows that I'(x) < 0 for —1 <x <1 so that I(x) is a
strictly decreasing function. In particular, I(x) is injective.

Since I is decreasing, its largest value occurs at the left endpoint and is

-1 dt P ) dt P p
L.
f“ 1-2 2 2

o ficg 2

p
~-nN=r_
I(-1) 5

Thus I(x) < p for all x in [ —1,1]. On the other hand, the smallest value of
I(x) occurs at x =1 and is
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so that I(x)>0 for all x in [—1,1]. We have therefore shown that
I:[-1,1]—-[0,p] and is a continuous decreasing function. I is surjective
because it is continuous and sends endpoints of [ —1, 1] to endpoints of
[0, p]. (This is the Intermediate Value Theorem.) Thus [ is bijective. 0O

Since I:[—1,1] - [0,p] is a bijection, it has an inverse, which we shall
call ¢. Of course, we expect that ¢(f) is really cos(f).

Definition. The cosine function c:[0,p]—[—1,1] is the inverse of I:

[-1,1]-10,p].
The sine function s:[0,p] — [0, 1] is the function given by

s(0) = /T — c2(6) where c*(0) = (c(6))>

Lemma 5.4.3. c(0) and s(0) are both differentiable for 0 < 0 < p.

Proor. From calculus we know that c'(8) exists because I'(x) # 0. In fact,
using Equation (4-2), we see that

! o 1 - _ 2 —_
c(0)-—1,—(c@—)— J1—=c*0)= —s(f) for0<@ <p. | 4-3)
On the other hand, we have
s'(0) = 21%/_7@ (=2c(0)  c'(B)) =c(0) for0<8<p. (4-4)
Furthermore,
()= —c(#) and s"(B)= —s(f) for0 <8< p. (4-5)

a

Note that Equations (4-3), (4-4), and (4-5) are the familiar differential
equations for the sine and cosine functions.

In order to prove the angle addition axiom holds for mg, we shall need to
prove the addition law for the cosine function. This in turn depends on the
uniqueness of the solution of the initial value problem for the special case of
differential Equation {4-5).

Lemma 5.4.4. Let a and b be real numbers with 0 < a < b. Then the only
solution of the initial value problem

Solve: y"(0) = —y() for0<fO<b

with y(a)=0 and y(a)= (4-6)
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is given by y(0) = 0 for all 0 < 6 < b.

Proor. Note that y(f) = 0 is a solution of Problem (4-6). Let z(6) be any
solution of Problem (4-6). We want to show that z(§) = 0 for 0 < § < b. Let
w(8) = 2/(0) so that (z'(0), w'(0)) = (w(B), —z(8)) since w'(B) = z"(0) = - z(6).

We may integrate a vector valued function such as (w(f), —z(6)) by
integrating each component separately. Alternatively, we can define such
an integral as the limit of a sum. Either way, we have

(20, w®) = [ (20, w(t) de = {7 o), — 20 e @)

In the proof of Proposition 3.1.6, we saw that [|X + Y| < ||X]| + |||
By induction we have

Y X<y Xi”
i=1 =1
where X; e R2 By taking the appropriate limits this yields the inequality
() ()
J;X(t)dt SL Xt fora<6<b (4-8)

where X(¢) = (w(t), — z(¢)). If we let
u() = ||(2(6), w(9))|| = /z%(6) + w(0) (4-9)

then we can combine Equations (4-7), (4-8), and (4-9) as
u(®) = ||(z(0), w(O)]|

= ” [7 v, —ztey) e

= f: u(t)dt

u(®) < f ®u(t)dt where u(6) > 0 and u(a) = 0. (4-10)

< [ oo, —z(e)) a

Thus

We will show that u(6) = 0 for 0 < 8 < b. This implies that z(f) =0 (and
w(f) = 0).
By Inequality (4-10) we have

u(6) — ff u(tyde < 0
and so for any 6§,

e u(f) —e® J;o u(t)dt < 0.

But the expression on the left in this last inequality is the derivative of
e ® [P u(t)dt. Thus e™? [® u(r)dr is a decreasing function whose value at

a is 0. Hence
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e“’ﬁou(t)dtso fora <6< b.

Thus {2 u(r) dt < 0 for a < 6 < b. But since u(f) is non-negative, 0 < u(f) <
{5 u(t)dt <0 so that u() =0 for a< 6 <b.

To handle the case 0 < 6 < a consider —(z(6), w(6)) = [§ (w(t), —z(t)) dt
and show that €° _[3 u(t)dt is increasing. This ylelds u@)=0for0<f<a.
Hence 0= u(f) = ||(z(6), w(8))]| for 0 <0 <b so that z(f) =0 for 0<
0 <b. 0

Lemma 5.4.5. Suppose that 0 < b < p and that f:[0,b] — R is continuous
with f"(6) = —f(0) for 0 <0 < b. Then there exist unique real numbers A
and B such that

J(0) = Ac(@) + Bs(§) for0<9<b. 4-11)

Proor. Consider the initial value problem

Solve: y'(0)= —p(@) for0< @ <b, (4-12)
with y(@) = fla) and y'(a) = f'(a).

If y(6) is a solution of Problem (4-12) then y(6) — f{6) is a solution of Problem
(4-6) so that y() = f(0) for 0 < 6 < b.

On the other hand, if y(6) = Ac(8) + Bs(6), then y"(6) = — y(6) so that
y(0) is a solution of Problem (4-12) if and only if 4 and B satisfy

Ac(a) + Bs(a) = f(a) (4-13)
— As{(a) + Bela) = f'(a).

Since c(a) - c(a) ~ (—s(a)) - s(a) = c*(a) + s*(a) = 1 # 0, Equations (4-13)
have a unique solution, namely

A=fla) cla)—- f'(a)-s(a) B=fa) cla)+ fla) sla)
For these unique values of 4 and B
S0 = y(6) = Ac(6) + Bs(9) forQ0 < 6 <b.
Since both f(6) and Ac{) + Bs(8) are continuous on [0, b], f(6) = Ac(6) +

Bs(f) for 0< 0 <b. O
What we have really done so far is prove the existence and uniqueness
of solutions to the differential equation /" = —f with a given set of initial

conditions. We now use this result to prove the addition law for cosine.
Lemma 5.4.6. If 6, ¢, and 6 + ¢ are all in [0,p] then
(0 + @) = c(O)cle) — s()s(p). (4-14)

ProOF. If ¢ =0 or if ¢ = p (so that 6 = 0) the result follows easily. (See
Problem Al.) Now we assume that ¢ is fixed with 0 < ¢ < p and set f(0) =
¢(@ + ¢). By Lemma 5.4.5 with b = p — ¢ we have
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c(0 + ¢) = f(0) = Ac(8) + Bs(9).
Now f7(0) exists because f(6) is differentiable for —¢p <8 < p — ¢. Thus

A = f(0) = c(p) and B = f'(0) = c'(¢) = —s(¢p). Hence
c( + ¢) = c(p)c(6) — s(¢)s(0)- O
This completes our development of the cosine and inverse cosine func-
tions. We are now ready to prove that the Euclidean Plane has an angle

measure. Recall that our motivation is the fact that if 6 is the measure of the
angle between the vectors (4 — B) and (C — B) then

(A—B,C—B) =4 - B||C— Bjcosb.

Definition. If 4, B, C are noncollinear points in the Euclidean Plane, then the
Euclidean angle measure of / ABC is

{(A-—B,C—-B)
m(/L ABC) =1 .
e ase)=1{ i)
We should note that since A # B and B # C, |4 — B|| and ||C ~ B| are
nonzero. Furthermore, the Cauchy-Schwarz Inequality (Proposition 3.1.5)
says that —1 < {4 — B, C — B)/||4 — B||||C — B|| < 150 that the definition
makes sense. (We have dropped the subscript E to ease the notation a bit.
Also, m is radian measure and not degree measure.)

Proposition 5.4.7. For all angles 1 ABC in &
0 <m(/L ABC) < p.

Proor. Since 0 < I(x) < p for all x between —1 and 1, we need only show
that 0 and p cannot occur as the measure of an angle. Since A4, B, and C are
not collinear, A — B # t(C — B) for any t and C — B #(0,0). Thus by
Proposition 3.1.5

(A-B,C-B>
—1< <1
ll4 - Bl[llc - B
Since I(—1) = p, I(1) = 0, and I is injective,
{A-B,C—B)
0<m(LABC)=I< ><p. O
|4 - Bl ||C - B

Proposition 5.4.8 (Angle Construction). In the Euclidean Plane let BA be a
ray in the edge of the half plane H, and let r be a real number with 0 <r < p.
Then there exists a unique ray BC with C € H, and m(/_ ABC) =r.

Proor. Let X = (4 — B)/||A — B]|. Let W be either X* or —X* where the
sign is chosen so that H; = {P|{P — B, W) > 0}. Set

C=B+c(r)X +s(W and A =B+ X,
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Then £ ABC = /£ A’BC and

m(L A'BC) = 1( (X, e(NX + s(nw> )

IX[HcrX + srW||

=I(c(r)=r
because || X|| = [|W]| = [|c()X + s()W|| = 1 by Problem A2 and (X, W) =
0. Since (C — B, W) = s(r) > 0, C € H,. Thus we have the existence of a ray

with the desired property. See Figure 5-22 which illustrates the case where
W= —X"

\ B+c(r) X +s(r) W=C

Figure 5-22
§

To show umqueness of the ray suppose that D € H, with m(/ ABD) =r.
We must show that BD = BC.

Choose D' € BD with ||B— D||=1. Then LABD = £ A'BD'. Let Z =
D' — B. We claim that Z =(Z, X>X + (Z,W>W. Since (W, W) =1,
(Z ~ZWIW, W) =(Z,W)>—{Z,W)>=0. Thus, since W = + X, Prop-
osition 4.2.1 implies that Z — {Z, W)W = tX for some t € R. We find ¢ by
taking the scalar product with X:

=KX, X>=X,X)={Z - AWV, X) =(Z,X).
Thus Z = (Z, W)W + {(Z, X >X as claimed.
Since || X|| = ||Z|| = 1, we have

RIy (X, Z> )

Thus ¢(r) = <X, Z). Since ||Z|| = 1, we have
(Z,W) = +J1-(Z,X)2 = + /1~ &r) = +s(1).

Since D'e Hy, <Z,W) >0 and so (Z, W) = +s(1). Thus Z =c(rX +
s()W and D' = C. Hence BD = BD' = BC and there is a unique ray BC
with Ce H; and m(/ ABC) = r. O

In order to verify the Angle Addition Axiom it is necessary to prove first
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two results which you would normally expect to be consequences of Angle
Addition.

Proposition 5.4.9. In the Euclidean Plane, if Deint(/ ABC) then
m(,L ABD) < m(/ ABC).

ProoF. Let X =4 — B, Y = C — B,and Z = D — B. By replacing A4, C, and
D by other points on the appropriate rays we can make || X|| = ||Y|| = ||Z]| =1.
See Figure 5-23.

Figure 5-23

Since D € int(£ ABC), {Z, X*) and (Y, X*) have the same sign. Choose
W to be either X* or — X* in a manner so that (Z, W) > 0. As in the proof
of Proposition 5.4.8 we have

Y=c(nX + s(r)W and Z =c(p)X + s(p)W

where r = m(. ABC) and p = m(/. ABD).
Now Y! = +(s()X — c(r)W). Since Deint(LABC), {(X,Y*> and
{Z, Y1) have the same sign. Thus
(X, s(NX — c(W) =s(r)
and
e(p)X + s(pIW, s(NX — c(W ) = c(p)s(r) — s(p)e(r)

must both be positive. Hence

) _<p)

s(p)c(r) < c(p)s(r) and S0 < )

By Problem A3, f(0) = c(0)/s(f) is a strictly decreasing function. Thus
p <rand m(/, ABD) < m(/, ABC). |

Proposition 5.4.10. In the Euclidean Plane, if  ABC and [ CBD form a
linear pair then m(/,. ABC) + m(. CBD) = p.
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Proor. Let X=A4—-B, Y=C~B, and Z=D - B and assume that
IX]l = {|Y]| = ||Z]| = 1 as before. Note that since B is between 4 and D we
have Z = — X. See Figure 5-24. By Problem A4, I(—x) = p — I(x). vThus

m(,.ABC) + m(£.CBD) = IKX, Y ) + IKY,Z))
=1IKX,Y)) + I(—<Y, X))
=I{X,Y)) +p - IKX,Y))
=P d

Figure 5-24

Proposition 5.4.11 (Angle Addition). In the Euclidean Plane if D € int(/. ABC)
then m(/. ABD) + m(/. DBC) = m(/.ABC).

Proor. Choose E so that B is between A and E. Then C € int(/. DBE). By
Propositions 5.4.9 and 5.4.10

m(,.DBC) < m(£.DBE) = p — m(/.ABD)

so that m(/. ABD) + m(/. DBC) < p. Hence we can apply Lemma 5.4.6 with
8 = m(/. ABD) and ¢ = m(/.DBC). See Figure 5-25.

Figure 5-25
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AsbeforeX =A — B,Y=C—B,Z=D - Band||X|| = Y||=|Z|| = 1.
Note thatm(/ ABC) = I((X, Y)),m(, ABD) = I(KX, Z)),and m(, DBC) =
I{Z,Y ). Hence

c(m(L ABD)+m(£ DBC))=c(I{X,Z>)+I(Z,Y)))
=c(I({X,Z}))c(KZ,Y)))
= sUIKX, ZO)s(IKZ, Y)))
=(X,ZXZ,Y)—J1- (X, 2> /1 -(Z,Y)2
By Problem A5, (X, Z*> = +/1—<X,Z)?and (Y, Z*> = +/1-(Y, Z)%

Since D € int( £ ABC), (X, Z*)> and (Y, Z*) must have opposite signs so that
<X’Z-L><Y’Z-L> = _Jl - <X’Z>2\/l - <Y’Z>2

Hence
c(m(, ABD) + m(£L DBC)) = (X, Z)Y,Z) + {X,Z*)(Y,Z*)
=KX, Z>Z +({X,Z*)Z"), Y)
=<X,Y)
= c(m(, ABC)).
Since the function c¢(6) is injective, we have
m(/ ABD) + m(,. DBC) = m(/, ABC). O
Propositions 5.4.7, 5.4.8, and 5.4.11 show that m is an angle measure based
on p. By Problem A4 of Section 5.1, the function m; = (180/p)m is an angle
measure based on 180. It is the measure we actually use in the Euclidean
Plane. The function I(x) is really cos™*(x) (in radians). ¢(6) is cos(f) and s(6)
is sin(@). It is possible to build up all of the trigonometric functions from

what we have here and have them defined for all 6, not just 0 < 8 < #n. You
should feel free now to compute

(A—B,C—B))

’"E‘“BC)”“”(——HA ZB[lc— B

using cos ~!(x) in terms of degrees.

Example 5.4.12. Let 4A=(2,1), B=(3,—2) and C=(—1,3). What is
mg(/L ABC)?
SoLuTION. A — B=(-1,3),C - B=(—4,5)
-1 <(_ 1’ 3)’ (_4’5)>
JI0- Jai

= cos_1<i>
/410

= 20.225. O

mg(/,. ABC) = cos
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We now turn our attention to the Poincaré Plane. Recall the following
definitions from Section'5.1.

Definition. If BA is a ray in the Poincaré Plane, where B = (x5, yg) and 4 =
(x4, ¥4), then the Euclidean tangent to BA at B is

0,y,— ys) if ABistypel
Tga=1 (yac—xp) ifA4Bis L, x5<xy
~(yg,c — xg) ifABis L, xg> x4

The Euclidean tangent ray to BA is the Euclidean ray BA  where
A’ = B + Tg,. The Poincaré measure of / ABC in H is

- <TBA’ TBC>

my(/ ABC) = mg(L A'BC’) = cos ™! =
§ = I Toall 1 T

We must show that my is an angle masure. Because it is defined in terms

of my we expect that the basic results about Poincaré angle measure should

follow fairly easily from similar statements about Euclidean angle measure.

Proposition 5.4.13. For every hyperbolic angle ( ABC, 0 < my(/ ABC) <
180. .

Proor. This is immediate since 0 < mz(/ A’BC’) < 180. [}

The key step for the rest of this section is the next proposition. It tells us
that for each possible tangent direction there is a unique Poincaré ray.

Proposition 5.4.14. Let B =(xp, yg) € H and let T =(t,15) # (0,0). Then
there exists a unique ray BA in H with Tg, = AT for some A > 0.

Proor.

Case 1.t, = 0. The ray should be of type I. Let A be any positive number
with yg + A, > 0. This is possible since yg > 0. Let A = (xg, y5 + Ats) € H.
Then Ty, = (0, Aty) = AT. This gives existence.

On the other hand, if C = (x, yc) € H with Ty = uT for some p >0
then the first component of Tz must be zero so that BC is a type I line. Thus
BC = BA. Finally, since y, — yp and yc — y5 have the same sign as t,, B is
not between 4 and C. Hence, BC = BA.

Case 2.t; # 0. Let A = yg/|ty], ¢ = x5 + (yata/t;), and r = A||T||. Then
2
(xa = O + (g = (f») (2 + (99
1
= 1%(t)* + A%(1y)?
— Tl = 7.
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Thus Be [L,. Choose A€ L, with x, > xgift, >0and x, < xgif t, <O.
Then ¢ — xp = ygt,/t; so that

T = (B, ¢ — xp) = (Aty, A1) = AT ift, >0
BAZ ) (ygs € = xg) = —(—Aty, —Atp) = AT ift, <O0.

Hence T, = AT and we have existence.

On the other hand, suppose that Ce H and Ty = uT for some u > 0.
Then BCis atype Il line ;L since ty # 0,and Tge = +(yp, d — xg) = ulty, t3).
Thus ¢ = + yg/t,, where the 1 sign must be the sign of ¢, since u > 0. Thus
1 = ys/|t:| = A. Hence

+(d — xp) = pt;
or
' d=xp+ pty = xg + (yglafty) = ¢
s = \/(XB —d)* + (yp)* = \/(xa -+ (yp) = }»“T“ =r

Thus 4 and C belong_t_p L,. We need only show that B is not between A4
and C to have BC = BA.

Tye = (¥, d — xp) = uT = AT = Ty,

where the + sign is the sign of t,. But by the defimition of T¢ and Ty, the
+ sign is the sign of x; — x5 and of x, — xg. Hence x¢ — x5 and x4 — xp
have the same sign so that B is not between A and C. Thus there is a unique
ray BA with Ty, = AT for some A > 0. O

Before we go any further, let us adopt some informal terminology
regarding the sides of a line. If | is a vertical Euclidean line or a type I
Poincaré line, it is clear what “left side” and “right side” mean. Similarly, if |
1s a non-vertical Euclidean line or a type II Poincaré line, then “top side”
and “bottom side” have intuitive meaning. This terminology could be made
formal if needed. Given a Poincaré ray BA, there is a tangent Euclidean ray
BA’ where A = B + Ty,. Note that B4 and BA’ are either both vertical or
both not vertical. Then given a side of one ray, there is a corresponding side
of the other ray (left, right, top, or bottom). The proof of the next result is left
to Problem A6. See Figure 5-26.

Figure 5-26
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Proposition 5.4.15. Let BA be a Poincaré ray and let BA' be the tangent
Euclidean ray. Then the side of the Poincaré line BA that contains C cor-
responds to the side of the Euclidean line BA' that contains C' = B + Ty
(See Figure 5-26.)

Proposition 5.4.16 (Angle Construction). Let BA be a ray in H which lies in
the edge of the half plane H, and suppose that 0 < 0 < 180. Then there is a
unique ray BC in H with C € H, and muy(/ ABC) =
PrOOF. Let A’ = B + Tj,. There are exactly two Euclidean rays, BC' and
BD', with mg(L A'BC’) = 8 = mg(,L A’BD’). C' and D’ lie on opposite sides
of the Euclidean line BA’. By Proposition 314 there are unique Poincaré
rays BC and BD which have BC’ and BD’ as tangents. By Proposition 5.4.15,
C and D must lie on opposite sides of the Poincaré line BA. Hence exactly
one of them lies in H,. Assume it is C. Then m,,(LABC) mg(L A'BC') =0,
and we have existence.

On the other hand, if F e H, with mg(/L ABF) = 0, then mg(/L A’'BF’) = 0.
Thus BF’ = BC' and BF = BC. 0O

Proposition 5.4.17 (Angle Addition). In the Poincaré Plane if D € int(/ ABC)
then my(/, ABD) + my(/ DBC) = myx( . ABC).

ProOF. Let A" =B+ Tgy,, C' =B + Ty, and D' = B + Ty, By Proposi-
tion 54.14, D’ e int(/, A’BC’), where /. A'BC’ is the Euclidean angle. Then

my( /L ABD) + my(/. DBC) = mg(/ A’'BD’) + mg( /. D'BC’)
=mg(L A'BC)
= my(L ABC). O

Propositions 5.4.13, 5.4.16, 5.4.17 prove that my is an angle measure on H.

PRrROBLEM SET 5.4

Part A.

1. Verify Equation (4-14) for the cases ¢ =0 and ¢ = p.

2. If |X|| =1 and W = +X*, show that ||[W| =1 and |jc(nX + s()W| = L.

3. Prove that f(0) = c(6)/5(6) is a strictly decreasing function by showing that f'(6) < 0.
4. Prove that I(—x) = p — I(x).

5. IF | X|| = 1 = ||Z]||, prove that (X,Z*) = +/1 - (X, Z)%
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6. Prove Proposition 5.4.15.

7. Let 6 be a number with 0 < 8 < p. Let 4, B, Ce R? with A = (1,0), B = (0,0) and
C = (c(0),5(8)). Prove that m(/ ABC) = 6. This means that ¢(6) and s(6) are the
cosine and sine functions defined in trigonometry. See Figure 5-27.

C

<]
>e

Figure 5-27



CHAPTER 6
Neutral Geometry

6.1 The Side-Angle-Side Axiom

One of the most fundamental problems in mathematics is finding the ap-
propriate notion of equivalence for each particular area of mathematics.
In geometry the appropriate notion of equivalence is that of “congruence.”
We have already discussed congruence for segments and angles. In this
chapter we will define and work with gongruence between.-triangles.

Before we take up the study of triangle congruences, it is appropriate to
discuss briefly the general notion of congruence of geometric figures. Intui-
tively, two.figures.are.congruent. if. one-can-be “picked up.and_ laid.down
exactly. on_the other” so that the two coincide. Euclid used this “method.of
superposition” but only sparingly. Roughly, it means that the figure is not
distorted. as .it. is. moved. Whatever the first statement in quotes means
exactly, it should include the fact that there.is a.bijection between the two
figures.and.that both. the.corresponding:sides and the corresponding.angles
are.congruent. We shall make these ideas precise below. The general notion
of superposition is made concrete with the idea of an isometry in Chapter 11.

We shall now formally define what is meant by congruent triangles. This
will consist of six.conditions.to..verify.in. order to show. that.two triangles
are.congruent. We will then introduce a new axiom (Side-Angle-Side, SAS)
which allows us to verify only three conditions to show that two triangles
are congruent. In later sections we shall develop various results that follow
from SAS.

As in any case in which we add an axiom, we must determine whether
our standard examples satisfy. the axiom. We will see that although the
Taxicab Plane does not, both the Poincaré and Euclidean Planes do satisfy
the new axiom,

124
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Convention. In AABC, if there is no confusion, we will denote
[/ ABC by [ B, etc., so that

L A= [ CAB, . B=/ABC, and [ C= {BCA

Definition. Let AABC and ADEF be two triangles in a protractor geometry
and let f:{4,B,C}— {D,E,F} be a bijection between the vertices of the

triangles. f is a gOfgruence if
4B ~ .ﬂAMw) BC~{B)f(C), CA=~JOfA)

LA~ L[4, LB~Lf(B, LC=x{[S(C)

Two triangles, AABC and ADEF, are congruent if there is a congruence
f:{4,B,C} > {D,E,F}. If the congruence is given by f(4) = D, f(B) =
and f(C) F, then we write AABC ~ ADEF.

and

A congruence is pictured in Figure 6-1. In this case f(4) = E, f(B) =
and f(C) = F. Thus AABC ~ AEDF. Note that the notation ~ for con-
gruent triangles includes the particular bijection. Thus, it is incorrect to
write AABC ~ ADEF in Figure 6-1, even though ADEF = AEDF. Given
a bijection between the vertices of two triangles there 1s induced a bijection
between sides and between angles. Therefore, a congruence is a bijection
for whlch correspondmg sides are congruent and for which corresponding
angles are congruent. As an aid in visualization, it is useful to mark cor-
responding sides with the same number of slash marks when they are known
to be congruent. Similarly, if they are known to be congruent, we mark
corresponding angles with the same Greek letter which gives their measure.

The fundamental question of this section is: How much do we need to
know about a triangle so that it is determined up to congruence? More
precisely, if we are given A ABC and ADEF for which some sides of AABC
are congruent to the corresponding sides of ADEF and some angles of
AABC are congruent to the corresponding angles of ADEF, i1s AABC
congruent to ADEF? As the question 1s worded, the answer 1s no. Certainly
if AB ~ DE and / A ~ / D it need not be true that AABC ~ ADEF. (There

Figure 6-1
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are examples in every protractor geometry.) What happens in the case of two
sides and the included angle? That is, if AB ~ DE, AC ~ DF and £ A ~ LD,
must AABC be congruent to ADEF? In the Euclidean Plane the answer is
yes, but in an arbitrary protractor geometry the answer need not be yes. (An
example in the Taxicab Plane is given in Example 6.1.1.) Thus if we want
our protractor geometries to have this property we must add it to our list of
axioms. Because the question involves two sides and the angle between them,
the axiom is called Side-Angle-Side or SAS. To see what might “go wrong”
in the general case we will consider the following situation.

Suppose that we are given AABC and a ray EX which lies on the edge
of a half plane H,. Then we can construct the following by the Segment
Construction Theorem (Theorem 3.3.6) and the Angle Construction Theorem
(Theorem 5.3.10)

(2) A unique point D e EX with B4 ~ ED _
(b) A unique ray EY with Ye H, and £ ABC ~ / XEY
(c) A unique point F € EY with BC ~ EF.

See Figure 6-2. Is AABC ~ ADEF? Intuitively it should be (and it will
be if SAS is satisfied). However, since we know nothing about the rulers for
DF and AC, we have no way of showing that AC ~ DF. In fact, Example 6.1.1
will show that AC need not be congruent to DF.

The philosophical problem is as follows. To get a protractor geometry, we
put two different structures on an incidence geometry. One was the notion
of rulers and the other was that of protractors. There was no assumptlon
in the axioms which said that the rulers and protractors must “get along.”
That is, no relation was assumed between the rulers and the angle measure.
In fact, rulers for one line need not be related to rulers for another.line and
protractors at one point need not be related to protractors at another point.
Because of this we should not expect AABC to be congruent to ADEF in
the above construction.

Example 6.1.1. In the Taxicab Plane let A =(1,1), B=(0,0), C=(—1, 1),

=(0,0), X =(3,0), and let H, be the half plane above the x-axis. Carry
out the construction outlined above and check to see whether or not AABC
is congruent to ADEF.

C Y

&

B |
]

[l
><+

A E
Figure 6-2
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Figure 6-3

SOLUTION. d(B,A) =1+ 1 = 2 so that D = (2,0). mg(Z ABC) = 90 so that
we may take Y = (0,3). dr(B,C) =1 + 1 = 2so that F = (0,2). Since Taxicab
angle measure 1s the same as Euclidean angle measure, we have

mg(L BCA) = 45 = mg( /L EFD) sothat £ BCA ~ / EFD
mg(/ CAB) = 45 = mg(/, FDE) sothat / CAB ~ / FDE.

On the other hand,
dr(4,C)=2 and dp(D,F)=2+2=4 sothat AC # DF.
Hence AABC is not congruent to ADEF. See Figure 6-3. O

Example 6.1.1 shows that we need to add another axiom to our protractor
geometry in order to have our intuition about triangle congruence be valid.
The axiom we will add can be remembered informally as: If two sides and
the included angle of a triangle are congruent to two sides and the included
angle .of another triangle, then the two triangles. are congruent.

Definition. A protractor geometry satisfies thetSide-Angle-Side AXTORSAS).

if whenever AABC and ADEF are two triangles with AB~ DE, / B~ / E,
and BC ~ EF, then AABC.~ ADEF.

Definition. A@; (or absolute geometry) is a protractor geometry
which satisfies SAS. - '

The traditional term “absolute geometry” is somewhat misleading because
it connotes some finality or uniqueness of the resulting object of study.
We have chosen to use the term “neutral” geometry which was introduced
by Prenowitz and Jordan [ 1965]. This term indicates we are taking a neutral
course relative to a choice of parallel axioms. See Section 7.3.

We have seen that the Taxicab Plane.is.not.a neutral geometry. In Problem
B11 you will show that the Moulton Plane. is.not a neutral geometry either.
However, our two basic models are neutral geometries. To show that the
Euclidean Plane is a neutral geometry requires the familiar law of cosines.
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Although the result follows easily from Section 5.4 (Problem A3), those who
skipped that part of the book should be willing to accept the following
theorem without proof. (For ¢(0) read cos(6).)

Proposition 6.1.2 (Euclidean Law of Cosines). Let c(f) be the cosine function
as developed in Section 5.4. Then for any A\PQR in the Euclidean Plane

dg(P,R)* = dg(P, Q)* + dg(Q, R)* — 2d5(P, Q)dx(Q, Ryc(mg(L POR)). (1-1)

Note for the triangle in Figure 6-4, Equation (1-1) merely says that
q” = p’ +r’ — 2pr cos(0).

P

Figure 6-4

Proposition 6.1.3. The Euclidean Plane & satisfies SAS.

ProoF. Let AABC and ADEF be given with AB~DE, / B~ [ E, and
BC ~ EF. Then by Proposition 6.1.2

(AC)? = (AB)? + (BC)? — 2(AB)(BC)c(my( L B))
= (DE)* + (EF)? — 2(DE)(EF)c(mg(L E))
— (DF)2.
Thus AC = DF so that AC ~ DF. Now solve Equation (1-1) for c(mg( . PQR)):
(PQ)> + (QR)* — (PR)*
2(PQ)CR)

c(mg(L PQR)) =

Hence as a special case

(BA)? + (AC)* — (BC)?
2(BA)(AC)

_ (ED)? + (DF)? — (EF)?

- 2(ED)(DF)

= ¢(mg(L EDF)).

c(mg(£L BAC)) =

Since the function c(6) is injective (for 0 < § < 180)

Similarly 2/ C ~ £ F so that AABC ~ ADEF.
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To prove that the Poincaré Plane satisfies SAS is much harder. Although
a proof can be given with the material developed thus far, we assume that the
next theorem is true for now. We will present a proof in Chapter 11 when
we study isometries.

Proposition 6.1.4. The.Poincaré. Plane . is.a.neutral geometry.

Definition. A triangle in a protractor geometryis@ if (at least) two
are.congruent. Otherwise, the.triangle is gcalene The triangle. is§ :
if all three sides.are.congruent.. If A ABC is isosceles with 4B ~ BC, then

the iS¢ angles of AABC are / A and £ C.

Our first application of SAS is the following theorem on isosceles triangles.
The Latin name (literally “the bridge of asses”) refers to the complicated
figure Euclid used in his proof, which looked like a bridge, and to the fact
that only someone as dull as an ass would fail to understand it. (See Heath'’s
translation of Euclid for a further discussion of the name.) The proof which
follows 1is due to Pappus (4th Century AD).

Theorem 6.1.5 (RonsAsinorum). In.a neutral geometry, the base angles of an
isosceles triangle are, congruent. ‘
ProoF. The proof proceeds by showing that AABC is congruent to itself!
Let AABC be isosceles with 4B ~ CB. The congruence will be given by
f(4).=C, f(B)= B, f(C) = A. This has the effect of flipping the triangle
over along an axis through B perpendicular to A C. See Figure 6-5.

|
B B

B

A | C C A

Figure 6-5

Since AB ~ CB, /. ABC ~ [ CBA, and CB ~ AB, AABC ~ ACBA by
SAS. But this means that / BAC ~ [/ BCA so that the base angles are
congruent. O

ProBLEM SET 6.1
Part A.

1. Prove that congruence is an equivalence relation on the set of all triangles in a
protractor geometry.
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2. In#if A=(0,1), B=(0,2), C = (0,4), and D = (1,./3), then show that AABD =~
ACBD without using Proposition 6.1.4.

3. Prove Proposition 6.1.2, assuming only the results of Section 5.4.

4. Let AABC be an isosceles triangle in a neutral geometry with 4B ~ CA. Let M
__be the midpoint of BC. Prove that AM 1 BC.

/ . . . .
£ 5. Prove that in a neutral geometry every equilateral triangle is equiangular; that
- s, all its angles are congruent.

6. Use the Euclidean law of cosines (Proposition 6.1.2) to show that if AABC is a
triangle in the Euclidean Plane which has a right angle at C then (4B)? = (AC)* +
(BCY.

7. Let AABC be a triangle in the Euclidean Plane with / C aright angle. If mg(/ B) =
6 prove that ¢(8) = BC/AB and s(6) = AC/AB. (Hint: Use Proposition 6.1.2 and
Problem A6.)

8. Let [JABCD be a quadrilateral in a neutral geometry with CD ~ CB. If CA is the
bisector of /. DCB prove that AB ~ AD.

9. Let [JABCD be a quadrilateral in a neutral geometry and assume that there is
a point M € BD n AC. If M is the midpoint of both BD and AC prove that AB ~
CD.

10. Suppose there are points A, B, C, D, E in a neutral geometry with A—D—B and
A—E—Cand A, B, C not collinear. If AD ~ AE and DB ~ EC prove that / EBC ~
L DCB.

Part B. “Prove” may mean “find a counterexample”.
11. Show that the Moulton Plane does not satisfy the SAS Axiom.

12. Give an example in the Taxicab Plane of an isosceles triangle whose base angles
are not congruent.

13. Prove the Quadrilateral Asinorum: If [JABCD is a quadrilateral in a neutral
geometry and AB ~ AD, then /. D =~ / B.

Part C. Expository exercises.

14. Write an essay discussing the statement “a neutral geometry is the type of
geometry we dealt with in high school.”

15. Now that you have received an introduction to the formal basis of geometry,

" read about informal geometry. (Hoffer [1981] is a good reference.) Compare and
contrast these two approaches in an essay. Which of the two is more appro-
priate for middle or high school students? Is there a single correct answer?
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6.2 Basic Triangle Congruence Theorems

The SAS Axiom tells us that if three certain parts of one triangle are congruent
to the three corresponding parts of another triangle then the triangles are
congruent. Of course, each triangle has six measurable parts—three sides
and three angles—so that there are other possible choices for what three
parts to compare. In this section we shall prove congruence theorems which
involve other choices of angles or sides. The first of these results is informally
remembered as: If two angles and the included side of one triangle are con-
gruent to two angles and the included side of another triangle, then the two
triangles are congruent. '

Definition. A protractor.geometry satisfies the. 4
if whenever A4ABC and ADEF are two triangles with £ A ~ £.D, AB =~ DE,

and.L B~ [ E,then AABC ~ ADEF.

Theorem 6.2.1. A-neutral geometry.satisfies ASA.

PRrOOE. Let AABC and ADEF be two triangles with / A ~ /. D, AB ~ DE,
and /B~ (L E. See Figure 6-6. By the Segment Construction Theorem there

is a unique point G e DF with DG ~ AC., We will show that AABC ~
ADEG and that G = F so that AABC ~ ADEF.

F
| A
B
j/\ /. |
A ' B D ! E

- Figure 6-6

Since AB~DE, / A= [ BAC~ L EDG = /D, and AC ~ DG, SAS
limp]ies that ABAC ~ AEDG. Hence / ABC ~ / DEG. But £ ABC ~
£ DEF by hypothesis so that / DEF ~ / DEG. Since GeDF, Fand G

are on_the same_side of DE. By the Angle Construction Theorem EF =

EG. Hence
{F} =EF n DF = EG n DF = {G}
so that F = G. Thus ABAC ~ AEDF;ie, ANABC ~ ADEF. O

The next result is left to Problem Al.

Theorem 6.2.2 (Converse.of-Pons.Asinorum). In_a.neutral geometry, given
AABC with / A ~.1 C, then AB ~ CB and the triangle is isosceles.
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Stated informally, the next axiom tells us: If the.three.sides.of one.triangle
are.congruent to.the. three sides of another. triangle, then.the. triangles are
congruent.

Definition. A protractor.geometry. satisfies.the(Si - Ax)
whenever AABC.and ADEF are two triangles with AB ~ DE BC .~ EF and
CA ~ FD, then AABC ~ ADEF.

Theorem 6.2.3. A.neutral geometry.satisfies SSS.

Proor. Let AABC and ADEF be two triangles with AB ~ DE, BC ~ EF,
and CA ~ FD. The key to the proof is to make a copy of ADEF on the
underside of A4BC using SAS. See Figure 6-7. By the Angle Construction
Theorem, there is a unique ray AH with H on the opposite side of 4 Cas B
such that £ CAH ~ ( FDE. By the Segment Construction. Theorem., there is
a unique point B' € AH with AB .~ DE.

Since CA ~ FD, / CAB ~ L_FDE, and B4 ~ ED, SAS implies that
NCAB ~ AFDE. (This is what we meant by copying ADEF on the under-
side of AABC.) To complete the proof we show that AABC ~ AAB'C.

Figure 6-7

Since B and B’ are on opposite sides of AC, BB’ intersects AC in a unique
point G. There are five possibilities: (i) G—A—C, (i1) G = A4, (iii)) A—G—C,
(iv) G = C, or (v) A—C—QG. The first three cases are shown in Figure 6-8.
Case (i) and (v) are really the same, as are cases (ii) and (iv). We complete the

proof for case (i) and leave the other two as Problem A3.

Figure 6-8
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Assume G—A-—C so that B, 4, and B’ are not collinear. ABAB' is isos-
celes since BA ~ ED ~ B'A. Thus / ABB' =~ / AB'B. Similarly ABCH is
isosceles and L CBB ~ L CBB. Since G—A—C, Aceint(,CBG) =
int( 2 CBB’) by Theorem 4.4.6. Similarly, 4 € int(£ CB'B).

By the Angle Subtraction Theorem, /. CBA ~ /.CB'A. Since BA ~ ED ~
B'A and BC ~EF ~B'C, AABC ~ ANAB'C by SAS. Hence AABC ~
AABC = ADEF. :

In Chapter 4 we showed that PSA and PP are equivalent axioms: if a
metric geometry satisfies one of them then it also satisfies the other. A
similar situation is true for SAS and ASA. We already know that SAS
implies ASA (Theorem 6.2.1). The next result, whose proof is left to Problem
A4, gives the converse. We can ask whether SSS is also equivalent to SAS.
This situation is more complicated, as we’ll see in Section 6.6.

Theorem 6.2.4. If. a protractor geometry satisfies ASA then it also satisfies
SAS and is thus a neutral geometry.
PRec? -

Recall that Theorem 5.3.5 said that if B el then there is a unique line
through B perpendicular to . Now we would like to study the case where
B.¢.l. The proof of Theorem 6.2.3 suggests a method for proving the existence
of a line through B perpendicular to [.

Theorem 6.2.5. In_g neutral geometry,.given a line | and a point. B.¢.l,.then
there.exists.at least one line through B perpendicular to 1.

PrOOF. Let A and C be two distinct points on I. By the Angle Construction
Theorem there is a unique ray AH with H on the opposite side of | = AC
as Band /.CAH ~ /. CAB. See Flgure 6-9. By the Segment Construction
Theorem th;c_m_ls_a_umquc_p_oml_B_e_AH_wuhAﬁLL. Since B and B’ are
on opposite sides of I, BB’ intersects I at a unique point G.

’

N

Figure 6-9
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If G # A then ABAG ~ ABAG by SAS so that / AGB ~ / AGB'. Thus
L. AGB is a right angle by Problem A15 of Section 5.3. Hence BB’ L I.

If G = A then /. BAC and / B’'AC form a linear pair of congruent angles
so that BB’ 1 1. : |

Note that we did not claim that the perpendicular.through B was unique.
This is true, but we shall need to prove the Exterior Angle Theorem before
we can show uniqueness. However, it is important to note that no additional
axioms are needed in order to prove uniqueness—it will follow from the
axioms of a neutral geometry. If the geometry is not a.neutral geometry,
then perpendiculars need not exist, and even when they do, they need not be
unique. See Problem B23 of Section 5.3 for an example in the Moulton Plane.

PROBLEM SET 6.2

Part A.
1. Prove Theorem 6.2.2.

{/ klé;?Prove that in a neutral geometry every equiangular triangle is also equilateral.
3. Combplete the proof of Theorem 6.2.3 for cases (ii) and (iii).
4. Prove Theorem 6.2.4.
éln a neutral geometry, given AABC with AB ~ BC, A—D—E-—C, and £ ABD ~
L CBE, prove that DB ~ EB.

6-")In a neutral geometry, given AABC with A—D—E—C, AD ~ EC,and /. CAB =~
-~ 4 ACB, prove that £ ABE ~ / CBD.

i 7 In a neutral geometry, given [JABCD with AB ~ CD and 4D ~ BC, prove that
e Z_A LCand LB~ /[D.

; 8 In a neutral geometry, given AABC with A—D-—B, A—E—C, [ ABE ~ [/ ACD,
\.~7 BDC ~ . BEC, and BE ~ CD, prove that AABC is isosceles.

9. 1In a neutral geometry, given (JABCD with AB ~ BC and 4D ~ CD, prove that
BD L AC and that AC and BD intersect at the midpoint of AC.

10/ Prove that if a protractor geometry satisfies SSS then the base angles of any
1sosceles triangle are congruent.

11. Use Theorem 6.2.5 to prove that if B € / then there is a line through B perpendicular
to [ without using the Angle Construction Axiom directly,

12. In a neutral geometry, if C and D are on the same side of 4B and if AC ~ AD and
BC ~ BD, prove that C = D.

13. Given AABC in a protractor geometry, the angle bisector of £ A intersects BC
at a unique point D. AD is called the internal bisector of /. A. Prove that in a neutral
geometry, the internal bisectors of the base angles of an isosceles triangle are
congruent.
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Part B. “Prove” may mean “find a counterexample”.
14. State and prove the SSA Congruence Theorem.

15. Prove that the Taxicab Plane does not satisfy SSS. (Hint: Problem A10, or find
non-congruent equilateral triangles of side 2.)

6.3 The Exterior Angle Theorem and Its Consequences

This section is primarily concerned with theorems in a neutral geometry
whose conclusions involve inequalities which compare the corresponding
parts of two triangles. Of particular interest is the “common sense” result
that if two sides of a.triangle are not congruent then neither are their opposite
angles. In fact, the larger side is opposite the larger angle. In order to prove
this result, the notion of an exterior angle is needed. Our basic tool is then
the Exterior Angle Theorem (Theorem 6.3.3) which is used to prove not only
the result above but also the SAA Congruence Theorem, the Triangle
Inequality (which relates the lengths of the three sides of a triangle) and the
Open Mouth Theorem (which says that the larger the measure of an angle,
the more it “opens”).

Definition. In a metric geometry, the line segment AB.is less than (or smaller
than) the line segment CD (written AB < CD) if AB < CD. AB.is greater
than (or larger than) CD if 4B > CD. The symbol 4B < CD means that
either AB < CD or AB ~ CD.

Definition. In a protractor geometry, the angle /. ABC.is less than (or smaller
than) the angle / DEF (written /. ABC < / DEF)ifm(/ ABC) < m(. DEF).
{-ABC-is-greater than (or-larger-than) / DEF if / DEF < / ABC. The
symbol /. ABC < /. DEF-means that.either / ABC < /. DEF or / ABC ~
L. DEF.

It is possible to give an alternative but equivalent description of less than
without referring to length or angle measure. The theorems below use
congruence and betweenness to do this. Their proofs are left as Problems Al
and A2.

Theorem 6.3.1. In a metric geometry, AB < CD if and only if there is a.point
G.€ int(CD) with AB.~ CG.

Theorem 6.3.2. In a protractor geometry, / ABC <_/ DEF, if. and only if
there is a point.G.€ int( L. DEF) with /. ABC ~ / DEG.

Definition. Given A4BC in a protractor geometry, if-4—~CeD).

is an .of AABC. / Aand / Bare theWi

the exterior angle / BCD. (See Figure 6-10.)
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—-

A C D
Figure 6-10

The introduction of the notion of an exterior angle and the next theorem
are the keys to the results of this section. Note that at each vertex of a triangle
there are two exterior angles. These are congruent by Problem A3.

Theorem 6.3.3 (Exterior.Angle Theorem). In.a.neutral geometry, any.exterior
angle-of ./\NABC is greater-than.either of -its.remote. interior angles.

PRrROOF. Let AABC be given and assume that A—C—D. We will prove that
L BCD > ( ABC and then argue that / BCD > / BAC also.

Let M be the midpoint of BC and let E be the point on AM with d—M—E
and ME ~ MA. See Figure 6-11. Since £ AMB and / EMC are a vertical
pair, they are congruent. Since BM ~ MC, we have AAMB ~ ANEMC by
SAS. Hence

LABC = { ABM ~ [ ECM = ([ ECB.

Ce

A C
Figure 6-11

However, since A—M—E, we have E € int(/ _BCD) by Problem A6 of Section
4.4. Thus by Theorem 6.3.2, £ ABC ~ [/ ECB < / BCD &t L. BCD > [ ABC.

To show that £ BCD > / BAC, choose D' so that B—C-~D'. See Figure
6-12. By the first part of the proof, ./ ACD’ > [/ BAC. By Problem A3,

/[_ACD' ~ t BCD. Hence / BCD > / BAC. 0O
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B

> ¢

N
Figure 6-12

Corollary 6.3.4. In.a.neutral geometry,there is exactly one line through a given
peint:Buperpendicular.to.a given line_ L.

ProoF. If P e [, then the result follows from Theorem 5.3.5. Thus we con-
sider only the case where P ¢ I We already know that there is such a line
by Theorem 6.2.5. Now suppose that there are two distinct lines I’ and I”
through P both of which are perpendicular to I See Figure 6-13.

Let {A} =11l and {C}=1"n1 Since I' and " are distinct, they
cannot have two points in common so that 4 # C. Choose D with 4—C—D.
Then the right angle / DCP is_an exterior angle of AAPC and is thus
greater than / CAP by the Exterior Angle Theorem. Because / CAP is a
right angle and two right angles are always congruent, this is a contradiction.

P
Iz "
_ )
A C D
Figure 6-13

Hence there cannot be two distinct lines through P which are perpendicular

to L O

The Exterior Angle Theorem can be used to prove another triangle
congruence theorem. This new theorem will be useful in our study of right
triangles in the next section. Informally, it says: If.two. angles and. a side.of
one triangle. are.congruent to the corresponding two.angles and side.of another
triangle, then the triangles. are. congruent. This result when coupled with the
ASA Theorem shows that it does not matter which pair of angles and which
side.we choose, as long-as we-use-the corresponding angles and side: from

the other. triangle.
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Theorem 6.3.5 Side-Angle-Ad Angl®, SAA). In.a.neutral geometry, given two
triangles NABC and ADEF, if AB~DE, ./ A=~.(.D,.and ./ C =~ LF,

then ANABC ~ NDEF.

Proor. If AC # DF, then one of these segments is smaller than the other.
Suppose that AC < DF. Then by Theorem 6.3.1 there is 2 point G with
D;—_Cg—f_ﬁn.d_AQ__D_G See Figure 6-14.

BAC ~ NEDG by SAS so that / ACB ~ ¢/ DGE. Since / DGE

is an exterior angle of AGEF, { DGE > / DFE by the Exteri e
Theorem. However, / ACB ~ / DFE by hypothesis, so that

[ ACB~ ({ DGE > [/ DFE~ [ ACB

which is impossible. Hence it cannot be that AC < DF. Similarly we cannot
have DF < AC. Thus A4C ~ DF and ABAC ~ AEDF by SAS. 0O

Figure 6-14

We should note that the above proof (which is valid in any neutral
geometry) is probably different from any you have seen before. In particular
we did not prove / B ~ / E by looking at the sums of the measures of the
angles of the two_triangles. We could not do this. because-we.do.not know
any theorems-about the sum of the measures of the angles of a triangle. In
particular the sum may not be the same for two triangles in an-arbitrary
neutral geometry. This exhibits one of the problems which persists in ele-
mentary geometry. People regularly use the parallel postulate (existence and
uniqueness of parallels) or its consequences (such as the sum of the angle
measures of a triangle is 180) to prove certain theorems which really don’t
need that postulate. More succinctly, they are proving theorems which are
valid in an arbitrary neutral geometry in a Euclidean fashion. (Of course, these
authors only claim to have proved these theorems for Euclidean geometry
because their proofs are not valid in a general neutral geometry.)

 Theorem 6.3.6. In.a neutral geometry,.if two.sides.of .a.triangle are not con-
gruent, neither .are._the opposite. angles. Furthermore, the.larger..angle..is
opposite the longer side.

Proor. In AABC assume that AB > AC. We want to show that / C > £ B.
Now there exists a unique point D with A—C—D and AD ~ AB (Why?).
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See Figure 6-15. Since A—C—D, C e int(/ ABD) and / ABC < / ABD.
However, ABAD is isosceles with AB ~ AD so that /. ABD ~ / ADB. By
the Exterior Angle Theorem for ABCD, /. ADB < [/ ACB. Thus

LABC < L ABD ~ { ADB < / ACB

sothat LB < L C. |

Figure 6-15
The converse of Theorem 6.3.6 is also true. Its proof is left to Problem AS.

Theorem 6.3.7. In a neutral geometry, if two_angles of a triangle are not
congruent,. neither .are._ the opposite sides. Furthermore, the longer side is
opposite.the larger.angle.

The Triangle Inequality which we present next can be proved in a variety
of manners depending on the context. We have already seen a proof in the
Euclidean plane which used vector concepts (Proposition 3.1.6). Like
Theorem 6.3.6, it is really a theorem in neutral geometry.

Theorem 6.3.8 (Triangle:Ingguality). In a neutral geometry.the length of .one
side of-a-triangle is strietly- less-than the sum of the lengths.of the other two
sides.

Proor. We must show that for AABC
AC.< AB .+ .BC.

This will be done by grafting an “extra section” of length 4B onto BC. See
Figure 6-16.

D

Figure 6-16
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Let D e CB so that C—B—D and BD ~ AB. Then
CD =CB + BD = BC + AB. (3-1)
By Theorem 4.4.6, B € int(/ DAC) so that / DAB < _/ DAC. Since ADBA
is isosceles, / DAB ~ [/ ADB so that
L ADB < [ DAC.

Thus by Theorem 6.3.6 applied to AADC
A4AC < CD.

Combining this with Equation (3-1) we have AC < BC + 4B as required.
O

The last theorem of this section is the Open Mouth Theorem, which says
that the.wider.you-open your -mouth-the farther. apart.your.lips.are. (It is
called the Hinge Theorem by some authors.) Whereas the previous theorems
in this section dealt with inequalities in a single triangle, the open Mouth
Theorem gives an inequality relating two triangles.

Theorem 6.3.9 (Qpen-Meouth-Theorem). In_a.neutral geometry, given two
triangles-AABC-and- D EF-with -AB ~ DE and BC ~EF, if ./ B> [ E
then AC.>.DF.

Proor. We first construct a copy of ADEF along the side BC of AABC.
There is a unique point H on the same side of BC as A with / HBC ~ ; DEF
and BH ~ ED (Why?). Then ADEF ~ AHBC by SAS. See Figure 6-17.

Figure 6-17

Hence
HC ~ ﬁ. (3-2)

K by the Qx;gsgbag Thggrem Note that either B—H—K, H=XK, or
B—K—H. Let BL be the bisector of 7/ ABH = / ABK. Usmg the Crossbar

Theorem again, we see that BL intersects AK (and AC) at a unigue point M.
See Figure 6-18 for the three cases B—H—K, H = K, and B—K—H.
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) A
i M
A
M M
K K=H H
H K
B c B C B C

Figure 6-18
Now AABM ~ AHBM by SAS so that
. AM ~ HM. (3-3)
If H # K then C, H, and M are not collinear, and the Triangle Inequality
rplics
HC < HM + MC.

Thisis also true if K = H since C—H—M implies HC < MC < HM + MC.
Since AM ~ HM (Congruence (3-3)) we have

HC < HM + MC = AM + MC = AC

where the last equality comes from the fact that A—M—C. Finally since
HC ~ DF (Congruence (3-2)) we see that

DF < AC or AC > DF. O

Although the following result is left as an exercise, it will prove to be
extremely useful.

Theorem 6.3.10. In a neutral geometry, a line segment joining a vertex of
a trigngle to a point on the opposite side.is shorter.than the longer of the remain-
ing..two. .sides. More precisely, given ANABC with AB < CB, if A—D—C
then DB < CB. -

PRrROBLEM SET 6.3
PartA.

1. Prove Theorem 6.3.1.
2. Prove Theorem 6.3.2.

3. In a protractor geometry prove the two exterior angles of AABC at the vertex
C are congruent.

4. Jn a neutral geometry prove that the base angles of an isosceles triangle are acute.
5. Prove Theorem 6.3.7.

*6. Prove the General Triangle Inequality for a neutral geometry: If 4, B and C are
_distingt. points.in.a neutral geometry, then AC < 4B + BC. Furthermore, equality
holds.if and only.if A=x-B=C.
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7. 1n a neutral geometry, if D € int(AABC) prove that
AD+ DC < AB+ BC and (ADC> ( ABC.

(Hint: AD intersects BC at a point E.)

8. Prove Theorem 6.3.10.
*9. Prove the converse of Theorem 6.3.9: In a neutral geometry, given AABC and
QDEF, if 4B > DE, BC ~ EF, and AC > DF, then (B> LE.
10. In a neutral geometry prove that a triangle with an obtuse angle must have two
acute angles.

Part B. “Prove” may mean “find a counterexample”.

11. Let m be any angle measure on RZ. Prove that {R%, %, dr, m} does not satisfy
SAS. (Thus an angle measure can never be found for the Taxicab Plane so that

the resulting object is a neutral geometry.)
12. In a neutral geometry, given AABC.such that the internal bisectors of £ A and

L C are congruent, prove that AABC is.isosceles. (Hint: Assume £ 4 < £ C and
consider Fi igure 6-19 where AQ CP. How are £ AQD and /. CPE related?)

Figure 6-19

13. Replace the word “neutral” in the hypothesis of Theorem 6.3.6 with the word
“protractor”. Is the conclusion still valid?
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6.4 Right Triangles

In this section we shall prove some basic results about right triangles in a
neutral geometry. Besides the standard congruence theorems, the most
important result will be the often quoted theorem that the shortest distance
from a point_to. a line .is given by-the perpendicular distance.

A word of caution is needed here. The first thing that many of us think
about when we hear the phrase “right triangle” is the classical Pythagorean
Theorem. This theorem (which states that the square of the length of the
hypotenuse is the sum of the squares of the lengths of the other two sides)
is very much a Euclidean theorem. That is, it is true in the Euclidean Plane
but not in all neutral geometries (see Problem A6). Thus in each proof of this
section which deals with a general neutral geometry we must avoid the
use of the Pythagorean Theorem.

Definition. If an angle of AABC is a right angle, then AABC. is aééht
{riangl®. A side opposite a right angle in a right triangle is called adfypotenuse.

If AABC has a right angle at C we insert a small box at /£ C to indicate
the right angle. See Figure 6-20.

Definition. 4B is the longest side of AABC if @ > A_T and 4B > BC.
4B is a longest side of AABC if AB > AC and AB > BC.

A triangle will always have “a” longest side, but there may not be “the”
longest side. (Can you think of examples?)

. Theorem 6.4.1. In_a neutral geometry, there is only one right angle and one
hypotenuse. for.each. right. triangle. The. remaining angles are acute, and the
hypotenuse.is.the longest.side.of -the.triangle.

PrROOF. Let AABC be a right triangle with ~ C a right angle. Let D be
such that D—C—B (see Figure 6-20). £ DCA is a right angle and by the
Exterior Angle Theorem, / B< /. DCA and s A< / DCA, Thus both
L A and £/ B are acute and there is only one right angle (and hence one
hypotenuse). Finally, BC < 4B and AC < AB by Theorem 6.3.7. Hence
the hypotenuse 4B is the longest side. |

Definition. If AABC is a right trlangle with right angle at C then the@
of AABC are AC and BC.
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. .l
D C B
Figure 6-20

Theorem 6.4.1 says that the hypotenuse is longer than either leg. This
result really needs the strength. of the SAS Axiom. We saw in Problem A12
of Section 5.2 that there are triangles in the Moulton Plane with two right
angles. (The situation is even worse on the Riemann Sphere. There it is
possible to have a reasonable angle measure and a triangle with three right
angles.)

We shall now prove that the shortest distance between a point and a line
in a neutral geometry is the perpendicular distance. v
Theorem 6.4.2 (Perpendicil Theorem). In a neutral geometry, if 1
isaline, Q el and P ¢l then

() if PO L1then

PQ < PR JorallRel 4-1)
(i) if PQ < PR forall Relthen PQ L1

»PROOF. If PO L I and R €, then either Q = R (so that PQ = PR) or else
Q # R{andso P, Q, R are not collinear). In the latter case APOQR has a right
angle at Q. (See Figure 6-21.) By Theorem 64.1, PQ < PR since PR is the
hypotenuse of APQR. Hence PQ < PR for all R e if PO 11

1’

Figure 6-21 Figure 6-22
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¢ Conversely, suppose that PQ < PR for all Rel. We must show that
PO L I Let I’ be the unique line through P _which is perpendicular to I
(Corollary 6.3.4). See Figure 6-22. Let In !’ = {Q’'}. We need to show that
0=0.1f 0+#0Q, then APQ'Q is a right triangle and PO’ < PQ. But
PQ < PR for all R €] by hypothesis so that, in particular, PQ < PQ’. This
contradiction of PQ’ < PQ shows that Q = ¢". Hence PQ = I is perpendicu-
lar to I |

It is illuminating to recast Theorem 6.4.2 in terms of the concept of the
distance from a point to a line.

Definition. Let [ be a line and P a point in a neutral geometry. If P ¢ [, let
Q be the unique point of [ such that Pg L I. Therom Ptolis

d(P,Q) ifP¢l
d(P,1) = {0 ifPel

In terms of this definition, Theorem 6.4.2 reads

Theorem 6.4.2'. For any line | in a neutral geometry and P ¢ |
d(P,I) < d(P,R) forallRel.
Furthermore, d(P,1) = d(P, R). if and only if PR 1 1.

Definition. If / is the umque perpendlcular to through the vertex C of
AABC and if | 7 4B = {D}, then CD is the @ from C. D is the foot,

of the altitude-(or- of the perpendicular) from

Note that in general the foot of the altitude from C need not lie on AB.
However, it seems clear (and we now shall prove) that if AB is a longest
side then the foot will actually belong to AB. See Figure 6-23.

C C

| |

| |

| |

| |

| |

o . AR .
D A B A D B

Figure 6-23

Theorem 6.4.3. In a neutral geometry, if AB.is a longest side.of. AABC and
if D.is.the foot. of the altitude. from C,.then A—D—B.
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ProOF. Either D—A—B, D=A, A—D—B, D=B, ot A—B—D. The
first and Tast cases are essentially the same, as are the second and fourth.
We shall show that neither the first nor the second case can occur. This
will imply that the only possibility is 4—D—B.

Now CB is the hypotenuse of the right triangle ACBD so that DB < CB.

If D—A B then AB < DB so that

AB < DB < CB

which contradicts the fact that AB is a longest side. If D = A then AB = DB
so that

which is again a contradiction. Hence A—D—B. O

For a right triangle in a neutral geometry, any two sides suffice to deter-
mine the. triangle up to congruence. If the two sides are the legs this follows
from SAS. If one of the sides is the hypotenuse then SAS cannot be used.
Instead we need the next result which says that if the hypotenuse and a leg
of one right triangle are congruent to the hypotenuse and leg of a second
right triangle then the two triangles are congruent.

Theorem 6.4.4 (Hypotenuse-Leg, HL). In a neutral geometry if AABC and
ADEF are right triangles with right angles at C and F, and if AB ~ DE and
AC ~ DF, then NABC ~ ADEF.

PROOF. As was the case in other triangle congruence theorems, we shall
construct an intermediate triangle which is congruent to both AABC and
ADEF.

Let G be the unique point such that E—F—G and FG ~ BC. Since
E,F,Gare collinearand L DFE 1sar1ght angle sois L DFG. Hence LACB~

6-24. Thus AABC ADGF by SAS.

b 1
B C E F M G
Figure 6-24
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Since AABC ~ ADGF, AB =~ DG. But AB~ DE by hypothesis so
that DE ~ DG and AEDG is isosceles. Thus / DEF = / DEG ~ / DGE =
L. DGF and ADEF ~ ADGF by SAA. Hence AABC ~ ADEF. a

When you saw this theorem in high school the proof may have used the
Pythagorean Theorem to show that BC ~ EF so that SSS could be applied.
The proof given above is valid in any neutral geometry, not just those models
where the Pythagorean Theorem holds. As was stated at the beginning of this
section, to prove something in neutral geometry, the Pythagorean Theorem
cannot be used. Similarly, we should not use the “fact” that the sum of the
angle measures of a triangle is 180 to provsiihe next theorem.

«
Theorem 6.4.5 (Hynotenuse:Angle, HA). In a neutral geometry, let AABC
and ADEF be right triangles with right angles at C and F. 1f AB ~ DE and
[ A~ [ D, then AABC .~ ADEEF.

Definition. The fierpendicular hisectop of the segment AB in a.neutral geome-
try is. the (unique) line I through the midpoint M. of AB and which is per-

pendicular-to. AB.
The next result contains a useful description of the perpendicular bisector.

Theorem 6.4.6. In.a neutral. geometry.the perpendicular bisector. | of the

segment AB.is the set
~ {Pe ¥|AP = BP),

PrOOF. We first show 4 < l.Let P € #. We must show that Pe L. If P e AB,
then AP = BP implies A—P—Band P=M is the midpoint of AB. (See
Problems A1l and A12 of Section 33.) Hence Pel. If P ¢ AB let I' be the
unique perpendicular to 4 B through P. See Figure 6-25. Let I'n AB = {N}.
Then N is not 4 or B (otherwise AAPB would be a right triangie with one
of PA and PB the hypotenuse and the other a leg. This contradicts PA =
PB.). Hence we have two triangles APNA and APNB which are congruent

14
P

Figure 6-25
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by HL. Hence AN ~ NB and N = M is the midpoint. Thus I' =l and P e l.
Hence & < I.

We now show that | ¢ #. We assume Pe ! and show Pe B. If P e AB
then P=M and P & 1f P¢ AB then / PMA ~ / PMB since both are
right angles. Thus APMA ~ APMB by SAS and PA ~ PB. Hence P #
and | < 4. This means that [ = &. O

Theorem 6.4.7. In a neutral geometry, if BD.is.the-bisector.of. .. ABC and
if-E-andF-are the feet of the-perpendiculars from D to BA and BC then DE ~

DF.
Proor. Problem A10. See Figure 6-26. O

) Figure 6-26
Ues i o A e Pl mmoteundl  olad Fern Szl
PROBLEM SET 6.4
Part A.

1. Prove Theorem 6.4.5.

2. Ina neutral geometry, if D is the foot of the altitude of A ABC from C and A—B—D,
then prove CA > CB.

3. If M is the midpoint of BC then AM is called a median of A ABC.

a. Prove that in a neutral geometry if AABC is isosceles with base BC then the

following are collinear:
(i) the median from 4;

(ii) the bisector of £ 4;
(ii1) the altitude from 4;
(iv) the perpendicular bisector of BC.

b. Conversely, in a neutral geometry prove that if any two of (i}—(iv) are collinear
then the triangle is isosceles (six different cases).

4. Show that the conclusion of Theorem 6.4.2 is not valid in the Taxicab Plane by
taking P =(—1,1), I = {{x,y)|y=x} and ¢ =(1,1).

5. Show that the conclusion of the Pythagorean Theorem is not valid in the Taxicab
Plane. w

6.:Show that the conclusion of the Pythagorean Theorem is not valid in the Poincaré
" Plape by considering AABC with 4 =(2,1), B=(0,+/5), and C = (0,1). Thus



6.4 Right Triangles 149

12.

13.

the Pythagorean Theorem does not hold in every neutral geometry.

. Show that the hypotenuse need not be the longest side of a right triangle in a pro-

tractor geometry by examining AABC of Example 6.1.1.

. In a neutral geometry, if AABC is a right triangle with right angle at C and if

B—D—C, then prove ABDA is obtuse.

. In a neutral geometry, if AABC and ADEF are triangles.with. £ B~ / E, BC ~

EF,CA.~ FD,and., A-and £ D are either both-acute or both obtuse, then prove
that AABC.~ ADEF. :

. Prove Theorem 6.4.7.

. In a neutral geometry prove that the bisector of L ABC is #={B} u {Xe

int(£ ABC)|d(X, BC) = d(X, BA)}.

In a neutral geometry, let BD and CE be the bisectors of / B and £ C of AABC.
Prove that BD ~ CE contains a single point F. Prove that AF is the bisector of Z A.
(Hint: Use Problem A11))

In a neutral geometry, let I}, I,, and /5 be the perpendicular bisectors of the three
sides of AABC. If Dely n l,, prove that D e l;.

Part B. “Prove” may mean “find a counterexample”.
PROBLEM SET 6.4B  Prove or give a counterexample.

14.

1.

16.

In a neutral geometry, if A~—D—B and CD is an altitude of AA4BC, then prove
that AB is a longest side of AABC.

Show that the concluston of Theorem 6.4.6 is false in the Taxicab Plane by
considering A = (1, 0) and B = (0, 1).

Find the error or errors in the following alleged “proof” that in a neutral geometry
any triangle is isosceles.

Let M be the midpoint of AC and let ! be the perpendicular to 4C at M. Let BQ
be the angle bisector of / ABC and let De!nBQ. If E is the foot of the
perpendicular from D to BC and if F is the foot of the perpendicular from D to
BA, then FD ~ ED by Theorem 6.4.7. AD ~ CD by Theorem 6.4.6. Hence
AAFD ~ ACED by HL and AF ~ CE. Since ABDF ~ ABDE (by HA), BF ~
BE. Hence BA = BF + FA = BE + EC = BC and BA ~ BC. See Figure 6-27.

A

Figure 6-27
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6.5 Circles and Their Tangent Lines

In this section we will define the concepts of a circle and of a tangent to a
circle. We shall see that in a metric geometry some rather strange examples
of circles exist. In the latter part of the section we shall see that the familiar
properties of tangents do indeed hold in a neutral geometry. In particular,
we will show that there is a unique tangent at each point on a circle in a
neutral geometry.

Definition. If C is a point in a metric geometry {&, %,d} and if r > 0, then

iig@vith center C and gadius r. If 4 and B are distinct points.of 4 then
AB.is.a Rordof €. If the center C.is a point on the chord 4B, then AB is a
@of %. For any Q € %, CQ is called a radius segment of €

Example 6.5.1. Find and sketch the circle of radius 1 with center (0,0} in
the Euclidean Plane and in the Taxicab Plane.
SoLuTioN. In the Euclidean. Plane we have

%,((0,0)) = {(x, y)|x* + y* =1}

This is sketched in Figure 6-28.
In the Taxicab Plane we have

%1((0,0)) = {(x, )|[x] + |y| = 1}.
This set consists of four line segments, with slope + 1. See Figure 6-29. [

1
N>

Figure 6-28 Figure 6-29

Note how strange the taxicab circle looks. This is one more indication
we should be careful with our intuition. In the problems you will find some
examples of circles in other models. In the next example we shall see that a
Poincaré circle actually looks like a Euclidean circle, a result which is
unexpected!
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Example 6.5.2. Show that &/ = {(x, y) € H|x* + (y — 5)* = 16} is the Poincaré
circle € with center (0, 3) and radius In 3.
SoLUTION. Let (a,b) € . If a = 0 then b = 1 or 9. Clearly, d((0, 1), (0,3)) =
In 3 = d((0,3), (0,9)) so that (a, b) € € in this case.

Now assume that (a,b) € & and a = 0. We must find ¢ and r so that both
(a,b)e L, and (0,3) € L, in order to compute d((a,b), (0, 3)). By Equations
(1-5) and (1-6) of Section 2.1 we have .

b2_32 2
C=~—T+a and r=\¢cz+9. (5-1)

Since (a,b) € & we have a® + b2 — 10b + 25 = 16 so that
a2 +b2—-9=16—-25+10b—9=10b — 18.

Substituting this last result into Equations (5-1) we obtain

5b—9
c =
a
25b% — 90b + 81
a
16b% + 9(a” + (b — 5)* — 16)
B 16b2_4b
a = al’
Now d((a, b), (0,3)) = |1n((a —c+7r/b-3/(—c+ r))[ and
a_5b—9 ﬂ
a—c+r 3 a |a|. 3
b —c+r b Sb—9 4b
__.._*__
PERRT

_(a®—5b+ 9+ 4b)3
T b(—5b+9 + 4b)
_ (16 = b* +10b — 25 — 5b + 9 + 4b)3
N b(—5b + 9 + 4b)

_ (=b*+ 5b + 4b)3

" b(—5b+9 + 4b)

where + denotes the sign of a

(—b%+9B)3 .

m-——:; ifa>0
=R 1

m —3 ifa<O.

Hence d((a,b), (0,3)) = |In 3| = |In §|. Thus (a,b) €% and & < %.
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Finally, if (a, b) € %, let | be the Poincaré line through (0, 3) and (g, b).
Then [ is part of either a Euclidean line or a Euclidean circle depending on
whether ] is of type I or type 1L Either way, from our previous knowledge
of Euclidean geometry (which will be carefully demonstrated in the next
section) /N &/ has exactly two points. Likewise ! "€ has two points (by
Segment Construction). Since & < €, In & < In €. Since both sets have
two points, INn.o/ = 1N € and (g,b) e In€ = |~  so that (a,b) € &. Thus
% < of and € = . See Figure 6-30. I

Figure 6-30

Our first result tells us that in a neutral geometry the center and radius
of a circle are determined. by -any three points.on the circle. The nice thing
about this theorem is its constructive nature. The proof will proceed by
starting with the three points on the circle and actually constructing the
center of the circle as the intersection of perpendicular bisectors of any two
of the chords as in Figure 6-31. (Note, we do not claim that any three points
determine a circle.)

Figure 6-31

Theorem 6.5.3. In a neutral geometry, let €, = €,(C) and €, = 6«D). 1If
€0 €, contains.at least three points,-then-C =D and r = 5. Thus,. three
points.of a.circle in a. neutral geometry uniquely determine that circle.
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ProoF. Let R, S and T be three distinct points in €; N€,. Let [, be the
perpendicular bisector of RS and let I, be the perpendicular bisector of ST.
(See Figure 6-31.) By Theorem 6.4.6, C €, since RC = SC = r. Similarly,
Cel, so that Cel, nl,. By using Theorem 6.4.6 again (and the fact that
R, S, Te¥%,)weseethat D e l, nl,. Thus, either C = D or else I, and [, have
two_distinct points (C and D) in common and so are equal. We now show
that the last case cannot happen.

Assume for the moment that [, =1,. There are two possibilities for
{R,S,T}. If {R,S, T} is a collinear set and I, = 1, then the midpoint of RS
musl,l;_gg_ugl_@h,c,mﬂpo;nt of ST. However, the only way this can happen
is if R = T, which is a contradiction.

On the other hand, if I, = [, and {R, S, T'} is non-collinear, let M and N
be the midpoints of RSand ST Since I, = I, = MN (by assumption) AMNS

that a right triangle has exactly one nght angle (Theorem 6.4.1). Thus [, # [,
andso C=D.

“Since r = RC = RD = s, the radius of the circle is determined once the

center and any point on the circle are known. O

Contained in the proof of the above resuit is the following fact.

Corollary 6.5.4. For any circle in a neutral geometry, the. perpendicular
bisector of .any.chord.contains the center.

Definition. Let € be the circle with center C and radius r. The interior of
%.is the set

int(®) ={PeZ|CP <1}

The exterior of € is the set
ext(¢) = {Pe #|CP > r}.

Theorem 6.5.5. If € is a circle in a neutral geometry then int{%) is.convex.
PrOOF. Let € = €,(C). Suppose that 4 and B belong to int(%) so that
AC<r and BC<r. (5-2)

Let D € AB with A—D-—B. We must show that D € int(%). There are two
cases to consider.

First suppose that C e 4B. See Figure 6-32. Let f be a ruler for AB with
origin at C. The points of 4B n int(¥) have coordinates between —r and .
Now the coordinate of D is between that of A and B. By Inequalities (5-2),
the coordinates of 4 and B are between —r and r. Hence, so is the coordinate
of D and D € 4B n int(¥). Thus D € int(¥).

For the second case, suppose that C ¢ A AB so that we have a triangle,
AABC. See Figure 6-33. We must show that D € int(%). By Theorem 6.3.10
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Figure 6-32 Figure 6-33

1,50 does CD. Thus D € int(#) and 4B < int(#). Hence int(%) is convex. []

either CD < C4 or CD < CB. Since both CA and CB have length less than

According to Problem A4, in a neutral geometry the intersection of a.line
and.a circle consists of-either zero, one, or two points. Since the first case is
less interesting, we only name the latter two.

Definition. In a metric geometry, a line [ is lato the circle € if In€
contains.exactly one.point (which is called the point.of.tangency). /-is.called
a.Qf the circle € if | n € has exactly two points.

In a general metric geometry there are strange situations which can occur
with respect to tangents (see Problems A5 and A6). However, in the context
of a neutral geometry the situation is more as expected. In Corollary 6.5.7
we shall show that in a neutral geometry every point of a.circle is the point
of tangency of a unique tangent line. In Theorem 6.5.10, we shall see that in
a neutral geometry if P isin the exterior of € then there are exactly two lines
through. P. which are tangent-to 4.

Theorem 6.5.6. In a neutral geometry, let € be a circle with center C and let
Qe¥. If.t.is a line.through. Q, then. t is tangent to. % if and only if.t is
perpendicular to the radius segment CQ.

ProoF. First assume that ¢is perpendicular to.CQ and that P is any point on
twith P # 0. APQC is a right triangle with hypotenuse PC. See Figure 6-34.
Ay Q ,
C

P Q ,
W
@ @

Figure 6-34 Figure 6-35

p o
=
) >

A
G
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Thus PC > OC. which means P ¢ % (in fact P € ext(¥)). Hence ¢ cannot
intersect € at a second point and so ¢ is tangent to .
- Conversely, suppose that ¢ is tangent to € at Q. Let 4 be the foot of the
. I{_A_# Q there exists a unique point B.€.t with
Q_A.,&m_d.QA AB. See Figure 6-35. Then ACAB ~ ACAQ by SAS
so that CB ~ CO. Thus Be ¥ and ¢ intersects ¢ at two_distinct points,
which_contradicts the hypothesis that ¢ is tangent. Hence A= Q and ¢ is
perpendicular to C4 = CQ. 0

Corollary 6.5.7 (Existence-and-Uniqueness-of Tangents). In.a neutral geome-
try, if € is a circle and Q € € then there is a unique line t which is tangent to
% and whose point of tangency is Q.

ProOOF. Let C be the center of €. Since there is a unique perpendicular_to
CQ at the point Q (Corollary 6.3.4), the result follows from Theorem 6.5.6.
O

In the more_general setting of a metric geometry, a given point Q may
not be the point of tangency for any line. There are also instances in which
there are many. lines which are tangent to ¥ at Q. These pathologxes are
explored in the problems at the end of this section.

The next result tells us that under certain circumstances a line must
intersect a circle. This will help.us.show that a line which .intersects the
interior. of a circle is a.secant and that from a given external point.there are
two tangent lines.

In order to prove this result we will use a technique, which may be new
to the reader, called a “continuity argument.” Recall that

[a,b] = {xe Rja < x < b}

and the following ideas from calculus.

Definition. #: R — R is continuous at ¢, € R if for every ¢ > O thereisa 6 > 0
such that

[h(e) — h(to)] <& if |t — to] < 6.

(Thus if t is “near” to then h(t) 1s “near” h(t,))

Intermediate Value Theorem. If h:[a,b] — R is continuous at every ty€
[a, b} and if y is a number between h(a) and h(b) then there is a point 5 € [a,b]
with h(s) = y

The Intermediate Value Theorem says that a continuous function takes
on all of the values between its values at the two endpoints. To successfully
apply a continuity argument, one must come up with an appropriate func-
tion, prove that it is continuous, and apply the Intermediate Value Theorem.
This technique is used in the next theorem. We used this method to show
that 5# satisfies PSA in Chapter 4.
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Theorem 6.5.8. Let r.be a positive real number and let A, B, C be points in a
neutral .geometry such that AC <r. and AB L AC. Then there is a point
De AB withCD =r.

PROOF. Let E be a point on AB with d(A4, E) = r as in Figure 6-36. Since the
hypotenuse of AACE is CE and AC < r

d(C,E)>r and d(4,C)<r. (5-3)

rl

&

A = a(0) D-zc) B E = aff)

Figure 6-36

An appropriate function would seem to be g: AE — R given by
g(P) =4d(P, C).

However, in order to apply a continuity argument we need to use the real
numbers as domain. Fortunately we can transfer g back to R by the use of a
ruler.

I‘GI_,[_;E_EN:!_R,__bC the ruler with origin at A and with E positive. Let
@:R— AB be the inverse of f. Then a(0) = A and a(r) = E. Let h(t) =
ga(®) = d(o(t), C) for ¢ € [0, r]. o

We shall first show that i s continuous at any point £, € [0,7]. Let e > 0
be given. We must find a § > 0 such that if |t — o] < d then |h(z) — h(to)| <.
(We will end up with é = ¢.)

First note that the Triangle Ineguality

d(C, a(zo)) + d(al(2), 2(2)) 2 d(C,x(2))

implies
dlaf(t), a(to)) = d(C, (1)) — d(C, a(tg)). (5-4)
Likewise d(C, a(t)) + d(a(2), a(ty)) > d(C, a(t,)) implies
d(C, (1)) — d(C, altg)) > —d((t), &(2)). (5-5)

We may combine Inequalities (5-4) and (5-5) to obtain
[d(C, a(r)) — d(C, a(to))] < d(a(2), a(2o)).
Because f is a ruler, d(a(t), a(t,)) = | f(e(2)) — fee(2,))] = |t — to] and
1) = hto)l S It = tol: (5-6)
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We now let § = & If |t — 5| < 6 then by Inequality (5-6) |h(t) — h(to)| < &
and h is a continuous function.
From Inequality (5-3) we have

RO =d(C,A)<r and h(r)=d(C,E)>r.

Hence by the Intermediate Vajue Theorem with y =r we conclld.e there is
an s € [0, r] with h(s) = r. We may thus let D = a(s) so that D € AB and

CD = d(C, D) = d(C, a(s)) = h(s) = r. a

Note that this theorem says that 4,(C) intersects 4B at a point D if
AC L ABand d(A, C) < r.Itis possible to show that the point D found above
is.unique by using Theorem 6.3.10. However, this fact also follows from the
next result.

Theorem 6.5.9- (Line:GirclesF ). In.a.neutral geometry,. if a line |
intersects. the.interior. of a. czrcle €%, then l is a secant.

ProoF. Suppose that € = (6 AC). If ﬂ € l _then there are exactlv two points

so that EC < r.Let 4 be] tﬁcfo_o_t,o_ftkm perpendicular from Cto . See Flgure
6-37.1f A = E then CA = CE < r. If A # E then ACAE has a right angle at
A so that CA < CE < r. Hence CA < r in either case.

Figure 6-37

(2th§g B, B el m;h B—A—PB'. By Theorem 6.5.8 there are points.
De AB and D' e AB with CD =r and CD’ =r. Thus De¥ and D'e %

Hence I n € has at least two points. By Problem A4, I n € has exactly two
points and so [ is a secant. O

A standard proof of the Line-Circle Theorem uses the Pythagorean
Theorem (Chapter 16 of Moise [1990]). Such a proof is only valid for the
Euclidean Plane. The proof given above is valid in any neutral geometry.
Thus the Line-Circle Theorem is really a neutral (rather than Euclidean)
theorem.

The next theorem discusses how many. tangent lines can be.drawn to a
given circle 4. from an external. point.
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Theorem 6.5.10 (Extertial-F ; ). In a neutral geometry, if €
is a circle and P € ext(%), then there are exactly two lines through P-tangent
t0%. .

ProOF. We shall prove the existence of two tangent lines. In Problem A9
you will show there are no more. Since P € ext(¥€), CP > r and there exists a
unique point 4 with C—A4—P and CA =r. be the endi

CP at A. CA =r < CP so that A is interior to the circle % with_center.C
and radius CP. By Theorem 6.5.9 | intersects ¢’ at points Q and Q'. Since

CQ = CP > r, there exists a unique point Bsuch that C—B—Qand CB=1r.
Note Be %. See Figure 6-38.

Q
B

Y P

¢
Ql

gl

Figure 6-38
Now AQCA ~ APCB by SAS. Hence / CBP is a right angle since

/_CAQ is. Thus BP is perpendicular to the radius segment CB and is thus
tangent to ¥ by Theorem 6.5.6. This gives us one tangent through P. A
second is found by using Q' instead of Q. O

PrOBLEM SET 6.5

Part A.

1. Consider {R?, %} with the max distance dg (Problem B18 of Section 2.2). Sketch
the circle €,((0, 0)).

2. In the Poincaré Plane show that {(x, y)|x? + (y — 5)® = 9} is the circle with center
(0, 4) and radius In 2.

3, If 4B is a chord of a circle in a neutral geometry but is not a diameter, prove
that the line through the midpoint of 4B and the center of the circle is perpendicular
to AB.

4. Prove that a line in a neutral geometry intersects a circle at most twice. (Hint:
Theorem 6.3.10.)

S. In the Taxicab Plane prove that for the circle € = €, ((0, 0)):
a. There are exactly four points at which a tangent to € exists.
b. At each point in part (a) there are infinitely many tangent lines.
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10.

11.

. For the circle of Problem Al, how many points have tangent lines?
_ Use Theorem 6.3.10 to prove that the point D of Theorem 6.5.8 is unique.

_ Prove that for the max plane (Problem A1) there are two distinct circles with at

least 3 common points. What is the maximum number of common points which
distinct circles may have?

. Complete the proof of Theorem 6.5.10.

In a neutral geometry, if % is a circle with 4 € int(¢) and Be ext(%), prove that
ABn %€ + &. :

Suppose that the perpendicular bisectors of AB and BC intersect at P in a neutral
geometry. Prove there is a circle € with 4, B,C ¢ %.

Part B. “Prove” may mean “find a counterexample”,

12.
13.
14.

15.

16.

17.

18.

19.

20.

21

22.
23.

24.

In a neutral geometry, prove that the union of a circle and its interior is convex.
In a neutral geometry, prove that the union of a circle and its exterior is convex.

In a neutral geometry, if AB is a chord in a circle of radius #, prove that AB < 2r.
Furthermore, prove that equality holds if and only if AB is a diameter.

Let 4B and DE be chords of a circle with center C in a neutral geometry. Prove
that AB ~ DE if and only if d(C, 4 B) = d(C, DE).

Prove that if € is a cricle in a neutral geometry, [ is a line, and if In € # & while
Inint(¥) = &, then [ is tangent to €.

In the Moulton Plane

a. Show that {(x,y){x? + 2 =1} and {(x,)|(x — 2)* + y* = 1} are circles.
b. Show that {(x, )|(x + 1) + y* = 4} is not a circle.

c. Carefully sketch the circle &s((~1,0)).

For the model of Problem B20 of Section 4.1, carefully sketch the circles
%,2((0, 2)) and €,,((0, 2)).

We say that a line [ is a subtangent of the circle € if INn% # & but [nint(¥) =
5. Note that a tangent is a subtangent. Show that for the Taxicab Plane

a. At every point of € there is a subtangent.

b. Through every point P € ext(¥) there are exactly two subtangents.

Prove the results of Problem B19 do not generalize to an arbitrary metric
geometry by considering Problem B18.

In a neutral geometry, prove that a diameter of a circle € bisects a chord of € if
and only if the diameter is perpendicular to the chord.

In the Missing Strip Plane (see Section 4.3) sketch the circle %,((1, 0)).

Find an example of a circle % and a point Q € ext(%) such that there are more
than two lines through Q tangent to 4.

In a neutral geometry, if 4, B € %,(C), prove that 4B < 2r. If “neutral” is omitted
from the hypothesis, is the result still true?
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25. Find an example of a circle € and a point P € int(%) and a line / containing P
such that [ is tangent to €

26. Find three non-collinear points in s# which do not all lie on the same circle.

6.6 The Two Circle Theorem

By Theorem 6.5.3 we know that two-distinct-circles in a. neutral geometry
intersect in.at most two points. The main point of this section is to give a
condition for when two circles intersect in exactly two points. This result,
called the Two Circle Theorem, will follow directly from a converse of the
Triangle Inequality.

Our first result is called the Sloping Ladder Theorem. It tells us that if a
ladder leans against a wall and the bottom is pulled out from the wall, then
the top slides down.

Theorem 6.6.1 (Sloping Ladder Theorem). In a neutral geometry with right
triangles AABC and, ADEF whose. right angles are at C and F, if AB. ~ DE
and AC > DF, .then BC < EF.

ProOF. Let G € CA so that CG ~ DF. Let H € CB so that CH ~ FE, Then
AGCH ~ ADFE by SAS and so GH ~ DE ~ AB. Since EF ~ CH, if we
can show that C—B—H, we are finished. We shall do this by showing that
H = B and C—H-—B both lead to a contradiction.

Assume H = B Then AABC ~ AGHC by HL and AC ~ GC ~ DF

which contradicts the hypothesis AC > DF. Hence H # B. Assume

C—H—B as in Figure 6-39. Then GH < GB < 4B, which_contradicts
GH ~ DE ~ AB. Hence we must have C—B-—H and EF ~ HC > BC

since HC = HB + BC. d
B
N E
| h
C G A F D
Figure 6-39

The proof of the next result is left as Problem Al
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Theorem 6.6.2. Let AB and DE be two chords of the circle ¢ = %,(C) in a
neutral geometry. If AB and DE are both perpendicular to a diameter of €
at points P and Q with C—P—Q, then DQ < AP <r.

We shall next prove the converse.of the Triangle Inequality. Recall that
theorem stated that in a neutral geometry the sum of the lengths of any two
sides of a triangle is greater than the length of the third.

Theorem 6.6.3 (Triangle -ConstructionTheorem). Let {&,¥,d,m} be a
neutral geometry and let a, b, ¢ be three positive numbers such that the sum of
any two.is greater than the third. Then there is a triangle in & whose sides
have length a, b, and c.

ProoF. We may rename the numbers in such a way that ¢ is largest. Let A

and B be two points with AB = ¢ and let f be a coordinate system for AB

with £(4) = 0 and f(B) = c. Let ¢, = €,(A) and €, = €,(B). We will show
that€; n ¢, # . 0 ¥athensince Ce € = G,(A),

AC=0b Since Ce ¥, =%.(B) then BC = a. Thus AABC will be exactly
what we need. (See Figure 6-40.) We proceed by a continuity argument.

% |

y(t)

b B() a

'1V
A D «)] E B

Figure 6-40

Now %, intersects AB at a point i E) = b while %, intersects AB

at a point D with f(D)=c —a>0. Thus

0<c—a<b<c

We shall let ¢ be the inverse of f and choose a half plane H; determined by
AB. Note that

«(0) = 4, alc—a)y=D, ofb)=E and afc)=

For each t € [0,b] let () be defined as the point in H [, which is on both.
%, and the line through a(r) which is perpendicular to 4B. See Figure 6-40.
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Foreach t € [c — a, c] let y(z) be defined as the point in H, which is on both
%, and the line through o(t) which is perpendicular to_A4B.

" Define
KO = 460, 1) — dpO), 2(1)).
The key observation is that if there is a number s for which k(s) = 0 then

d(y(s), a(s)) = d(B(s), a(s)).
Since y(s), a(s), B(s) are collinear and y(s) and f(s) are on the same side of 4B
then y(s) = B(s). Thus y(s) = B(s) € €, N €, and the proof would be finished.
We will prove in Lemma 6.6.4 below that both g:[0,b] —» R given by
g(t) = d(y(t),a(r))
and h:[c — a,c] - R given by
h(t) = d(B(2). (1))

are continuous. Thus
k() = g(t) — h(t

is continuous on [¢c — a, b] =[0,b] n [¢c — a, ¢]. However y(c —a) =D =
a(c — a) so that ‘
k(c — a) = d(y(c ~ a), a(c — a)) — d(B(c — a), a(c — a))
= —d(f(c —a), alc — a)) < 0.
Similarly k(b) > 0. The Intermediate Value Theorem then implies that k(s) =

0 for some se[c — a,b] and we are done. d

Lemma 6.6.4. The functions g:[0,b] - R and h:[c — a, ¢] = R in the proof
of Theorem 6.6.3 are both continuous.

Proor. The key to the proof is the observation (which we shall prove) that

Step(i. By Theorem 6.6.2 g:[0,5] — R by g(r) = d(y(?), a(t)) is strictly de-
creasing: if t, < t then g(f) < g(to). This implies that if 0 < ¢ < b then 0 =

g(b) < g(t) < g(0) = b so that image(g) < [0,b].

Step\/g, We claim image(g) =[0,b]. If 0 < r < b let P be the point in H,
which is on the perpendicular to AB at A so that AP = r. Then by Theorem
6.5.9 there is a point Q € AB with PQ = b. (See Figure 6-41.) Let R be the
point in H, where %, intersects the perpendicular to 4B at Q. Then APAQ ~
ARQAby HL so that RQ = PA = r. Thus if f(Q) =.s,then Q = a(s)and R =
y(s) so_that g(s)=r. Hence reimage(g) and [0,b]  image(g). Thus
image(g) = [0, b].

Step3. We show that g is continuous at t, if 0 < t, < b. Let ¢ > 0. Then
there are numbers r, and r, in [0, b] with

glte) —e<ry <glto) <r, <glty) +e.
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P W R
L4 o —e
A ; Q E B
Figure 6-41

By Step 2 there are numbers s, > t, and s, < t, in[0,b] with g(s) =r;. If &
is the smaller of the two numbers s; — foand to — s, then whenever |t — 1] <
o0 we have

S, ~to<t—-tly<si =l
or

and since g is decreasing
glty) — & < ry = gls1) < glt) < glsy) =1, < gltg) + ¢

§, <1 <8

so that
lg®) — glto)l <&
Hence g is continuous at t,. A slight modification of the proof shows that g
is continuous at 0 and b also.
The proof that & is continuous is similar except in this case h:[¢ — a, ¢] =
[0,d] is surjective and strictly increasing. a

By this point you probably have noticed that we have used continuity
(and the Intermediate Value Theorem) quite a bit. This should not be too
surprising. We mentioned earlier that the ruler postulate was very powerful.
By parametrizing lines we are quite naturally led to real valued functions.
The Plane Separation Axiom is really a kind of continuity axiom—note that
in two of the examples we gave where PSA did not hold (Missing Strip Plane
and the geometry of Problem B20 in Section 4.1), the rulers look like they
have “holes” in them.

The Two Circle Theorem can now be proven directly from Theorem 6.6.3.
This is left as Problem A2.

Theorem 6.6.5 (Two:€ircle Theorem). In. a neutral geometry, if €, =%,(A),-
€,.=%.,B), AB =c, and if each of a, b, c is less than the sum of the other
two, then € and €, intersect inexactly two points, and these points are on
opposite.sides of AB.

In Problem A3, you will give another necessary and sufficient condition
for two circles to intersect in two points.
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We saw in Theorem 6.2.4 that the SAS Axiom could be replaced by the
ASA Axiom. We can. also_replace SAS with SSS if-we are willing to.also
postulate the Triangle Inequality.and the Two Circle Theorem.

Theorem 6.6.6. If a protractor geometry satisfies SSS and both the Triangle
Inequality and the Two Circle Theorem with the neutral hypothesis omitted,
then it also satisfies SAS and is a neutral geometry.

Proor. Suppose that for AABC and ADEF we have AB~ DE, { B~ [ E,
and BC ~ EF. We must show that AABC ~ ADEF. Let a = EF, b = DF,
and ¢ = DE.

The Triangle Inequality guarantees that each of a, b, ¢ is less than the
sum of the other two. Hence #.(B) intersects %,(C) in a unique point G
on the same side of BC as A by the Two Circle Theorem. See Figure 6-42.
Then AGBC ~ ADEF by SSS.

G

714

B “ C E
Figure 6-42

}:I_gng[_ G_EC ~ [ DEF ~ / ABC. Since A and G are on the same side
of BC, BA = BG by the Angle Construction Theorem. Then GB ~ DE ~ AB
implies G = A. Hence AABC = AGBC ~ ADEF. O

Theorem 6.6.6.says that a_protractor. geometry with SSS, the Triangle
Ingquality and.the Two.Circle Theorem is a neutral geometry. It may be
that not. both.the Triangle. Inequality and.the Two Circle Theorem are
needed. (Of course, they are needed in our proof) We do.not know of any
protractor geometry, which. satisfies. SSS..for which either. the Two Circle.
Theorem or the Triangle Inequality fail.

PROBLEM SET 6.6
Part A.

1. Prove Theorem 6.6.2.
2, Prove Theorem 6.6.5.
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3. Prove thatin.a neutral geometry, two circles ¢, and.%, intersect in exactly two points
if and only if €, N int(%,) # & and €, N ext(%,) # .

4. Prove that.in a neutral geometry a circle of radius r has a chord of length ¢ if and
only if0<c<2r

5 Let a=2,b=3and ¢ =4 and construct a triangle AABC in the Euclidean Plane
~“with AB =4, AC = 3 and BC = 2. (Hint: Imitate the proof of Theorem 6.6.3. Start
with A = (0,0) and B = (4,0).)

6. Leta=2,b =3, and ¢ = 4 and carry through the steps of Theorem 6.3 to construct
a triangle AABC in the Taxicab Plane with 4B = 4, AC = 3 and BC = 2. (Remark:
This is not a neutral geometry so we don’t know, a priori, that the construction will
work.)

7. In a neutral geometry prove that for any s > O there is an equilateral triangle each
of whose sides has length s.

Part B. “Prove” may mean “find a counterexample”.

8. Prove that in a neutral geometry, if two circles %, and %, have exactly one point
Q in common then they have a. comman tangent Tine. (That is, there is a line I
which is tangent to both %, and %, at Q.)

9. Let @? = {(x, y) € R?|x and y are both rational}. {Q@2, %2, d;} is an incidence
geometry formed by using Euclidean lines with rational slope intersected with Q2

and Euclidean distance.

a. Prove that {Q2 %2, d;} is an incidence geometry. (Hint: Problem B21 of
Problem Set 2.1.) It is not a metric geometry.

b. Show that the conclusions of Theorems 6.6.3 and 6.6.5 are false for this
geometry. (This points out dramatically the need for rulers in these theorems.
There are many, many holes in @2 and so any kind of continuity argument is
out.)

10. Let a =1n2, b =In 3, and ¢ = In 4 and carry out the steps of Theorem 6.6.3 to
construct a triangle in )" with AB =1n4, AC = In 3, and BC = In 2. Start with
= (0, 1) and C = (0, 2). Find the exact coordinates of A.

Part C. Expository exercises.

11. We now have at least three ways of defining a neutral geometry by imposing
additional axioms on a protractor geometry: (1) SAS (our selection), (2) ASA, or
(3) SSS, the Triangle Inequality, and the Two Circle Theorem. Discuss the relative
merits of each of these choices. Would you choose (2) or (3)? Why?

6.7 The Synthetic Approach

As we remarked in Section 2.2, there are two main approaches to developing
geometry: the metric approach of Birkhoff which we are using (and which
is also followed in Martin [1975], Moise [1990], and Prenowitz-Jordan
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[1965]) and the axiomatic or synthetic approach first firmly established by
Hilbert (and which may be found in Greenberg [ 1980] and Borsuk-Szmielew
[1960]). In this section we shall present a brief overview of how the synthetic
approach would be used to obtain the results we have developed so far.
We shall not present any proofs.

In Chapter 1 we said the choice of axioms is guided by three principles:
correspondence to an intuitive picture, richness of the theory (ie, many
interesting theorems can be proven), and consistency. Consistency means
that the axiom system will not lead to a contradiction. Many authors want
two other properties for their axiom system: minimality and categoricalness.

Minimality really consists of two notions. The first is that the fewest
undefined terms and axioms are used. For example, it is more economical
to assume SAS than it is to assume SSS, the Triangle Inequality and the
Two Circle Theorem. The other notion included in minimality is the in-
dependence of the axiom system. This means that no axiom can be proved
from any of the others. There is no need to assume both SAS and ASA,
for example.

Categoricalness means that there are sufficiently many axioms so that
all models of the axiom system are equivalent under some natural sense of
equivalence. For example, if we add to our current axiom system the
Euclidean parallel postulate then we will have a categorical axiom system for
Euclidean geometry—the Euclidean Plane that we have developed is, up to
an isometry, the only model. We prove this result in Theorem 11.1.20.

Many axiom systems for geometry have been proposed since Euclid. If
you are interested in such foundational questions, see Chapter 15 of Martin
[1975], Chapter 3 of Greenberg [1980], or Borsuk-Szmielew [1960]. The
axioms we give below are essentially those of Hilbert but have been modified
somewhat.

In the synthetic approach, congruence axioms replace distance and
angular measure. The set of axioms for neutral geometry are as follows.

A neutral geometry consists of a set & whose elements are called points,
a collection & of subsets of & called lines, a ternary relation ( }—( }—( )
(“between”), and a binary relation ~ satisfying the following axioms:

Incidence:
(1) If 4, B are distinct points in & then there is a unique line [ € .¥ with
A, Bel
(2) Every line has at least two points.
(3) There is a set of three noncollinear points.

Betweenness:
(4) If A—B—C then 4, B, C are distinct collinear points and C—B—A4.
(5) If 4, B, C are distinct collinear points then either 4—B—C or B—C—A
or C—A—B.
(6) If 4 # C then there are points B and D such that A—B—C and
A—C—D.
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Separation:
(7) For each line [ there are two subsets H; and H, of & such that
@ HnH, =g % —-1=H UH);
(b) H, and H, are convex;
(c) fAe H and Be H, then ABn ! # (7.

Congruence:
(8) = 1s an equivalence relation on the set of segments.
(9) Given PQ and AB there exists a unique point Ce ABsuch that AC ~ PQ.
(10) If A—B—C, D—E—F, AB * DE, and BC ~ EF, then AC ~ DF.
(11) ~isan equivalence relati_o_rl on the set of angles.
(12) Given £ ABC and a ray ED which lies in the edge of the half plane H,
then there is a unique ray EF with Fe H and /. DEF ~ / ABC.
(13) If AB~DE, [ ABC~ [/ DEF, BC ~ EF, then AABC ~ ADEF.
(Triangle congruence as before.)

Note that we never talk about angle measure (only angle congruence) or
the distance between points (only segment congruence). Thus in a synthetic
approach, we cannot talk about an angle whose measure is 35 or 90 or
about points being 2 units apart.

However, with these axioms it is possible to recover all the work we have
done up through Theorem 6.5.7 except those results that explicitly deal with
distance or angle measure. The order that results are derived changes
somewhat. For example, existence of midpoints comes after SAS. Some
definitions and statements of theorems must be changed to avoid mention
of distance or angle measure. For example, in the synthetic approach, /. ABC
is called a right angle if there is a point D with A—B—D and
[ ABC ~ [ CBD. One shows that if an angle is congruent to a right angle
then it is a right angle, and that all right angles are congruent.

As a second example, inequality of segments and angles can be defined
by congruence as in Theorems 6.3.1 and 6.3.2. The Triangle Inequality is
stated in synthetic language as: For any AABC there is a point D such
that A—B—D, BD ~ AC, and BC < AD.

The remaining theorems in Sections 6.5 and 6.6 relied heavily on the ruler
postulate. Indeed, many of the proofs used a continuity agreeraent. In the
synthetic approach two axioms are added to take the place of the continuity
part of the ruler axiom. These are axioms (14) and (15) below. (Actually
axiom (14) suffices to derive the results of Sections 6.5 and 6.6.) These two
continuity axioms can be replaced by a single axiom due to Dedekind which
is very topological in nature.

Continuity:

(14) If ¢, and €, are two circles with €, N int(¢,) # & and €, N ext(¥,) #
& then €, N %, contains exactly two points.

(15) Given 4B and CD there are points Py, Py, ..., P,e AB with P, = A,
Py—P,—P,—+—P, P,_|P,~ CDfor ail i and Be P,PF,.
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It can be shown (see Borsuk-Szmielew) that if (14) and (15) are replaced
by Dedekind’s axiom and a suitable choice of parallel axioms is made (see
Chapter 7) then the system of axioms is categorical so that there is essentially
only one model of Euclidean geometry and one of Hyperbolic geometry,
namely our models & and 5.

We have followed Birkhoff’s metric approach because we feel that the
metric axioms of rulers and protractors are more intuitive, natural, and easier
to follow. Of course, as either the metric or the synthetic approach yield the
same body of theorems, chacun a son gout. A synthetic development can be
found in Chapter 8 of Moise [1990] or Chapter 3 of Greenberg [1980].

PROBLEM SET 6.7
Part C. Expository exercises.

1. Starting with the references in this section, write an essay that describes the
various axiom systems that have been proposed for geometry.



CHAPTER 7
The Theory of Parallels

7.1 The Existence of Parallel Lines

The concept of parallel lines has led to both the most fruitful and the most
frustrating developments in plane geometry. Euclid (c. 330-275 B.C.E.) de-
fined two segments to be parallel if no matter how far they are extended in
both directions, they never meet. Note that he was interested in segments rather
than lines. This follows the general preference at that time for finite objects.
The idea of never meeting is, however, infinite in nature. How then does one
determine if two lines are parallel?

By a stroke of genius Euclid adopted as his Eifth Bostulate

If a line falling on two straight lines makes the interior angles on one side less
than_two.right angles, then the two lings, if extended indefinitely, intersect
on that side on which the interior angles are less.than two right angles.

me this he deduced the important result that if Lis.a line and P ¢ J then
ugh..P.parallel to.l

From Euclid’s time to the mid-nineteenth century, geometers were dis-
turbed by the Fifth Postulate. During that time the prevailing viewpoint
was.that postulates. were. “self-evident .truths” and.this: postulate;-because
of-its-infinite-nature,-was-not.sell:evident enough. 10.be accepted without
proof. In the 5th century Proclus argued that it was conceivable that two
lines could approach each other asymptotically the way a hyperbola ap-
proaches an asymptote. It was generally felt (or hoped) that the Fifth
Postulate need not be a separate axiom but instead could be derived from

169
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the other axioms and their consequences. In modern terminology it was
felt that the Fifth Postulate was not “independent” of the remaining axioms.
Of course we. now. know. that the Fifth Postulate js. independent tbanks. to.
the example of theBoincars.Rlane.

The history of the parallel postulate is fascinating. In fact, many mathe-
maticians attempted to prove the Fifth Postulate, and some thought they
had succeeded. The list of those presenting fallacious proofs includes
Ptolemy (2nd century A.D.), Proclus (410—485), Nasir-Eddin (1201-1274),
John Wallis (1616—-1703), Giordano Vitale (1633—-1711), Gerolamo Saccheri
(1667—-1733), Johann Lambert (1728—-1777), John Playfair (1748—-1819), and
Charles Dodgson (Lewis Carroll) (1832-1897). All failed, usually because at
some point in their arguments they made assumptions (equidistant lines,
similarity) that were equivalent to the desired result, or else they argued
about infinite area or nonexistent points. For an extended discussion of
these and other “proofs,” see the first two chapters of Bonola [1955] or
various sections in Martin [1975] and Greenberg [1980]. See also Heath’s
translation of Euclid [1956].

We shall see in this chapter that the axioms which we have adopted so far
(and Wthh area reﬁnement of those of Euchd) are sufficient only for proving

¢ elline he, eness. This phenomenon was
probably ﬁrst notlced by Carl Fredench Gauss (1777 1855) at the beginning
of the 19th century. He never published his work in the subject, but in various
letters he hinted that he had come very close to discovering what we call
hyperbolic geometry. The first published accounts were given independently
by Nicholai Lobachevsky (1792—1856) in 1829 and by Janos Bolyai (1802—
1860) in 1832. They asserted the consistency of a neutral geometry in which
Euclid’s Fifth Postulate did not hold and developed much of the resulting
theory of such a geometry. Translations of their work may be found in
Bonola [1955]. The first proofs of the consistency of this new non-Euclidean
geometry were given by Eugenio Beltrami (1835-1900) and Felix Klein
(1849-1925). These proofs involved developing models. Later models were
given by Poincaré, including our model 4. (The Klein and Pomcare models
will be discussed briefly in Chapter 11.)

We have seen several instances where we have a choice of equivalent
axioms—PSA or PP, SAS or ASA. As we complete our axiom system in this
chapter, we again have a choice of axioms, but with an important differ-
ence. The two choices for a parallel axiom will not be equivalent. In fact, the.

Allor None.Theorem(Theorem 7.3.10) will tell us that exactly one of the two
choices holds in_any particular model of neutral geometry.

To begin our discussion of the theory of parallels, we need the concept of
a transversal. Once this has been established, we can define the notions of al-
ternate interior angles and corresponding angles (both of which are quite
familiar from high school geometry) and then obtain a sufficient condition
for two lines to be parallel (Theorem 7.1.2).

Definition. Given_three distinctines., Ly, and.lp, we say.t D%@&é@ﬁ
ofl,.and L,.if Lintersects.hoth.ly. and.L,,.butin different. points.
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I

Iz

I /
Figure 7-1

In Figure 7-1, [ is a transversal of [; and I,. I’ is not a transversal because
it does not intersect /; and [, in distinct points. I is not a transversal of I,
and [, because it does not intersect [, at all.

Definition. Assume that the line W&dbﬁmmm
geametry.and.that AC.a.GH =.{B} and.DE.&.GH.={E}. If the points 4, B,
C,D,E, F, G and H are situated in such a way that

() A—B—C, D-=E==F, .and .G—B= —E—H, and
(ii) 4.and D are on the same side of GH

then /: ABE.and.L.EEB.are.a.pais

Figure 7-2

Note that in Figure 7-2 £ DEB and / CBE are also alternate interior
angles. Furthermore, £ CBG.and., LEEB .are, correspondmg angles as are
L ABE and... DEH,.as.well.as. L.LBE and. L FEH.

The following result gives a sufficient.condition.for.twe.Jines-te-haxe.a.
commen-perpendicular..This.means-that-if.twa.lines. satisfy. the condition
ther-they-must-haves-common-perpendicular. Howeverexamples-can-be
found.in. #.to.show. that.the. isnot.true.

Theorem 7.1.1. Letlapnd lo-hetwe-dines-in-a-neutral-geometry. If there is a
transversall.of.ly.and lo.with.a.pair.of alternate interior angles.congruent then
there is-a-tine-l' -which-is-perpendicular.to.both l,.and.l,.
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Figure 7-3

ProoF. Let I, = AC, I, = DF, and | = GH where I, n 1 = {B}, I, n | = {E},
A—B—C, D—E—F, G—B—E—H, and A4 and D are on the same side of
GH as in Figure 7-3. If the alternate interior angles are right angles then GH
gives the desired line I’. Otherwise, one of the two pairs of alternate interior
angles consists of a pair of acute angles. We need only investigate that case.

Assume that / ABE ~ / FEB is acute as in Figure 7-3. Let M be the
midpoint of EB and let P be the foot of the perpendicular from M to AC.
Since / ABE = / ABM is acute, A and P lie on _the same side of GH. (See
Problem Al.) Likewise if Q is the foot of the perpendicular from M to DF
then Q and F are on the same side of GH. Hence P and Q are on opposite
sides of GH. (Why?) We must show that P, M and Q are collinear. This is
done by the Angle Construction Theorem.

The right triangles AMBP_and AMEQ are congruent by HA. Thus
. BMP ~ / EMQ. Let Re PM with P——M—R. By the Vertical Angle
Theorem / BMP ~ / EMR. Hence /[ EMQ ~ / EMR. Q and R are on
the same side.of GH. (Why?) By the Angle Construction Theorem / EMQ =
/. EMR. Hence Q e int(MR) = PM so that P. M and O are collinear. Hence
PQ =1 is the desired common perpendicular. O

Theorem 7.1.2. lnanewzal geometryiiflywandlyhave g.commmonperpendicular,
then.ly.is.parallel.to.ly. In-particular-if-there.is.a-transversal-ta.l.and L, with
alternatesintexior.angles.congsuent,-then. 1 |1, .
Proor. Suppose that [ is perpendicular to I, at P and to I, at Q. If I, = I, the
first part is trivial. Hence we assume that /, # [, and proceed with a proof by
Suppose I, 0 I, contains a point R. Then P # R, O # R, and P, O, R are
not collinear. See Figure 7-4. But then A PQOR has two right angles, which is
impossible. Thus I, N1, = & and I,||l,. The “in particular” statement
follows from Theorem 7.1.1. |

By Theorem 7.1.2, if I, and I, have a common perpendicular then [ ||/,.
Is the converse true: I-dplpssdo.liand. by have.a.common.perpendicular?
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I P

Iy Q
Figure 74

Many fallacious “proofs” of the Fifth Postulate assume the answer is yes.
The next example shows that the answer is nat.always. Another example
is supplied in Problem A6.

Example 7.1.3. In the Poincaré Plane let ! = (L and I’ =, L,. See Figure 7-5.
Show that I||!’ but that there is no line perpendicular to both ! and I'.

Figure 7-5

SoLutiON. First we note that I nl'=(&. After all, if (x,y)eln I’ then
x =0and (x — 1) + y? = 1. But this would imply that y = 0 which is not
true for a point (x, y) € H. Thus I||/".

By Problem B19 of Section 5.3, the only lines perpendicular to [ take the
form (L, for r > 0. The line (L, intersects , L, only if r < 2, and in that case
the point of intersection is (r2/2, \/r* — (r*/4)) = B.

A tangent vector to (L, at B is (—+/r* — (+*/4), r*/2) while a tangent
vector to ;L at Bis (—~/r2 — (r*/4), (r*/2) — 1). (L, is perpendicular to ,L,
if and only if

(PR3 s )

But the left hand side of this equation is

, ot 2 2

reyty T30

Hence no line is perpendicular to both [ and I'. O

Theorem 7.1.4. Inaneutral geometry,.let | be g line and P.¢.1..Then-there. is.a
line I through B which is parallel to.l.
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Proor. We shall perform the ‘doublohcimaapelielian. Let Q be the foot
of the perpendicular 10 [ through P._Let I be the unique perpendicular to
PQ at P. Then PQ is a common perpendicular to ! and . By Theorem 7.1.2,
o ]

Note that we-did-net.claim.that.l’.was.the.only.line.through P.which is
parallalio.lltanay-not-be as the next example shows.

Example 7.1.5. Show that in the Poincaré Plane there is more than one line
through P = (3, 4) which is parallel to _sL.

SoLuTION. ;L and 3L, are both parallel to _sL. See Figure 7-6. In fact, there
are an infinite number of lines through (3,4) parallel to _ L: L, is parallel
to _sLif0 < cand r = \/(c — 3)% + 16. Note also that even ,Ls is parallel to
_sL. This is because (—5,0) ¢ H.

__

We shall see later that ;L and oL are somewhat special. In a sense all
other parallels are between these two lines. Furthermore, neither of these
two lines has a common perpendicular with - L, but each of the other
parallels does. This will be shown in the next chapter when we classify parallel
lines. I

In_order Jo..prove.the. unigueness .af .parallels, Euclid.introduced. his
Eifth. Postulate. There are many equivalent formulations of Euclid’s Fifth

Postulate, some of which will be discussed in Chapter 9. (Martin [1975] lists
26!) The formulation we state below is Euclid’s original version. We will
show that this.is.equivalent.to.the.uniqueness.af. pacallels(which is.usually
called Playfair’s.Postulate). The definition which follows is merely a mathe-
matically precise form of the quote from Euclid at the beginning of this
section.

Definition. A protractor. geometry. satisf d
whenever BC.is.a.transversal.of. DC.and. 4 B.with.

Vel S8

(i) A.and D on.the same side.of BC
(i) m(L ABC) Fm( £ BCD) < 180
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B
N
'F igure 7-7

then. 4B and . CD intersect at.a point E on the same side of BC.as.4.a0d.D.
(See Figure 7-7.)

Theorem 7.1.6. If-txis-a-line-and-P.g l-itta.neuxalgeometry. which satisfies
EER,.then there exists.a unique line:-through..which is parallel to .

Proor. Let [’ be the line of the “double perp” construction of Theorem 7.1.4
so that Q is the foot of the perpendicular from P to I. Suppose that 4B is

another line through P with A—P—B. See Figure 7-8.

Figure 7-8

If 4B # I' then one of the angles £ APQ or / BPQ is acute. We may
assume that £ 4PQ is acute. Since the angles at Q are right angles, we apply
Euclid’s Fifth Postulate and see that 4B intersects [ at a_point F. Hence AB
is not parallel to I if 4B # I'. Thus there is only one parallel to ! at P. d

Since the 18th century the conclusion of Theorem 7.1.6 has been used as
the primary parallel axiom. Because this choice was first championed by
Playfair, it is often referred to as Playfair’s Parallel Postulate. We shall use
the term “Euclidean Parallel Property.” After we formulate the idea in a
definition, we shall show that it is equivalent to Euclid’s Fifth Postulate.
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Definition. Ammcﬂenemgeomﬁwmtmﬁe&the&uﬂtmmgtg
(EPP)iffor.exvsuyline.Land.every.point. L, there rou,
which-ds.pasatiel-te-|.

Note that EPP is a property of an incidence geometry so that the Taxicab
Plane; Euclidean Plane, and R? with the max distance all satisfy EPP.because.
they.all have. the same.underlying .incidence.geometry,.and-it-satisfies-EPP.
Of course, only the second isa neutral geometry Note also that lLB..e.L.l.t..&

side gi BC. Suppose that m(/_ABC) + m(L BCD) < 180. We want to show

that B4 n CD # 3. Choose E on the same side of BC as 4 with_/ EBC and
/[ BCD supplementary. Choose F with F—B—FE. See Figure 7-9. Then

/. FBC and / EBC are supplementary so that 7 FBC ~ / DCB.

Figure 7-9

By Theorem 7.1.2, BE_]@_Then by the hypothesis of EPP, B4 is not
parallel to CD because BA # BE (Why?). Hence BA n CD # (. We now
must show that actually B4 n CD # (. Since

m(/ CBA) + m(/ BCD) < 180 = m(/ CBE) + m(/ BCD)
we have / CBA < / CBE. Thus A € int(/ CBE) because 4 and E are on

the same side of BC.

This is means that 4 is on the same side of BE as C. all of int(BA4) is
on the same side of BE as CD. (CD lies on one side of BE because CD“BE)
Since CD n 4B # (7, the point of intersection must belong to BA. Finally,
since int(B4).and int(CD) lie on the same side of BC (Why?), the point of
intersection must belong to CD. Hence B4 1 CD # . [
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Because of Theorems 7.1.6 and 7.1.7, Euclid’s Fifth Postulate and EPP
are equivalent for neutral geometries.

PROBLEM SET 7.1
Part A.

1. In a neutral geometry if / ABC is acute then the foot of the perpendicular from
A to BC is an element of int(BC).

2. Given two lines and a transversal in a protractor geometry, prove that.a_pair of
alternase.interior.angles.are.congouentif.and-only.if.a.pair-of corresponding.angles.
AoecDZIERL.

*3. In a neutral geometry, if ! is a transversal of /; and I, with a pair corresponding
angles congruent, prove that I ||1,.

4. In a neutral geometry, if BC is a common perpendicular of AB and CD, prove
that if [ is a transversal of 4B and CD that contains the midpoint of BC then a
pair of alternate interior angles for | are congruent.

5. Give an example of the following in the Poincaré Plane: Two lines I, and [,
which have a common perpendicular and a transversal ! for which a pair of
alternate interior angles are not congruent. {Thus the converse of Theorem 7.1.1 is
false.)

o
{6 \In the Poincaré Plane show that two distinct type I lines are parallel but do not
have a common perpendicular.

7. Using vector notation for the Euclidean Plane prove that L g Lcp if and only if
there is a real number A with A — B = 4(C — D).

8. Let [JABCD be a quadrilateral in a neutral geometry. If 4B ~ CD and AD ~
BC prove that AB||CD and 4D || BC.

9. Let LJABCD be the quadrilateral in &# with A = (0,15), B =(12,9), C = (12, 5),
=(0,13). Show that AB||CD and 4D||BC. Show that 4B is not congruent to
Cﬁ Hence the converse of Problem A8 is false in a neutral geometry.

IQ. In H# let | = ,Ls and let P =(1,2). Find a line !’ through P parallel to I.

*11. Let {.Y,,.Z,d,,m}. be.a neutralgeome;ry Ihat sansﬁe&E}?P Prove that lﬁ,{_kulg_m

Part B. “Prove” may mean “find a counterexample”.
12. Prove that the Moulton Plane satisfies EPP.
13. Prove that the Missing Strip Plane satisfies EPP.
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14. Given a quadrilateral [JABCD in a neutral geometry with AD|BC and LB~
£_D, prove that AB||CD.

Part C. Expository exercises.

15. Using Bell [1937], Coolidge [1940] and Struik [1967], compare and contrast the
lives of Bolyat and Lobachevski. What effect did their discovery of non-Euclidean
geometry have on their lives?

16. Look up the list in Martin [1975] of twenty-six equivalent forms of Euclid’s Fifth
Postulate and describe them in words. Which are the most “geometric™? Which
are the most dissimilar in content? Which do you find most “obvious™? Note that
all of them are true in the Euclidean Plane. Find examples to show that in the
Poincaré Plane these properties do not hold.

17. Write an essay which gives Gauss’s view of the parallel controversy. See Hall
[1970]. Do you admire, condone, or condemn his stand?

7.2 Saccheri Quadrilaterals

In the previous section we mentioned a number of attempts to “prove” that
Euclid’s Fifth Postulate followed from the other postulates of a neutral
geometry. One of these deserves special mention because it contributed a
direction for research in plane geometry.

In 1733 there appeared the book Euclid Vindicated of All Flaw by the
Jesuit priest Gerolamo Saccheri. In it the author purported to prove Euclid’s
Fifth Postulate as a theorem. We now recognize basic flaws in his argument
at certain crucial steps. However, the book was and is important in the
development of the theory of parallels because it was the first to investigate
the consequences of assuming the negation of Euclid’s Fifth Postulate. A
translation of the book is given by Halstead [1986].

Despite his failure to actually prove Euclid’s Postulate as a theorem,
Saccheri did contribute a substantial body of correct results. Did he know
about the flaws in his proof? Certainly the erroneous proofs were unlike any
of the rest of his carefully reasoned development. It has been suggested that
Saccheri knew what he did was fallacious and that the “proof” was included
so that the Church would approve the publication of his work. Whether he
intended it or not, Saccheri did invent non-Euclidean geometry, although
he gave no models. His contributions are remembered today in the following
definition and a theorem which bears his name.

et .

Definition. A quadrllateral [JABCD . in a protractor geometry.is.

if £ A.and /D are right angles and AB.~.CD.In this casé we
w‘th?@?f CD\f»I‘.e.l ower base of [S]JABCD is AD, the.upper.base is BC, the
legs are AB. “and CD, the lower base angles are-/-A and ¢ D, and the upper
base angles are £ B and ./ C. (See Figure 7-10).
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Figure 7-10

The basic approach of Saccheri (and those who followed him) was to try
to-prove something.which- turned out not to be true: that every Saccheri
quadrilateral was actually a rectangle. If that were true it would not be hard
to prove that EPP holds. Saccheri’s main contribution comes from a careful
investigation of three cases: (i) L B.is obtuse (which he.showed was.impossi-
ble), (i1) . B is a right angle.(which is_equivalent.to. EPP) and (1) 2 B._is
acute (which he claimed to have proven.is.impossible, but.in fact is possible).

Note that the order the vertices are listed for a Saccheri quadrilateral is
important. If [JABCD is a Saccheri quadrilateral, so is (JDCBA, but [1BCDA
may not be. (In fact, [JBCDA will also be a Saccheri quadrilateral if and only
if 1t is a rectangle.) It must always be remembered that the first. and last
letters listed in the name of a Saccheri quadrilateral refer to the lower base
angles which are right angles, '

Before we prove Saccheri’s Theorem (i.e., the sum of the measures of the
angles of a triangle in a neutral geometry is less than or equal to 180) we will
require several preliminary results.

Theorem 7.2.1. In.a.neutral geometry.a.Saccheri quadrilateral JSIABCD. is.a
convex.guadrilateral,

PRroOOF. Since X E ] ggq_f D have a common perpendicular (namely A, Z)'),

Theorem 7.1.2 shows that AB||CD. By theorem 4.5.5, [JABCD is a convex
quadrilateral. O

Note that we did not use the fact that AB ~ CD in the above proof. The
important point was that / A and / D were right angles.

Definition. Two.conxex quadrilaterals in.a.protractor.geometry.are-coggruent
if_the corresponding .sides.and. .angles.are.congruent:-In this case we write
OABCD ~ JEFGH.

We leave the proof of the next theorem and its corollary to Problems A3
and A4.
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Theorem 7.2.2. In-a-neutral- geometry, if AD ~PS and.AB.>.PQ, then
[S8IABCD ~.[SIPQRS.

. Corollary 7.2.3. In a neutral.geometry if. LJABCD.is.a-Saccheri quadrilateral
then. BABCD. ~ SIDCBA.and [ B/ .C.

One of the crumal points in the study of Saccheri quadrilaterals is the fact
s ase. To prove this we need

a generahzatlon of the rlangle Inequahty

Theorem 7.2.4 (Rolygon-tnequality). Suppose n> 3. If Py, P,,..., P, are

points in a neutral geometry then
d(Ph n) < d(Pli 2) + d(PZa 3) +o0+ d(Pn 1s n)

Proor. We use the Principle of Induction. If n = 3 then the result is just the
Triangle Inequality (as given in Problem A6 of Section 6.3). Suppose that
the result is true for n = k. Then

d(Py,P) < d(Py,P,) + d(P,,P3) + - - + d(Pi_1, P).
By the Triangle Inequality again
d(Py, Py 1) <d(Py, P) + d(Py, Py ).
Combining these two inequalities we have
d(Py,Pyy1) <d(Py, Py) + d(Py, P3) + - - + d(Py_(, P)) + d(Py, Pyt q)

so that the result is true for n = k + 1 whenever it is true for n = k. By the
Principle of Induction the result is valid for all n > 3. O..

Theorem 7.2.5, In a neutral geome

ProOF. We shall construct a_chain of congruent Saccherl guadrllatera s as
in Figure 7-11. Let 4, = A, A, =D, B, = B, and B, = C. For each k>3

let A, be the unique point on 4D such that A,_,—A,_,—A; and 4,_ A4, =~
AD. Note that d(4;, An.1) = 1 d(4. D). For each k >3 Tet B, be the unique
point on the same side of 4D as B with B,4, L AD and B4, ~ BA.

B =B C=B, B, B, B;

A\
AL}
A\N

W

=

\.
A\
\Y

L ul . [1 /. ul / .l
1 7 7 7

A= Al D= A2 A3 A4 AS
Figure 7-11

By Theorem 7.2.2, 814;B;B;, ,4; ., ~ [S]JABCD for all i > 1. In particular
B,B, ~ B,B, ~ - - - . By the Polygon Inequality

d(Ay, Aysy) S d(44,B1) + d(By,By) + - - + d(B,, Byy 1) + d(Bs 1, A+ 1)




7.2 Saccheri Quadrilaterals 181

Hence, since d(4, B) = d(4,, B,) = d(B,+1, Ap+;) and d(B;, B;,,) = d(B, C),
n-d(4,D) < 2d(A, B) + n-d(B,C) forn>1.

Then
2
d(A,D) — d(B,C) < . d(A,B) forn>1. 2-1)

Since Inequality (2-1) holds for all n > 1 and the right hand side can be made
arbitrarily small by choosing large values for n, we must have d(4,D) —

d(B,C) £ 0. Therefore

1D < BC. O

A
The previous result and the Open Mouth Theorem can be combined to
prove the next result.

Theorem 7.2.6. Iu.gueu

Theorem 7.2.7. MWWM&SMWW%OMW
angles of a.right triangle is less.than, or equal to 90.

ProoF. Let AABD have a right angle at 4 and let C be the unique point on
the same side of 4D as B with CD | AD and AB ~ DC. See Figure 7-12.
Then we have [§JABCD and by Theorem 7.2.6

m(£ ABD) + m(, ADB) < m(/ BDC) + m(/ ADB).

Since [SIABCD is a convex quadrilateral (Theorem 7.2.1), Beint(£ ADC)
(Theorem 4.5.3) and so m{/ BDC) + m(/ ADB) = m(£. ADC) = 90. Thus

m(, ABD) + m(, ADB) < 90. O

B C

A D
Figure 7-12

Theorem 7.2.8 (Saccheigadhigorem). [n.a-neutral-geometiy,-the.sum-of-the
measures-of-the-angles of -a triangle is-less-than or equal to-180.

ProoF. Let AABC be any triangle and assume AC is a longest side. Then
by Theorem 6.4.3, the foot of the perpendicular from B to AC is a point D

m(/ CABL+ m(/ ABC) + m(LBCA) = m(LDAB) + m(/ ABD)
+ m(L DBC) + m(£ BCD)
< 90 + 90 = 180 |
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-

A D C
Figure 7-13

It must be remembered that Theorem 7.2.8 is the.best.possible.sesult. We'
have already seen an example of a triangle in # (Problem Al of Section 5.1)
in which the sum of the measures of the angles is actually strictly less than
180. In your high school geometry course you learned that the sum of the
measures of the angles of a triangle was exactly 180. That result was correct
because you were dealing exclusively with a geometry which satisfied EPP.
In the Moulton Plane we saw an example (Problem A10 of Section 5.2) where
the “angle sum” was greater than 180. This does not contradict Theorem 7.2.8
since the Moulton Plane is not a neutral geometry.

The next result shows that the.assumption.of the. B :,Jgén;;ljarallel
Property-forces-the “anglesum’ to be.180. We shall sce in Chapter 9thatina
neutral geometry. EPP is.actually. equivalent.to the assumption that the

“angle.sum.is.J.80.

Theorem 7.2.9 (Buelidean-Angle.Sum)..ln q.neutral geometry.which.satisfies-a
EPP, the sum of the measures.of the.angles.of any triangle is exactly 180.

PR(?_OF. Let AABC be given and let | be the unique line through B parallel
tg AC. Choose D and E on | with D—B—E and with D and A on the same

Figure 7-14
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We know that Aeint(/ DBC) so that m(. DBA)+ m(/. ABC) =
m( £ DBC). Thus
m(L.CAB)+m(/ ABC)+m(L BCA)=m(, DBA)+m(,L ABC)+m(/ EBC)
=m(, DBC)-+m(L EBC)
= 180. 0
Definition. A _quadrilateral. [JABCD-is -a. @arailel_ogx&i.iLZﬁ{@ and

ADJ|BC. A.quadrilateral [JABCD is a.fectangle if all four angles. are. right
angles. A rectangle [JABCD.is. &square if all-sides.are.congruent.

Theorem 7.2.10. In.a.neutral.geometry.a.Saccheri. guadrilateral is. a.paral-
lelogram.
ProoF. In [S14BCD, AB||CD since the two lines have a common perpen-

dicular, namely AD. By Problem A6 the_ line joining 1ing_the midpoints of AD'

and BC is perpendicular to both Hence AD||BC. 0

As mentioned at the beginning of this chapter, there have been many
attempts to prove that EPP is a theorem in neutral geometry. Some of the
false proofs offered came from a basic misunderstanding of Saccheri quadri-
laterals and in particular Theorem 7.2.10. It was erroneously assumed that
since [SIABCD was a parallelogram with two right angles, “it must be a
rectangle” (see Problem A2 for a counterexample), or “it must have opposite
sides congruent” (see Problem Al for a counterexample).

Another misunderstanding in attempts to prove that EPP followed from
the axioms of a neutral geometry came from a misuse of the concept of
equidistant lines. Recall from Section 6.4 that the distance from a point P
to a line [, d(P, 1), is the perpendicular distance.

Definiticn. A set of points.</.in.a muﬁ&gemmg&mﬁgm
line lif d(4.1)isthe same forall 4 € .of (i.e., d(A, 1) = d(A',[) forall 4, A’ € ).

Certainly if$wedines.landdeares : QY ARE
a few incorrect proofs of EPP came about by assummg that parallel lines
are equidistant. In Problem A23 there is a specific example in # to show that
pazallellines.need.not-be-equidistant. In fact, in Chapters 8 and 9 we will
show that the statement “parallel lines if and only ifequidistant” is equivalent,
for.a neutral geometry,.to.the statement “satisfies EPP.”

It would seem to be hard to show that one line is equidistant from another
as there are infinitely many points to check. The last main result of this
section, Giordano’s Theorem (Theorem 7.2.13), shows that it is sufficient to
check only three points.

Theorem 7.2.11. Let [JABCD be. a.quadrilateral in.a.neutral geometry with
_ right angles.at A.and D, If AB > DC then / ABC.< [ DCB.
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Proor. Choose E € DC so that D—C—E and DE ~ AB. Then [JABED is a
Saccheri quadrilateral so that / ABE ~ / DEB by Corollary 7.2.3. By.
the Exterior Angle Theorem, / DEB < / DCB. On the other hand Ce

int(/ ABE) (Why?) so_that / ABC < / ABE. Thus / ABC < / ABE ~
L DEB < [ DCB. 0

Corollary 7.2.12. In a neutral geometry, if [JABCD has right angles at A

() AB.> CD if and.only if L ABC <./ DCB
(i) 4B.~.CD.if-and.only-if-iedBC-c:A-DCB
(ii)) 4B.<.CD.if.and.only.if..L.ABC >.,.DCB.

Theorem 7.2.13 {Ginsdamaisshsosem). Ln.a.neutral.geometry,.if. there are
three distinct.points.on.a. lln&l,whwhaxe the.same.distance. from.a line ', then.

Lis.equidistant from.l'.

Proor. If | = [’ then [ is equidistant from /. Hence we may assume that | # ['.

Let 4, B, C el with d(4,1') = d(B,!') = d(C,!'). Two of 4, B, C must be on
the same side of I'. By Problem A22, [js parallel to I’ and hence all of [ lies on.
one side of I'. In particular 4, B, C all lie on the same side of I. Since one of

the three points must be between the other two, we may assume that A—B—

C D be the feet of the perpendiculars from 4, B, C to I'. See
Figure 7-15.
A B C /
_ ) Iy "
D E F
Figure 7-15

We have three Saccheri quadrilaterals: [S)DABE, [SIDACF, and [SJEBCF.
Thus

L ABE ~ / BAD ~ / BCF ~ / CBE (2-2)

by Corollary 7.2.3. Hence £ ABE is a right angle since /7 ABE and / CBE
form_a linear pair. Thus all the angles in Congruence (2-2) are right. Hence

[SLDACEF is a rectangle. We must show that if P € [ and if S is the foot of the
perpendicular from P to [ then PS ~ AD.

Case()). _Suppose that P is between two of the points 4, B, C, Then A~
P—C. If PSisnot manmlarmuhenmc_aLLAE&and_L_CBSJ&amm
Assume that /£ APS is acute so that / CPS is obtuse. See Figure 7-16. By
Corollary 7.2.12, AD < PS < CF. Since this contradicts AD ~ CF, we must
have PS_L I Hence /. APS =~ / PAD and PS =~ AD by Corollary 7.2.12.
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A P C P A Q C R
! \ !
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/
/
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D et w I S G o b
D S F S D T F U
Figure 7-16 Figure 7-17

Case(2) Now suppose that P el but P¢ AC. Let Q be the unique point
of I with P—A4—0 and 40 >~ PA. Let T be the foot of the perpendicular
from Q to I'. See Figure 7-17. APAD ~ /\QAD by SAS. APDS ~ / ODTby
HA. Hence PS ~ QT. Similarly, let R be the unique point on l with P—C—R
and PC = CR and let U be the foot of the perpendicular from R to I’. Then
PS~ RU. Hence P, Q, R are three points of [ equidistant from . Since
P-—A—0, then by Case 1, AD ~ PS because A is between two of the three
points P, O, R which are equidistant from I'. Hence for ali P, PS ~ AD and !
is equidistant from ['. O

PROBLEM SET 7.2

Part A.
Tl In#let A=(0,2), B=(1, V/3), € =(4,4/3/2) and D = (0,1). Prove that [JABCD
s a Saccheri quadrilateral. Show that BC > AD.

2. For the Saccheri quadrilateral of Problem Al show that my( L B) < 90.
3. Prove Theorem 7.2.2. '
4. Prove Corollary 7.2.3.

5. Prove that the diagonals..of a.Saccheri.quadrilateral are.congruent.in-a-neutral
geometry.

*6. Prove that Lhnhnc.,;m.mng,;h&xmdpmnis,oﬁlhe basesoi,a‘Sacchem.quadnlate;aL

7. Prove Theorem 7.2.6.

,/S\Gwen NAABC in a neutral geometry, prove that m(/ A) + m( . B) < 180 in two
— different ways.

9. Gl\{en a convex guadrilateral C14BCD in a.neutral.geometry, prove.thatm{ L.d).+
m(Z"B) + m(L C) +m(£ D) éwg

10. Prove that t} has g Cii G i i y o
W(You are provmg that Saochen’s “Hypolhesm of the obtuse angle
is false.)

11. Prove Omar Khayam’s Theorem: In a neutral geometry, if S]JABCD then BC >
AD if and only if m(£ B) < 90. (Hint: Prove BC ~ 4D if and only if 2 B is right)
(Yes, this is the same Omar Khayam who wrote “A loaf of bread, a jug of wine,
and thou...”)
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12. In a neutral geometry, let A, B, C be three points on a circle with center D. If D €
int(AABC) prove that m(/ ABC) < 4m(z ADC).

13. In a neutral geometry, let A and B be points on a circle ¢ with center D..If CBis
tangent to ¢ with A and C on the same side of BD, prove that m(/ CBA) >
im(/ BDA).

14. In a Pasch geometry prove that any parallelogram is a convex quadrilateral.
BCD. is.called a_Lambert g_qunlateral (denoted . 3CD
L,A#&B,and-érgcmnght angles Prove that [JABCD is a g_a';a“e!gg;gm and 1s ‘

a convex cwadrllateral

*16. If [LJABCD, prove that m(/ D) < 90.
17. In a neutral geometry, if ABCD and m(z D) < 90 prove that DB > AC.
18. In a neutral geometry, if LIABCD and m(/ D) = 90 prove that DB ~ AC.

*19. Let AB be perpendicular to both BC and AD in a neutral geometry. If C and D
are on the same side of AB, prove that AB < CD.

20. Prove Corollary 7.2.12.

21. In a neutral geometry,

if Lis equidist

*22. In a neutral geometry if A and B are equidistant from [ and lie on the same side of
I, prove that AB]|!.

23. Let A, B,C, Dbeas in Problem Al. Show that 4D || BC but that AD is not equidistant
from BC.

24. In the Euclidean Plane show that if {

| then [ is equidistant from ['.

Part B. “Prove” may mean “find a counterexample”.

25. Prove that the sum of the measures of the angles of any quadrilateral is <360 in
a neutral geometry.

26. Show that it makes sense to talk about the distance from a point to a line in the
Taxicab Plane. (But note Theorem 6.4.2 is false in J.) Prove that in 7. implies
that / is equidistant from [’.

27. Repeat Problem B26 for R? with the max distance dg.

28. A quadrilateral [JABCD is equiangularif / A ~ / B~ / C ~ / D. Prove thatan
equiangular quadrilateral is a convex quadrilateral in a neutral geometry.

29. In a neutral geometry prove that the angles of an equiangular quadrilateral are
not obtuse.

30. In a neutral geometry prove that an equiangular quadrilateral is a parallelogram.

31. In a neutral geometry prove that the opposite sides of an equiangular quadrilateral
are congruent.

32. In a neutral geometry, prove that the line joining the midpoints of opposite sides
of an equiangular quadrilateral is perpendicular to both sides.
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33. Prove that in a neutral geometry the diagonals of an equiangular quadrilateral
bisect each other.

34. In a neutral geometry prove that the opposite angles of a parallelogram are
congruent.

35. Prove that in a neutral geometry the diagonals of a Saccheri quadrilateral bisect
each other.

Part C. Expository exercises.

36. Write an essay which describes the contribution of Saccheri to the theory of
parallels. Discuss the suggestion that religious pressure on Saccheri may have
affected his scholarly integrity.

37. Write a long history of the parailel controversy.

7.3 The Critical Function

In Example 7.1.3 we saw a pair of parallel lines that did not have a common
perpendicular. We have also seen many examples of parallel lines which do
have a common perpendicular {e.g., by Problem A6 of Section 7.2 the parallel
lines that are determined by the bases of a Saccheri quadrilateral). Thus it
seems that there are two types of parallel lines—those that possess a common
per those that do not.

To. help. understand. the differences between. these two types of parallel

lines,-we develop the idea of the ¢ritical fungtion. It will help us determine
when one line is Just barer paraIIeI” to another 11ne We shall see in the

next chapter that this-p is equivalent to

“M&WMQM lar. The crltlcalfunctn is also the key
to the surprising and very basic All.or.None..Lheorem (Theorem 7.3.10). It

will tell us that in.a neuiral geometry if we have a unigue parallel to.l through
P ¢ 1for.ane.choice of P.and I, then we have.a.unique.parallel for.all choices
ofPandl,

Theorem 7.3.1. Let [ he a line in g neutral geometry and let P ¢ 1. Let D be
the_foot. of..the perpendicular.. from P..to.l... Then.BC .ol whenever
m(£.DEC)2.20.

PrOOF. If m(/ DPC) = 90 then PC||{ by Theorem 7.1.2 and so the theorem
Is true in this case. I m(/ DPC) > 90 let A be a point on the same side of
P D as C such that mjLDIiA)____Q(_) See Figure 7-18. Then PAllland mthC)

11es OQMWOMLM Since all of [ lies on one side of PA
PCAl= . [
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D
Figure 7-18

The preceding theorem tells us that if m(z DPC) is Jarge.cnough (for
example, at least 90) then.RC.does not.intersect.l. On the other hand, cer-
tainly for some choices of C (say on /) PC does intersect . Hence ifm(/ DPC)

is.small.enongh then PC does intersect | This dichotomy will lead us to the

definition of the critical number for P and [ Because the definition uses the
notion of a least upper bound, we first review that idea.

Definition. If & is a set of real numbers, then r € R is a least upper bound of
A (written r = lub @) if

(1) b<rforall be #; and

(i) if s < r then there is an element b, € # with s < b;.

Thus lub # is the smallest number which is. greater than or equal to
every.number in #. In advanced calculus it is shown that if % is non-empty
then 4 has a unique least upper bound if 2 is bounded (i.e., if there is some
number N with b < N for all be ).

Example 7.3.2. Let # = {—(1/n)|n is a positive integer}. Show that 0 =
lub 4.

SoLuTioN. Since —1/n < 0, part (i) of the definition is satisfied. Suppose
that s < 0. Let k be an integer greater than — 1/s. Since s < 0, k is positive
and —1/ke . Because —1/s <k we see that —s> 1/k, or s< —1/k.
Hence the second condition is satisfied. Thus 0 = lub 4. : O

Definition. Let I be a line in a neutral geometry and let P ¢ L If D.is.the foot
of the perpendicular from P.to [ let

K D= {re R!there is.a.xay. PC with PC.o L.
andr=m(/ DPC)}
R
Lhe @'ﬁg&l number for P and [is
P D=Iub K(P 1)
\

K(P,l).contains the measures of all angles with, vertex at P and.such that
one side of the angle is perpendicular to ! and_the other side intersects.l.

(-1
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(P, 1) is the “largest” of these numbers and ¢ priori may.or.may.nat.be.in
this. set. We will see in our ﬁrst theorem that if m(/ DPC) =r(P.1) then

PLuis-thesfirst? ray that.does. not.intersect l.so.that r(P, 1.6 K(P.1):
In Problem A3 you will show that %@&MO},
far all lines and all poinis P ¢/ We shall postpone the

calculation of r(P I) for a nontr1v1al example in 5 until after Theorem
7.33.

Before we can use the critical number, we must show that it exists, i.e.,
that luh K(P [).exists. But this is immediate because Theorem 7.3.1 shows
that each_of the_numbers.in K(P,[) is.less than 90. K(P,[) is. not empty be-
cause if C e I, C # D, then m(.L DPC) e K(P,!). Thus K(P,[) is a nonempty,
bounded set and so has a unique least upper bound (which is at most 90).

Theorem 7.3.3. In a neutral geometry let P ¢.1 and let D be the foot of the
perpendicular. from P. to | (L DRPCL2uP. D then PC ol If
m(L DPC) < r(P.1) then, PC A L#£.2.

PrOOF. First suppose that m(£ DPC) = r(P,1). We will show that PC n
I = . Assume to the contrary that PC intersects [ at a point R and let §
be any point with D—R—S, as in Figure 7-19. Then R € int(/ DPS) so that

m(/ DPS) > m(/ DPR) = m(/, DPC) = r(P,l).

B
P P
C
¢ KB, 1) E
/ S
D RN\ D

Figure 7-19 Figure 7-20

But PS n I = {S) so that m(/ _DPS) € K(P, 1), which contradicts the fact that
r(P,l) is the least upper bound of K(P,!). Hence if m(L DPC) = r(P,l) we
must have PC n l— Q Note also if B—P—C then m(LDPB) > 90. By

# Next suppose ‘that m( 4 QPQ > r(P,]). Let E be a point on the same s1de
of PD as C with m(/ DPE) = r(P,1). See Figure 7-20. As noted at the end of
the previous paragraph, EE_“,L Int(PC) and [ lie on opposite sides of PE
(Why?) Hence PC n 1= & if m{(z DPC) > r(P l)
Finally suppose that m(/ DPC) < r(P,I). We will show that P
I # . By the definition of a least upper bound there exists 2 number s =
_m(/ DPF) ¢ K(P,1) with m(/ DPC) < s. Since se K(P,!), PF_intersects F
at a point A. See Figure 7-21.
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P P
N m
D AN A D A’

Figure 7-21 Figure 7-22

_If A4 is on the same side of PD as C then C ¢ int(/ DPF) (Why?) so that

by the Crossbar Thegrem T mtersects DA and hence ﬁ N l;é Q If

and AD ~ DA’. See Figure 7-22. Then bv SAS, LDPA’ ~ LDPA (_3_6
int(/ DPA’) and as before PC intersects DA’ and hence I. Thusifm(Z DPC) <
r(P,1) then PC N1l # (. [

Note that Theorem 7.3.3 says that if C.¢ PD then PC.n l#.(7 if and
only if m(£DPC)<r(P.I). In particular if. PC.0l=.@then.x(B, 1)<

m(L REC).
The proof of the next corollary is left to Problem A2. This result shows

the connection between the critical numbers and EPP.

Corollary 7.3.4. Ler.l be.a line.in.a.neutral.geometry.and .B-be..a.point.not
on . Then there is.more. than.one line through P.parallel to L if.and, only if
r(P,1) <90.

Example 7.3.5. Let P = (g,b)e H with a> 0. If [ = (L, find »(P,]).

SoLuTiON. First we must find the foot, D, of the perpendicular from D to I
By Problem B19 of Section 5.3, the line through P perpendicular to I = 4L is
oL,, where r =./a®*+ b%. Thus D =(0,7). Let C=(a, b+ 1). We shall
first shown that »(P,I) = my(L DPC) and then compute my(/ DPC). See
Figure 7-23. .

Figure 7-23
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Clearly PC n 1= so that r(P,1) < my(, DPC). However, if A€
int(£ DPC) then PA is a type II line and must intersect |. Hence r(P,!) >
my(L DPC) so that r(P,1) = my(/ DPC).

We now compute my(/ DPC).

Tpp=(—b,a) and Tp.=(0,1)
so that

— cnc—1 a a1 (Y _ (b
my(L DPC) = cos (m>—cos <r)—tan <a>'

This gives a value for r(P,!). It will be useful to see how this can be ex-
pressed in terms of the distance from P to L Recall from Equation (2-10)
of Section 2.2 that we can parametrize ,L, as

x = r tanh(s) y = r sech(s)
where s is the distance from D = (0,r) to B = (x, y). Thus if t = dy(P, D),
we have
b rsech(i) 1

a  rtanh(t) sinh(})

so that

o 1
r(P, ly=tan™! (sinh(t))' (3-2)
a

The reason we wanted to express r{P, 1) in terms of di(P, D) in the previous
example is given by the following theorem which says that r{P, [} depends
just.on d(F.0)..the distance from P to

Theorem 7.3.6. Let P and P’ be points in a neutral geometry and let | and
I' be lines with P¢ 1l and P' ¢ I'. If d(P.]) = d(P. 1) then r(P,1) = r(P,I).

Proor. We shall show that K(P,!) = K(P’,I’). This implies that »P,l) =
lub K(P,1) = lub K(P',!') = r(P',I'). Let D be the foot of the perpendicular
from Pto land let D’ be the foot of the perpendicular from P’ to I'. By hypoth-
esis DP ~ D'P'.

If se K(P,1) then there exists a point C e | with m(/ DPC) = s. Choose
C el so that DC =~ D'C’. See Figure 7-24. Then APDC ~ AP'D'C
by SAS so that m{/ DPC) = m({D'P’C’). Hence se K(P,I) so that
K(P, ) = K(P'. ). Similarly, K(P',I') ¢ K(P,l) so that K(P,]) = K(P', ).
Thus #(P,1) = r(P',I'). 1
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P’

rP

# P /

Figure 7-24

As a consequence of Theorem 7.3.6 we may make the following definition.

In Example 7.3.5 we saw that the_critical function for.¢ was [I{t) =
tanZ1(1/sinh(z)). The formula was derived for a particular line and point,
but according to Theorem 7.3.6 the computed result depends only on the
distance. In Problem A4 you will show that in 3£, II(1) is a strictly decreasing
function. This is a special case of the next theorem.

P

Theorem 7.3.7. In aneutral geawmetry, . the.criticalfunctian is nonincressing,
ie.,
it >t then II(t) < TI(1).

PROOF. Let [ be a line, D € I, and let P, P’ be points so that P—P—D, PD L
I, PD=t, and PD=¢t. Choose C, C' on the same side of PD so that
m(/ DPC) = m(/ DP'C’) = II(t). See Flgure 7-25.
. By the proof of Theorem 7.3.3, PCl|L_ By Problem A3 of Sectlon 7.1,
PCIPC. Since P'.and D lie on opposite sides of PC, PPC. n [ = . Thus

PCI so that () = r(P,1) < m(/ DP'C) = II(t). O
PI
n() S
P
()
: !
D

Figure 7-25
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Among other things, Theorem 7.3.7 implies that ifLl{te).<.20.foz. s0me
valueof Lo then L0 <.90 for.all £ 2, to. However, it-might be possible that

II(t) = 90 for some small values of t. Our next big task is to show that if
c.yalve.q..then. JI(1). <.90 for all t > 0. This requires a

prehmmary result v

Theorem 7.3.8. In g neutral geometry, if I(a) <90 then I(a/2) < 90.

PROOF. Let [ be a line, Del, and choose P, P’ so that P—P'—D, PD 1
. PP = P'D=qa/2. Choose C with_m(y/ DPC) = Il{(a) < 90. Finally let

L_bn_thc_lmlqne_hnc_ps,cpcndmulauo_BD_aLP There are two possibilities:
either PC N V' # g or PC n1' = (J. See Figures 7-26 and 7-27.

P
M(a)
C
A
P’ !
E
B
{
D
Figure 7-26
P
fo—s___
P [
/
D
Figure 7-27

First suppose that PCn I’ = {4}. Choose B with P—A—B. Since
(.DP'A is a right angle and Be€ int(/. DP'A) (Why?), m{(£ DP'B) < 90.
We will show that II(a/2) < m(, DP’'B). We do this by showing that P'B N
! = . Since m(£L. DPA) = l(a), PA 0l = 5. Hence P_and B are on the
same side of I. Since P—P'—D, P and P’ are on the same side of /. Hence
P'_and_B are on the same side of I and PB n I = (.

If P—B—E then P’ and E are on opposite sides of PC.Thus D and E
are on_opposite sides of PC (Why?). Hence BEn l=J so that
| = (3. This means that {a/2) = r(P,1) < m({ DP'B) < 90.

On the other hand, if BC_ o I' = ¢F, then H(a/2) = r(P,1') < m(£. P'PC) =

_H(a) < 90. In either case, I1(a/2) < 90. ]
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Theorem 7.3.9. In.a_neutral geometry, it Jla).x 0 far sorue-keal-rhesa,
then, (1) <90 for all ¢ > 0.

Proor. For each positive integer n, let g, = a/2". Then by Theorem 7.3.8,
I(a;) < 90 ssince I1(a) < 90. By induction I1(a,) < 90 for each n. Now suppose
that ¢ has been given. Choose » large enough so that

-2
"7
Then by Theorem 7.3.8, II(t) < I(a,) < 90. O

The Euclidean Parallel Property (EPP) assumes that for each line [
and each point P ¢ [ there is only one line through P parallel to [. The next
theorem is one of the most beautiful and surprising theorems in elementary
mathematics. It says that.in.order to yverify.that a particular.neutral geometry..
satisfies EPP, it is sufficient to check only. one line.and.one.point.not.on
thaj;Jme The result is essentially due to Saccheri.

Theorem 7.3.10 (Addasmemsiien
L . ,
parallel to I, then EPP holds.

Proor. Since there is a unique parallel to I’ through P’, r(P’,I') = 90 by
Corollary 7.3.4. Thus II{a) = 90 for a = d(P'.l'). By Theorem 7.3.9, II(z) =
90 for all t > 0. Hence r(P,1) =90 for every line [ and every point P ¢ L

Thus by Corollary 7.3.4 again there is only one line through P parallel to
[ il

gezem). In.a neutral geometry, fdbergds
0 o P

We should note that the All or None Theorem implies that if there is
one.point.where.parallels.are .not_unique, then they are not unique any-
where. This is formalized in a second parallel axiom.

al.geomeltry. that.satisfies ERP,

Ah xmrbollc geomegx 1sgneg_‘g;g4 gggmetrxh@t,‘g‘mﬁggm

We shall investigate some of the properties of hyperbolic and Euclidean
geometries in the next two chapters. We will see that £.isa.Buclidean geo-

metry and £ is a hyperbolic seometry in Problems A5 and A6 below.
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PROBLEM SET 7.3
Part A.

1. Find the least upper bound for each of the sets:
i. B, = {sin(x)|x € R}
ii. & ={(—1)"|n is an integer}
ii. %5 = {r|ris a rational number and r* < 2}

2. Prove Corollary 7.3.4.

3. Prove that in the Euclidean Plane r(P,!) =90 for every line ! and every point
P ¢ 1. Hence II(t) = 90 for all ¢.

4. Prove that in the Poincaré Plane I7(t) = tan*(1/sinh()) is strictly decreasing:
if t < t' then II{t) > I1(¢t’). (Use calculus.)

s’(ﬂrs.\l}’rove that {R? #;,dg, mg} is a Euclidean geometry.

,{:E.:Brove that {H, %y,dy, my} is a hyperbolic geometry.

7. In 5 let I = 4L. Let o be the intersection of H with the Euclidean line through
0=(0,0) and P =(a,b) where a> 0, b > 0. See Figure 7-28. Prove that o is

equidistant from ! in 5 . (Note .o/ is not a line in 5#.)

Figure 7-28

8. In Problem A7 let @ = (0, 1). Prove that mz(L POQ) = 90 — II(ty) where t, is the
hyperbolic distance from & to I.

9. In Problems A7 and A8 prove that .o = {R = (r,s)€ H|[r > 0 and d(R,]) = t,}.

10. If lis a line and P ¢ | is a point in a neutral geometry which satisfies HPP, prove
that there are infinitely many lines through P parallel to [.

11. Prove that in a Euclidean geometry every Saccheri quadrilateral is a rectangle.

Part C. Expository exercises.

12. Why is the All or None Theorem so surprising? What other names might be
given to this important result, and why?



CHAPTER 8
Hyperbolic Geometry

8.1 Asymptotic Rays and Triangles

In this chapter we continue the study of the theory of parallels with an inves-
tigation of some basic consequences of the hyperbolic parallel property.
We shall be interested in, among other things, the sum of the measures of
the angles of a triangle, in the behavior of the critical function, in classifying
types of parallel lines, and in the determination of an absolute unit of length.

The key step in this study is the development of the concept of asymptotic
rays. Although this-material belongs to the realm of neutral geometry, it is
studied in this chapter because its purpose is to aid in the discussion of
hyperbolic geometry. Furthermore, in a Euclidean geometry, the concept
of asymptotic rays is superfluous—it adds nothing to the concept of paral-
lelism. (See Problem A3.)

Definition. Let 4, B, C, D be four points in a neutral _geometry iucﬁ ihat no
three are collinear, with C and D on the same side of AB, and AD || BC. Then

the set . _
ADABC = AD u AB u BC

is an open triangle (or ).

We have sketched some open triangles in Figure 8-1. The open triangle
in part (a) is in R? while those in (b) and (c) are in H. Part (d) illustrates the
standard “pictorial” representation of an open triangle which we shall use.

Definition. Let ADABC be an open triangle. BC is émctly asyml_gtoﬁa
AD if for every E € int(/. ABC), BE intersects AD.

196
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Figure 8-1

In Figures 8-1(a) and 8-1(b), BC is strictly asymptotic to AD. In Figure
8-1(c), BC is not strictly asymptotic to AD. Because of the way the definition
is worded, a ray is never er strictly asymptotic to itself. The idea is that BCis
strictly asymptotlc to AD if there are no rays interior to /. ABC which are
parallel to AD. Two rays will be asymptotic if they are either strictly asymp-
totic or one is a subset of the other. More formally,

Definition. Two rays P( PQ and RS are (written FQ ~ R3) if either

PQ < RS. or.RS.c PQ.
The ray BC is m to the ray AD (written BC|AD) if either BC is
strictly asymptotic to AD or BC ~ AD.

Our first goal is to show that “asymptotic to” is an equivalence relation.
Except for the reflexive condition, this result is quite technical. On first read-
ing you may wish to skip the proofs of Theorems 8.1.1, 8.1.5, 8.1.6 and 8.1.7.

The first step is to show that the notion of asymptotic rays depends only
on the directions of the rays and not their endpoints. This idea is made
precise by the definition of equivalent rays and the next two results.

Theorem 8.1.1. In a neutral geometry if BC ~ B'C',and BC|AD, then B'C'| AD.

ProoF. By Problem Al, ~ is an equivalence relation. Hence LI_B_Q__.AD
Lh.cn.&(l_.AQ_aLo and B C’IAD Thus we may assume that BC ~ AD; that
is, BC is strictly asymptotic to AD.

Case 1. Assume that BC < BC'. If B= B then BC = BC and so we
are done. We therefore may consider the case B £ B’ In this case B—B—C
so that B'C' = B'C. By hypothesis BC is strictly asymptotic to 4D.

Let Ecint(/ AB'C). We must show that BE n 4D # . Suppose to
the contrary that BE n AD = ¢5. We claim that then E—E'HAD See Figure
8-2. First note that if G—B'—E then B'G n AD = ¥ because B’ C”AD and
G lies on the opposite side of B'C as A and D. Next if H—A—D, then BE n
AH_,,ﬂ since E and H are on opposne sides of AB". Thus B’E n AD =
(BE n AD) v (BE n A4H) v (BG n AD) = (& and B'E||4D.

By the Exterior Angle Theorem applied to AB'BA, / CBA > [ CBA >
L CB'E so that there exists a pomt F eint(,L CBA) with / CBF ~ / CB'E.

Then BF] BE (Why?). Thus BF lies all on one side of BE, as does AD. Since
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H A D
Figure 8-2

B and A are on opposite sides of BE (Why?), BF n AD = ¢J. However,
this contradicts BC| 4D, so that BE n 4D # . Hence B'C| AD.

Case 2. MM Then B—B'—C and BC =
_BC'.LetE e int(/ AB'C’).SeeFiguz Flgure 8-3. We must show that BE  AD 7&@
/_\_s_sume to the contrary that BE n AD = ¢J. By an argument similar to the
one used in Case 1, BE || AD. We first shall show that E € int(/ ABC).

Figure 8-3

Since E € int(/ AB'C"), E and A are on the same side of BC' = BC'. E
and €’ ar¢ on the same side. of AP Since B—B—C'. E, and B are on opposite
me nAB=( by the Z Thcorcm BE_hes_Qn_onc_mde

the opposite s side of AD as Q if B—A—Q. Hence BE N AQ = . This means
that BE n 4B = (A so that B.and E lie on the same side of 4B. Thus E and
C'lie on the same side of AB and so E € int(/ ABC).

Now choose F with B—E—F. If BE.n AD # &, then AD._intersects
cither. BB ar B'E by Pasch’s Theorem. But this is impossible since AD || BB
and AD||BE. Hence BE n 4D = (.
" Since E eint(, ABB'), BE intersects AB at a point R. Since E¢€
int(£ AB'C’), E and B are on opposite sides of 4B’ so that B—R—E—F.
A and R are on the same side of B'E while R and F are on opposite sides of
BE. Hence F and 4 are on opposite sides of BE. Since BE||AD, we must
have EF nAD=@.
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Thus since BE n AD = & and EF n 4D = &, and B—E—F, we have
BE n AD = (. However, this contradicts BC’IAD What caused the con-
tradiction? It was the assumption that B’E N AD = &J. Hence it must be
that BE n AD # ¢ when E € int(Z AB'C’), so that B'C’| 4D. |

The proof of Theorem 8.1.1 became quite involved as we carefully verified
different cases and kept track of which side of a given line a certain pair of
points were on. The next result is much simpler to prove and is left as Problem
A2.

Theorem 8.1.2. In aneutral geometry,if AD ~ A'D' and BC|AD, then BC| AD’

(SN

Theorem 8.1.3. In a neutral geometry, if AD ~ AD', BC ~ B'C', and BC| 4D,
then B'C'|AD.

PROOF. By Theorem 8.1.1, B'C’'| AD. By Theorem 8.1.2, BC'|A'D'. O

As we have mentioned before, if we are given a line [ and a point P there
may not be a unique line through P which is parallel to I. However, the next
result shows that there is a uniqueness result in the case of asymptotic rays.

Theorem 8.1.4. In a neutral geometry, given a ray AD and a point B ¢ AD
there is a unique ray BC with BC|AD.

PrOOF. Let A’ be the foot of the perpendicular from B to AD %El. ch@e
D’ € AD so that A’D’ ~ AD. Note that BC can be asymptotic to AD ~ 4D’
only if C and D’ lie on the same side of A'B. See Figure 8-4.

M(BA")

’ Dl
Figure 8-4

>

AD

If C is on the same side of 4B as D', then by the definition of the critical
function, BC]AD’ if and only if m(/ A'BC) = I(BA) = r(B AD). Since

there is a unique ray BC with C on the same side of A'B as D’ and
m(/, A'BC) = II(BA'), the result is immediate. dJ

The proof of Theorem 8.1.4 is important on a philosophical level because
it shows that there is a relationship between the critical function IT and the
existence of asymptotic rays. This relationship will be exploited in the next
two sections.
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We now show that the relation “is asymptotic to” is symnﬁt’ric. Note
that the only case to prove is when BC is strictly asymptotic to 4D, because
if BC|AD with BC ~ AD then AD ~ BC and AD|BC.

Theorem 8.1.5. In a neutral geometry, if BC|AD then AD|BC also.

PrOOF. We may assume that BC is strictly asymptotic to AD. If@
for some ¢ then the Euclidean Parallel Property holds by the All or None

Theorem. By Problem A3 _the concept of asymptotic is the same as parallel
so_that the result follows immediately. Hence we assume that {J(f) < 90
all ¢t > 0.

Let. 4’ be the footof the perpendicular from B to AD. Choose D' € AD so

that 4D’ ~ AD. Let F.be the foot of the perpendicular from 4’ to BC. See

Figure 8-5. Now m(L A'BC) = II(A'B) < 90 so that by Problem Al of
Section 7.1, F gint(BC).

Figure 8-5

Let E eint(/ D'A'B). We must show that AE n BC # & in order for
AD to be strictly asymptotic to BC. There are three cases depending on where
2oF lies. if E e int(/ BA'F) then A'E intersects BF by the Crossbar Theorem
applied to AA'BF. Since BF < BF = BC, this says that AE 0 BC # .
2 The second case is E € int(A'F). However, in this situation £E N BC.=.
1{F}. The last case occurs when E € int(/ D' A’F). This is the one illustrated
in Figure 8-5. A
Let G be the foot of the perpendicular from B to AE. Since [ BA'G is
acute (Why?), G € A'E. If G ¢ Int_/_A’BC then either G e BC or G is on the

opposite side of BC as A" Either way A'E intersects BC and ATD:’JEC Hence
AD|BC.

unique point H with B——H—A4" and BH = BG. Choose K on the same side
of BA' as D' so that HK | BA". Choose L on the same side of BA' as C with
(HBL> / GBC < 7 A'BC. Because BC|A'D', it must be that BL intersects
A'D’ at some point M.
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Since HK || AD', Pasch’s Theorem applied to ABA’'M implies that HK N
BM ={N) for some N.Let P.e BC sothat BP ~ BN. Then ANBH ~ APBG
by SAS. But this means that / BGP is a right angle since / BHN is a right
angle. Hence P € A'E. Since P and E are on the same side of A'B 4'B (namely the
side that contains D), J Pe AE. Thus AE n BC # & and A'D’'|BC. Since
AD ~ AD', we have AD|BC. O

In order to prove the transitivity of the asymptotic relation we need the
next result. It tells us that if three rays are asymptotic, then there is a common
transversal to the lines that contain them.

Theorem 8.1.6. Let AB, CD and EF be distinct lines in a neutral geometry.
If AB| CD and CD[EF then there is a line | which intersects all three lines AB,
CD and EF.

PRrOOF. Since the lines are distinct, the rays cannot be equivalent. Thus AB
is strictly asymptotic to CD, and CD is strictly asymptotic to EF.

If_,ﬁLand_E_am_an_onnosuuldcs_of;QD then AE intersects CD (as well as
ABand EF). Hence in this case we may let [ = AE. See Figure 8-6.

!

NI N
,' C D 4 F
—— T ————— E¢ -

!
Ee— co— 2

I /

/ !

Figure 8-6 Figure 8-7

Now assume 4 and E are on the same side of CD. If 4 € CE we may let

1= CE and be done. See Figure 8-7. Hence we assume 4 ¢ CE. Now D ¢ CE

EF n CD # &, which contradicts. CD|EF Thus 4 and D are either
on the same side of CE or on opposite sides of CE. If they are on the same
side then 4 € int(/ DCE). Since CD|EF, CA n EF # &, and we may let

I=CA4. See Figure 8-8.

Thus we are left with the case._é and E are on the same sige of CD while 4
and_D_are_on opposite sides of CE. We will show that { = CE is a common
transversal. See Figure 8-9.

/ (-: D 1;{
Ab—3
l/ F G K
Eoe—t . .
cél D \ \J
/
/ E F

Figure 8-8 Figure 8-9
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AD intersects CE at a point G. Choose H with C—D—H so that DH ~ CD
and thus DH|4B. £ HDG > £ DCG by the Exterior Angle Theorem. Hence
we may find J €int(L HDG) with £ HDJ ~ £ DCG. Then DJ||CE. DJ
intersects 4B at a point K since DH| 4B.

We now apply Pasch’s Theorem to AADK. Since CE intersects AD, it
must intersect AK (because CE|DK). Thus CE intersects AB and we may
let | = CE. O

Now we can prove that | is transitive.

Theorem 8.1.7. In a neutral geometry if AB|CD and CD|EF then AB|EF.

Proor. If any two of the three rays are equivalent the result is immediate.
Hence we may assume that the three lines 4B, CD, and EF are dlstmc By
Theorem 8.1.6 there is a line / that intersects all three of these lines. We may

replace the original rays with equivalent rays whaose endpoints lie on | l That
is, we may as well assume that 4, C, and E lie on a single line . Thus either
A—C—E, C—A—E, or A—E—C.

Suppose_that 4—C—F and let Geint(£ E4B). Since AB|CD, 4G
intersects CD._at some point H. See Figure 8-10. Choose I with C—H—]
and Jwith A—H—J. HLLEE by Theorem 8.1.1. Since J € int( /. EHI) (Why?)
HJ intersects EF. But HJ ¢ AG sthaLAQmIm.s.c.cts.EE Thus AB|EF if
A—C—E

¢ D
B
A &
G
T
E F
Figure 8-10 Figure 8-11

Now suppose C——A-—EF. Through the point E there is a unigue ray EG
such that EG|4B by Theorem 8.1.4. Thus we have CD\AB and AB]EG and
C—A—E. See Figure 8-11. By the first case in our proof, CD|EG By Theo-
rem 8.1.5, EG|CD. But there is a unique ray through E asymptotic to CD CD,

namely____LQDEF Hence EF = EG and EF|4B. Thus AB|EF by Theorem

815

in the above paragraph b.uLmLh AB.andEEmiemhanged IEM_EF_LAB
so_that AB|EF by Theorem 8.1.5.
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Since by definition AB| 4B, Theorems 8.1.5 and 8.1.7 prove that “asymp-
totic to” is an equivalence relation on the set of rays.

Definition. The open triangle ADABC is called an(asymptotfc (or closed)
friangl)if AD|BC.

Suppose that ADABC is an asymptotic triangle. If  denotes the equiva-
lence class (under |) of 4D (and of BC), then some authors would write the

triangle as A ABQ. Q is a “point at infinity” or an “ideal point.” We shall not
use this terminology except in Problem B13.

Theorem 8.1.8 (Congruence Theorem for Asvptotic Triangles). In a neutral

geometry, if ADABC and ASPQR are two asymptotic triangles with AB ~
PO and [ ABC ~ [ PQR, then [ BAD ~ / QPS.

Proor. If the angles are not congruent, then one is larger than the other.
We may assume that _éBAD > L OPS. Ch_o_czse Eeint{/ BAD) with
L BAE ~ [ QPS. Since AD|BC, AE intersects BC at a point F. See Figure
8-12.

Figure 8-12

Let TeOR with OT ~ BF. Then AABF ~ APQT by SAS so that
LBAF ~ [ QPT.But £ QPT < [ QPS(Why?) which means that £ QPS ~
[ BAE ~ 7 OPT < / OPS, a contradiction. Thus we must have / BAD ~
LOPS. a

Definition. Two lines [ and ! are @ or asymptotically .parallel
(written /|!'), if there are rays AD < [ and BC < I’ with AD|BC.

If AB| CD then it certainly must be true that AB|| CD. Hence asymptotic
lines are parallel. If a geometry satisfies EPP then the converse is also true
(Problem A3). However, the situation is quite different in a geometry which
satisfies HPP.

Theorem 8.1.9. In a neutral geometry which satisfies HPP, if two distinct lines
l and I' have a common perpendicular, then the lines are parallel but not
asymptotic.
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PROOF. Suppose that 4B is perpendicular to [ at 4 and ' at B. By Theorem
7.1.2, 1||I'. Since we assume HPP, II(4B) < 90. Thus [ cannot contain a ray

that is asymptotic to a ray in I". Hence [ is not asymptotic to I'. O

In Section 8.3 we shall show that the converse of Theorem 8.1.9 is true:
In a hyperbolic geometry if I||/’ but [ 4 I’ then | and I have a common per-
pendicular. We shall also see that if [|I’ then there are points on [ and I
arbitrarily close together so that./ approaches !’ if / is asymptotic to I. On the
other hand if /is parallel to I’ but not asymptotic then the lines / and I’ actually
pull apart. Note how this contrasts with the situation in & where two lines
are parallel if and only if they are equidistant.

ProBLEM SET 8.1
Part A.
1. Prove that ~ is an equivalence relation on the set of rays in a metric geometry.

2. Prove Theorem 8.1.2.
3. Prove that in a neutral geometry which satisfies EPP, [{}l’ if and only if I|I".
4

. Let {&, %, d, m} be a neutral geometry such that whenever I, ||l, then there is a
line I’ perpendicular to both I, and I,. Prove that EPP is satisfied.
5. Let ADABC be an open triangle. What should be the definition of the interior of
ADABC? Show that int(ADABC) is convex.

6. In a neutral geometry, suppose that ADABC is an asymptotic triangle. If In
int(ADABC) # ¥, prove that | n ADABC # (.

7. In a neutral geometry, if AB|CD, CD|EF and A—C—E prove that AB||EF.

8. Let A = (0, 1) and D = (0, 2). Sketch two different asymptotic triangles ADABC
in 5 for some choices of B and C. How many are there? If E=(1, 1) find the
unique ray EF with EF| AD. (See Theorem 8.1.4.)

9. Let A = (0, 1), D = (1/3/2, 1/,/2) and E = (0, }) and repeat Problem AS8.

10. In the Poincaré Plane let 4 = (1, 1) and B = (1, 5).
(a) Sketch five rays asymptotic to AB;
(b) Sketch five rays asymptotic to BA.

Part B. “Prove” may mean “find a counterexample™.

11. In a neutral geometry prove that “asymptotic to” is an equivalence relation on
the set of lines.

12. In a neutral geometry suppose that ADABC is an open triangle. If In
int(ADABC) # ¢ prove that | n ADABC # . See Problem AS6.

13. Show that there is a bijection between the set of ideal points in J# (that is, the set
of equivalence classes of asymptotic rays) and the set R u {x}, where = denotes an
extra point not in R. (Hint: * will correspond to the class of an upward pointing

type I ray.)
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8.2 Angle Sum and the Defect of a Triangle

Throughout the history of geometry, the Euclidean parallel postulate sparked
an enormous amount of interest. It gradually became apparent that this
postulate was intimately tied to a concept called the angle defect which we
define and investigate in this section.

Definition. Let- AABC be a trlangle in a protractor geometry. The@
of AABC is

S(NABC) = 180 — (m(/_A) + m(£ B) + m(£. Q).

We already know that for a Euclidean geometry 6( AABC) =0 for all
triangles (Theorem 7.2.9). We have seen examples in which §(AABC) < 0
(the Moulton Plane) and in which d(AABC) > 0 (the Poincaré Plane). We
also know that for a neutral geometry S(AABC) > 0 (Theorem 7.2.8). Gauss
recognized that in order to prove EPP is satisfied it was sufficient to prove
that 6(AABC) = 0 for one triangle. In fact, he actually tried to compute the
defect of a large triangle on earth but could not be sure of the exact value due
to experimental error.

In this section we will investigate the properties of the defect of a triangle
under the assumptions of HPP. We will show that for any A ABC in a hyper-
bolic geometry, s(AABC) > 0. In fact we will show that if ¢ is any number
between 0 and 180 then we can find a triangle whose defect is exactly ¢! To
do this requires a detailed study of the critical function II. The first step in
this program is to generalize the Exterior Angle Theorem to asymptotic
triangles.

Definition. Let ADABC be an open triangle and let P and Q be points in
the neutral geometry with P~—A-—D and Q—A—B. Then both / PAB and
L.QAD are@lf ADABC whose remote interior angle is / ABC.
(See Figure 8-13. Of course, /. PAB ~ / QAD.)

B

P

/A D
Q

Figure 8-13

\
One word about our terminology. We will now speak of “a hyperbolic
geometry.” Remember that this is any neutral geometry which satisfies HPP.
It need not refer specifically to the model which we call the Poincaré Plane.
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Theorem 8.2.1. In a hyperbolic geometry, an exterior angle of an asymptotic
triangle is greater than its remote interior angle.

Proor. Let ADABC be an asymptotic triangle and choose P so that P—
A—D. We must show that / PAB> / ABC. Choose E on the same side
of AB as C with / ABE ~ / PAB. See Figure 8-14. By Theorem 7.1.1 there
is a line perpendicular to both 4D and BE. By Theorem 8.1.9, BE|| 4D but
BE 4 AD. Hence BE n 4D = (J so that E ¢ int(/ ABC). Because BC|AD,
E ¢ int(BC). Singe both C and_E are on the same side.of 4B, C e int(/. ABE),

so that / ABC < / ABE ~ / PAB. |
B E
C
P A )
Figure 8-14

Theorem 8.2.2. In a hyperbolic geometry the critical function II is strictly
decreasing.

ProoF. We_must show that I1(a) > II(b) if 0 < a < b. Let B—A-—=C with
AC =g and BC =bh. Choose P, Q, R all on the same side of BC with
m(£ CBP) = II(b), m(/{ CAQ) = I(a), and m(/ ACR) =90, See Figure
8-15. Then BP|CR and AQ|CR. In the last section we showed that | is
an equivalence relation, so that BP|A0. AQABP is therefore an asymptotic
triangle. By Theorem 8.2.1 £ CAQ > / CBP so that (a) = m(/ CAQ) >

m(/ CBP) = II(b). O
B
b
m(b) P
I (a) q -
c R
Figure 8-15

Theorem 8.2.3. In a hyperbolic geometry the upper base angles of any Saccheri
quadrilateral are acute.

B—C—F. Choose P on the same side of AB as E, and Q on the same side
of CD as E with BP|4E and CQ|4E as in Figure 8-16. Note BP|CO so
that APBCQ is an asymptotic triangle. Furthermore, Q € int(/ DCF).
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B C e
Q
\f\
ul .l .
A D E

Figure 8-16

Since AB ~ DC, we have
m{/ ABP) = II(AB) = II(DC) = m(/.DCQ).

By Theorem 8.2.1, L QCF > / PBC so that
m({ ABC) = m(/ BCD) = 180 — m( L DCF)
= 180 — (m(L DCQ) + m(L QCF))
= 180 — (II{CD) + m( /.. QCF))
< 180 — (I1(AB) + m(..PBC))
= 180 — (m(,L ABP) + m(. PBC))
= 180 — m(/ ABC).
Hence 2m(/. ABC) < 180 or m(/. ABC) < 90. Od

We leave the proof of the next theorem as Problem Al. You might want
to recall the proof of Saccheri’s Theorem (Theorem 7.2.8) before attacking it.

Theorem 8.2.4. In a hyperbolic geometry, the sum of the measures of the
angles of any triangle is strictly less than 180.

Note that the defect of any triangle in a hyperbolic geometry is strictly
positive. This contrasts with our earlier result that in a neutral geometry
O(AABC) = 0 for all triangles (Theorem 7.2.8). Before proceeding further
we state the Defect Addition Theorem whose proof is left as Problem A2.

Theorem 8.2.5 (Defect-Addition). In a protractor géometry, if AABC and
A—D—C then

S(AABC) = 5(AABD) + 5(ADBC).

The next result is surprising because it runs contrary to our intuition.
We already know from the SSS Congruence Theorem that the lengths of
the three sides of a triangle determine the triangle up to a congruence. In
a hyperbolic geometry, the measures of the three angles completely deter-
mine the triangle up to a congruence!
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Theorem 8.2.6 (AAA. . Congruence..Theorem). In a hyperbolic geometry,
aiven NABC and ADEF, if / A~ /D, / B~ [ E, and [ C~ [F, then
ANABC ~ A\DEF.

Proor. If the triangles are not congruent, one side of one triangle is shorter
than the corresponding side of the other triangle. We may assume that
DE < 4AB. Choose G € AB so_that GB ~ DE. See Figure 8-17. Choose H
on the same side of AB as C so that £ BGH ~ / EDF. Then GH||AC (Why?).”
By Pasch’s Theorem, GH must.intersect BC in a point K since GH n AC =

. Then AGBK ~ ADEF. by ASA. Hence 3(AGBK) = 6(ADEF).

B E
8
G A ‘K y - Y .
/ e T D F
a - Y
A C
Figure 8-17

On the other hand, by Theorem 8.2.5 we have

I(AABC) = d(AABK) + 6(AAKC)
= 8(AAGK) + (AGBK) + 6(AAKC)
= 8(AAGK) + 8(ADEF) + 6(AAKC)
> S(ADEF) Yo >

where the last inequality follows from Theorem 8.2.4. But by hypothesis
we have 8(AABC) = 6(ADEF). Hence if ANABC # ADEF we have a
contradiction. Thus AABC ~ ADEF., O

Our next goal is to show that, for a hyperbolic geometry, the critical
function takes on all values between 0 and 90. The first step is to show that
lim,_ , I(x) = 0.

Theorem 8.2.7. In a hyperbolic geometry, lim__,  II(x) =

ProoF. Since I1(x) is a decreasing, positive function the only way in which
the conclusion could be false is if there is a positive number r with II(x) >
r_for all x. We will show that this assumption leads to the existence of a
triangle of defect larger than 180, which is impossible. This triangle is found
as a large triangle whose interior contains a large number of congruent
triangles (which will each have the same defect).
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Let [ be a line. For each integer n > 0_choose a_point A, on [ so that

A;—Asy1—Aps2 and d(A4,, A,,,) =1 (This could be done by choosing
a ruler f for [ and letting A, be the point whose coordinate is n.) Let I =
AyB be the unique perpendlcular to lat A,. For each n > 0 let B, be a point
on the same side of [ as B with m(/ 44A4,B,) = r. See Figure 8-18.

ol
PRV Y I’
anBy

Cyd

G

C, 9

C;¢

B¢
4 » !
Aq A A, Ay Ay

Figure 8-18

If II(n) > r for all n, A,B, intersects A,B at a point C, by the definition
of r(4,,l) = H(n). For each n >0 let D, be the foot of the perpendicular
from A,_, to 4,C,. Note Ag—Ci—C,—Cy+ -+

By HA, AA¢4,D, ~ ANAA,D, ~ AA2A3D3, and so on. Thus for
each n > 0, each of the right triangles AA4.4.. D, has the same defect
Let this defect be §(AA,4,D,) = a > 0. We now compare the defects of
AAA,C, and AAgA,,,C, ;. By the Defect Addition Theorem,

SS_(_AA)_ALU_QE_L) = 6(AA0AnCn+ 1) + 6(AAnCn+ 1An+ 1)
= 8(AAoACy) + S(AAC,Cos )
+ 8(AA,Crs 1Dyi D + (DA A, Do)
> 5(AA0A Cy) + 6(AAAni 1Dy y)
= = 6(A4o4,C,) + a.

Let d, = 6(AAOA,,HC,,H) for n 2 0. Then the previous inequality is

d,>d,_y+a foralln>1.

Using this repeatedly we get
dy>dy+a
d,>d+a>dy+2a
dy>d,+a>dy+ 3a
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and so on. In general,
d, >dg + na.

If n is large enough then na > 180 so that d(AAgA,:;Cryy) =d, > 180,
which is impossible. Hence the assumption II(x) > r for all x must be false
and lim__, , I1(x) = 0. O

Now we can show that the critical function II: (0, c0) — (0, 90) is bleCtlve
in a hyperbolic geometry.

Theorem 8.2.8. In a hyperbolic geometry, if 0 < r < 90 then there is a unique
number t with II(t) = r.

Proor. Let m(/ ABC)=r. By Theorem 8.2.7, lim,_ , II(x) =0 so that
there is a number s >0 (possibly quite large) with II(s) < r. Choose D €
BC with BD = s. If [ is perpendicular to BC at D, then BA n I = (J since
m(/, ABC) =r > II(s) = r(B,1). See Figure 8-19.

14

Figure 8-19

For each point X € int(BA) let X’ be the foot of the perpendicular from

X_IO_B,C XX_[.].I (Why?) and must lie on the same side of / as B. Thus if X €
int(BA4), X' € BD. Let *° m“wwn

LI e T

F = {u=d(B,X’) = BX'| X € int(BA)}.

& is non-empty and is bounded by s = BD. Thus # _has a least upper bound
t. We claim that for this ¢, II(t) = r.
Choose E € BC with BE =1. Let I_be the perpendicular to BC at E.

We now show that I’ " BA = (. Suppose fo the contrary that I infersects
B4 at a point_F_and choose G with B—F—G. Since G € int(BA) we have
a corresponding point G’ on BD. GG’”I’ and GG’ lies on the opposite side
of I' as B does. Hence B_G_z_B_E_t,J&hlcchontxadlcts_the.fac.L_that.us

the least upper bound of #. Thus I' n BA = .
If A—B-—H then H and E lic on_opposite sides of the perpendicular to

BC through B. Since this perpendicular line is parallel to /', BH A’ = ¢ and
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A4B||I'. Hence AKEBA is an open triangle, where K is a point on I’ on the
same side of BE as A. If we show that AKEBA is an asymptotic triangle then

r = m(/L ABE) = II(BE) = II(t). This is done in the next paragraphs.

Let M e int(/ BEK). We need to prove that EM nBA# & If EM n g
BA = (1, ]et N be the foot of the perpendicular from M to BC andlet Phea |
meJ_WJI.h_AL_ M—P. We now show that M and N are on the same side of
BAEMnBH=( (Why") and EM ~ B4 =  so that EM n B4 = (.
Thus E and M are on the same side of BA. Since E and N are on the same
side of B4 (because both are in int(BD)), M and N are on the same side of BA.
Therefore, BA N MN = (5.

Since EM n BA is assumed to be empty, int(MP).and B4 lie on opposite..
sides of EM and so int(MP).n B4 = &. Thus NM n B4 = & which means
that Jub % < BN. But since M € int(, BEK) we have B—N—E so that
BN < BE. This contradicts the fact that lub # = BE. Hence it must be
that EM n BA # (. Thus EK | BA so that AKEBA really is an asymptotic
triangle and [I(t) =r.

Since II(x)_is strictly decreasing there can be only one value.of. x such.
that II(x) = r.Hence there is a unique value ¢ such that I1(t) = r. O

Corollary 8.2.9. In a hyperbolic geometry lim,_ o+ II(x) = 90.

As our final result we would like to show that if 0 < r < 180 then there is
a triangle whose defect is exactly r. It should not surprise you that the proof
will be based on a continuity argument.

Theorem 8.2.10. In a hyperbolic geometry, if 0 <r < 180, then there is a
triangle whose-defect is exactly r.

Proor. First we construct a triangle A4BC whose defect is gregjgg_zhau_p\
Let ¢ be the (unique) number such that II(1) = 1(180 — 7). Choose points
A, B, C and D with A—D—C, BD | 4AC, and 4D =BD = CD =1t See
Figure 8-20. Then /. DAB =~ LDBA ~ / DBC ~ / DCB.Since AB n DB #
&, m(LDAB) < H(AD) H(t) (180 —r) Hence
S6(AABC) = 180 — (m(LDAB) + m(/. DBA) + m(/. DBC) + m(/. DCB))
= 180 — 4(m(,L DAB))
>180—-4-7(180 -1 =r
Let s=m(/ BAC). For each number x with 0 < x <s there is.a point.
P.eint(LBAC) with m(/BAP,) = x. By the Crossbar Theorem AP,

intersects BC at a point Q.. See Figure 8-21. We define a function g:[0,5] -
R by the rule

0 fx=0
g(x) =<6(AABQ,) f0<x<s
10(A4BC) ifx =5
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Suppose that we are able to show that g is a continuous function. Then

since
9(0) =0 < r < 8(AABC) =g4(s)

the Intermediate Value Theorem says that there is anumber x with 0 < x < s
and g(x) = r. Then (AA4BQ,) = r and we would be dope.

To show that g_is_continuous at z we must show that if ¢ > 0 then there
is a number & >0 such that whenever x e [0,s] and |x —z[ <& then
lg(x) — g(z)] < &. (This & is not a defect!) For the sake of notation we write
B=0,and C =0, Thenif x # z,|g(x) — g(z)| = |6(A4BQ,) — S(AABQ.) =
3(AQ.A0.) and |x — z| = m(£L 0,AQ,). See Figure 8-21.

Let £ > 0 be given. Let f be a coordinate system for BC with origin at C
and f(B) < 0. For each integer n let E, be the point with coordinate f(E) =n.
(Note E, = C) We claim that for some positive n, s(AE,AE, +) <&

Assume to the contrary that for all n> 0, S{(AE,AE,. )} > ¢ Then by
the Defect Addition Theorem, S{ ACAE,)) > ne. For n large enough, ne >
180. Thus for large vaiues of n, s(/A\CAE,) > 180, which is impossible. Hence
for some value of n, (A E.AE, . 1) < ¢ Fix this value of n.

Let 6 =m(/ E,AE,.,). Suppose that xe[0,s] with |x—z <4, so
that m(Z 0.40.) <06 = m(/ E,AE..,). Then there exists a point Fe

int(/ E,AE,, ) with £ Q. AQ. ~ [ E,AF.Let AF n E,E,,, = {G}.SeeFig-
ure 8-22. Now AB < AD + DB by the Triangle Inequality. Since DB ~ DC,
AB < AD + DC = AC. See Figure 8-20. By Problem A8 of Section 6.3, if
P € BC then AP < AC. By the same problem (applied to AABE,} AC < AE,

Figure 8-22
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and (applied to AABG) AC < AG. Thus for any P e BC, AP < AE, and
AP < AG. In particular this is true for P = Q. and for P = Q,.

Choose H e AE, and J e AG with AQ, ~ AH and AQ, ~AJ. Then
AQ,AQ, ~ ANHAJ By Problem Al11,6(AHAJ) < 8(AE,AE, , ;) <& Hence
3(NQ.AQ,) < (AE,AE, ) <& so that |g(x) — g(z)| <& Thus we have
shown that if ¢ > O1s given, there is a number 6 > Osuch that|g(x) — g(z)| < ¢
whenever |x — z| < é. Hence g is continuous at z, for each z € [0,s].

PROBLEM SET 8.2
Part A.
1. Prove Theorem 8.24.
2. Prove the Defect Addition Theorem (Theorem 8.2.5).

3. Without using the results of this section prove that in 5 the critical function takes
on all values between 0 and 90. (Hint: See Example 7.3.5.)

4. Prove that congruent triangles have the same defect.
5. Prove Corollary 8.2.9.

*6. Let £ ABC be given in a hyperbolic geometry. Prove that there is a unique line
1 = DE with DE|BC and ED|BA. (Hint: Let BF be the bisector of 2 ABC. Choose
G on BF so that II(BG) = m( . ABF). Let I be perpendicular to BF at G.)! is called
the line of enclosure for 7 ABC. The set /. ABC U [ is called a doubly asymptotic
triangle.

7. Illustrate the line of enclosure for various angles in # using both type I and type
II rays.

8. Consider £ ABC in # where AB = ,L and BC = _L, as in Figure 8-23. Prove
that the bisector of 2 ABC is part of ,L, whered = ¢ + r.

Figure 8-23

9. Prove that in a hyperbolic geometry there are no rectangles.

*10. Prove that in a hyperbolic geometry if (JABCD is a Lambert quadrilateral then
£ D is acute.

11. In a protractor geometry, suppose that AABC < (ADEF v int{(ADEF)). Prove
that 6(AABC) < §(ADEF).
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Part B. “Prove” may mean “find a counterexample”.
lg;f?Prove the AAA Congruence Theorem for a Euclidean geometry,

13. In a hyperbolic geometry, if 0 < ¢t < 180 prove there is a number 4 > 0, which
depends on ¢, such that 5(APQR) < ¢ for all triangles whose sides have length less
than d.

14. Prove that in any hyperbolic geometry, the critical function I7(x) is continuous.

15. In a hyperbolic geometry, prove that an exterior angle of an open triangle is
greater than its remote interior angle.

8.3 The Distance Between Parallel Lines

We have seen that there are two types of parallel lines in a hyperbolic geome-
try: those that have a common perpendicular and those that don’t. After
proving that the property of two lines having a common perpendicular is
equivalent to the lines not being asymptotic, we will investigate properties
which deal with the distance between parallel lines. In the Euclidean plane
two lines are parallel if and only if they are equidistant (Problem A4). This
contrasts considerably to the hyperbolic situation. We will see that either
two parallel lines are asymptotic or the perpendicular distance from a point
on one to the other can be made arbitrarily large! This is the reason for the
terminology in the next definition.

Definition. Two lines in a hyperbolic geometry are(dwiw"grgently parall@} if

they are parallel but not asymptotic.

Theorem 8.3.1. In a hyperbolic geometry, two lines I and I are divergently
parallel if and only if they have a common perpendicular.

ProOOF. In Theorem 8.1.9 we saw that if two lines have a common perpen-
dicular then they are not asymptotic and thus are divergently parallel. Thus

we assume that [ and I’ are divergently. parallel and show that they have a
common perpendicular.

The basic idea of the proof (which is due to Hilbert) is to find a Saccheri
quadrilateral whose bases are contained in [ and I'. This is done in steps 1
and 2 of the proof. Let 4 and B be points on [ and let 4’ and B’ be the feet
of the perpendlculars from Ato Btol. If A4’ ~ BB then [JA'ABB’ is the

a ral so that we may proceed directly to step 3.

Otherw15e we may assume that 44’ > BB'.
. Choose C with 4—C—4’ and CA’ ~ BB, choose D with 4 —B—
,a

nd choose D' with 4 —B'—D', Finally let gZE be the unigue ray wit ith
z A CE ~ ( B'BD and E on_the same side of A4’ as B. See Figure 8-24. In

this first step we will show that CE N 4D # ¢¥. This will involve finding a
ray A’P which is asymptotic to CE and which does. intersect AD.
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Figure 8-24

Let AP be the unique ray through A’ asymptotic to CE, let A0 bhe the
ray through 4’ asymptotic to 4D, and let BR be the ray through B’ asymp-
totic to AD. Now APACE and ARBBD are asymptotic triangles
with CA'~BB and [/ ACE~ /_BBD Hence s CA'P~ / BBR by
Theorem 8.1.8.

P¢ AD and R ¢ AD' (Why?). Thus £ PA’D’ and / RB'D’ exist and are
congruent by the Angle Subtraction Theorem. Since 4’ A'Q|AD and BR|4D,

we have A’Q|BR. By Theorem 8.2.1, L QA'D' < / RBD'. Since / PA'D’ ~

LRBD, LQAD < [ PAD. Looking at the complements we see that
L AA'Q > / AA'P and Peint(/ A4'Q). Because A'Q|AD, AP intersects

AD at a point F, _
Now A’ and F are on the same side of CE, while 4’ and 4 are on opposile

sides of CE. Thus A_andjiars_(m_qppgsm sides of CE and AF intersects CE
at a_point.G. G is on CE since G is on the same side of AA’ as F is. Thus
CE intersects 4B at a point G as claimed.

§ep 2) We now construct the Saccheri quadrilateral using the point G.
Let H be the unique point on BD with CG ~ BH as in Figure 8-25. Let G’
and_&huheicct_,oﬁmEmmdmmfmmﬁmMHmJ DNACG > ANBBH
bySASsothat /G~ B Hand / CAG~ [ BB H Thus / GA'G ~ [ HB'H’
and AGA'G'~ AHB'H' by HA. Hence GG' ~ HH' and [NG'GHH' is a
Saccherl quadrllaleral

(Step 3) We now have a Saccheri quadrilateral with its lower base in I’ and
its upper base in . By Problem A6 of Section 7.2, the line through the mid-

A D

[ B /
c ¢ v o —
e //
e 4
/ /
/
/ /
/ //
// //
// /

-@- I’

A’ B’ G’ H D

Figure 8-25
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points of the bases of a_Saccheri _quadrilateral is perpendicular to both
bases. Hence there is a line perpendicular to both / and ['. O

Thus, divergent parallels have a common perpendicular while asymptotic
parallels do not. Another property that distinguishes between the two types
of parallels is the distance between them, which we define after the notion of
the greatest lower bound (glb). The glb of a set of numbers is the largest
number which is less than or equal to each number in the set.

Definition. If & is a set of real numbers, then s € R is a greatest lower bound
of # (written s = glb %) if

(i) s<bforallbe #;and

@) if r > s then there is an element b, € & with b, < r.

The concept of the greatest lower bound is analogous to the least upper
bound as defined in Section 7.3. If # is non-empty and if there is a number
M with M < b for all b € % then % has a unique greatest lower bound.

Definition. In a metric geometry, the distance from a point P to a line / is
d(P,1) = glb{d(P,0)|Q e 1}.
The distance between the lines [ and /is
d(',1) = glb{d(P,Q)|Pel'"and Q € I}.

Both of the numbers defined above exist because the sets are non-empty
and consist just of positive numbers. We know from Section 6.4 that in a
neutral geometry d(P,!) = PQ where Q is the (unique) foot of the perpen-
dicular from P to I. It is not hard to show that in a metric geometry

d(l,1) = glb{d(P, )| P I'} = glb{d(Q, 1| Q € I}. (3-1)

The distance between two lines / and I’ may be tliought of as the distance
between two “closest” points. Care must be exercised, however, with this
interpretation because there may not be points P € land Q € I' with d(I',]) =
d(P, Q). For example, if | = _,L, and ' = (L thend(, ') =0but!nl'= .

As we discussed above, one difference between divergent and asymptotic
parallels is that divergent parallels have a common perpendicular. We shall
now show that the distance between asymptotic parallels is zero while the
distance between divergent parallels is not zero. Whereas the proof involving
the first difference utilized Saccheri quadrilaterals, our next results require
the use of Lambert quadrilaterals. The reader is referred to Problems A15—
A19 of Problem Set 7.2 for the definition and a discussion of Lambert
quadrilaterals.

Theorem 8.3.2. Let | and I’ be divergently parallel lines in a hyperbolic geome-
try. If Aeland A’ €l are points such that AA’ is perpendicular to both | and
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!, then
d(Ll) = d(4, A).

Furthermore, if A—B—C then d(B,I') < d(C, ).

ProoF. By Theorem 6.4.2, d(4.1') = d(A, A’). Let B be another point of / and
let B' be the foot of the perpendicular from B to I'. Thus {]B'A’AB has right
angles at B', 4’, and 4 and so is.a Lambert quadrilateral. By Problem A19
of Problem Set 7.2, AA’ < BB'. Thus d(4,l')= AA’ < BB’ = d(B,[). Hence
by Equation (3-1), :

aiLl) = glb{d(P,v NPel} =d(4,])=d(4,4).

Now suppose that A—B—C and let C' be the foot of the perpendicular
from C to I'. By Problem A10 of Problem Set 8.2, / ABB is acute so that
£ CBB' is obtuse. We must show that BB’ < CC'. See Figure 8-26. £ BCC' =
L ACC’ is acute by Problem A10 of Problem Set 8.2. Hence / CBB >

_L.BCC' so that BB’ < CC’ by Corollary 7.2.12. |
A B < !
wll : 7
A’ B’ C
Figure 8-26

Let | and I’ be divergently parallel lines in a hyperbolic geometry. We
will write A4 for their common perpendicular which is guaranteed by
Theorem 8.3.1 and assume A €l and A’ € I'. Theorem 8.3.2 tells us that the
distance between ! and !’ is the length of the. common perpendicular A4’
Furthermore, the farther the point C € [ is from A, the greater the distance
from C to I'. Thus the lines [ and /' get farther and farther apart at their “ends.”
How far apart can they get? We shall see in Theorem 8.3.5 that the answer
is arbitrarily. far, but first two preliminary results are necessary.

Theorem 8.3.3. In a neutral geometry let \ABC have a right angle at B. Let
C’ be the point such that A—C—C' and AC ~ CC'. Let B' be the foot of the
perpendicular from C' to AB. Then B'C’ > 2BC and AB’' < 2AB.

Proor. The situation is sketched in Figure 8-27. Let D be the foot of the
perpendicular from C’' to BC. Then L ACB =~ £ C'CD and so AACB =~
ACCD by HA Hence CB~ CD and AB~ CD.

CIB'BDC'is a Lambert quadrilateral. By Corollary 7.2.12, BC' > BD
and DC' > BB. Thus BC' >BD =BC + CD =2BC and AB = AB +
BB < AB + DC = 24B. =]
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Figure 8-27

Theorem 8.3.4 (Aristotle’s -Theorem). If / ABC is an angle in a neutral
geometry and if r > O then there is a point E € BC such that d(E, AB) > r.

Proor. If £ ABC is a right angle the result is trivial since d(E, AB) = d(E,B)
in that case. If L ABC is obtuse let A—B—A4. Then £ A'BC is acute and
AB = AB. Hence it suffices to consider the case where LABC is acute as in
Figure 8-28.

¢,

B D, D, A D, D,
Figure 8-28
Choose points glilc C,, Cy- - so that B—C,—C,—Cy—---_and
BC,~C 1Cas BC, =~ C,C,,... . Let D, be the foot of the perpendicular
from C; to AB.

By the first part of Theorem 8.3.3, C,,,D,,, = 2C,D,. By induction
CoiyD,i 22"C D, if n > 1. If n is large enough (n > log,(r/C,D,)) then
2"CiD >rsothat C,,,D,,; >r.Wemaylet E=C,,, toobtain

d(EaZE)zd(Cn+laDn+l)=Cn+1Dn+1 >r. D

We now prove that divergently parallel lines in a hyperbolic geometry
get arbitrarily far apart.

Theorem 8.3.5. In a hyperbolic geometry if | is divergently parallel to I' and
r > 0, then there is a point P € | such that d(P,[’) > r.

Proor. Let AA’ be a common perpendicular to ! and I’ with 4 € Land 4 el.
Let B be another point of I and let B be the foot of the perpendicular from

Bto I'. Let AE be the unique ray through 4 with AE|A'B’. E € int(/ A’ AB)
(Why?) so that £ BAE is acute. By Theorem 8.3.4 there is a point P e AB
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Figure 8-29
with d(P, AE) > r. See Figure 8-29. Let G be the foot of the perpendicular

from P to AE and let P’ be the foot of the perpendicular from P to I’
Applying the Crossbar Theorem to £ A'AP_we see that AEN AP # (.

By Pasch’s Theorem applied to AA'PP, AEN PP # &5 (Note AE~ AP =

3 because AE[A'B') In fact, AE n PP’ # (¥ since PP’ is on the same side

of A4" as E. Hence AE n PP = {F) for some F with P—F—P'. Thus

d(P,I) = d(P,P) > d(P,F) > d(P,G) = d(P, AE) > r.
P confivn € PO -

Hence divergently parallel lines actually diverge! O

Since divergently parallel lines diverge, we might expect that asymptotic
lines converge in the sense that the distance between them is zero. This is
true as Corollary 8.3.8 will show.

Theorem 8.3.6. If AB is strictly asymptotic to CD in a hyperbolic geometry
then d(A, CD) > d(B, CD).

PROOF. Let A’ and B’ be the feet of the perpendiculars from A and B to CD.
Choose E € BB with 44’ ~ EB' so that [JA'AEB'is a Saccheri quadrilateral.
4E is divergently parallel to A’B' = CD by Theorem 8.3.1. Since AB|A'B,
L AAB < / A'AE. Hence B—B—E and AA' = EB' > BB'. Thus

d(4,CD) = AA' > BB = d(B,CD). O

Thus the distance between asymptotic rays gets smaller and smaller the
farther out on the rays you go. Does it actually approach zero? This is
the essence of the next result (which we restate in terms of distance in
Corollary 8.3.8).

Theorem 8.3.7. In a hyperbolic geometry, if AB|CD and if t > O then there is
a point P € AB such that d(P,CD) < t.

PrOOF. Let A’ and B’ be the feet of the perpendiculars from 4 and B to CD.
We may assume that t < AA’. (If not, let 0 < t* < AA’ and find P € AB with
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d(P,CD) < t* < t) Choose E on A4’ so that A'E =t and choose F on the
opposne side of AA" as B’ with m(/ A'EF) = IL() If F—E—G, we claim
that EG intersects 4B. See Figure 8-30.

Let H be on the same side of A4’ as B with / A'EH ~ [ A'EF. Then
EHIA B and AB|AB _so that AB|EH. Since Geint(/ AEH) (Why?),
EGN AB = {K} for some K. Let K’ be the foot of the perpendicular from
K to AB'. Note KE!K’A’. Let P be the point on AB such that A—K—P
and KE ~ KP. KP|AB so that / K'KE ~ / K'’KP, Hence AK'KE ~
AK'KP by SAS. Let P’ be the foot of the perpendicular from P to A'B'.
EK ~ PK and { EK'A' = / PK'P’' (Why?). Hence AEK'A’ ~ APK'P’ by
HA and E4 ~ PP'. Hence

d(P,CD) = d(P,P) = d(E,A) =1. O

A’ K’ P B’
Figure 8-30

Corollary 8.3.8. In a hyperbolic geometry, the distance between asymptotic
rays._is zero.

Thus asymptotic rays actually do converge, and hence so do asymptotic
lines at the end at which they are asymptotic. In Problem A5 you will show
that asymptotic lines diverge at the end at which they are not asymptotic.
The situation in hyperbolic geometry is quite different from that in Euclidean
geometry. In hyperbolic geometry, two parallel lines either diverge or
converge. In Euclidean geometry, parallel lines are equidistant.

We end this chapter with a brief discussion of the distance scale for a
hyperbolic geometry and the idea of an isometry. The distance scale may be
omitted since it is not used elsewhere. Isometries will be studied in detail in
Chapter 11.

We know from Problem B16 of Section 2.2 that if t > 0 and if {&, %, d} is
a metric geometry so is {¥, %, d'} where d'(A4, B) = td(4, B). The metric
geometries {&,%,d} and {¥,%,d’} have the same segments and rays
(Proof 7). If one satisfies PSA so does the other. If {&, ¥, d,m} is a protractor
geometry, so is {&,%,d’,m}. Finally, if {&, %,d, m} satisfies SAS so does
{&,%,d ,m}. Switching from d to 4’ is called a change of scale and is like
changing from inches to meters. In a Euclidean geometry, there isn’t much
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to be gained by making such a change as we will see when we discuss the
theory of similar triangles in Chapter 9. In particular, there is no “best”
choice of a scale factor ¢ for a Euclidean geometry.

Consider, for example, what happens to the formulas of trigonometry if a
change of scale is introduced. The sine of an angle is the ratio of two lengths. -
Thus if the scale is changed by a factor of ¢ each of the lengths is multiplied
by a factor of ¢, but their ratio is unchanged. This does rot happen in a hyper-
bolic geometry. Indeed there is a constant (depending on the scale) which
appears throughout hyperbolic:trigonometry. One way to fix the scale
factor ¢ is to insist that a certain distance have 45 as its angle of parallelism.

Definition. The distance scale of a hyperbolic geometry is the unique number
s such that II(s) = 45.

The distance scale is sometimes referred to as the absolute unit of length.
The existence of such an object caused problems in the early development
of hyperbolic geometry because it was so unlike the Euclidean situation
where the choice of unit was totally a matter of taste and one choice was
as good as another. Since Bolyai and Lobachevsky were developing their
new geometry from what we would call the synthetic viewpoint, the distance
scale entered into their work as an arbitrary constant whose value could
not be determined. In particular, it meant that the theory of hyperbolic
trigonometry was continually clouded with this constant whose value could
not be determined. You can make the distance scale seem to disappear
in the hyperbolic case by choosing s = In(1 + ﬁ). This has the net resuit
of making the constant in the hyperbolic trigonometric formulas become a
factor of 1. For a detailed development of the theory of hyperbolic trigo-
nometry and other aspects of hyperbolic geometry, see Martin [1975].

If s is the distance scale for the hyperbolic geometry {¥,.#,d, m}, then
the distance scale for {&, &, d/s, m} is 1. That means that for {&, &, d/s, m}
we have as our “standard” unit of distance, the length whose associated
critical angle is 45. This would seem to be the most natural choice of scale
for II(1) = 45 here. However, for reasons in the field of differential geometry
and hyperbolic trigonometry, it is better to choose the scale so that I7(In(1 +
\/5)) = 45. That is, the distance scale of In(1 + \/5) is the best choice. Note
that In(1 + \/2) = sinh7(1).

Definition. Let { &, #,d, m} and {&', &', d’,m'} be two protractor geometries.
A function f: ¥ — & is and@isometry if
(1) f is a bijection;
Gi) f)e £ ifle #;
(iii) d'(f(A),f(B)) = d(A,B) for all 4, Be &,
(iv) m'(L f(A)f(B)f(C)) = m(L ABC) for every angle / ABC in &.

If there is an isometry between two geometries, we say that the two geometries
are isometric.
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If f:% — & is an isometry of protractor geometries then there are no
essential differences between the two geometries. Any theorem in one geom-
etry is true in the other. In some sense all f does is change the names of the
parts.

Example 8.3.9. Let f:R? —» R% by f(a,b) = (a + 1, b — 3). Then f is an isom-
etry between {R?, &, dg, my} and itself

We will show in Chapter 11 that there is an isometry between any two
models of a Euclidean geometry. Hence there is essentially only one Euclidean
geometry. A similar statement is not true in hyperbolic geometry. There is
an isometry between two given models of a hyperbolic geometry if and only
if they have the same distance scale. Hyperbolic geometries with different
distance scales have a definite metric difference. However, from the synthetic
view there is no essential difference. It is possible to find a bijection between
" hyperbolic geometries that preserves lines, betweenness and congruence.

PROBLEM SET 8.3
Part A.

{1, Letl= oL and I’ = |L be lines in the Poincaré Plane. Show that d(/, I') = 0 from
“—the definition of distance. (Hint: Consider d(P, Q) where the y coordinate of both
P and Q is large.)

2. Ifland I’ are lines in a metric geometry which are not parallel prove that d(/,I') = 0.
3. Prove Equation (3-1).

4. Prove that two distinct lines / and I’ are parallel in a Euclidean geometry if and
only if I and I’ are equidistant (i.e., d(P,I’) is constant, independent of P e 1)

*5. Suppose that AB is strictly asymptotic to CD in a hyperbolic geometry. Prove
that B4 and DC diverge; that is, if r > 0 there is a point P e BA such that
d(P,CD) > r. (Thus asymptotic lines diverge at the ends at which they are not
asymptotic.)

. Prove that two distinct lines in a hyperbolic geometry cannot be equidistant.
. Prove that equality holds in Theorem 8.3.3 if and only if the geometry is Euclidean.

. Find the distance scale for the Poincaré Plane.

o o N o

. Prove that f as given in Example 8.3.9 really is an isometry.
10. Let f:H > H by f(a,b) = (a + 2, b). Prove that f is an isometry.

11. Prove that the relation “is isometric to” is an equivalence relation on the set of
protractor geometries.
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12. Let {&, &, d,m} and {&,%,d’,m'} be isometric protractor geometries. Prove
that if one is a neutral geometry so is the other and if one is a hyperbolic geometry
so is the other.

13. I f:F > F and g: & — & are 1sometries, prove that g o f:.F — %" is also an
isometry.

Part B. “Prove” may mean “find a counterexample”,

14. Let AB be a segment in the Poincaré Plane and let it be parametrized by x = f(z),
y =g¢g(t) for a <t < b. In differential geometry the hyperbolic length of 4B is

defined by the integral
r S+
a y

where X = dx/dt and y = dy/dt. Use this formula to derive the distance function
for ##.

15. Let {¥, %, d, m} be a Euclidean geometry and &' = {¥, %, d', m} a change of
scale. Prove that &' is a Euclidean geometry.

16. Repeat Problem B15 for a hyperbolic geometry.



CHAPTER 9
Euclidean Geometry

9.1 Equivalent Forms of EPP

In the previous chapter we discussed properties possessed by hyperbolic
geometries. Now we turn our attention to Euclidean geometries. In this.
first section we will present several equivalent formulations of the Euclidean
Parallel Property. The proofs that a Euclidean geometry has certain proper-
ties are generally straightforward. However, the converse results that a neu-
tral geometry with a certain property must be Euclidean strongly depend on
the All or None Theorem and Chapter 8. If these converses are omitted, this
chapter may be read right after Section 7.1.

In the second section we will be concerned with the theory of similar
triangles and proportion. The third section will cover certain classical results
of Euclidean geometry, including the Euler Line, the Nine Point Circle, and
Morley’s Theorem.

As we have noted before, considerable effort was spent trying to prove
that EPP was a theorem in neutral geometry. This is really not so surprising
when you consider the various equivalent formulations of EPP, some of
which we give in this section and in the problems. Just the sheer weight of
numbers was enough to “convince” many people that one of these forms
must follow from the axioms of a neutral geometry, and hence so must EPP.
Of course, we now know that this is incorrect. In fact, the All or None
Theorem tells us that in a neutral geometry exactly one of EPP and HPP
is satisfied. This will be the basis for many of the results in this section.

Recall that the defect of a triangle is 180 minus the sum of the measures

of its three angles.

Theorem 9.1.1. In a neutral geometry, EPP is satisfied if and only if there is
a triangle with defect zero. Furthermore, if one triangle has defect zero then so
does every triangle.

224



9.1 Equivalent Forms of EPP 225

Proor. First suppose that EPP is satisfied. By Theorem 7.2.9 we know that
the defect of any triangle is zero.

On the other hand, suppose that the defect of one triangle is zero. Then
HPP cannot be satisfied because Theorem 8.2.4 says that the defect of any
triangle is positive in a hyperbolic geometry. Since HPP is not satisfied,
the All or None Theorem (Theorem 7.3.10) says that EPP must be satisfied.

O

Theorem 9.1.2. In a neutral geometry, EPP is satisfied if and only if whenever
a pair of parallel lines | and I’ have a transversal t, then each pair of alternate
interior angles are congruent.

Proor. First suppose that EPP is satisfied. Then by Problem A11 of Section
7.1 we know that a pair of alternate angles must be congruent.

On the other hand suppose that for every pair of parallel lines !||/’ and
transversal ¢, a pair of alternate interior angles are congruent. If HPP is
satisfied, then by Theorem 8.1.4 there are lines ! and I’ which are strictly
asymptotic (and hence parallel). Let Q@ €l and let ¢ be the perpendicular
from Q to I'. By Theorem 8.1.9, t is not perpendicular to I. Hence alternate
interior angles are not congruent. Since this contradicts the assumption of
HPP, it must be that EPP is satisfied. 0

Recall that a rectangle is a quadrilateral with four right angles.

Theorem 9.1.3. In a neutral geometry, EPP is satisfied if and only if there
exists a rectangle.

Proor. First suppose that EPP is satisfied. Let [SIABCD be a Saccheri
quadrilateral. (We shall show that [SJABCD is actually a rectangle.) Then
BC||AD. Since AB L 4D and 4B is transversal to 4D and BC, a pair of
alternate interior angles must be congruent and so AB | BC. Thus 2 A~ / B.
Since £ B~ L C, we have £ A, /B, £ C and LD right angles. Hence
[JABCD is a rectangle.

Now suppose that [JABCD is a rectangle. By Corollary 7.2.12 AB ~ DC
so that [JABCD is also a Saccheri quadrilateral. If HPP is satisfied, then
L B is acute by Theorem 8.2.3. Since this is false, the All or None Theorem
implies that EPP is satisfied. O

Corollary 9.1.4. A neutral geometry satisfies EPP if and only if every Saccheri
quadrilateral is a rectangle.

The next difference between EPP and HPP involves the perpendicular
bisectors of the sides of a triangle. Theorems 9.1.5 and 9.1.6 will show that
EPP is satisfied if and only if for every triangle, the perpendicular bisectors
of the sides intersect at a common point.
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Definition. A sct of lines is concurrent if there is a point P that belongs to
each of the lines. In this case we say that the lines concur at P.

Theorem 9.1.5. In a Euclidean geometry, the perpendicular bisectors of the
sides of A\NABC are concurrent.

Proor. Let ! be the perpendicular bisector of AB and let I’ be the perpen-
dicular bisector of BC. See Figure 9-1. If I|| ', then by Problem AS, AB|| BC.
But this is impossible because AB n BC = {B}. Hence [ intersects I at some
point 0. By Theorem 6.4.6, A0 ~ BO and BO ~ CO. Hence A0 ~ CO and
so, by the same theorem, O lies on the perpendicular bisector of AC. Hence
the perpendicular bisectors of the sides of AABC concur at O. [

Figure 9-1

In the next theorem we will show that the result analogous to Theorem
9.1.5 is false in a hyperbolic geometry. We will actually construct a triangle
such that two of the perpendicular bisectors are parallel. This will be done
by exploiting the critical function to create asymptotic rays. The asymptotic
rays then yield parallel lines. The trick involved here will also be used in
Theorem 9.1.8. You are asked to construct a specific example in 3 in
Problem A19.

Theorem 9.1.6. In any hyperbolic geometry, there is a triangle such that the
perpendicular bisectors of two of the sides are parallel.

Proor. We shall actually show that such a triangle can always be constructed
in such a manner that it is an isosceles triangle with one angle prescribed.
To this end, let 2~ ABC be any given angle and let BD be its angle bisector
(so that / ABD is acute). Since 0 < m(/ ABD) < 90 and the image of the
critical function I7 is the interval (0,90) (Theorem 8.2.8) there is a number ¢
with II(t) = m(/ ABD). We will construct an isosceles triangle AJBK whose
- congruent sides have length 2t and 7 JBK = / ABC.

Choose E € BA and F € BC with BE = BF =t as in Figure 9-2. Let G
and H be in the interior of / ABC with EG L 4B and FH 1 BC. (EG and
FH will be the perpendicular bisectors of the two of the sides of AJBK.)
Since m(/. EBD) = II(EB) = II(t) and EB 1 EG, the definition of the critical
function I shows that BD|EG. Similarly BD|FH. Thus EG|FH and in



9.1 Equivalent Forms of EPP 227

particular EG||FH. Finally, let J and K be such that J—E—B, B—F—K,
and JE ~ EB ~ BF ~ FK. Then EG and FH are perpendicular bisectors
of two of the sides of AJBK and are parallel. |

Figure 9-2

Corollary 9.1.7. A neutral geometry satisfies EPP if and only if for every
triangle, the perpendicular bisectors of the sides are concurrent.

The next difference between hyperbolic and Euclidean geometries which
we explore concerns lines through a point in the interior of an acute angle.
Consider, for example, . ABC in the Poincaré Plane # as pictured in
Figure 9-3. For the point P € int(£ ABC) there is no line (except P B) which
passes through both sides of £ ABC. This situation cannot happen in a
Euclidean geometry as the next result shows.

Figure 9-3

Theorem 9.1.8. A neutral geometry satisfies EPP if and only if for every acute
angle [ ABC and every point P_ejnt(LABC) there is a line | through P that
intersects both int(BA) and int(BC).

Proor. First assume that EPP is satisfied. We shall show that the perpen-
dicular from P to AB satisfies the theorem. Since 2 ABC is acute sois /. ABP
so that by Problem Al of Section 7.1, the foot of the perpendicular from P
to AB is in int(BA). Let I be this perpendicular. Clearly B ¢ I. By Euclid’s
Fifth Postulate [ intersects BC. Hence [ is the desired line.

Now suppose that for every P € int(/ ABC) there is a line ! through P
that intersects both int(B4) and int(BC). If EPP is not satisfied, then HPP
is. We shall assume HPP and search for a contradiction.
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Choose D so that BD bisects . ABC. As before we know that there is a
positive number, t, with I1(f) = m(/ ABD). Choose P € BD so that BP = t.
Then the line /' through P perpendicular to BP is asymptotic to both BA
and BC by the definition of I1. See Figure 9-4. (I’ is called the line of enclosure
of £ ABC. See Problem A6 of Section 8.2.) Note that B4 and BC lie on the
same side of /. We shall show that the assumption that there is a line /
through P which intersects both int(B4) and int(BC) leads to a contradiction.

Figure 9-4

Since I’ does not intersect BA and ! does, I’ # I. Hence there is a point
R €] which is on the same side of I’ as A. Choose S on [ with R—P—S.
Then S is on the opposite side of I’ as BA (and BC). Hence PS does not
intersect either BA or BC. On the other hand, int(PR) lies on one side of
BD so that by Theorem 4.4.3, it cannot intersect both B4 and BC. Thus
I = PR = P§ does not intersect both B4 and BC, which is a contradiction.
Hence EPP is satisfied. |

Theorem 9.1.9. 4 neutral geometry satisfies EPP if and only if there are a
pair of non-congruent triangles N\NABC and A\DEF with { A~ (D, [ B~
LEand L C~ [LF.

Proor. First suppose that EPP is satisfied and let A4BC be any triangle.
Let E be the midpoint of AB and let / be the unique line through E parallel
to BC. See Figure 9-5. By Pasch’s Theorem, [ intersects AC at a point F.
L AEF ~ / ABC by Theorem 9.1.2 and Problem A2 of Section 7.1. Similarly,
L AFE ~ t ACB. Then AABC and AAEF are the desired noncongruent
triangles.

Figure 9-5
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Now suppose there is a pair of noncongruent triangles AABC and ADEF
with corresponding angles congruent. If HPP is satisfied, then Theorem 8.2.6
implies that AABC ~ ADEF, which is false in our case. Hence EPP must
be satisfied. N

In several of the above proofs we used some powerful results, especially
the fact that if HPP holds then the image of the critical function is (0, 90).
You may need similar methods for some of the exercises. However, it is
possible to show all of these equivalences of EPP without the use of the
critical function. For example Martin [1975] does this based on the following
equivalent form of the All or None Theorem: In a neutral geometry the
upper base angles of a Saccheri quadrilateral are either always right angles
(EPP) or always acute angles (HPP).

ProBLEM SET 9.1
Part A.
1. In a neutral geometry, prove that EPP is satisfied if and only if || is a transitive

relation.

2. In a neutral geometry, let I||/'. Prove that EPP is satisfied if and only if any line
perpendicular to 1 is also perpendicular to I'.

*3, In a neutral geometry let /||I'. Prove that EPP is satisfied if and only if whenever
a line (other than /) intersects ], it also intersects /.

4. In a neutral geometry, prove that EPP is satisfied if and only if || is an equivalence
relation.

5. In a Euclidean geometry prove that if I||I', r L I, 7" L I', then r||r".

6. In a neutral geometry prove that EPP is satisfied if and only if for each AABC
there is a circle € (called the circumcircle or circumscribed circle) with 4, B, Ce
€.

7. In a neutral geometry prove that EPP is satisfied if and only if for any three non-
collinear points A, B, C there is a unique point O equidistant from A, B, and C.

8. In a neutral geometry prove that EPP is satisfied if and only if the two angles of
any open triangle are supplementary.

9. In a neutral geometry, prove that EPP is satisfied if and only if the measure of an
exterior angle of any triangle equals the sum of the measures of the remote interior
angles.

10. In a neutral geometry, prove that EPP is satisfied if and only if for every acute
angle / ABC the perpendicular to BA at D € int(BA) intersects BC.

11. Let AABC be given in a neutral geometry with B a point on the circle with di-
ameter AC. Prove that EPP is satisfied if and only if £ B is a right angle.

12. Let AABC be given in a neutral geometry with / B a right angle. Prove that EPP
is satisfied if and only if B lies on the circle with diameter AC.
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13.

14,

*18.

16.

17.
18.

19.

In a neutral geometry, prove that EPP is satisfied if and only if whenever / L r,
rls,and s L mthenl nm#

In a neutral geometry, prove that EPP is satisfied if and only if there exists a pair
of distinct equidistant lines.

In a neutral geometry, prove that EPP is satisfied if and only if parallel lines are
equidistant.

In a neutral geometry, prove that EPP is satisfied if and only if every Lambert
quadrilateral is a rectangle.

Prove Corollary 9.1.7.

Modify the proof of Theorem 9.1.8 so that it works for any angle / ABC, not
just an acute angle.

Give an example in J# of a triangle such that the perpendicular bisectors of its
sides are not concurrent.

Part B. “Prove” may mean “find a counterexample”.

20.

21

22.

23.

Prove that a neutral geometry satisfies HPP if and only if for every acute angle
£ ABC and point P € int(£ ABC) there is no line through P which intersects both
int(BA) and int(BC). (Compare with Theorem 9.1.8.)

Let € be a circle with center O in a neutral geometry. Prove that EPP is satisfied if
and only if for every acute angle / ABC with A, B, C € €, m(/. ABC)=3im(/ AOC).

Let € be a circle with center O in a neutral geometry. Let AB be a chord of €
which is not a diameter, let ] be tangent to € at 4, and let C be a point on [ on
the same side of 40 as B. Prove that EPP is satisfied if and only if m(£ CAB) =
im(L AOB).

State at least 12 equivalent forms of HPP.

9.2 Similarity Theory

This section deals with the idea of similarity. We shall define similar triangles
to be triangles with corresponding angles congruent. Note that in a hyper-
bolic geometry this would mean that the triangles are congruent by Theorem
8.2.6. Thus in a hyperbolic geometry, the concept of similarity is identical
to the concept of congruence.

The basic similarity result for a Euclidean geometry relates similarity to

the equality of the ratio of corresponding sides of two triangles. This key
result is Theorem 9.2.5 and, like many truly important results, it requires
a great deal of work to prove. This work is contained in Theorems 9.2.1
through 9.2.5, especially Theorem 9.2.3. The basic similarity result will then
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be used to prove the Pythagorean Theorem and a proposition which will
be crucial to the Euclidean area theory of the next chapter.

Theorem 9.2.1. In a Euclidean geometry, let 1,, l,, and 15 be distinct parallel
lines. Let ty intersect 1}, 1, and Iy at A, B, and C (respectively) and let t, intersect
l;, I, and 15 at D, E, and F (respectively). If AB ~ BC then DE ~ EF.

ProoF. We shall assume that neither t; nor t, is a common perpendicular
of I, l,, I3. (The case where elther is a common perpendicular is left to
Problem Al.)

Since AB = BC and I, # I3, then A # C and A—B—C as in Figure 9-6.
Let P be the foot of the perpendicular from A4 to l,, Q be the foot of the
perpendicular from B to /5, R the foot of the perpendicular from D to I,
and S the foot of the perpendicular from E to I,.

4

3 S I
7 AN

Figure 9-6

Since . ABP ~ ¢/ BCQ, AABP ~ ABCQ by HA. Thus AP ~ BQ. By
Problem A15 of Section 9.1, AP ~ DR and BQO ~ ES. Hence DR ~ ES.
Since £ DER =~ [/ EFS, ADRE ~ AESF by SAA. Thus DE ~ EF. O

The proof of the next result is left as Problem A2.

Theorem 9.2.2. Let 1, 1,, I3 be distinct parallel lines in a Pasch geometry.
Let t, intersect 1,, l,, and 13 at A, B, and C (respectively) and let t, intersect
l,,1,,and I at D, E, and F (respectively). If A—B—C then D—E—F.

The next result is the key theorem from which we will derive the relation-
ship between the corresponding sides of similar triangles.

Theorem 9.2.3. Let I;, I,, l5 be distinct parallel lines in a Euclidean geometry.
Let t, and t, be two transversals which intersect 1;,1,,15at A, B, Cand D, E,
F, with A—B—-C, as in Figure 9-7. Then

BC _EF

== 2-1
AB ~ DE @1)
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-—4\‘3
\\—AL'

Figure 9-7

PROOF. Let g be any positive integer. We will show that
BC EF| 1

7

2-
AB DE @2)
If Inequality (2-2) holds for all g > 0, especially for g very large,
|[BC/AB — EF/DE| must be zero, which proves Equation (2-1). To prove
Inequality (2-2), let p be the largest nonnegative integer such that p <
q(BC/AB). Thus p < g¢(BC/ABY<p + 1 or

P BC pti1 2-3)
g AB ¢
We shall break the segment 4B into g segments each of length AB/q
and then lay off p + 1 segments of this same length along BC. Theorem 9.2.1
will then be applied to the resulting configuration which is illustrated in
Figure 9-8 with p = 7and ¢g=5.

1y 1oy
t
D Al |A; E |B F|B,
A
Ay A, B B, |B f
2 C B
8
4 {9 I3
Figure 9-8

Let A, A,, ..., A,_, be points of 4B with
A—A,—A;— —A,.,—B and AA; ~AA,~ - ~A,_B. (24
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Note that this means each segment 4;4; ., has length 4B/g. Similarly choose
points By, B, ..., B,.; on BC so that the distance between neighboring
points is AB/q. That is,

AB
B—B,—B,— -—B,,; and BB =B B,=-""=B,B,,, =7. (2-5)

We shall now show that C € BB, , ;. By Inequality (2-3) we have

p“p+1°
BB,,=p-BB1=§-ABsBC

so that B, € BC. Similarly
+1
BB,.,=(p+ 1) BB, _f—q— AB > BC

so that B,,, ¢ BC. Thus B—C—B,,,. This means either C=B, or
B,—C—B,,,.Hence Ce B,B,,; and C # Byiy.

Let [} be the line through A, parallel to I, = AD. This line intersects 2
at a point A;. Similarly let /] be the line through B; parallel to I, = AD.
This line intersects t;ata point Bj. See Figure 9-8. By Theorem 9.2.2 we have

D—A\—Ay— - -—A,_—E
E—B\—B)— -—B,—B,:,
E—F—B,,, and B,cEF.
We may now apply Theorem 9.2.1 to compare the distances between the
A; and between the B). Together with Condition (2-4), this theorem implies

DA} ~ 14y ~---~A4,_|E

Hence
DE = q- DA, (2-6)
Similarly from Condition (2-5) we have
EB, ~ BB~ ~ BB,
Thus since B, € EF, E—F—B,,,, and EB; = j - EB), we have
p-EB, = EB,<EF <EB,,, = (p+ 1) EB,. @-7)
Since EB| ~ A4, _,E ~ DA}, Inequality (2-7) becomes
p- DA, < EF < (p + 1)DA,.
We may divide this inequality by DE to obtain

DAy _EF . DA’
DE ~ DE
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or, since DE = g - DA by Equation (2-6),
P EF < p+ 1.
q = DE q
We may subtract this from Inequality (2-3) to get
1 _P r+1 BC EF p-+—1 p__l

9 9 4q 4B DE ~ 9 4 q

Hence |BC/AB — EF /DEI < 1/q and Inequality (2-2) is proved. O
Corollary 9.2.4. Let AP_EF be a triangle in a Euclidean geometry. If D—
G—E, D—H—F and GH||EF, then

DG _ DH

DE  DF’
PrOOF. Let I, = EF, I, = GH, and I, be the unique line through D parallel
to I,. See Figure 9-9. By Theorem 9.2.3 with ¢, = DE and t, = DF, we have

(2-8)

GE _HF
DG~ DH’
D
0 I
G H
\ [2
E F 0
Figure 9-9

Since DE = DG + GE and DF = DH + HF,

DE DG+ GE 1+GE_1+HF DH + HF _ DF
DG~ DG DG DH DH  DH
so that
DE - DF DG DH

DG DH * DE_ DF =
Definition. Two triangles AABC and ADEF in a protractor geometry are
similar (written AABC ~ ADEF)if yA~/D, /B~ /E, [ C~ [F.

Three remarks are in order. First, to show that two triangles in a
Euclidean geometry are similar it is sufficient to show that two of the pairs
of corresponding angles are congruent. This is because the angle sum
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theorem guarantees that the remaining pair of angles are then also con-
gruent. Second, as mentioned earlier, in a hyperbolic geometry AABC ~
ADEF if and only if AABC ~ ADEF by Theorem 9.1.9. Third, as in the
case of congruence, the notation for similarity includes the correspondence:
AABC ~ ADEF means that A and D correspond, as do B and E, and also
Cand F.

The basic results of similarity theory follow from Corollary 9.2.4. The
proofs generally involve constructing a line parallel to one side of a triangle
and then invoking the corollary. Our first result gives the relationship be-
tween corresponding sides of similar triangles.

Theorem 9.2.5. In a Euclidean geometry, the ratio of the lengths of corre-
sponding sides of similar triangles is constant; that is, if NABC ~ ADEF
then
AB _BC AC
DE EF DF’
Proor. If AB ~ DE then AABC ~ ADEF by ASA and each quotient in

Equation (2-9) is 1. Thus we may assume that AB # DE. Suppose that AB <
DE. (The case AB > DE is similar.) Let G be the point on DE with 4B ~ DG.

See Figure 9-10.

(2-9)

A D
G H p
b </ N
E F
Figure 9-10

Let [ be the unique line through G parallel to EF. By Pasch’s Theorem, [
intersects DF at a point H. £ DGH ~ [ DEF ~ / ABC (Why?). Thus
AABC ~ ADGH by ASA. By Corollary 9.2.4

DG _DH
DE DF’
Since DG ~ AB and DH ~ AC, this last equation becomes
AB _4c
DE DF’
Similarly AB/DE = BC/EF. =

Theorem 9.2.5 says that Equation (2-9) is a necessary condition for simi-
larity. We now show that it is also sufficient.
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Theorem 9.2.6 (SSS Similarity Theorem). In a Euclidean geometry, ANABC ~
ADEF if and only if
AB _BC _AC
DE EF DF
ProOOF. Because of Theorem 9.2.5 we need only show that Equation (2-10)
implies that AABC ~ ADEF. If AB ~ DE, then AABC ~ ADEF by the
SSS Congruence Theorem. Thus AABC ~ ADEF in this case.
Assume that AB < DE. (The case AB > DE is similar.) Let G be the point
on DE with AB ~ DG. By Pasch’s Theorem, the line through G parallel to
EF intersects DF at a point H. See Figure 9-10. By Theorem 9.2.4

DG _DH
DE DF’

(2-10)

AC_AB_DG_DH
DF DE DE DF
so that AC ~ DH. o
Note that / DGH ~ £ E and £ DHG~ (F since GH||EF and the
geometry is a Euclidean geometry. Thus ADGH ~ ADEF so that
GH DG AB BC
EF DE DE EF

Hence BC ~ GH and AABC ~ ADGH by SSS. Thus AABC ~ ADGH ~
ADEF. Since ~ is an equivalence relation (Problem A3), we are done. []

We are now ready to prove the Pythagorean Theorem. In fact, we shall
show in Theorem 9.2.8 that the Pythagorean property is equivalent to EPP.

Theorem 9.2.7 (Pythagoras). In a Euclidean geometry, ANABC has a right
angle at B if and only if
(AB)? + (BC)?* = (AC)> (2-11)
Proof. First suppose that / B is a right angle of AABC and that D is the

foot of the altitude from B. By Problem A4, AADB ~ ANABC ~ ABDC.
Thus by Theorem 9.2.5

Hence (A4B)?> = (AC)(AD) and (BC)? = (AC)YDC). Now AC = AD + DC

so that
(AC)? = (AC)(AD + DC)

= (AC)(AD) + (AC)(DC)
= (AB)* + (BC)>.

Thus Equation (2-11) is valid if /. Bis a right angle.
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Now suppose that A ABC satifies Equation (2-11). We must show that
[ Bis aright angle. Let APQR be a right triangle with right angle at Q and
PQ ~ 4B, QR ~ BC. Since (. Q is right we may apply Equation (2-11) to
APQR to obtain

(PR)* = (PQ)* + (QR)* = (4B)* + (BC)* = (AC)*.

Hence PR ~ AC and APQR ~ AABC by SSS. But this means that / B ~
L Q is a right angle. O

The next result says that EPP and the Pythagorean property are equiva-
lent. Although Problem A5 of Section 5.3 shows that Pythagoras is false in
A, the proof given below (from Reyes [1897]) is interesting because it is a
direct proof which does not rely on a model for a counterexample.

Theorem 9.2.8. A neutral geometry satisfies EPP if and only if for every right
triangle N\NABC with right angle at B the equation

(AC)* = (AB)? + (BC)? (2-12)
is true.

PrOOF. We need only show that Equation (2-12) for right triangles implies
EPP. Let AABC be a right triangle with right angle at B and 4B ~ BC. We
shall show that the defect of AABC is zero. (In fact, we will show that
m(/, A)=m(, C)=45) By Theorem 9.1.1 this will imply that EPP is
satisfied.

Let D be the midpoint of AC. Then ABAD ~ ABCD by SAS so that
L BDA ~ [ BDC, as in Figure 9-11. Hence / BDA is a right angle. We apply
Equation (2-12) to AABC to obtain

2(AB)? = (AB)® + (BC)? = (AC)* = (2 AD)* = 4(,41))2

so that (4B)*> = 2(AD)*. We may also apply Equation (2-12) to AADB to
obtain
(4B)? = (AD)* + (DB)?
so that
2(AD)? = (AB)* = (AD)? + (DB)*

Figure 9-11
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or
AD = BD.

Thus A ADB is isosceles as is ACDB and

[ DBA~ ( DAB~ 7y DCB~ / DBC.
Since m(, ABC) =90, m(. DBA)=45. Thus 6(AABC)= 180 — (45 +
90 + 45) = 0 and EPP holds by Theorem 9.1.1. O

The last result of this section will be useful in the study of area in the next
chapter.

Theorem 9.2.9. Let NABC be a triangle in a Euclidean geometry. Let D be
the foot of the altitude from A and let E be the foot of the altitude from B. Then

(AD)(BC) = (BE)(AC).

Proor. If 7/ Cis a right angle then E = C = D and the result is trivial. If 7 C
is not a right angle then E # C and D # C. Since ABEC ~ AADC (Why?)

we have
BC BE

AC ™ 4D
so that (AD)(BC) = (BE)(AC). O

PRrROBLEM SET 9.2
Part A.

1. Complete the proof of Theorem 9.2.1 in the cases where one or both of t; and t,
are perpendicular to I, 15, I5.

2. Prove Theorem 9.2.2.
3. Prove that ~ is an equivalence relation.

4. Let AABC be a right triangle in a Euclidean geometry with right angle at B. If
D is the foot of the altitude from B to AC prove that AADB ~ AABC ~ ABDC.

5. Let AABC ~ APQR in a neutral geometry. If AB ~ PQ, prove that AABC ~
APQR.

6. Let AABC be a triangle in a Euclidean geometry. Suppose that 4—D—B and
A—E—C with AD/AB = AE/AC. Prove that DE|| BC.

*7. Prove the SAS Similarity Theorem: In a Euclidean geometry if £ B~ /£ Q and
AB/PQ = BC/QR then AABC is similar to APQR.

8. Let AABC ~ ADEF in a Euclidean geometry. If G is the foot of the altitude from
A and H is the foot of the altitude from D, prove that AG/DH = AB/DE.

9. In a Euclidean geometry l&t AB and CD be two chords of a circle € such that
AB and CD intersect at a point E between A and B. Prove that (4E)(EB) = (CE)(ED).
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10. In a Euclidean geometry let € be a circle and let B € ext(%). If 4, C, D € € with
AB tangent to ¥ and B—D—C, prove that (4B)? = (BD)(BC).

11. In a Euclidean geometry let € be a circle with C e ext(%). If 4, B, D, E € ¥ with
A—B—C and E—D—C, prove that (CA)(CB) = (CE)(CD).

12. In a Euclidean geometry let € be a circle with diameter AB. Let | be the tangent
to % at B and let C be any point on I. Prove that AC intersects € at a point D # A
and that (4D)(AC) is a constant that does not depend on the choice of Cel.

13. In a Euclidean geometry let % be a circle with diameter AB. Let P be any point in
int(AB) and let C, D, E be distinct points of % all on the same side of 4B such that
DP | AB and . CPD ~ £ DPE. Prove that (PD)? = (PC)(PE).

Part B. “Prove” may mean “find a counterexample”.

14. Let AABC be a triangle in a Euclidean geometry. If AD is the bisector of 7 A
with B—D—C prove that DB/DC = AB/AC.

15. Let AABC be a triangle in a Euclidean geometry. If D—C— B and if the bisector
of £/ DCA intersects BA at E, prove that EA/EB = CA/CB.

9.3 Some Classical Theorems of Euclidean Geometry

One of the most fascinating aspects of mathematics is the discovery that
concepts which we would not expect to be related are in fact related. In
this section we will prove some of the more beautiful results of classical
Euclidean geometry. We find these theorems so attractive because they con-
tain unanticipated relationships.

For example, we will show that the three angle bisectors of a triangle all
meet at one point (the incenter), as do the medians (at the centroid), the
perpendicular bisectors of the sides (at the circumcenter), and the lines
containing the altitudes (at the orthocenter). In addition, we shall prove the
astounding result that the centroid, circumcenter, and orthocenter are col-
linear! The final result will be an equally surprising result regarding the
trisectors of the angles of a triangle.

The first result of this section was given in Problem A12 of Section 6.4.
We include it here for completeness. Recall that a collection of lines is
called concurrent if there is a point, @, which is on all of the lines. The point
Q is called the point of concurrence.

Theorem 9.3.1. In a neutral geometry, the angle bisectors of any triangle
AABC are concurrent. The point of concurrence, I, is called the incenter

of ANABC.

Proor. By the Crossbar Theorem, the bisector of £ A intersects BC at a
point D. Likewise, the bisector of / B intersects 4D at a point I. See Figure
9-12. We will show that I belongs to each angle bisector. I is in the interior
of / A and the interior of / B. Hence it is in the interior of / C. (Why?)
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Figure 9-12

Let P, Q, and R be the feet of the perpendiculars from I to BC, AC, and
AB. AIQA ~ AIRA by HA so that 10 ~ IR. Likewise AIRB ~ AIPB
by HA so that IR ~ JP. Hence IQ ~ IP so that AIQC ~ AIPC by HL.
Thus 7/ ICQ ~ / ICP and I lies on the bisector of £ C. That is, the three
angle bisectors concur at I. ‘ O

Definition. A median of a triangle is a line segment joining a vertex to the
midpoint of the opposite side.

Theorem 9.3.2. In a Euclidean geometry, the medians of any triangle ANABC
are concurrent. The point of concurrence, G, is called the centroid of AABC.

Proor. Let AP, BQ, and CR be the medians of AABC, as in Figure 9-13.
The Crossbar Theorem implies that AP ~ BQ # § and BO ~ AP # (& so
that AP intersects BQ at a point G. We must show that G € CR.

C

o

A R B
Figure 9-13

Now AQCP ~ NACB by the SAS Similarity Theorem (Problem A7
of Section 9.2). Hence £ CQP =~ / CAB so that QP||4B. Furthermore,

P
Similarly, if S and T are the midpoints of AG and BG then
sT_1
AB 2 ¢
so that Equation (3-1) implies that QP ~ ST.
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Since QP||4B||ST, LPQG ~ £ STG. Furthermore, £ QGP ~ £ TGS.
Since QP ~ ST, AQGP ~ ¢/ TGS by SAA. Hence the point G has the
property that it belongs to AP and

PG = GS = 14G. (3-2)

A similar proof shows that AP and CR intersect at a point G’ € AP
with PG’ = $AG’. But there is only one point X € AP with PX = 44X so
that G = G'. Hence the medians are concurrent at G. O

Two things should be noted about this theorem. First, implicit in the
proof is the fact that the medians intersect at a point G which is two-thirds
of the way from a vertex to the opposite midpoint (Problem A3). Second,
the theorem was proved only for a Euclidean geometry (unlike Theorem
9.3.1). This does not mean that it is false in hyperbolic geometry, only that
the proof given does not work. In fact, it is true in hyperbolic geometry,
but is more difficult to prove. See Greenberg [1980], Chapter 7, especially
Problem K-19.

The following result is Theorem 9.1.5, and is mentioned here for
completeness.

Theorem 9.3.3. In a Euclidean geometry, the perpendicular bisectors of the
sides of AABC are concurrent. The point of concurrence, O, is called the
circumcenter of AABC.

Theorem 9.3.3 also holds in a hyperbolic geometry, provided at least
two of the perpendicular bisectors intersect (Problem A13 of Section 6.4).

Theorem 9.3.4. In a Euclidean geometry, the lines containing the altitudes of
AABC are concurrent. The point of concurrence, H, is called the orthocenter

of AABC.

Proor. This proof will use a different technique than that of Theorems 9.3.1,
9.3.2, and 9.3.3. We will construct another triangle APQR such that a line
containing a perpendicular bisector of a side of APQR also contains an
altitude of AABC. Since the perpendicular bisectors of the new triangle
are concurrent by Theorem 9.3.3 so are the lines containing the altitudes
of AABC. We shall now proceed with the construction of APQR.

Let I, be the unique line through A parallel to BC, I, the line through
B parallel to AC, and [, the line through C parallel to AB asin Figure 9-14.
Since I, ||BC and I, n BC # &, I, n I, # (& by Problem A3 of Section 9.1.
Likewise I, n I3 # & and I} n I3 # . Let the points of intersection be
P, Q, and R as in Figure 9-14,

By using the fact that alternate interior angles are congruent a number
of times, we see that

ACAR ~ AACB ~ AQBC
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Figure 9-14

by ASA. Hence CR ~ QC and C is the midpoint of RQ. Since RQ”AB the
altitude from C to 4B is perpendicular to RQJ. Hence the line containing
this altitude is the perpendicular bisector of RQ. Likewise the lines containing
the other altitudes of A ABC are the perpendicular bisectors of the remaining
sides of APQR. By Theorem 9.3.3 these lines are concurrent at a point H.
Hence the lines containing the altitudes of AABC are concurrent. O

Theorem 9.3.4 is also true in a hyperbolic geometry, provided at least two
of the lines containing the altitudes intersect. See Greenberg [ 1980], Chapter 7.

The results on the concurrence of the perpendicular bisectors, altitudes,
medians, and angle bisectors are surprising, The next result is truly as-
tounding. The orthocenter, centroid, and circumcenter of a triangle would
not seem to be related. However, the next theorem says that they are.

Theorem 9.3.5. In a Euclidean geometry, the orthocenter, centroid, and
circumcenter of A\NABC are collinear.

Proor. Let H be the orthocenter, G be the centroid, and O the circumcenter
of AABC. The proof will break into three cases depending on the shape of
AABC.

If AABC is equilateral, H= G = O = I (the incenter) and the result is
trivial. The case where AABC is isosceles but not equilateral is left to
Problem A6.

We assume, therefore, that the triangle is scalene. We first show that
O # G in this case. By Problem A3 of Section 6.4 the median from A4 to
BC is not perpendicular to BC. Hence G cannot lie on the perpendicular
bisector of BC since G is not the midpoint of BC. (Why?) Thus G # O.

Let I = OG. Let H’ be the unique point on | with O—G-—H’ and GH’ =
2 - GO. We shall prove H' is the orthocenter, H. See Figure 9-15.

Let P be the midpoint of BC so that G € AP. We will first show that
AH'||OP. Now GA = 2 - GP by Equation (3-2) and GH’ = 2 - GO by con-
struction. Since the vertical angles /7 AGH' and / PGO of Figure 9-15 are
congruent, AAGH' ~ APGO by the SAS Similarity Theorem (Problem A7
of Section 9.2). Hence the alternate interior-angles / GAH’ and / GPO are
congruent so that AH’||OP.
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A

Figure 9-15

Since OP 1 BC, AH’ 1 BC also. Thus AH’ contains the altitude from
A to BC. Thus the line containing the altitude from A4 goes through H'.
Similarly the lines containing the other two altitudes also pass through H'.
Hence H' is the orthocenter and O, G, H = H' are collinear. Od

Note that this proof gives an alternative proof that the altitudes of a
triangle are concurrent (at the point H').

Definition. The line containing the centroid, orthocenter, and circumcenter
of a given nonequilateral triangle in a Euclidean geometry is called the Euler
line of the triangle. The three points which are the midpoints of the segments
joining the orthocenter of A ABC to its vertices are called the Euler points
of AABC.

The Euler points appear in the next result whose proof is left to
Problem B13.

Theorem 9.3.6 (Nine Point Circle). Let AABC be a triangle in a Euclidean
geometry. Then the midpoints of the sides of AABC, the feet of the altitudes,
and the Euler points all lie on the same circle. (See Figure 9-16.)

Figure 9-16
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As our final and probably most beautiful result we present the following
theorem due to F. Morley. It is a relatively recent theorem, having been
discovered in 1899. For more discussion on the theorem and a converse see
Kleven [1978].

Theorem 9.3.7 (Morley’s Theorem). Let AABC be a triangle in a Euclidean
geometry. Then the three points of intersection P, Q, R of adjacent trisectors
of the angles of N\NABC are the vertices of an equilateral triangle. (See Figure
9-17)

Figure 9-17

ProoF. The proof we give may be found in Coxeter [1961] along with
references to other proofs. Rather than attacking the problem head on (which
can be done) we instead start with an equilateral triangle AXYZ and around
it construct a triangle which is similar to AABC. This construction will be
carried out in such a manner that X, Y, Z will be the points of intersection
of the angle trisectors of the new triangle.

First we define three numbers a, §, y by

o= 60— im(L A)
B=60—3m(,B)
y=60—1im(LC).
Then a, B, y are positive and
o+ B+7y=180—Lm(LA) +m(LB)+m(LC))=120. (3-3)

Now let AXYZ be any equilateral triangle. In Figure 9-18, we let X' be
the point on the opposite side of YZ as X withm(/L YZX)=m(,L ZYX') =«.
(X’ 1s found by constructing two rays.) We choose Y’ and Z' in a similar
fashion.

Sincem(,.Z'YZ) + m(Y’Z Y)=9+ - 60 +60 + B >180, Euclid’s Fifth Pos-
tulate implies that the lines Z'Y and Y7 intersect at a point D which is on
the same side of YZ as X'. Likewise X'Z and Z'X intersect at E while
Y'X and X'7 intersect at F. We will next show that ADEF ~ NABC.

Now m(LDZX') =180 —a — 60 — =120 —a — =y by Equation
(3-3). Likewise we may determine the other angles whose measures are
marked in Figure 9-18. Furthermore,
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m(LYDZ)=180 —2a — f —y=60 — a
m(LZEX)=60—p
m(,L XFY) =60 —y.

D

X

Figure 9-18

Now X'Z ~ X'Y by the converse of Pons asinorum (Theorem 6.2.2) and
ZX ~ YX by construction. Hence AXZX' ~ AXYX' by SSS so that X'X
bisects £ ZX'Y = ( EX'F. Furthermore

m(L EXF)=180 —«
=90+ (90 — )
=90 + 1(180 — 2)
=90 + 3m(L EX'F).
By Problem A10, X is the incenter of AEX'F so that £ X’EX ~ / FEX.

Likewise Z is the incenter of ADZ'E so that /. DEX' ~ / X’EX. Hence
EZ = EX and EX are trisectors of 2~ DEF. Thus

m(,L DEF) =3 -m(/L ZEX) = 3(60 — ) = m(/, B).

In a similar manner, m(/L EFD)=m(/. C) and m(,. FDE)=m(, A).
Hence ADEF ~ AABC. Furthermore ADEZ ~ AABR, AEFX ~ ABCP,
and AFDY ~ ACAQ. Thus by Theorem 9.2.5

PB_CB AB RB
XE FE DE ZE

so that AXEZ ~ APBR by the SAS Similarity Theorem. Similarly,
AZDY ~ ARAQ and AYFX ~ AQCP. Finally
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PQ PC PB RB_RP _RP

XY XF XE ZE ZX XY

so that PQ = RP. Similarly RP = QR so that APQR is cquilatcrai. O

ProBLEM SET 9.3

Part A.

10.

11.

. In a neutral geometry, prove that the incenter of a triangle is equidistant from

each of the three sides.

. Given AABC in a neutral geometry, prove that there is a circle € tangent to the

lines 4B, BC and AC. Such a circle is called an inscribed circle of AABC.

. In a Euclidean geometry, prove that the centroid G of AABC is two-thirds of the

way from a vertex to the opposite side (i.e., AG = 3 - AP, where P is the midpoint
of BC).

. Given three noncollinear points A, B, C in a Euclidean geometry, prove that there

is a circle € with A, B, C € €. Such a circle is called a circumscribed circle.

. In the Poincaré Plane # show that there are three noncollinear points which do

not all lie on the same circle.

. Complete the proof of Theorem 9.3.5 in the case of an isosceles triangle.

. In a Euclidean geometry, prove that the incenter of an isosceles triangle which is

not equilateral lies on the Euler line.

. In a Euclidean geometry, prove that the circumcenter of a right triangle is the mid-

point of the hypotenuse.

. In a Euclidean geometry, prove that the Euler line of a right triangle is the line

containing the median to the hypotenuse.

In a Euclidean geometry suppose that I is a point on the bisector of L UVW.
Prove that I is the incenter of AUVW ifand only if m(2. UIW) = 90 + sm(L UVW)
and I € int(AUVW).

In the proof of Morley’s Theorem show that XX’, YY", and ZZ’ are concurrent.

Part B. “Prove” may mean “find a counterexample”.

12,

13.
14.

In a Euclidean geometry prove that the circumcenter O of AABC lies in the
interior of AABC.

Prove Theorem 9.3.6. Hint: Look at Figure 9-16 carefully.

In a Euclidean geometry let P be a point on the circumcircle of AABC and let X,
Y, Z be the feet of the perpendiculars from P to the sides of NAABC. Prove that
X, Y, Z are collinear. The line XY is called the Simson line of P.



9.3 Some Classical Theorems of Euclidean Geometry 247

15. In a Euclidean geometry let P be a point such that the feet of the perpendiculars
from P to the sides of AABC are collinear. Prove that P lies on the circumcircle
of AABC.

16. Prove that the center of the nine point circle of a nonequilateral triangle lies on
the Euler line.

17. Let H be the orthocenter of AABC. Prove that the nine point circle of AABH is
the same as that of AABC.

Part C. Expository exercises.

18. Prepare a lecture for a high school class which describes your favorite of these
classical theorems of Euclidean geometry. You should pay attention to whether
the students would understand the content or both the content and the proof. In
your description of the lecture explain why the theorem that you are quoting has
a strong appeal to you.

19. Write an essay on Euler and his contributions to mathematics.



CHAPTER 10
Area

10.1 The Area Function

In this chapter we shall be interested in the concept of area in a neutral
geometry. We shall start off with the definition of an area function and an
investigation of the properties of a Euclidean area function. In Sections 10.2
and 10.3 we will prove the existence of area functions for Euclidean and
hyperbolic geometries respectively. In the last section we will consider a
beautiful theorem due to J. Bolyai which says that if two polygonal regions
have the same area then one may be cut into a finite number of pieces and
rearranged to form the other.

Informally, we are accustomed to making statements such as “the area
ofa triangle is bh/2” or “the area of a circle is nr”.” Such language is imprecise,
of course. What we really mean is that “the area of the region bounded by
the triangle is bh/2.” Thus we must first define what we mean by a region in
a neutral geometry. We shall adopt the view here that a region is a polygon
together with its interior. After first defining polygons and polygonal regions,
we will define area as a certain real valued function whose domain is the
set of regions.

Definition. A subset P of a metric geometry is a polygon of degree n > 3 (or

n-gon) if there are » distinct points Py, P,, ..., P, (called the vertices of P)
such that
(i) P=P,P,uP,P;u---UP,_P,UP,P; and (1-1)

(ii) the interiors of the segments in Equation (1-1) are pairwise disjoint.

In this case we write P = OPlP2 .-+ P,. The segments in Equation (1-1) are
called the sides (or edges) of P. Two vertices P; and P; are consecutive if
P,P;is a side of P.

248
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It should be noted that this definition is just the generalization of the
idea of a quadrilateral (4-gon). The notion of convexity also extends to the
concept of n-gons.

Definition. A polygon P in a Pasch geometry is a convex polygon if for every
pair of consecutive vertices P and Q, all other vertices of P lie in single
halfplane Hp, of the line PQ. Hpg is called the half plane determined by

the vertices P and Q.
The interior of a convex polygon P = QPIP2 -+ - P, 1s the intersection of
the half planes determined by consecutive vertices:

int(P) = Hp,p, " Hp,p, N - N Hp p,.

Example 10.1.1. In Figure 10-1, (a) represents a convex polygon while (b)
represents a nonconvex polygon. (c) and (d) are not polygons at all.

(@ (®) © (d)

Figure 10-1

Definition. A triangular region T in a Pasch geometry is a set which is the
union of a triangle and its interior. The triangular region determined by
NAABC will be denoted AABC so that A ABC = AABC U int(AABC).

A polygonal region R in a Pasch geometry is a set such that there are
triangular regions T,, T,, ..., T, which satisfy

WR=T, VT, U -uUT,
(ii) If i # j, T, n T; is either empty, consists of a common vertex, or consists
of a common edge of T; and T;.

The set of all polygonal regions of a Pasch geometry, {¥, #,d },is denoted
R(SL) or R.

Example 10.1.2. In Figure 10-2 we have a polygonal region made up of
5triangular regions T,, T,, T3, T4, Ts. As Figure 10-3 indicates, the triangular
regions that make up a polygonal region are not unique. Note also that
Figure 10-4 also illustrates a polygonal region.

You should note that we did not define a polygonal region as the union
of a polygon and its interior. This is because the interior of a polygon has
only been defined for a convex polygon.
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B C B C
A ‘ A
D D
Figure 10-2 Figure 10-3

Figure 10-4

Definition. A point P is inside a polygonal region R if there is a triangle
AABC such that AABC < R and P e int(AABC). If PeR but P is not
inside R, then P is a boundary point of R. The inside of R, ins(R), is the set
of all points inside R. The boundary of R, bd(R) is the set of all boundary
points.

Thus a point P is inside R if we can find some (small) triangle AABC
with P € int(AABC) such that the triangle fits inside the region. As we might
expect, if P= (\P,P, - P, is a convex polygon then P = P uint(P) is a
polygonal region and int(P) = ins(P).

Theorem 10.1.3. Let P = Q P, - - - P, be a convex polygon and let
P= ‘P,--~P,,= QP,--~P,,uint(QP,-~~P,,).
Then

(i) P is a polygonal region
(i) ins(P) = int(P)
(iii) bd(P) = P.
Proor. The actual details of the proof are left to Problem A4. The basic
idea in part (i) is to use induction on n to show that

‘Px"'Pn=AP1P2P3UAP1P3P4U'"UAP1Pn—1Pn-
See Figure 10-5. |
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Pg Py
P P,
Figure 10-5

Definition. If P = (\P, - - - P, is a convex polygon, then P = @P, -- P, as
defined in Theorem 10.1.3 is called the convex polygonal region determined
by P.

Because of Theorem 10.1.3 we abuse our notation and refer to the interior
of a convex polygonal region R, int(R), instead of the inside of R, ins(R).

We are now in a position to define area. Certainly “area” must assign to
each polygonal region a positive number such that if two regions intersect
only along an edge or at a vertex (or, equivalently, along their boundary),
then the area of their union is the sum of their areas. This last statement is
the same as saying that the whole area is the sum of its parts and that edges
have “zero area.” We would also want two triangular regions determined
by “identical” (i.e., congruent) triangles to have the same area. In addition,
we prefer that the area function be normalized so that a square of side a has
area a?. More precisely, the definition is as follows.

Definition. In a neutral geometry an area function is a function ¢: % — R
such that

(1) o(R) > 0 for every region R € Z.
(i) If AABC ~ ADEF then c(AABC) = o(ADEF).
(ii) If R, and R, are two polygonal regions whose intersection contains
only boundary points of R; and R, then

o(R; UR;y) = o(R,) + o(R,).

(iv) If R is the convex polygonal region determined by a square whose sides

have length a, then
o(R) = a®.

It would be natural at this point to prove that every neutral geometry
has an area function. We shall assert this fact now, but not prove it until
Section 10.2 (for a Euclidean geometry) and Section 10.3 (for a hyperbolic
geometry). This is because both theorems are technically quite involved.

Theorem 10.1.4. For any neutral geometry there is an area function o.
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For the rest of this section we shall investigate the consequences of
Theorem 10.1.4 in a Euclidean geometry. Our first result can be proved by
breaking a square up into rectangles. See Problem AS.

Definition. If [JABCD is a rectangle in a Eudlidean geometry then the
lengths of two consecutive sides of AB and BC of [JABCD are called the
length and width of [JABCD.

Theorem 10.1.5. Let o be an area function in a Euclidean geometry. If (JABCD
is a rectangle of length a and width b then

o(MABCD) = ab.

We might note that Theorem 10.1.5is also true in a hyperbolic geometry,
precisely because there are no rectangles! The remaining results of the
section are false in hyperbolic geometry. Our proofs depend upon the
existence of rectangles which, of course, invalidates them in a hyperbolic
geometry.

Theorem 10.1.6. In a Euclidean geometry, if \ABC has a right angle at B then
o(AABC) = 1(AB)(BC).

Proor. Let D be the point on the same side of BC as A such that CD ~ 4B
and CD 1 BC, as in Figure 10-6. Since the geometry is Euclidean, [JABCD
is a rectangle with length AB and width BC. Since AABC ~ ACDA, the

result follows from Theorem 10.1.5. O
A D
B C
Figure 10-6

The proofs of the next three results are left as exercises.

Corollary 10.1.7. In a Euclidean geometry if A\NABC has base BC of length b
and altitude AD of length h, then 6(AABC) = 4bh.

Definition. [JABCD is a trapezoid if AD || BC. In this case we say that 4D is
the lower base and BC is the upper base.

Theorem 10.1.8. A trapezoid is a convex polygon.
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Theorem 10.1.9. In a Euclidean geometry, if [JABCD is a trapezoid then
c(MABCD) = 1(AD + BC) - h

where h is the distance from AD to BC. In particular, if [JABCD is a parallelo-
gram then 6(MABCD) = (AD) - h.

The area function can be used to prove the basic theorem of similarity
theory (Theorem 9.2.3). In fact, this is what Euclid did. (See Problem A12
for the proof.) Although such an approach appears to be simpler, it depends
on knowing the existence of an area function. As we shall see in the next
section, the existence of an area function in Euclidean geometry can be proved
using similarity theory and in particular Theorem 9.2.3. Thus if you wish to
avoid circular reasoning, the simpler proof of Theorem 9.2.3 can be obtained
only at the expense of assuming, as an axiom, that an area function exists.

As the last result in this section, we present Euclid’s proof of the Pythag-
orean Theorem. Although this proof is more complicated than the one we
presented earlier (Theorem 9.2.7), it is important because it shows a basic
difference between the view of Euclid and our own view. We have taken a
metric view of geometry and so may use the full power of the ruler postulate
and our knowledge of the real numbers. However, real numbers were not
available to Euclid. In fact, Euclid was unable to measure the length of the
hypotenuse of an isosceles right triangle with each leg of unit length because
the length of the hypotenuse is irrational: ﬁ

Note that in the following restatement of the Pythagorean Theorem there
is no mention of the lengths of the sides of the triangle. Also, the term “equal” -
means “equal in area.” We cannot resist quoting the theorem as Euclid did.

Theorem 10.1.10 (Pythagoras). In a Euclidean geometry, if A\ABC is a right
triangle then the square on the hypotenuse is equal to the sum of the squares
on the legs.

Proor. Let AABC have a right angle at B. Let [JABDE be a square with
DE on the opposite side of AB as C. Similarly, let (JBCFG and [(JACIH be
squares constructed as in Figure 10-7. Euclid’s statement of the theorem is
equivalent to

o(MACIH) = 6(MABDE) + ¢(MBCFG). (1-2)

Let J be the foot of the altitude from B to AC. Since AC||HT, BT is per-
pendicular to HT at a point K. Furthermore, A—J—C and H—K—I -,
(Why?). We shall verify Equation (1-2) by showing that o(MABDE) =
o(lMAJKH) and ¢(MBCFG) = o(BJCIK) and then using the addition
law for area:

o(WACIH) = o(MAJKH) + o(MICIK). (1-3)
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G
D
B F
E
A 7 C
H K I
Figure 10-7

Note that the right angles / EAB and / HAC are congruent and that
/. BAC = { CAB. Now Beint(,LEAC) and C €int(/ HAB) so that by
Angle Addition . EAC~ . HAB~ [/ BAH. By construction AE ~ AB
and AC ~ AH so that AEAC ~ ABAH by SAS. Hence

o(AEAC) = o(ABAH).

If we view EA as the base of AEAC, then the height of AEAC is BA. This
is because the desired height is the distance between the parallel lines BC
and EA. Thus

o(AEAC) = L(EA)(BA) = +c(MABDE).

Likewise,
c(ABAH) = {(AH)(AJ) = c(MAJKH)
so that

c(MABDE) = c(MAJKH). (1-4)

Similarly,
c(MBCFG) = c(RJCIK). 1-5
Combining Equations (1-3), (1-4), and (1-5) we obtain Equation (1-2) as
desired. O

Other area proofs of the Pythagorean Theorem (including one due to
a former President of the United States!) are sketched in Problems A10
and All.

PRrROBLEM SET 10.1
Part A.

1. Prove that the interior of 2 convex polygon is non-empty.
2. Prove that every 3-gon is a convex polygon.

3. Prove that a convex polygonal region is a2 convex set.
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4. Prove Theorem 10.1.3.
S. Prove Theorem 10.1.5. Hint: See Figure 10-8.

a b
a a
b a b b
Figure 10-8

6. Prove Corollary 10.1.7.
7. Prove Theorem 10.1.8.
8. Prove Theorem 10.1.9

*9. Prove that in a Euclidean geometry if two triangles have the same height, then
the ratio of their areas equals the ratio of their bases.

10. Use Figure 10-9 to give a proof of the Pythagorean Theorem using area.

a b

b a
Figure 10-9

11. Use Figure 10-10 to give a proof of the Pythagorean Theorem due to James Gar-
field, the twentieth President of the United States.

a

b
Figure 10-10

12. Use the following outline to prove the basic similarlity theorem (Theorem 9.2.3):
In a Euclidean geometry, if parallel lines 1, I,, I; are cut by transversals ¢, t, at
points 4, B, C and D, E, F respectively with 4—B—Cand D—E—F then AB/BC =
DE/EF. , .
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a. Prove ¢(ACBE) = o(AFEB) and o(AABE) = ¢(ADEB).
b. Prove AB/BC = o(AABE)/o( ACBE).
c. Prove DE/EF = AB/BC.

Part B. “Prove” may mean “find a counterexample”.
13. Prove that the boundary of a polygonal region is a polygon.

14. Let R, and R, be polygonal regions in a Euclidean geometry. If there is a point
P e ins(R,) nins(R,), then prove R; N R, is also a polygonal region.

15. Let t:# — R be a function defined on the set of polygonal regions in a Euclidean
geometry such that it satisfies axioms (i), (ii), and (iii) of an area function. Suppose
further that if (JABCD is a square whose side has length 1 then 7(WABCD) = 1.
Prove that 7 actually is an area function by the following outline.

a. If g is a positive integer and [JABCD is a square whose side has length 1/q,
prove (W ABCD) = 1/¢4>.

b. If p and q are positive integers and [JABCD is a square whose side has length
p/q, then prove that (M ABCD) = p*/q>.

c. I 0ABCD is a square whose side has length g, prove that t(MABCD) = g?
by considering positive integers p, g with p/g < a < (p + 1)/q.

16. A regular polygon is a polygon all of whose edges are congruent and all of whose
angles are congruent. Prove that a regular polygon is convex. (Note that for
polygons, the terms equiangular, equilateral, and regular are different, which is
not the case for triangles.)

10.2 The Existence of Euclidean Area

In the previous section we defined what is meant by an area function and
discovered some of the basic properties that a Euclidean area function must
possess. Now we want to prove that there really is an area function in a
Euclidean geometry and that it is unique. The proof will involve some
technicalities.

The basic idea is to define the area of a triangular region first. From that
the area of a polygonal region R may be defined as the sum of the areas of the
triangular regions that make up R. However, there is a technical problem
with this approach because a given polygonal region can be subdivided into
a union of triangular regions (a triangulation) in many ways. We must show
that the sum of the areas of the triangular regions does not depend upon
the actual choice of subdivision. This is where the technical difficulties
become severe.

Because we do not know at the beginning of this section that the function
we define actually is an area function, we should not use the word “area” in
the definition. Thus we will define the “size” of a polygonal region in a
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Euclidean geometry (and will hope that “size” is an area function, a fact
that we will eventually prove).

In keeping with the approach outlined above we will first define the size
of a triangular region and then the size of a polygonal region with respect
to a particular triangulation. The primary theorem will be that the size of a
region does not depend upon the particular triangulation used.

Definition. The size of a triangular region in a Euclidean geometry is one-
half the length of one side multiplied by the length of the altitude to that
side:

s(AABC) = 3(BC)(AD)

where D is the foot of the altitude from A.

By Theorem 9.2.9, it doesn’t matter which side we choose in the definition
of size of a triangular region: the product (base)(height) is independent of the
choice of the base. Recall that this result was a consequence of similarity
theory so that our development of the existence of a Euclidean area function
depends on similarity theory.

Definition. A triangulation 7 of a polygonal regional R is a set 7=
{T,, T,, ..., T,} of triangular regions whose union is R such that any two
elements of 7 are either disjoint or intersect only along a common edge or
at a common vertex. P € R is a vertex of 7 if P is a vertex of one (or more) of
the members of 7. An edge of 7 is an edge of a member of 7.

From the very definition of a region, every polygonal region has a trian-
gulation. However, as Figures 10-2 and 10-3 showed, a region may have
more than one triangulation,

Definition. Let t = {T;, T,, . .., T,} be a triangulation of a polygonal region
R in a Euclidean geometry. The size of R with respect to 7 is the sum of the
sizes of the members of 7:

S(R) = s(Ty) + -+ s(T).  —

As stated above, the key technical result of this section will be that s,(R) =
s.(R) for any two triangulations 7 and 1’ of R. Our basic method for proving
this result is to find a third triangulation T which is in a sense “smaller” than
7 and 7’ such that s,(R) = s,(R) = s,(R). This “smaller” triangulation will be
formed by cutting the given triangular regions into triangles and trapezoids,
and then further cutting up these regions into triangles in a special way.

Definition. A base triangulation of a triangular region R = A ABC is a trian-
gulation all of whose vertices except for one lie on a single side of AABC.
(See Figure 10-11.) :
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A
&- |
B C
C
Figure 10-11

The proof of the following result is not difficult and is left to Problem Al.

Lemma 10.2.1. In a Euclidean geometry, the size of triangular region & ABC
with respect to any base triangulation T of MAABC equals the size of & ABC:

s, (MABC) = s(AABC) = L(base)(height).
Definition. A base triangulation of a trapezoidal region WMABCD is a trian-

gulation © such that each vertex of t lies either on BC or on AD. (See
Figure 10-12))

C C C C, c C
B 1 2 3 4 5 6 C

Figure 10-12

Lemma 10.2.2. In a Euclidean geometry, the size of a trapezoidal region
W ABCD with respect to a base triangulation t is the product of the height of
O ABCD with the average of the lengths of its bases:

s,(MABCD) = th(b, + b,)

where b, = BC and b, = AD. In particular, the size is independent of the
specific base triangulation used.

Proor. For each triangular region in 7 choose as its base the edge parallel
to AD. Then each triangular region has height h = height of [JABCD. Let

the lengths of the bases of the triangular regions be denoted ¢y, ¢,, ..., ¢
and d,,d,,...,d; as in Figure 10-12. Then since each of the triangular
regions has height

s,(MABCD) =the, + -+ the, + 4hd; + - - - + 1hd,
= thb, + thb, = 1h(b, + b,). O
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Notation. If (JABCD is a trapezoid then s(l ABCD) is the size of
B ABCD with respect to any base triangulation. Similarly,
s(MABC) is the size of AABC with respect to any base trian-
gulation of A ABC. This notation is well defined by Lemmas 10.2.1
and 10.2.2.

Next we must investigate what happens when we decompose a triangle
into a triangle and a trapezoid.

Lemma 10.2.3. Let A..:I_I}C_b_g given in a Euclidean geometry with A—D—B
and A—E——C where DE||BC. Then

s(AABC) = s(AADE) + s(RBDEC)
Proor. Consider DE as the base of AADE and BC as the base of AABC.

See Figure 10-13. The height h of AABC, the height &, of AADE, and the
height h, of the trapezoid (JBDEC are related by

h=hy +h,.

B
Figure 10-13

If b, = DE and b, = BC, then by Theorem 9.2.3
by _by
h b,
so that byh, = b h=bh, + b;h, or bih, = b,hy — b,h,. Thus
s(AADE) + s(MBDEC) = 5b h, + 3hy(by + b))
= 3(bshy + byhy)
= 3ba(hy + hy) = s(AABC). O

Definition. A finite set of lines, #, is a family of parallel lines in a Euclidean
geometry if for any I’ € &, I||I'.
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Suppose that R is a polygonal region in a Euclidean geometry and that
Z is a family of parallel lines such that each vertex of R lies on a line of #.

The lines of & can be named [,, ,, . . ., [, so that if /is a common transversal
of the lines in &# and In; = A4;, then :
A—A,— Ay —A4,.

We may then say that /; and /,,, are consecutive lines in the family. For
each i let H;" be the half plane of /; that contains [;, , and let H; be the half
plane of ; that contains [;_,. (H] and H{ are not defined but could be.) For
each i with 1 <i < k — 1, we define the strip between /; and ;. , to be:

B;= vl vH nH,)
See Figure 10-14.

Figure 10-14

Since we assumed that each vertex of R lies on a line of & then for each
i, RN B; is either a triangular region or a trapezoidal region (or empty).
Thus the family # decomposes R into a collection of triangular and trape-
zoidal regions. See Figure 10-15.

Figure 10-15

Definition. If % is a family of parallel lines in a Euclidean geometry such
that every vertex of a polygonal region R lies on a line of &, then the collec-
tion of triangular and trapezoidal regions described above is called the
parallel decomposition of R induced by %.
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The proof of the next result is left to Problem A2. Be sure to consider
two cases depending on whether or not the family & is parallel to a side
of the triangular region.

Lemma 10.2.4. Let R = A ABC be a triangular region and let & be a finite
Sfamily of parallel lines in a Euclidean geometry such that A, B, and C lie on
lines of . Then the size of R is the sum of the sizes of the triangular and
trapezoidal regions which are the members of the parallel decomposition of R
induced by & .

We are now ready for the major technical result that the size of a polygonal
region does not depend upon the choice of triangulation.

Theorem 10.2.5. In a Euclidean geometry if © and v’ are triangulations of the
polygonal region R then s,(R) = s,(R).

ProoF. The method of proof is to subdivide the regions in 7 and 7' to get a
new triangulation T with s,(R) = s(R) = s,(R). We start this procedure by
choosing a family of parallel lines &# and inducing from that family a parallel
decomposition of the triangular regions of 7 and 7'.

Two edges of a triangulation are either disjoint, identical (and intersect in
a segment), or intersect at a single point (a vertex). Similarly, if e is an edge
of one triangulation of R and f is an edge of another triangulation of R,
then e and f are either disjoint, intersect in a segment (which may be only
part of e or f), or intersect in a single point (wWhich may not be a vertex of
either triangulation). We let ¥ be the set of all points which are intersec-
tions of two edges:

¥ = {P|{P} = e f, where e is an edge of either
tor v and f is an edge of either 7 or v'}.

Note that ¥~ contains all the vertices of T and all the vertices of v’ as well as
some additional points. Let I be any line and define

F=F7v,I)={l|l|l'and Vel forsomeVe7}

See Figure 10-16 where the points of ¥~ are marked on both triangulations
and % is marked on 1. In this example ¥~ contains exactly one point which
is not a vertex of either t or 7'.

Figure 10-16
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Z induces a parallel decomposition of each triangular region in 1. This
gives a decomposition p of R into triangles and trapezoids. By definition,
the size of R with respect to 7 is the sum of the sizes of the triangular regions
in 7. By Lemma 10.2.4 the size of each of these regions is the sum of the sizes
of the regions in the induced parallel decomposition. Thus we may write
5.(R) = 5,(R). :

AN AN
LN\ L\

N =\
NP <\t

Figure 10-17 Figure 10-18

Finally each edge of 7’ creates base decompositions of the regions in p
into triangles and trapezoids. See Figure 10-17. Choose a diagonal of any
remaining trapezoid to give a base decomposition. See Figure 10-18. The net
result is we have a new triangulation 7 of R.

By Lemmas 10.2.1 and 10.2.2 we have

s#R) = 5,(R) = 5.(R).

We may carry out the same procedure starting with 7 and using the same
family &#. The crucial point is that the decomposition p’ so obtained is the
same as p. This is because each is determined by the lines of %, the edges
of 7 and the edges of t". See Figure 10-19. In particular T" = 7 if we choose
the same diagonals of the remaining trapezoids so that

5(R) = 5,(R) = 5,(R) = 5,(R). 0

Figure 10-19

~ The triangulation 7 found in the above proof is an example of a common
refinement of t and 7’ which is defined formally as follows.
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Definition. Let 7 and 7 be two triangulations of a polygonal region R. If
every triangular region of T is contained in a triangular region of 7, then T
is a refinement of 7.

Theorem 10.2.6. In a Euclidean geometry let 6: & — R be defined by
o(R) = 5,(R)

where T is any triangulation of the polygonal region R. Then o is an area
Junction.

Proor. Because of Theorem 10.2.5, ¢ is well defined; that is, it does not
depend on the choice of triangulation 7. Thus all that is necessary is to
verify the four axioms of area are satisfied. This is left to Problem AS. Be
careful with the third axiom: If R is the union of R, and R, and 1, is a tri-
angulation of R,, then 7,U 7, need not be a triangulation of R. See
Figure 10-20 and Problem A6. O

Figure 10-20

Theorem 10.2.7. In a Euclidean geometry there is exactly one area function.

ProoF. By Theorem 10.2.6 we know that ¢ is an area function, so there is
at Jeast one. We must therefore show that if « is an area function then « = o.

Let « be any area function for a Euclidean geometry. By the third axiom
of area, the area of a polygonal region is the sum of the areas of the triangular
regions in any triangulation. Hence if o agrees with ¢ on triangular regions
we must have o = . But this follows from Corollary 10.1.7 because there we
showed that «(AABC) = 4(base)(height) and this latter expression is the
definition of 6. Thus there is only one area function in a Euclidean geometry.

0

ProBLEM SET 10.2
Part A.
1. Prove Lemma 10.2.1.

2. Prove Lemma 10.2.4,
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3. Give an example of a point of a polygonal region R which is a vertex in one triangula-
tion but not in another.

4. Carry out the details of the proof of Theorem 10.2.5 for the triangulation 7, and
7, of AABC and the line !’ pictured in Figure 10-21.

5. Prove Theorem 10.2.6.

6. Explain why 7, U 7, does not give a triangulation of R; U R, in Figure 10-20.

Figure 10-21

10.3 The Existence of Hypefbolic Area

In the previous section we built an area function for a Euclidean geometry
by starting with the area of a triangular region and then defining the area
of a polygonal region as the sum of the areas of the constituent triangular
regions. There were two key steps. First we had to have a well defined quantity
(which we called size) for the area of a triangular region. The similarity
theorem which said that (base)(height) was independent of the choice of
base was crucial for this step. Second, we had to show that if we had two
different triangulations t and 7’ of a region R then each gave the same size
for R so that we had a well defined area for any polygonal region. We did
this by finding a common refinement 7 by means of a parallel decomposition.

For hyperbolic geometry we will follow a similar course, but with different
proofs because of two difficulties. The first difficulty is that since (base)(height)
is not independent of the choice of base in a hyperbolic geometry we will
need a different definition for the area of a triangular region. See Problem Al.
Since parallel lines are neither unique nor equidistant in the hyperbolic case
we will also need a replacement for the idea of a parallel decomposition.

This section may be omitted if the reader is willing to accept the existence
of a hyperbolic area function. The area function constructed here is based on
the concept of the defect of a triangle. The area of a polygonal region will be
defined to be the sum of the defects of the triangles of any triangulation of
the region. In Section 10.4 we will show that this is the only choice for an
area function, up to a constant multiple.

To start, we need a function which assigns to each triangular region a
positive number in such a way that congruent triangles are assigned the
same number. We already have such a function: the defect.
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Definition. The defect of a triangular region R is the defect of the triangle
that determines R:
(A ABC) = 6(NAABCQ).

Our initial goal is to show that if 7 and 7’ are two triangulations of a
polygonal region R, then the sum of the defects of the triangular regions in
7 and 7’ are the same.

Definition. Let R be the convex polygonal region determined by P =
Q P, --- P, and let P ¢ int(P). The triangulation of R by triangular regions
whose vertices are P together with a pair of consecutive vertices of P is called
a star triangulation of R with respect to P. (See Figure 10-22.) Thus

T*R,P)= {APP,P,,...,APP,_,P, APP,P,) (3-1)

is the star triangulation of R with respect to P.

P, P,
Figure 10-22

The proof that (R, P) as defined by Equation (3-1) actually is a triangu-
lation is left to Problem A2. The next piece of notation is useful because it
avoids breaking statements into special cases like APP,P,, APP;_,P,, etc.

Notation. If P = (\P,P, - - P, is a polygon of degree n then P,
and P,, , are defined by

P,=P, and P,.,=P,.
The angle at vertex P; is

([ P;=(P_ PP, forl<i<n

Lemma 10.3.1. Let R = ‘P, -+ - P, be a convex polygonal region in a neutral
geometry and let P e int(R). Then the sum of the defects of the triangular

regions in T*(R, P) is

5(R,P) = 180(n — Z m( (3-2)
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In particular 6(R, P) does not depend on the choice of P € int(R).
Proor. For 1 < i < n define o, f;, y; by

o; = m(L P;PP;,,)

B;=m(L PP.P,,,)

7i=m(L PP P)

as marked in Figure 10-23.
We have the following relations

O(MPPP, )=180 — (a; + B; + y,)

Y o, =360

i=1

m(LP)=7,_y+B; since Peint(, P,

P

P2
Y4
24
P4 P3

Figure 10-23

Ps

where y, = 7,. Thus we have

n

o(R,P) = Z (180 — (o + B; + 7))

i=1

=180"—(Z ai)“()’n"'ﬁl+}’1+ﬁ2+”‘+7’n—1+ﬁn)
i=1
= 180n — 360 — 3 m(L P)

i=1

=180n—2)— Y m(LP). 0

i=1
Because of this lemma we can make the following definition.

Definition. The defect of a convex polygonal region R, denoted 6(R), is the
sum of the defects of a star triangulation of R with respect to any point
P e int(R).



10.3 The Existence of Hyperbolic Area 267

Following the notation of the previous proof, if R = [ ] P,--- P, then

5(R) = 180(n1 — 2) — 3. m(LP).
i=1

Lemma 10.3.2. Let R be a convex polygonal region in a neutral geometry and
let | be a line which intersects the interior of R. Then | decomposes R into
two convex polygonal regions R, and R,.

PrROOF. The details are left to Problem AS. Note that R, and R, can be
defined in terms of the half planes determined by I. The important assertion
is that R, and R, are convex polygonal regions. See Figure 10-24. O

Figure 10-24

Lemma 10.3.3. Let R = ‘Pl -+ P, be a convex polygonal region and let | be
a line that intersects the interior of R. Let R, and R, be the two convex poly-
gonal regions of Lemma 10.3.2. Then

3(R) = 5(R,) + O(R,).

PRrROOF. There are three cases depending on whether | contains 0, 1, or 2
vertices of R. (Why can’t / contain more than two vertices?) We shall con-
sider the case where | contains one vertex and leave the other cases to
Problem A6. See Figure 10-25.

Py
P,
P
Q/* ;
P\/
P;

Figure 10-25

We may label our vertices so that P, € l. | must also intersect a side
P.P,,., (Why? at a point Q@ with 2 <k <n-—1 and P,—Q—P,,,. Then
R, = @P,P, - P,Q has k+ 1 vertices and R, = §QP,,, - PP, has
n — k + 2 vertices. By Lemma 10.3.1 and Equation (3-2)
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k
O(Ry) =180(k + 1 — 2) — m(LQP,P;) - (Z m(LP.-)) —m(L P,QP,)
i=2
6(R,)=180(n — k+ 2 —2) —m(L P,QPy.y)
- ( Zn: m(LP,-)) —m(L P,P,0).
i=k+1
Since Q € int(/ P,) we have
m(, QP,P,) +m(,L P,PQ)=m(LP,).
Since P,—0Q—P 4
m(L PyQP,) + m(L P,QP,, ) =180.

Hence
k n
6(R,)+6(R,)=180(n—1)— Z m(/ P;)— Z m(L P)—m(,L P,)—180
i=2 i=k+1 v

=180(n — 2) — Z m(L P))

i=1

= 5(R). a

Theorem 10.3.4. Let © and v’ be triangulations of the same polygonal region
R. Then the sum of the defects of the triangular regions of T equals the sum
of the defects of the triangular regions of .

Proor. Each edge of a triangular region in either T or v’ determines a line.
Let & be the set of all such lines. # contains a finite number of lines which
can be named Iy, I,, ..., I,. Note that unlike the set of lines used in the
previous section, this set & is not made up of parallel lines.

Consider the triangular regions of . [, either doesnot intersect the interior
of a particular triangular region T or decomposes it into two convex poly-
gonal regions. In the latter case the sum of defects of these two convex
polygonal regions equals the defect of the original triangular region T by
Lemma 10.3.3. Hence /; induces a decomposition 7, of R into convex poly-
gonal regions such that the sum of the defects of these regions equals the
sum of the defects of the triangular regions in 7.

We continue the process with 7, and [/, to get a decomposition 7,, and
then /5 and so on. Eventually after using all k lines of # we receive a decom-
position T. See Figure 10-26c. The sum of the defects associated with T
is equal to that of 7. Finally, we note that if we start with 7’ instead of r,
we get the same decomposition 7. See Figure 10-26d. Hence, the sum of the
defects associated with 7' equals the sum of the defects associated with
7 and hence with 7. (If we take star triangulations of the convex polynomial
regions of T then we will have a common refinement of t and 7’.) O
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AR

Figure 10-26

Definition. The total defect of a polygonal region R, 6(R), is the sum of the
defects of the triangular regions of any triangulation t of R.

This definition makes sense precisely because of Theorem 10.3.4.

Theorem 10.3.5. In a hyperbolic geometry the total defect function 6: % — R
is an area function,

PrOOF. We leave most of the details to Problem A8 and consider only the
fourth axiom. We must show that if [JABCD is a square whose side has
length a then 5(MABCD) = a®. This is true precisely because there are no
squares in a hyperbolic geometry, and so every square has defect a2. In other
words, the statement is true vacuously. (Of course, every square also has
defect 1 or 7 or 22/7. In fact, every square has any defect we desire.) O

We end this section with an alternative and optional description of the
area function in the Poincaré Plane 4. This description is motivated by
differential geometry and is defined in terms of an integral. See Millman and
Parker [1977] for more details. It is included so that the reader can see an
alternative tool for computing a hyperbolic area. Since Euclidean areas can
be given by integrals, you might expect that the (hyperbolic) area of a region
in the Poincaré Plane can also be given as an integral. This is actually the
case.

Definition. The hyperbolic area of a polygonal region R in 5 is

R)—@fﬁ‘—d dx. (3-3)

We shall verify that this formula actually gives the defect in the case of
one specific triangle. Of course, this does not prove that it always gives the
defect.

Example 10.3.6. Let R be the triangular region in # with vertices at 4 =
0,1), B=1(0,5) and C = (3,4). Show that a(R) = /(R). See Figure 10-27.
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|
________ fFom——————
|

Figure 10-27
SorLuTtioN. The sides of R are given by
AB=,L, BC=,L;, AC=,L

_ (SO0, (LAY a4
m(/, A) = cos < 1\/_ ) cos <\/ﬁ>

m( /. B) =90
R <(—4,3),(—4,—1)>>= ( 13 )
m(/.C) = cos ( 5. 17 cos iy

13

4
S(R) =90 — cos ! <—> —cos™! (—) = 25.0576
17 54/17
On the other hand

180 35-x
«(R) = f fm( )dy dx

180 ( 1 1 >
dx
V25— x2 \/17—(x—4)2

(s ().

(where Sin~!(t) means measure in radians and sin~!(t) means in degrees)

= —sin™! (2) +sin~! <\;—117> + sin~!(0) — sin~? <\~/:Ti7>

= 25.0576.

Hence a(R) = 6(R).
We see in this computation why there is the factor of 180/x in the definition
o it is to change from radian measure to degree measure. O

Hence
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PRrROBLEM SET 10.3

Part A,

1.

NN s

o o0

10.

1

—

Give an example of a triangle AABC in the Poincaré Plane 5 such that
(BC)(length of altitude from A) # (4B)(length of altitude from C).
Thus (base)(height) is not well defined for a triangle in a hyperbolic geometry.

. If R is a convex polygonal region and P e int(R) in a neutral geometry, prove that

R, P) is a triangulation of R.

. Show by example that t*(R, P) as defined by Equation (3-1) need not be a triangu-

lation if R is not convex.

. In the proof of Lemma 10.3.1, prove the assertion that ) a; = 360.
. Prove Lemma 10.3.2.
. Prove Lemma 10.3.3 for the two remaining cases.

. Carry out the construction of Theorem 10.3.4 for the case which is pictured in

Figure 10-28.

Figure 10-28

Prove Theorem 10.3.5.

Prove that the area of a Saccheri quadrilateral in a hyperbolic geometry is always
less than 360.

Verify that Equation (3-3) gives the area of the Poincaré triangle with vertices at
(0, 5), (0, 3) and (2, \/21). (See Problem A2 of Section 5.1.)

. Repeat Problem 10 for the Poincaré triangle with vertices at (5, 1), (8, 4), and (1, 3).

Part B. “Prove” may mean “find a counterexample”.

12,

13.

14.

Prove that Equation (3-3) gives the area of any polygonal region in 4. (Hint: you
need only consider triangles. Since integrals and the defect are both additive, you
can assume that one side of the triangle is part of a type I line.)

Let 6: # — R be the defect function for a Euclidean geometry. Prove that 6 is not
an area function. Which area axioms are not satisfied by 6?

In Example 10.3.6 we showed that the integral and the defect were both approxi-
mately equal to 25.0576. Use trigonometric identities to show that the integral is
exactly equal to the defect.
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10.4 Bolyai’s Theorem

The two area functions we developed in Sections 10.2 and 10.3 seem to be
quite different. The Euclidean area function was built using distance, and
in particular the lengths of the base and altitude of a triangle. The hyperbolic
area depended upon angle measurement, not distance. As we shall see in
this chapter both of these area functions lead to a very beautiful and sur-
prising theorem due to J. Bolyai, one of the founders of hyperbolic geometry.
Roughly, Bolyai’s Theorem states that if two polygonal regions have the
same area, then one can be cut up into a finite number of pieces and reassem-
bled to form the other. (This is the basis of many interesting puzzles and
games for children.) The most difficult part of this proof will be showing it
is true for triangular regions (Theorem 10.4.6). Before we attack that problem,
we will define “equivalent by finite decomposition,” which formalizes the
concept of “cut up and reassemble.”

Definition. Two polygonal regions R and R’ of a neutral geometry are
equivalent by finite decomposition (R = R’) if there exist triangulations t =
{T,,T5,...,T;} of Rand v = {T}, T4, . .., T} of R’ such that T; ~ T for
"1 <i<k (See Figure 10-29.)

Figure 10-29

[,

b

The proof of the following theorem is left to Problem A2.

Theorem 10.4.1. If ¢ is an area function in a neutral geometry and R and R’
are polygonal regions with R = R’ then ¢(R) = o(R).

The goal of this chapter is to prove the converse of Theorem 10.4.1, namely

Bolyai’s Theorem. If R and R’ are polygonal regions in a neutral geometry and
o is an area function with o(R) = o(R’) then R is equivalent by finite decom-
positionto R'.

We will prove Bolyai’s Theorem by first verifying it for triangular regions.
It will be shown that to each triangular region AABC we may associate
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a Saccheri quadrilateral [JGBCH (Theorem 104.2) so that AABC =
B GBCH (Theorem 10.4.3). By showing that under certain conditions two
Saccheri quadrilaterals are equivalent (Theorem 10.4.5) we shall eventually
be able to verify Bolyai’s Theorem for triangular regions (Theorem 10.4.6).
The proof of Bolyai’s Theorem for polygonal regions follows from the
triangular case by essentially a proof by induction. Most of the hard work is
contained in the triangular case.

Theorem 10.4.2. Let AABC be a triangle in a neutral geometry with D the
midpoint of AB and E the midpoint of AC. Let F, G, and H be the feet of the
perpendiculars from A, B, and C to DE as in Figure 10-30. Then [IGBCH is
a Saccheri quadrilateral, called the Saccheri quadrilateral associated with side

BC of NABC.

Figure 10-30

ProoF. We first suppose that neither AB nor AC is perpendicular to DE.
Let [ be the line perpendicular to DE at D as in Figure 10-30. | # AB and
A—D— B so that A and B lie on opposite sides of /. Since GB| /|| AF (Why?),
G and F lie on opposite sides of I. Likewise, F and H are on opposite sides
of the line I’ perpendicular to DE at E. Hence

G—D—F and F—E—H. 41

- Since the veftical angles / BDG and £ ADF are congruent, HA implies

that
ABDG ~ AADF so that BG ~ AF. (4-2)

Likewise .
ACEH ~ AAEF sothat CH ~ AF. 4-3)

Thus BG ~ AF ~ CH and [1GBCH is a Saccheri quadrilateral.
The case where one of AB or Z_C is ptgpendicular to BC is left to Problem
A3. See Figure 10-31 for the case AB L DE. O
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Figure 10-31

Theorem 10.4.3. If SIGBCH is the Saccheri quadrilateral associated with
side BC of AABC then AABC = BGBCH.

ProOFr. We must consider several cases depending on the relative positions
of D,E, F, G, and H. If AB 1 DE as in Figure 10-31 then it is easy to show
that AADE ~ ACHE so that the triangulations

t={AADE, ADEB, ABEC} and <t = {ACHE, ADEB, ABEC}

give the equivalence AABC = BMIGBCH. The case AC L DE is similar.

If neither AB nor AC is perpendicular to DE then F, G, and H are distinct
points so that either G—F—H, F—G—H or G—H~—F. The latter two
cases are essentially the same with the roles of G and H (and also B and C)
reversed. Hence we need only consider two cases.

Case 1. G—F—H. This situation was illustrated in Figure 10-30. A ABC
and WGBCH have triangulations

©={AADF, AAEF, ABDF, ABFE, ABEC}
v = {ABDG, ACEH, ABDF, ABFE, ABEC}.

Because of Congruences (4-2) and (4-3), = and t’ show that AABC =
B GBCH.

Case 2. F—G—H. This situation is illustrated in Figure 10-32. We shall
first construct a quadrilateral BE,BCE which is equivalent by finite decom-
position to AABC. Let E, be the point with E,—D—E and E,D ~ DE.
Since D is the midpoint of AB, DB ~ DA. The vertical angles / E,DB and
/ EDA are congruent so that by SAS we have

AE,DB =~ AEDA. 44

The triangulationst = { AADE, ADBE, ABEC}andt' = { A BDE,, A DBE,
ABEC} then show that

AABC = BE,BCE. (4-5)
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All that remains is to show that WE,BCE = MIGBCH. Suppose that
D—G—E as in Figure 10-32. Now GB ~ HC by Theorem 10.4.2. Since E is
the midpoint of AC, AE ~ EC. Because AE,DB ~ AEDA, we have E,B ~
AE ~ EC. Hence AE,GB ~ AEHC by HL. Because D—G—E, we have
triangulations ’

1= {AE,GB, AGBE, AEBC} and 7 ={AEHC, AGBE, AEBC}

which imply that
WE,BCE = @GBCH.

Figure 10-32

However, G may not be between D and E, as Figure 10-33 shows, so that
7 and 7’ are not triangulations of lE,BCE and lIGBCH. Thus a different
argument is needed. We will proceed by induction.

We first show that EoE = GH. Since F # G we have F—D—G and
AADF ~ ABDG by HA so that FD ~ DG. (Note that F—D—G—H.)

Figure 10-33

Likewise F # H implies that F—E—H and FE ~ EH. Thus
2-FE=FH=FD + DH
= DG+ DH
= DG+ DG + GH
=@ DG+ GH
— (2 FD) + GH.
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Hence
2-(FE-FD)=GH >0

so that FE > FD and F—D—E—H. Thus FE — FD = DE and .
E,E =2-DE = GH.

We next define a sequence of quadrilaterals. Choose points E, E,, E3, . ..
on DE so that
Eq—E;—E,—E;— -~
E,=E
EE,,,~GH fori=0,1,2,....

Note that E; € EoH for each i. Now EyE, =n-GH > E,G if n is large
enough. Let k be the smallest integer such that EyE; > E,G. Then since
Ey—E,_ —G—H and E,_,E, = GH, we have E, € GH and E, # H. (In
Figure 10-33 k = 3.) We shall prove that

WE,BCE, = ME,BCE, = - - = @E,_, BCE,.

Now for each i with 0<i<k—2, EG=EE;,, +E,, G=GH+
E;+1G=E, H so that AE,GB~ AE,,;HC by SAS. Hence EB~ E,,C
and / GEB~ ; HE,,,C. Thus AE; ,EB~ AE,, ,E;,,C by SAS. But
this implies that ME,BCE,,, = BE, , BCE,, ,. Hence

BE,BCE, = BE,BCE, = --- = BE,_, BCE,. (4-6)

By the choice of k we have E, € GH and E, # H. Thus AE,_;GB~
AEHCbyHL and

ME,_,BCE, = BGBCH. @-7
See Figure 10-34 for the two cases E, = G and G—E,—H.

By Ex=G H E,.1 G E, H

Figure 10-34

Since = is an equivalence relation (Problem A1) we may combine Equiva-
lences (4-5), (4-6) and (4-7) to obtain

AABC = ME,BCE, = @E,_,BCE, = mGBCH. ]
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Let AABC be given. The next result says that we may construct another
triangle with one side BC and another side of arbitrary length (greater than
AB) such that the triangular regions are equivalent. In the Euclidean case
the theorem is clear if we replace “equivalent” by “have the same area” (see
Problem A4). As it is stated it requires the full force of Theorem 10.4.3.

Theorem 10.4.4. Let A ABC be a triangle in a neutral geometry and let r be a
number greater than AB. Then there is a point P with BP = r and APBC =
AABC.

Proor. Let D, E, G, H be as in Theorem 10.4.2 so that A ABC = MGBCH.
Now

3r>3-AB=BD > BG

where the last inequality is a consequence of BG L DE. By Theorem 6.5.8
there is a point M on GH with BM = r. See Figure 10-35. If P is the point
with B—M—P and BM ~ MPthen BP=2-BM =r.

We must show that APBC = AABC. The first step is to show that if N
is the midpoint of PC then N is actually on DE = GH.

A P
G D M E H
4
B C

Figure 10-35

Since [JGBCH is a Saccheri quadrilateral, the perpendicular bisector |
of BC is also perpendicular to GH = DE by Problem A6 of Section 7.2. If
G’ and H' are the feet of the perpendiculars from B to C to M N, then Theorem
10.4.2 shows that [JG’'BCH’ is a Saccheri quadrilateral. Thus the same
problem (applied to [SIG'BCH’) shows that | L MN. Since M e DE and
there is only one line through M perpendicularto , MN = DEandso N € DE.

This means that G' = G and H' = H. Thus, invoking Theorem 10.4.3
APBC = BG'BCH = GBCH = AABC. 0J
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In the proofs that follow, we shall proceed by considering the two cases,
Euclidean and hyperbolic. Because of Theorem 10.2.7, in the Euclidean case
there is only one area function. However, in the hyperbolic case things are
not the same. If « is any area function for a hyperbolic geometry and ¢t > 0
then f, = ta is also an area function. Philosophically this happens since there
is no “normalization” because there are no squares (i.e., the fourth axiom for
area is vacuous for a hyperbolic geometry—see the proof of Theorem 10.3.5).
It will turn out that for a hyperbolic geometry, every area function is of the
form B, = té for some t (Theorem 10.4.9) so that the defect is essentially the
only hyperbolic area function. Our problem is that we cannot prove the
uniqueness result of Theorem 10.4.9 until we prove Bolyai’s Theorem. For
this reason, we need the following terminology. '

Definition. The special area function for a neutral geometry is the Euclidean
area function for a Euclidean geometry and the defect function for a hyper-
bolic geometry.

Theorem 10.4.5. If two Saccheri quadrilaterals [S) ABCD and [S) PQRS in a
neutral geometry have congruent upper bases and the same special area, then
they are congruent.

Proor. If the geometry is Euclidean, the Saccheri quadrilaterals are rec-
tangles. Since they have the same (upper) base and same area, they must
have the same height. Hence they are congruent.

If on the other hand, the geometry is hyperbolic, then the special area
of @ABCD is

«(MABCD) = 5(MABCD)
=360 — 90 — 90 — m(£ B) — m(L C)
= 180 — 2m(L B).

Likewise o PQRS) = 180 — 2m(,L Q). Since o MPQORS) = a(MABCD),
/LB~ (Q.Since LA~ /B and P~ (/Q, we see that corresponding
angles of the two Saccheri quadrilaterals are congruent.

We shall now show that corresponding sides are congruent. If 4B is not
congruent to PQ then one of those segments is longer, say PQ. We will
show that this assumption leads to the existence of a rectangle, which is
impossible in a hyperbolic geometry. See Figure 10-36.

Choose E € BA with BE~ QP and F e CD with CF ~ RS. Since the
upper bases are congruent by assumption, APOR ~ AEBC by SAS. Hence
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Be— ____oC Q R
A D
E F P N

Figure 10-36

PR~ EC and £ SRP ~ (. FCE by Angle Subtraction. Hence ASRP ~
AFCE by SAS. Thus /£ CFE is a right angle. Likewise / BEF is a right
angle so that [JEBCF is a Saccheri quadrilateral.

If A# E and D # F then [JEADF 1is a rectangle, which is impossible
in a hyperbolic geometry. Hence A = E and D = F so that AB = EB~ PQ
and AD = EF ~ PS. Thus [(JABCD ~ [JPQRS. O

We are now ready to prove Bolyai’s theorem in the special case in which
both regions are triangles. This result will be derived by first showing that
each region is equivalent by finite decomposition to a Saccheri quadrilateral
and then showing that the two Saccheri quadrilaterals are congruent.

Theorem 10.4.6. Let a be the special area function in a neutral geometry. If
(AABC) = a(ADEF) then AABC = ADEF.

Proor. If AABC ~ ADEF then A ABC = ADEF. Hence we consider the
case where one of the triangles has a side which is longer than the corre-
sponding side of the other triangle. Without loss of generality we shall
assume that DE > 4B. By Theorem 10.4.4, with r = DE, there is a point P
with PB ~ DE and APBC = AABC.

By Theorem 10.4.2 there is a Saccheri quadrilateral [SIGPBH with
W GPBH = APBC. The same result applied to ADEF says that there is a
Saccheri quadrilateral SIMDEN with @IMDEN = ADEF. By Theo-
rem 10.4.1

«(MMDEN) = «(ADEF) = «(AABC)

= a(APBC) = «(MGPBH).
Since DE ~ PB, Theorem 10.4.5 says that [SJMDEN ~ BIGPBH. Hence
B MDEN = HMGPBH. Gathering these results together we have
AABC = APBC = BGPBH = MMDEN = ADEF. O

The proof of the next result follows from Theorem 8.2.10 in the hyperbolic
case. The Euclidean case is left as Problem AS.

Theorem 10.4.7. Let o be the special area function in a neutral geometry and
let AABC be a triangle. If 0 < x < a(AABC) then there is a point Q € BC
with (A ABQ) = x.
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We have, at last, developed all the machinery necessary to prove Bolyai’s
Theorem for the special area function.

Theorem 10.4.8 (Special Bolyai’s Theorem). If « is the special area function
in a neutral geometry and R and R’ are polygonal regions with a(R) = a(R’)
thenR=R'

Proor. First we want to show that R and R’ have triangulations
T={T,Ts, ..., T4}
T ={S.,5,,...,5]

where a(T;) = «(S;) for each i.

Lett={T,,...,T,} beany triangulation of R and let 7’ = {S,,...,S,}
be any triangulation of R’. We will cut triangles off of the triangulations for
R and R’ in such a manner that the areas of the discarded triangles are the
same. As we do this, we create new regions R, and R} with a(R,) = a(R))
and triangulations t, and 7| of these regions where the total number of
triangular regions in 7, and 7] is strictly less than the total in 7 and 7".

If a(T,,) =u(S,) let R, be the region with triangulation 1, ={T,, ..., T, _}
and let R} be the region with triangulation 7} = {S,,...,S,_}. Note that
the total number of regionsin 7, and 7\ ism+nrn—2<m+ n

If «(T,,) > «(S,) then let T,, be the triangular region A ABC. By Theorem
10.4.7 with x = «(S,) there is a point Q € BC with «(A ABQ) = (S,). Hence
we can break T, into two parts T,, = AAQC and T,, = AABQ with «(T},) =
a(S,). Let R, be the region with triangulation 7, = {T,, ..., T,_;, T,,} and
R) the region with triangulation 7} = {S, ..., S,_,}. Note that the total
number of regionsin 7, and 7y ism+n—1<m+n

If «(T,,) < a(S,) we do a similar step breaking up S, into two pieces, one
of which has the same special area as T,,,.

We may now repeat the process with R; and R}, cutting off a triangular
region from both, again of equal area, and again so that the corresponding
triangulations have fewer elements. Eventually we reach the stage where
R, and R, have triangulations consisting of a single triangular region each
(so that R, and R}, are actually triangular regions) and these regions have
equal special area. The desired triangulations T and 7' are formed from
R,, R, and the triangular regions previously cut off. Since at each stage
we cut a single triangle off each region, T and 7’ have the same number of
elements.

Thus we have triangulations 7 = {T,, ..., T,} ofRand 7 = {§,, ..., S;}
of R’ with «(T;) = «(S,) for each i. By Theorem 104.6, T; =S, Hence R=R’".

O

The Special Bolyai’s Theorem can be used to prove the uniqueness of the
hyperbolic area function up to a scale factor.
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Theorem 10.4.9. If ¢ is an area function in a hyperbolic geometry, then
G =1t 06 for somet > 0, where ¢ is the defect function.

PrOOF. Since area functions are determined by their values on triangular
regions we only need to show that there is a ¢t > 0 with ¢(AABC) =
t - (A ABC) for every AABC. This is the same as proving that

c(AABC) o(ADEF)

5(AABC)  S(ADEF)

We first prove Equation (4-8) is true if the two triangles have the same
defect. In this case the special Bolyai’s Theorem shows that A ABC = A DEF.
By Theorem 10.4.1 we have c(AABC) = c(ADEF) so that Equation (4-8)

holds in this case.
Now suppose that 6(AABC) # 6(ADEF). We may suppose that

O(AABC) > 6(ADEF). 4-9)
If we let x = 6(ADEF) in Theorem 10.4.7 then there is a point Q € BC with
5(AABQ) = x = 6(ADEF).
Hence by the special Bolyai’s Theorem, A ABQ = ADEF. But this means
that c(AABQ) = 6(ADEF) by Theorem 10.4.1 so that
o(AABC) > (A ABQ) = c(ADEF). 4-10)

The importance of Inequality (4-10) is that it says that if one triangle has
larger d-area than another, then it also has larger o-area. Intuitively, this
means that o is “relative size preserving.”

Our method of proving Equation (4-8) for the general case will be to
show that the difference between

o(ADEF) .~ O(ADEF)
(AABC) ™ 3(aABC)

is less than 1/q for any positive integer g. Let g > 0 be an integer. By re-
peated use of Theorem 10.4.7, there are points Py, Py, ... such that B=
Py—P,—P,— +-—P,=C and 6(AAP;P,.,) = 1/q- 6(AABC). See Fig-
ure 10-37.

for all AABC, ADEF. (4-8)

A

B c
P, P, P, P, P5 P

Figure 10-37
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Since the triangular regions A AP.P; ., all have the same defect, we have
o(AABP) = é -o(AABC) fori=1,2,...,q. . (411

The unique point Q € BC such that 5(AABQ) = 6(ADEF) lies in a unique
segment P;P;, ;. More precisely, let p be the unique integer such that either
P,=Q or P,—Q—P,,,.

For this value of p we have the following inequalities

5(AABP,) < 5(AABQ) < 5(AABP, ;) (4-12)
5- 5(AABC) < 5(AABQ) < ”TH - 5(AABC) (@-13)
p_5(AMBQ) _p+1 ‘ 14

q~ 6(AABC) q

Since o is “relative size preserving” (Inequality (4-10)) we may replace 6 by
o in Inequalities (4-11), (4-12), (4-13) and (4-14). In particular we have
p_o(AA4BQ) p+1
-< < . 4-15
q o(AABC) ¢ @19

As in the proof of Theorem 9.2.3, Inequalities (4-14) and (4-15) may be
subtracted to yield

o(AABQ) (AABQ) <1
o(AABC) O(AABC)| ¢

Since g can be arbitrarily large, the expression on the left must be zero. Hence
o(ADEF) _ o(AABQ) _ 5(AABQ) _ 5(ADEF)
oc(AABC)  o(AABC) O(AABC) O(AABC)

so that we have Equation (4-8). But this means that

o(AABC) _o(ADEF)
5(AABC) ~ 6(ADEF)

Hence there is a number t = o(ADEF)/6( ADEF) which does not depend on
AABC such that

o(AABC) =t - 5(AABC) for any AABC. 0

Having used the special Bolyai’s Theorem to prove Theorem 10.4.9, we
now turn around and use Theorem 10.4.9 to prove the general Bolyai’s
Theorem.
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Theorem 10.4.10 (Bolyai’s Theorem). If ¢ is an area function in a neutral
geometry and if R, R’ are polygonal regions with ¢(R) = o(R’) then R is
equlivalent by finite decomposition to R'.

Proor. If the geometry is Euclidean then ¢ must be the unique Euchdean
area and the result was proved in Theorem 10.4.8.

If the geometry is hyperbolic then there is a real number ¢t > 0 with
o =t-4. Hence if o(R) = o(R’) then §(R) = 6(R’). By the special Bolyai’s
Theorem R =R, [}

In Problem Al of Section 10.3 you gave an example to show that the
product (base)(height) could not be used as an area function in hyperbolic
geometry. Our final result shows that in fact, no function of height and base
alone will give an area function. This result comes from the fact that the
defect (or special area) of a triangle is bounded by 180.

Corollary 10.4.11. The area of a triangle in a hyperbolic geometry is not
determined by just the base and height.

Proor. Choose points P,—P,—P,—--—P,— - with PP, ~ P,P, ~

-+. Let Q be a point with JP, L PP, as in Figure 10-38. Note that each
of the triangles, AQP,P;.,, have the same base (P;P;,, = P,P,) and the
same height (QP,). Thus if the area of a triangle depends just on its height
and base then o( AQP;P;, ,) must be independent of i for any area function ¢.
But since o = té for some ¢t > 0 by Theorem 10.4.9, then there is an r > 0
(independent of i) for which

O(AQPP;, )=r fori=0,1,....

Figure 10-38

Thus 6( AQP,P;) = i6(AQP,P,) = ir.If we take i to be large so that i > 180/r
then we conclude that
S(AQP,P,) > 180

which is a contradiction. Thus the triangles AQP;P,,, cannot all have the
same hyperbolic area. Therefore, the area of a triangle cannot depend just
on the base and height of the triangle. O
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ProBLeM SET 104
Part A.
1. Prove that “equivalent by finite decomposition,” =, is an equivalence relation.

2. Prove Theorem 104.1.

3. Complete the proof of Theorem 10.4.2 in the cases where 4B or AC is perpendicular
to DE,

4. Prove the area version of Theorem 10.4.4 for a Euclidean geometry without using
Theorem 10.4.3 or Bolyai’s Theorem: If AABC is a triangle in a Euclidean geometry
and if r > AB, then there is a point P with PB = r such that (A PBC) = «(AABC),
where o is the area function.

S. Prove Theorem 10.4.7 for a Euclidean geometry.

6. Prove that in a Euclidean geometry any polygonal region R is equivalent by finite
decomposition to an equilateral triangle. ’

7. Let R be any polygonal region in a hyperbolic geometry. If 6 = té is a hyperbolic
area function and o(R) < 180t prove that R is equivalent by finite decomposition
to a triangle.

8. In the proof of Theorem 10.4.9 if ¢ has m triangles and 1’ has n triangles, what is
the maximum number of triangles in the triangulation T which was constructed?

Part B. “Prove” may mean “find a counterexample”.

9. Repeat Problem A6 for a hyperbolic geometry.



CHAPTER 11 |
The Theory of Isometries

11.1 Collineations and Isometries

In mathematics when we have a class of objects satisfying certain axioms
(such as incidence geometries) it is natural to study functions that send one
object to another. Such functions. are most interesting when they preserve
special properties of the objects. If ¥ = {#, &, d} and ¥' = {&', &', d'} are
metric geometries and if ¢: % — &’ is a function, what geometric properties
could we reasonably require ¢ to have?

Because there are two basic concepts in a metric geometry, namely the
ideas of lines and distance, there are two important types of functions between
metric geometries. One type (a collineation) sends lines to lines. The other
type (an isometry) preserves distance. In this section we will carefully define
collineations and isometries. We shall see that an isometry of neutral geome-
tries is a collineation and also preserves angle measure. We will end the
section with a proof that the Euclidean Plane & is essentially the only model
of a Euclidean geometry.

Recall that if : X — Y, and if Z = X then ¢(Z) = {¢(2)|z € Z}.

Definition. If # = {&, #} and #' = {&’, '} are incidence geometries, then
0. ¥ — &' preserves lines if for every line | of &, ¢(l) is a line of &’; that
i5,p)e L ifle L.
¢ is a Collineation if ¢ is a bijection which preserves lines.
S

Example 11.1.1. Let # = #' = {R?, %, }. Show that 9:R* > R* by ¢(x, y) =
(2x + y,y — x + 5) is a collineation.

285
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SOLUTION. An inverse for ¢ is given by
w(x’y):<x—;+5’x+2§— 10>
so that @ is a bijection. We must show that ¢ preserves lines. If/ = L, then
o()={Qa+y,y—a+5|yeR} ={wmv)|v=u—-3a+5}
=L;s5_3,€ %
Ifl=L,,then
e()={2x +mx + bymx +b —x + 5)|x e R}
={(2+mx+b,(m—1x+b+5xeR}

Thus ¢(l) =L, if m= -2 and ¢(l) = L, where n = (m — 1)/(m + 2) and
¢=35+3b/(m+ 2)if m # — 2. Hence ¢ preserves lines and is a collineation.

a

Lemma 11.1.2. Let £ = {&, %} and 9’ = (&', &L’} be incidence geometries.
Let 9. — &’ be a bijection such that if | € & then o(l) < I for some I' € &’
and if t' € &' then @~ (t') = t for some t € . Then ¢ is a collineation.

PRrOOF. We must show that (/) is a line, not just a subset of a line. Let [ = AB.
Then A’ = @(A) and B’ = o(B). are distinct. Since ¢(/) ! for some '€ ¥’
and 4’, B' e I', we must have ' = A'B.

On the other hand, ¢ ~}(')  t for some t € ¥, and 4, B e ¢~ (I'). Hence
AB=1If C'el then C=¢ }C)e AB = and C" = ¢(C) € @(]). Hence
@(l) = I’ and @ preserves lines. O

The importance of this result is that it is often easier to show that ¢
and ¢ ~* send lines into lines than it is to show that ¢ sends lines onto lines.

Example 11.1.3. Let .# = #' = {H, %4} and let o:H — H by

=" 7 1-1
o(x, y) (xz T y2> (1-1

Show that ¢ is a collineation.

SoLuTION. We first note geometrically what ¢ does to H. If r = /x% + y*
is the radius coordinate (for polar coordinates) then Equation (1-1) may

be written as
_(zx»
o(x, ) —(rl ,r2>-

1
j(x,y)=r7(x,y) and p(x,y)=(—x))

If we set
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o r(P) oP
eQ o p(Q
Figure 11-1 Figure 11-2

then ¢ = p o j. The function j is called inversion in the unit circle and is
pictured in Figure 11-1. p is a (Euclidean) reflection across the y-axis as in
Figure 11-2. ¢ is thus inversion in a circle followed by reflection across the
y-axis.

We now show that ¢ is a collineation. An easy computation shows that
@ o @(P)= P for all P e H. Hence ¢ is its own inverse and is a bijection.
Because ¢ = ¢~ !, we may use Lemma 11.1.2 to show that ¢ preserves lines
by showing that for each [ e &y, ¢(l) = I' for some I’ € Z4. In particular
we do not need to show that ¢(/) =1". There are four cases to consider:
l=oL, I=,L with a#0, | =_L, with ¢# +r, and I = L, with ¢ = +r.
Check carefully all the assertions which are made below.

If I = ,Land P € [then P = (0, y) for some y > 0. Thus ¢(P) = (0,1/y) € (L
so that (l) = [

If I = ,L with g # 0 then for P =(a,y) €l we have

—a y
o(P) = (m m) = (z,w).
A routine calculation shows that
+ LY + w? !
z 4 wl=—
2a 442

so that ¢(l) = ,L, with d = —1/2a and s = |1/24.
If I = L, with ¢ # +r then

o{lyc 4Ly with d= . i 2 and s= | (1-2)

Finally
-1
o(4+,L,) © 4,L wherea= 5 (1-3)

Hence in all cases ¢(I) < I' for some I' € Fy,. O
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Starting with an incidence geometry {&, £} and a bijection ¢:& — &',
wecan create a new incidence geometry {&’, £’} such that ¢ is a collineation.
The proof of the next result which accomplishes this is left to Problem A7.

Lemma 11.1.4. Let # = {&, ¥} be an incidence geometry and let ¢ . — &'
be a bijection. If &' is defined by &' = {¢(l)|l € £} then ¢(F) = {¥', &'}
is an incidence geometry (called the incidence geometry induced by ¢) and
@ is a collineation.

We give an example of this process below. In Section 11.2 we will use it
to develop two important models of hyperbolic geometry which are due to
F. Klein and H. Poincaré.

Example 11.1.5. If ¢ :R? — R? by ¢(x, y) = (x, y®) then ¢ gives a collineation
from € = {R? %;} to a new model ¢(&) = {R?, #'}. Some of the lines of
¢(&) are pictured in Figure 11-3.

oL_p
| | 1 | |
T T 1 |
1 3
oL1rdf| 1/ o
oLo—2)
T
Figure 11-3

So far we have briefly discussed bijections which preserve lines. We now
turn our attention to maps that preserve distance in a metric geometry.
For convenience we adopt the following notation for the rest of the book.

Notation. If ¢: % — &' is a function and 4 € & then
A = ¢(A).

Definition. Let 4 = {¥, ¥%,d} and ¥’ = {¥', ', d’} be metric geometries.
An@@ from ¢ to ¢’ is a function ¢:& — &' such that for all 4, Be &

d'(pA, ¢B) = d(A, B). (1-4)

A function ¢ satisfying Equation (1-4) is said to preserve distance.
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Note that we have not assumed that an isometry is a bijection. It is an
easy exercise to show that an isometry is injective (Problem A8). Hence
an isometry is a bijection if and only if it is surjective. We shall see that an
isometry of neutral geometries is surjective in Lemma 11.1.16.

Lemma 11.1.6. An isometry of neutral geometries preserves betweenness. More
precisely, if {&,%,d} is a metric geometry, if {¥',&',d',m'} is a neutral
geometry, if @:F — &' is an isometry, and if A, B and C are points of &
with A—B—C then ¢ A—@B—@C. Furthermore if l € & then o(I) < l' for
somel' e &'

PrROOF. If A—B—C in & then A, B, C are collinear and

d(4,B) + d(B,C) = d(4,C)

so that
d'(pA4, pB) + d'(¢B, 9C) = d'(p4, ¢C).

Since the strict triangle inequality is true in &’ (Theorem 6.3.8) .04, @B,
and @C must be collinear so that pA-——@B—¢C.

Now let | = AB and I'=@A@B. If Del and D # A, D # B then either
D—A—B, A—D—B, or A—B-—D. By the first part of the proof
@D—@A—0B, pA—oD—¢B, or ¢A—@B—¢D. In any case @D € !’ and

el) =T O

We cannot prove that an isometry is surjective yet (although it is) but
we can show that the image of a line is a line.

Lemma 11.1.7. If {&,%#,d} is a metric geometry, if {&¥', %Hd',m'} is a
neutral geometry, and if @& — &' is an isometry, then the image of a line of
& under ¢ is a line of ¥'.

PROOF. Since 4B = AB U BA, it is sufficient to prove that o(4B) = pApB
for all A # B. We shall prove this by a judicious choice of rulers. Let f be
a,mlcr._fan_AB_mth.angmA_amLB_pp.sxm Similarly let f’ be a ruler for
@ApB with orlgm @A and @B positive.

IfDe (pA(pB then f'(D) = s > 0. There is a unique point D ¢ AB with

f(D) =s. We claim @D = D'. Now

d'(@D, @A) = d(D,4) = |f(D) — f(4)| = f(D) = s. (1-5)
On the other hand
d'(¢pD,0A) = |f'(¢D) — ['(@A)| = |f(@D)|. (1-6)

‘Hence f'(¢D) = + 5. If we can show that f'(¢D) > 0 then ¢D must be D'.
IfD=AorD = Bthen 9D = @A ot 9D = ¢B.f A—D—Bor A—B—D
then by Lemma 11.1.6, pA—@D—¢B or ¢A—@B—qD. In all cases gD ¢
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@AeB so that f(@D) > 0. Hence f(¢D) = +5s and ¢D = D’. Thus @(AB) =
pApB. O

The proof of the next result uses the triangle inequality and is left to
Problem A14.

Lemma 11.1.8. If ¢:% — &’ is an isometry of neutral geometries and A, B,
C are noncollinear points of &, then ¢ A, @B, ¢C are noncollinear points of &

We now turn our attention to the effect of an isometry on angle measure.

Definition. A function ¢:% — &’ of protractor geometries preserves right
angles if / pApByC is a right angle in %’ whenever £ ABC is a right angle
in&.

¢ preserves angle measure if for any £ ABC in &, m'(L pA@BeC) =
m(£ ABC) where m is the angle measure of & and m’ is the angle measure
of ¥

Our goal is to show that isometries preserve angle measure. Note that
this will be true only because we have taken the convention that all angle
measures are degree measures (i.c., right angles have measure 90). If we
consider the Euclidean Plane with both degree and radian measure then the
identity function is an isometry that does not preserve angle measure.

Lemma 11.19. If ¢:&% — %' is an isometry of neutral geometries then ¢
preserves right angles.

PROOF. Let £ ABC be a right angle in &. We must show that £ pA@pBeC
is aright angle. Let D be the unique point such that D—B—C and DB ~ BC
as in Figure 11-4. Then AABC ~ AABD by SAS. Hence AC ~ AD. Since

¢ preserves distance we have

QApB =~ ¢ApB,  9ApC ~ 9ApD,  @BeC ~ @BpD

A 0A
@D
+ 3
I+
D B c oC

Figure 11-4
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so that A@A@BeC ~ A@A@BeD by SSS. Thus £ pA@BeC ~ L pApBeD.
Since pD—@B—¢C, [ 9ApBeC and / @A@BeD form a linear pair of
congruent angles. Hence each is a right angle. ]

The next two lemmas tell us that isometries preserve the interiors of
angles and angle bisectors. The proof of the first is left to Problem A16.

Lemma 11.1.10. If o:& — %' is an isometry of neutral geometries and D €
int(£L ABC) then @D € int(£L @A@pBpC).

Lemma 11.1.11. Let ¢: — &' be an isometry of neutral geometries. If BD
is the bisector of L ABC in & then @BqD is the bisector of /. 9ApBoC.

ProoF. We may assume that BC ~ BA. By the Crossbar Theorem BD
intersects AC at_a point E. See Figure 11-5. Then AABE ~ ACBE by
SAS so that AE ~ CE. Since ¢ preserves distance, A(pAqoB(pE A(pC(pB(pE
by SSS. Then / @A@B@E= / ¢CoBgE. Since ¢C—@E—0d, gE€
int(/ @A0BoC) and @BoE bisects / @A@BeC. Now ¢BoD = ¢(BD) =

(p(B_E‘) = @BoE. Hence @BopD bisects /£ pA@BoC. O
Figure 11-5

Lemma 11.1.12. Let ¢:F — &' be an isometry of neutral geometries. If
m(L ABC) = 90/2%for some integer g = Othenm'(L @ ApBpC) = 90/2%also.

Proor. Bisect a right angle g times and apply Lemma 11.1.11. See Figure

11-6 where.g = 3. O

|

! |

| |

| | /

| /// | it

| , | /

| e | /

| , " | // T

! / /// | / /’I ‘pc

B A oB oA

Figure 11-6
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Lemma 11.1.13. If ¢: & — %' is an isometry of neutral geometries and
m(L ABC) = 90p/2? where p and q are integers with 0 <p <29*! then
m'(L @A@eBeC) = 90p/2* also.

PrOOF. Choose points Dy, Dy, ...,D, so that 4 = De—Dy——D,=C
and m(£ DBD;, ;) = 90/22 for 0 < i < p. Then '
m' (L eDiwByD;, 1) =90/2?- and @4 = @Do—eD;— 9D, = oC.

By Angle Addition _
, o 90p
m'(L pApBpC) = 3 m'(L¢DwBpD,s1) =7 O

i=0

Theorem 11.1.14. An isometry ¢.% — &' of neutral geometries preserves
angle measure.

PROOF. If ¢ is a sufficiently large positive integer thenwe may find an_integer
pwith 0 < p < 2" such that
90p 90(p + 1)
0 <7S m(LABC) <T
If m(L ABC) = 90p/2* we are done by Lemma 11.1.13. Otherwise there
exist points D and E with_D e int(£ ABC). C e.int(/ ABE), m({. ABD) =
90p/2?, and m(LABE) = 90(p + 1)/24. See Figure 11-7.

< 180. (1-7)

D
C
E
B A
Figure 11-7
Then C e int / DBE so that ¢C € int(/ @D@B@E) and
90 0 1
0<~zq—p<m(L¢A¢B¢C)<—~(‘;+—)< 180. (1-8)

Subtracting Inequality (1-8) from Inequality (1-7) we obtain

[m(L ABC) - m(L (pA(pB(pC)’

Since this inequality is true for all large yvalues of the &u.tcgcr 4, e must have

m(L ABC) = m'(L pA@eBeC). a
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An amusing corollary to Theorem 11.1.14 is that if a Pasch geometry can
be made into a neutral geometry by choosing an angle measure, then it can
be done in only one way if degree measure is used.

Corollary 11.1.15. If {#, 2,d} is a Pasch geometry then there is at most one
degree measure m such that {&, %,d,m} is a neutral geometry.

ProoF. Suppose that both {¥, £,d,m} and {¥, L,d,m'} are neutral geom-
etries. The function ¢:.% — & given by ¢P = P for all P € ¥ is an isometry.
Hence m(/. ABC) = m'(L pApBpC) =m'(/, ABC) for any /. ABC. Hence
m=m. a

We are now able to prove that an isometry of neutral geometries is a
collineation.

Lemma 11.1.16. If . — &' is an isometry of neutral geometries then ¢ is
surjective.

PROOF. Let D'e &’ and let 4, B be two points of &. IL.D ¢ 4B then
D' = D for some D € AD by Lemma 11.1.7. Now _assume D’ ¢ ¢ApB and
choose P, Q on_opposite_sides of AB with m(/ PAB)=m(/ QAB)=
m' (L. D'¢ApB) and d(P,A) = d(Q,A) = d'(D, 9A), as in Figure 11-8.

o]

D’

>
=R
>e

@A

¢B

(@)

Figure 11-8

Then m'(/ @P@A@B) =m(/ PAB) = m'(/ R'@A@B). Likewise
' (L. 9QpApB) = m'(L D'¢AeB).

Thus @P and ¢Q are two points of &’ whose distance from @A is d'(D’, pA)
and m'(L @PpApB) = m'(/ eQpApB) = m'(, D'¢pApB). Hence either P, =
D' or.pQ .= D’ (Why?) and D’ e image(ep). O

Theorem 11.1.17. An isometry ¢:.% — %' of neutral geometries is a
collineation.

PrOOF. By Problem A8 and Lemma 11.1.16, ¢ is a bijection. Thus by Lemma
11.1.7, ¢ is a collineation. 0O
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Corollary 11.1.18. Let ¢: &% — & be an isometry of a neutral geometry with
itself. Then @~' is an isometry, ¢ preserves angle measure, and ¢ is a
collineation.

The importance of isometries is that they preserve all geometric properties:
distance, angle measure, congruence, betweenness, and incidence. In effect
all an isometry does is rename the points. The internal structure of two
isometric geometries is the same. This is illustrated in the next result.

Theorem 11.1.19. If ¢: &% — &' is an isometry of neutral geometries then &
satisfies EPP if and only if &' does.

FrsT PROOF. Note that /||l in & if and only if ¢(I)|| @(I') in &’ (Why?). Thus
there is a unique line through P ¢ [ parallel to if and only if there is a unique
line through @P parallel to ().

SECOND PROOF. Let AABC be a triangle in . Since ¢ preserves angle
measure, AABC and ApApBpC have the same defect. Since & satisfies
EPP if and only if some triangle has defect 0 and a similar statement holds
for &, the result is immediate. O

The last result of this section tells us that it is not misleading to refer to
& as the Euclidean Plane because any Euclidean geometry is isometric to &.

Theorem 11.1.20. Let ¥ = {&, &,d,m} be a Euclidean geometry. Then there
is an isometry @:& — R* of 9 with the Euclidean plane &.

PrOOF. Let A be any point of & and let I, and I, be two lines which are
perpendicular at 4. Choose Bel,, B# A, and Cel,, C# A. Let f, be a
coordinate system for I, with A4 as origin and B positive. Let f, be a coordinate
system for I, with A as origin and C positive. f; and f, will be used to define ¢.

For each point P € &, let P, be the foot of the perpendicular from P to
l; and let P, be the foot of the perpendicular from P to I,. See Figure 11-9.

Figure 11-9
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We define ¢: % —» R2 by
oP = (fi(Py), f[o(P2)).

In order to prove that ¢ is an isometry we must show that d(P,Q) =
dy(@P, Q). Suppose that PQ is not parallel to either [, o1 I,.(The cases where
this is not true are left to Problem A21.) Let m, be the line through P parallel
to I, and let m, be the line through Q parallel to I,. Since I, L I,, we have
my; 1 my and m; n m, = {R} for some R. See Figure 11-10.

d(P,R) = |fi(P) - fi(R,)|

Figure 11-10

since []JPRR P, is a rectangle. Likewise
d(Q,R) = |£2(Q) — fo(Ry)|
Since R, = @, and R, = P, (Why?) we have
d(P,R) = |fi(Py) — fi(Qy)| and d(Q,R) = |f(P2) — f2(Q,)|
so that by the Pythagorean Theorem

d(P,Q))* = (d(P,R))* + (d(Q,R))*
= (filPy) — [i(Q@D)* + (fo(P2) — f2(Q2))
= (dg(@P, Q).
Hence
d(P,Q) = dg(eP, Q). O

There is a similar theorem that says that every hyperbolic geometry is
isometric to the Poincaré Plane provided that the distance scale (Section
8.3) has been normalized so that H(ln(ﬁ + 1)) = 45. The proof starts out in
somewhat the same fashion as above by choosing a coordinate system.
However, the Pythagorean Theorem is not available and other results must
be used. These results are essentially the trigonometry theory of hyperbolic
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geometry. You can find the proofin Chapter 33 of Martin [1975] or Chapter
10 of Greenberg [1980].

PrOBLEM SET 11.1
Part A.

1.
2.

*S.

10.

11.

12.

13.

Show that ¢:R? —» R? by ¢(x, y) = (2x + y, 1 — ) is a collineation of {R?, #;}.

Show that ¢:R?— R? by ¢(x, y) = (2x,2y) is a collineation of {R?, %, d;} but
not an isometry.

. Prove that the collineation of Example 11.1.1 is not an isometry.

*4,

If :% — & is a collineation of incidence geometries prove that ¢ ':.%’ - & is
also a collineation.

If the bijection ¢:% — &’ is an isometry of metric geometries prove that ¢~ ! is

also an isometry. -

. Verify the various assertions made in the solution of Example 11.1.3.
. Prove Lemma 11.1.4.
. Prove that an isometry of metric geometries is injective.

*9.

Let ¢:¥ — & be an isometry of a neutral geometry. If A and B are points in &
with ¢4 = B and ¢B = A, then prove that oM = M where M is the midpoint of
AB.

Let m > Oand define ¢:H — H by ¢(x, y) = (mx + 1, my). Prove that ¢ is a collinea-
tion of {H, %y).

Let ¢:R? » R? by P = P. Then ¢ may be thought of as a function from the
Euclidean Plane & to the Taxicab Plane J . Show that ¢ is a collineation which
preserves angle measure but is not an isometry.

Let 6 € R and let ¢,: R?2 — R? be defined by
@e(x, ) = (x cos 6 — ysin 6, x sin 6 + y cos 6).

Show that ¢, is an isometry of &. @, is called the special orthogonal transformation
by 6. In matrix terms ¢, can be defined by

x\ fcosf@ —sinf\(x
% y) \sin@ cos® J\p)
If we view R? as the set C of complex numbers then

H={z=x+iyeCly>0}.

Let a, b, c, d be real numbers with ad — bc > 0 and set

a b az+b
S-—-(c d) and (ps(z)—(cz+d).

a. Prove that if z € H then ¢4(z2) € H.
b. Find §71.
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c. Ifdet S > 0 show that det S™! > 0.
d. Show that ¢y is a bijection by showing that ¢g_. is its inverse.

b
e. Show thatifa>0and S = (; 1) then ¢y is an isometry of H. (We will see

later that ¢ is an isometry for any S with det(S) > 0.)

14. Prove Lemma 11.1.8.

15. Let ¢: & — &' be an isometry of neutral geometries. If 4, B, C are noncollinear
points of &, prove that ¢(/. ABC) = L ¢A@BeC.

16. Prove Lemma 11.1.10.

17. Let ¢: & — & be a collineation of a hyperbolic geometry that preserves angle
measurement. Prove that ¢ is an isometry. Show that the corresponding statement
for a Euclidean geometry is false.

18. Let ¢: &% — & be an isometry of neutral geometries. Prove that two lines of &
intersect (resp. are divergently parallel, or are asymptotically paraliel) if and only
if their images under ¢ intersect (resp. are divergently parallel, or are asymptotically
parallel).

*19. f ¢: %, - % and §: &, - , are collineations, prove that Yo ¢: ¥ - % is a
collineation.

*20. If ¢: %, - % and ¢: %, — &, are isometries prove that Yy o ¢: ¥ —» %, is an
isometry.

21. Complete the proof of Theorem 11.1.20 for the cases where PQ is perpendicular
to either I, or I,.

22. f¢: & — &' is an isometry of neutral geometries and & satisfies HPP prove that
¥ satisfies HPP.

11.2 The Klein and Poincaré Disk Models N

In this optional section we shall present two other important models of a
hyperbolic geometry. We saw in the last section thatif {&, #} is an incidence
geometry and if ¢: & — &' is a bijection, then there is an induced incidence
geometry {&’, £’} where &’ = {¢(I)|! € £}. In this section we will see that a
bijection can also induce distance functions and angle measures. This idea
will be used to develop the new models and verify that they satisfy the axioms
of a hyperbolic geometry.

Definition. Let {&, %} be an incidence geometry and let ¢p: & - %’ be a
bijection. If d is a distance function on & then the distance function d’ on &
induced by ¢ is given by

d(4,B)=d(e " '4A,¢~'B).
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If m is an angle measure for the Pasch geometry {&, %,d} then the angle
measure m’ on &’ induced by ¢ is given by

m(LABC)=m(Lo 'Ap ™ 'Bp'C).
Example 11.2.1. Let ¢:R% — R? be given by ¢(x, y) = (x, y°) as in Example

11.1.5. Find the line in ¢(&) determined by 4’ = (3,8) and B’ = (2,27) and
find the distance between these points in ¢(&).

SouLTION. @14’ =(3,2) and ¢~ 'B’ = (2,3). The Euclidean line joining
(2,3)to (3,2) is
I={xy|y=—x+5}

20+

Figure 11-11

so that P =.(s, 1) is on the line I through 4’ and B’ if and only if (s, 3/t) €,
ie,y/t=—s+ 5. Thus

I'=o()={s)eR|t=(-s+ 3%
See Figure 11-11.
d'(A, B)) = dg((2,3),(3,2) = /2. 0

Theorem 11.2.2, If {¥, %,d} is a metric geometry and if {F', &', d'} is the
geometry induced by the bijection ¢:% — &', then {¥', %', d’} is a metric
geometry.

ProOF. By Lemma 11.1.4 we know that {&’, ¥’} is an incidence geometry.
The proof that d’ is a distance function is left to Problem A2.

We may obtain rulers for d’ by carrying over the rulers from &. Let
I'e &' sothat I’ = @(I) and choose a ruler f for . Then f* = f o ¢~ lisaruler
for I’ (Problem A2). Note that ¢ is an isometry. O

The proof of the next result is left to Problems A3 and A4.
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Theorem 11.2.3. If {&, %,d, m} is a protractor geometry and ¢ & — &' is a
bijection then the geometry induced by ¢, {&', ¥',d',m'}, is also a protractor
geometry.

Theorem 11.2.4. If {&, ¥,d,m} is a neutral geometry and ¢:& — & is a
bijection then the geometry {&', ¥',d’,m'} induced by ¢ is also a neutral
geometry.

Proor. We need to show that SAS is satisfied. Suppose that 4', B, C', D',
E', F' are points in &' with / A'BC' ~ { D'E'F', #B ~D'E’, and BC ~
E'F'.Let 4, B, C, D, E, F be the corresponding points of & (i.e., 4 = ¢ ~1(4’),
etc.). Then 1 ABC ~ / DEF, AB ~ DE, and BC ~ EF because of the defi-
nitions of d’ and m'. Since & is a neutral geometry

AABC ~ ADEF,

Hence /. BCA~ { EFD, [ CAB ~ [ FDE, and AC ~ DF. This implies
that £ BC' A"~ L EF'D', L C'A'B' ~ ( FD'E', and A'C ~ D'F, again by
the definition of d’ and m'. Hence AA'B'C' ~ AD'E'F’" and the geometry
induced by ¢ satisfies SAS. O

In the two applications of Theorem 11.2.4 that follow we will actually
start with {&’, £’} and find a bijection y:H — &' such that &' = y(¥y);
ie., such that ¢ is a collineation. We will then know that the incidence
geometry induced by y is a neutral geometry. (Actually, we have not proved
that »# satisfies SAS yet but will in Section 11.8. Once that has been proved
we will know our new models are also neutral geometries.)

Our two new models will have the same underlying set & (the unit
disk D) but will have quite different sets of lines. The first mode] will be the
Klein Plane. It is due to three 19th century mathematicians, Felix Klein
(1849-1925), Arthur Cayley (1821-1895), and Eugenio Beltrami (1835-1900).
The German mathematician Klein is well known for the introduction of
transformation geometry and the application of group theory to geometry.
In his famous Erlangen Program he proposed that geometry should be
viewed as the study of the invariants of a group acting on a set. See Millman
[1977]. The British mathematician Cayley was instrumental in uniting pro-
jective and metrical geometry. It is commonly felt (E. T. Bell [1937]) that
this paved the way for Klein’s disk model. He also did fundamental work
in matrix theory as well as introducing n-dimensional space and, with
J. J. Sylvester, discovering and thoroughly investigating an algebraic phe-
nomenon called invariance theory. Besides his work in proving the relative
consistency of hyperbolic geometry in 1868, the Italian Beltrami is known
for his work on physical problems, abstract algebra, invariance theory, and
differential equations.
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Definition. Let D = {(u,0) € R?*|u? + v? < 1} be the unit disk. A K-line in
D is the intersection of D with a Euclidean line ! = R2. The Cayley-Klein-
Beltrami Plane (or more simply the Klein Plane) is the incidence geometry

{D, #¢} where ¥ is the set of all K-lines in D.

We should note that {I), #} really is an incidence geometry because
of Problem A3 of Section 2.1. Some K-lines are illustrated in Figure 11-12.
Note that through the point P there are several lines parallel to I. Hence

{D, &} cannot possibly satisfy EPP.

Figure 11-12

In order to apply Theorem 11.2.4 we must find a collineation between
{H, #4} and {D, %}. Actually we will find a collineation ¢:D — H and
then apply Theorem 11.2.4 to i = ¢~ 1. The choice of ¢ given below will

be motivated after the proof.

Proposition 11.2.5. The function ¢:D — H by

(P(u’v)=<lzv’ 1—~v

is a collineation from {D, %} to {H, %y }.
Proor. First we note that if (,0) € D then v < 1 so that 1 — v > 0. Since
w4+ 1? <1, /1w =% >0and g(u,v)e H.

By Problem AS, ¢ is a bijection—its inverse is

2x x2+y*—1
-1 — . 2-1
¢ (%) <1+x2+y2’1+x2+y2 @1)

We must show that the image of a K-line is a line in #y. If [ is a K-line
then there are real numbers a, b, ¢ with ¢? < a? + b? (see Problem A6) and

I={(u v) € Dlau + bv = c}.
If (u,v) € l and (x, y) = @(u, v) then by Equation (2-1)

2x x2+y*—1 .
=— d =——7>"——withy > 0.
“ T+x2+,2 007 1T+xzry2 07
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Hence (u,v) € I if and only if
2x x2+y2 -1
a(l +x2+y2)+b<l +x2+y2>_c

2ax + b(x*+ y)—b=c + c(x® + y?)

or if and only if

or if and only if
b= +yY)+2ax—b—c=0. (2-2)

If b # ¢ then Equation (2-2) describes a Euclidean circle in R? with its center
at(—a/(b — c), 0)and radius ./(a® + b? — c?)/(c — b)*.1f b = c then Equation
(2-2) describes a vertical line x = b/a. (Note if b = ¢ then since ¢ < a® + b2,
a is not zero.) Hence, since ¢(!) = H, ¢(!) is part of a type II line or a type 1
line.

On the other hand ¢ ~'(,L) is contained in the K-line {(,v) € D |u+av=a}
while ¢~ '(.L,) is contained in the K-line {(u,v) e D|ou + fv = y} where
a=—c, f=0*—c*+1)/2 and y = (r* — ¢ — 1)/2. By Lemma 11.1.2, ¢
is thus a collineation. O

The function ¢ may seem very artificial. Actually it can be described
geometrically as the composition of two geometric functions ¢, and ¢,:
® = @, ° ©,. ¢, takes D to the right half of the sphere of radius 1 by linear
projection: @,(u,v) = (1, /1 — u? — v2, v). ¢, takes this right hemisphere to

Figure 11-13

(0,0,1) (xy, x5, X3)

9,5(x), X, X3)

Figure 11-14
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H by what is called stereographic projection from the North Pole (0,0,1): a
point (x;,x,,x3) # (0,0,1) on the unit sphere S? is sent to the point where
the Euclidean line determined by (x,, x,,X3) and (0,0, 1) intersects the plane
x3 = 0. See Figures 11-13 and 11-14.

By Problem A4 of Section 11.1, ¢ ! is also a collineation and the set of
lines it induces on D is precisely Z. ¢! then induces a neutral geometry
A = {D, Pk, dx,mg} where

myg(/L ABC) = my(/ ¢ ApBoC).

Since J satisfies HPP it is a model of hyperbolic geometry. While it is easy
to find the line through two points in J, the computation of distance and
angle measure is more involved. It can be shown that if the vertex of an angle
in X is at (0, 0) then the angle measure is given by the Euclidean measure.
(See Problem B13 for a computation.) Howevér, the angle measure of an
angle whose vertex is not (0, 0) is hard to compute.

Our second new model is due to Henri Poincaré, who is also responsible
for {H, %}. This example makes use of the idea of two circles being
perpendicular.

Definition. Two circles %,(C) and %,(0) in R? are perpendicular if they
intersect in two points A and B and if both /£ QAC and /£ OBC are right
angles. (See Figure 11-15.) ‘

Figure 11-15 Figure 11-16

Definition. A P-line in D is the intersection of D with either a Euclidean line
through (0,0) or with a Euclidean circle ¥ which is perpendicular to the
circle {(4,v)]u® + v* = 1}. The Poincaré Disk is the abstract geometry
{D, #p} where &), is the set of all P-lines.

Some P-lines are illustrated in Figure 11-16. Again note that {D, %}
cannot satisfy EPP.

We shall make {D, %} into a hyperbolic geometry by giving a collinea-
tion from {D, %x} to {D, %p}.
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Proposition 11.2.6. The function y:D — I given by

u v
u,v) = ,
Viso) <1+~/1 —u? = 1+4/1 —uz—v2>
is a collineation from {D, ¥} to {D, %}.
ProoF. By Problem A10, y is a bijection whose inverse is given by

2x 2y
-1 — . _
vlix,y) = (1 SR y2> (2-4)

(2-3)

To show that ¢ is a collineation we must show that the image of a K-line
I={(u,v)e D|au + bv = c} is a P-line. If Y(u,v) = (x, y) then by Equation
2-4)

B 2x d ve 2y
s o
Thus au + bv = ¢ if and only if

2ax + 2by _.
L+x2+y2 1+x2+)7

or
2ax + 2by = c + c(x* + y?)

or
c(x? + y*) — 2ax — 2by + ¢ = 0. (2-5)

There are two cases to consider. If ¢ = 0 then the original K-line [/ went
through the origin, and Equation (2-5) reduces to ax + by = 0,(x, y) € D. This
is a P-line. (Note that a K-line through the origin gets sent to a P-line through
the origin!)

If ¢ # 0, then Equation (2-5) describes a Euclidean circle € with center
C = (a/c, b/c) and radius \/(a?/c?) + (b*/c*) — 1. We must show that € is
perpendicular to €’ = {(x, y)|x* + y* = 1}.

%' has center O = (0,0) and radius 1. Since d(0, C) = /(a®/c*) + (b*/c?)
and 1 + /(a%/c?) + (b*/c?) ~ 1 > J(a®/c?) + (b*/c?), the Two Circle Theo-
rem for the Euclidean Plane (Theorem 6.6.5) states that € n¢” consists of
exactly two points. If 4 € € n ¢’ then

at + b’ a’ + b?
dg(0,4) = 1, dg(4,C) = e 1, dg(0,C) = e

so that
(d5(0, 4))? + (dg(4, C))* = (dg(0,C)).

By the Pythagorean Theorem in &, /. OAC is a right angle. Thus € is per-
pendicular to €’ and the image of I is a P-line in this case also. Hence ¢ is a
collineation. O
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The function 3 can be described geometrically in a manner similar to ¢
in Proposition 11.2.5. = ¥, o ¢, where ¢, is the projection of D onto the
right hemisphere as before. ¥, is a stereographic projection also but this
time from the point (0, —1,0) and to the plane x, = 0. See Figures 11-17
and 11-18.

Figure 11-17 Figure 11-18

By Theorem 11.24, 9 = {D, %, dp, mp} is a neutral geometry (and by
Problem A7 it is a hyperbolic geometry) where

dp(A, B) = d(Y ™A, B) = d(p ' A, @y ' B)
my(L ABC) = my(L Y~ Ay 'BYy~C) = dy(L oy~ ' Ay~ *Boy "' C).

It can be shown that the angle measure in 2 is essentially Euclidean; that
is, the Poincaré measure of an angle is given by the Euclidean measure of the
angle formed by the Euclidean tangent rays just as in the case of 5. This
makes it easier to do computations in & than in X",

In Problem A12 you will show that ¢ o ™! : D — H is given by

oty o ETE
0oV 1+iz

where we have identified the point (x, y) € R? with the complex number z =
x + iy. Note that since ¢ and ¢~ ! are isometries ¢ o ' is also an isometry.

ProBLeEM SET 11.2A

1. Let ¢:R*— R? be given by ¢(x,y) = (x + y,x — y). In the induced geometry
0(8) = {R*, 2,d',m'}
i. Let A'=(2,1), B'=(4,6) and find the line in ¢(&) determined by A’ and B’
ii. Find d'(4’,B)).
iii. Prove for any P, Q' in R? that d'(P',Q") = (1//2)dg(P, Q).
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2. In the proof of Theorem 11.2.2, prove that d’ is a distance and f' = fop lis a
ruler.

3. If {&#, &,d} is a metric geometry which satisfies PSA and ¢:& — & is a bijection
prove that the geometry {&", #’,d’} induced by ¢ also satisfies PSA.

4. If {&,%,d, m} is a protractor geometry and ¢: & — &' is a bijection, prove that
the geometry {¥,.%",d’,m’} induced by ¢ is also a protractor geometry.

. In Proposition 11.2.5, prove that Equation (2-1) does indeed give the inverse of ¢.
. Show that if ax + by = ¢ describes a K-line then ¢? < a® + b%

. Show that the Poincar¢ Disk satisfies HPP.

. Describe geometrically all the lines in ¢ that are sent to type I lines of # by ¢.

O 00 N W

. In the Klein Plane give an example of two asymptotically parallel lines and two
divergently paraliel lines.

10. In Proposition 11.2.6 prove that Equation (2-4) does give the inverse of .

11. In the Poincaré Disk give an example of two asymptotically parallel lines and
two divergently parallel lines.

12. Let ¢:D - H as given in Proposition 11.2.5 and let ¥:D —> D as given in
Proposition 11.2.6. View R? as the set of complex numbers via the identifica-
tion (x, y)«>z = x + iy. Show that the collineation ¢ o "1 :D — H is given by

QoY z)=(z+ i) + iz).

Part B.

13. In the Klein Plane X let A =(4,0), B=(0,0), and C = (, 4). Find dg(4, B),
d,(C, B), and my( 2 ABC).

14. In the Poincaré Disk 9 let A = (4,0), B =(0,0), and C = (4, 4). Find dy(4, B),
dp(A, C), and my(£. ABC). (Hint: Use Problem A12))

11.3 Reflections and the Mirror Axiom

From now on we shall only be interested in isometries from a geometry to
itself. A primary goal is a classification theorem which partitions the set of
all isometries of a neutral geometry according to their fixed point properties.
This process begins with the study of a special type of isometry called a
reflection.

We start this section with proofs that if an isometry fixes two points then
it fixes the line they determine, whereas if it fixes three noncollinear points
then it must be the identity function. Next we show that any isometry is the
composition of three or fewer reflections. Finally we show that for a pro-
tractor geometry the SAS axiom is equivalent to the existence of “many”
reflections.
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Definition. A function ¢:% — & fixes the point A € & if pA = A.

Lemma 11.3.1. Let ¢:& — & be an isometry of a neutral geometry. If ¢
fixes the points A and B then ¢ fixes each point on AB.

PROOF. Let f be a coordinate system for AB with A as origin and B positive.
Suppose that C € AB and C # A, C # B. If C’' = ¢C, then we need to show
that C = C'. Now d(4,C’) = d(4,C) since ¢4 = A and ¢ is an isometry.
Hence |f(C)| = |f(C)| and f(C’)= +f(C). Since ¢ preserves betweenness
(Lemma 11.1.6) either

A—B—C sothat A—B—C
or

A—C—B sothat A—C—B
or

C—A—B sothat C—A—B
None of these cases permit f(C’) = —f(C). Hence f(C’) = +f(C) and so
oC=C =C. O

Lemma 11.3.2. Let ¢: & — & be an isometry of a neutral geometry. If ¢ fixes
three noncollinear points A, B, C then ¢ is the identity.

PROOF. ¢ fixes each point of the lines 4B, BC and AC by Lemma 11.3.1 and
hence each of the points of A ABC. Let D be any point in & and let E # D
be a point in int(4B). By Pasch’s Theorem DE intersects A ABC at some
point F # E. Since both E and F belong to AABC they are both fixed. Hence
every point of EF, in a particular D, is fixed by ¢. Thus ¢D = D for any point
D and ¢ is the identity isometry. a

We are now ready to define a reflection across a line . The basic prop-
erties of a reflection are that it is an isometry, leaves [ fixed, and interchanges
the half planes determined by .

Definition. Let [ be a line in a neutral geometry. For each P € & let P, be the

foot of the perpendicular from P to /. ThecfeHection acros§;/ is the function
oS — & given by

G-1)

pP = P’ where P—P~—P and PP,~ PP, if P ¢ |
pP=PifPel

Note that we are defining p, P to be the point P’ such that P, is the midpoint
of PP if P ¢ |. Examples in & and 3¢ are illustrated in Figure 11-19.
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Figure 11-19

Theorem 11.3.3. A reflection in_a neutral geometry & is an isometry.

PROOF. Let 4, Be , let | be a line in %, and, for convenience, write p; as p.
We must show that d(4, B) = d(pA, pB). There are several cases to consider:
(i) A and B on the same side of I, (ii) A and B on opposite sides of I,
(i) Ael, B¢l (iv) A, B € l. We shall complete the proof only for the first
case and leave the others to Problem A3.

Assume that A and B are on the same side of L. If AB | Ithen A, = B, = Q
for some Q. Let f be a ruler for AB with origin Q and 4 positive. Then for
P e 4B, f(pP) = —f(P). See Figure 11-20. Hence

d(pA,pB) = | f(pA) — f(pB)|
= |~f(4) + (B)
= d(4,B)

Now suppose that AB is not perpendicular to . Then A, # B,. Let A, = P
and B, = Q. See Figure 11-21. APQB ~ APQpB by SAS so that PB ~ PpB
and £ BPQ =~ / pBP(Q. Because AP||BQ (Why?), B and Q lie on the same
side of AP and B e int(Z APQ).

Since pA and pB lie on the same side of I (namely the opposite side from A)
a similar argument shows that pB e int(/ pAPQ). By Angle Subtraction,
L APB ~ / pAPpB. Then AAPB ~ ApAPpB by SAS and AB ~ pApB

so that d(A, B) = d(pA, pB). d
A
B
A p
B
Q ! P Tl !
pB
A
p B
pA

Figure 11-20 Figure 11-21
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In Problem A2 you will show that there are isometries with exactly one
fixed point and some with none. We now prove that if an isometry has at
least two fixed points then [ is either a reflection or the identity.

Theorem 11.3.4. Let ¢: % — & be an isometry of a neutral geometry which
- fixes two distinct points A and B. If ¢ is not the identity then it is reflection
across the line | = AB.

PrROOF. If P e AB = | then ¢ P = P = p,P by Lemma 11.3.1.

Suppose that P ¢ [. We claim that P and ¢P are on opposite sides of /.
Since ¢ is an isometry AABP ~ AAB@P by SSS (see Figure 11-22). If P
and P were on the same side of / then since /. ABoP ~ / ABP, the Angle
Construction Axiom would imply that BP ~ BpP. Because BoP ~ BP this
would imply that ¢ P = P and so ¢ fixes three noncollinear points. By Lemma
11.3.2, ¢ must be the identity, which is contrary to the hypothesis. Hence P
and @P are on opposite sides of | so that PoP intersects / at a unique point Q.

We must show that PQ L | and PQ ~ ¢PQ. Let R # Q be any other
point of I. Then @R = R and APQR ~ A@PQR by SSS (see Figure 11-23).
Hence /£ PQR is a right angle. Since pP—Q—P and ¢PQ ~ PQ we have
@P = p,P. Thus ¢ = p,. O

@P P

B P P

Figure 11-22 : Figure 11-23

In 1872, during an address at Erlangen, Germany, Felix Klein proposed
that geometry should be studied by the “group of motions” which preserve
the figures of the geometry. This famous address and the ideas contained in
it are called the “Erlangen Program.” It refocused the study of geometry
from that time until the present. (A modern topological interpretation of
Klein’s ideas is contained in Millman [1977].) Later we shall be interested in
determining the structure of this “group of motions.” Right now we want to
show that the study of triangle congruences corresponds to the study of
isometries.

Theorem 11.3.5. In a neutral geometry ANABC ~ ADEF if and only if there
is an isometry ¢ with ¢A = D, ¢B = E, and ¢C = F. Furthermore, such an
isometry is uniquely determined.
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Proor. If there is such an isometry then by SSS, AABC ~ A@ApBpC =
ADEF. Hence we will assume that AABC ~ ADEF and construct the
desired isometry . ¢ will turn out to be the composition of three isometries,
¢ = pta, each of which is either a reflection or the identity. See Figure 11-24.

Figure 11-24

If A = D let o be the identity. If A # D let I, be the perpendicular bisector
of AD and let o be the reflection across I;. In either case AcAcBoC =
ADaBoC is congruent to ADEF since both are congruent to AABC.

We now proceed in a similar fashion with the congruent triangles
ADoBoC and ADEF. If 6B = E then let 7 be the identity. If 6B # E then
let I, be the perpendicular bisector of ¢BE and let © be the reflection across
I,. In either case 16B = E. Note that DoB = 6A0cB ~ DE so that D is an
element of the perpendicular bisector of ¢ BE. Hence tD = D. Also note that

ADE16C = AN16A16B16C ~ ANABC ~ ADEF.

We repeat the process one more time. If T16C = F let p be the identity.
Otherwise let p be the reflection across the line I3 = DE = 16416B. Note
that I, is the perpendicular bisector of FtoC in this case. Hence.

p16A =ptD=pD=D
ptoB=pE=E
ptoC = F.

Thus ¢ = pto gives the desired isometry. All that remains is to show that ¢
is unique.

Now suppose that i is also an isometry such that y 4 =D, yB=E, yC=F.
Then ¢ ~'o fixes 4, B, and C so that by Lemma 11.3.2, ¢ is the identity
and ¢ = . Hence there is a unique isometry sending 4, B, Cto D, E, F. O
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Corollary 11.3.6. In a neutral geometry every isometry is the composition of
three or fewer reflections.

ProoFr. Let ¢ be an isometry and let A ABC be any triangle. Define D, E, F
by 94 = D, B = E, ¢C = F. Then AABC ~ ADEF by SSS. By the proof
of Theorem 11.3.5, ¢ = pto where each of g, 1, p is either the identity or a
reflection. Hence any isometry is the composition of three or fewer
reflections. O

In the definition of a reflection we made strong use of the fact that thereis a
unique perpendicular to a given line through a given point (Corollary 6.3.4).
This in turn required the full strength of the SAS axiom. The surprising fact
is that the whole process can be turned around; that is, if for every line in a
protractor geometry there is an isometry which acts like a reflection across
that line then the geometry satisfies SAS. This is formalized in the next
definition and theorem.

Definition. Let {#, %,d,m} be a protractor geometry and let / be a line. A
‘mirrop in / is an isometry u which preserves lines and angle measure, fixes
each point of I, and interchanges the half planes determined by I (ie., if
P ¢ I then P and uP lie on opposite sides of 1).

A protractor geometry satisfies the Mirror Axiom if for each line / there
is a mirror in L '

In Section 11.1 we proved that an isometry of a neutral geometry was a
collineation and preserved angle measure. Since we want to discuss mirrors
in the context of a more general protractor geometry, we need to assume
that a mirror is an isometry which also preserves lines and angle measures.
Note that because mirrors preserve length and angle measure, for any
mirror y, AABC ~ AuAuBuC.

Theorem 11.3.7. A protractor geometry is a neutral geometry if and only if it
satisfies the Mirror Axiom.

PRrooOF. Suppose that 4 = {¥, &,d,m} is a protractor geometry. If  is a
neutral geometry and /s a line then the reflection p, is a mirror in ! so that
the Mirror Axiom is satisfied.

Suppose now that ¥ satifies the Mirror Axiom. We must show that SAS
is satisfied. Suppose that AB~ DE, / A~ / D, and AC ~ DF. We must
prove that /£ B~ / E, / C~ / F, and BC ~ EF. We will accomplish this
with a slight variation of the proof of Theorem 11.3.5. We will find at most
three mirrors o, 7, p such that p1o(AABC) = ADEF. This will “move” or
“superimpose” A ABC onto ADEF.
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Figure 11-25

If A = D let o be the identity collineation. If A # D let ¢ be a mirror in
the perpendicular bisector [, of AD. Such a bisector exists in a protractor
geometry by Corollary 5.3.7. By Problem A6, 64 = D. See Figure 11-25.

If 6B = E let t be the identity. If 6B—D—E let 7 be the mirror in the
perpendicular I, to DE at D. Otherwise let T be the mirror in the angle
bisector I, of /£ EDoB. In any case D € [, so that D = D. (Note we could
not let I, be the perpendicular bisector of EcB because in a protractor
geometry it need not be the case that D e 1,).

We claim t6B = E. If cB—D—E, then since

DoB = 6AcB ~ AB ~ DE

I, is the perpendicular bisector of 6BE and 1B = E by Problem A6. If B,
D, E are not collinear then I, bisects / EDoB. ¢B and t6B lie on opposite
sides of I, so that |, ndBtoB = {Q} for some Q. Q € int(L EDoB) (Why?).
Now /. QDoB ~ / QDE since I, is an angle bisector. / QDoB ~ / QD16B
since 7 is a mirror. ToB and E lie on the opposite side of [, from ¢B. By the
Angle Construction Theorem / QDtoB = [ QDE so that DtoB = DE. Since

D16B ~ DoB ~ AB ~ DE

E = t6B. Thus E = toB in all cases. _
Finally, if toC is on the same side of DE as F let p be the identity. Otherwise
let p be the mirror in DE. By using the Angle Construction Theorem again,
we can show ptoC = F just as we showed t0B = E.
@ = pto is an isometry which preserves angle measure since p, 7, and o
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do. Hence AABC ~ A@pApBeC. But
@A =p1oA=ptD=pD=D
@B = ptoB=pE=E
¢C = pteC=F.
Hence AABC ~ ADEF and SAS is satisfied. O

Euclid, in his development of geometry, did not assume SAS as an axiom
but instead gave a proof based on the idea of “moving triangles around by
rigid motions.” These rigid motions are what we call isometries. Euclid
essentially assumed that there exist “enough” isometries, an assumption that
Theorem 11.3.7 reduces to the existence of mirrors. Euclid’s assumption,
which was called the “principle of superposition,” was that a geometric figure
could be picked up and moved to another position without any distortion.

ProBLEM SET 11.3
Part A.

1. Let ¢:& — & be an isometry of a metric geometry. If A is a fixed point of ¢, prove
that ¢ preserves circles centered at 4. More precisely; prove that ¢(%,(4)) = %,(A).
Is it true that for all B € €,(A), B = B?

2. Prove that in & there are isometries with no fixed points and others with exactly
one fixed point.

3, Complete the proof of Theorem 11.3.3.

4. Letl = ,L be a type I line in the Poincaré Plane. Find p;: H — H.

*5. If p;: & — & is the reflection across ! in a neutral geometry, show that

a p=ph
b. (p)* = Idg.

6. Let u be a mirror in the perpendicular bisector of 4B in a protractor geometry.
Prove that ud = B.

7. Let ! be a line in a neutral geometry. If y is a mirror in I prove that u = p,, where
p, is the reflection defined by Equation (3-1).
Part B.

8. Because of Problem A5 we know that every reflection p has the property p? = Id.
Find an example in the Euclidean plane of an isometry ¢ which is neither a
reflection nor the identity but which satisfies ¢* = Id.
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11.4 Pencils and Cycles

In this section we shall introduce two new concepts in a neutral geometry—
pencils and cycles. A cycle will be a generalization of a circle while a pencil
will be a special collection of lines. These ideas will be useful later as we
classify isometries by their fixed points. In this section we will see how pencils
can be used to extend certain Euclidean results to arbitrary neutral geome-
tries. For example, in a Euclidean geometry the perpendicular bisectors of
the sides of a triangle are concurrent. In a neutral geometry, this need not be
true, but they will all belong to the same pencil.

We now define three different kinds of pencils—pointed, parallel, and
asymptotic. Each consists of a family of lines with a certain incidence prop-
erty. Each will have associated with it an object called its center.

Definition. Let {&, %,d,m} be a neutral geometry. The pointed pencil %,
with center C is the set of all lines through the point C.

The parallel pencil % perpendicular to the line [ is the set of all lines per-
pendicular to I The center of £ is [ if the geometry is hyperbolic and is the
set of all lines parallel to !if the geometry is Euclidean.

If the geometry is hyperbolic, the asymptotic pencil 2 along the ray AB
is the set of all lines which contain a ray asymptotic to AB. The center of P
is the pencil 2 itself.

A pencil is any set which is either a pointed pencil, a parallel pencil, or
an asymptotic pencil.

Note that each pencil has a unique center which may be either a point,
a line, or a pencil. In Figure 11-26 parts (a) and (b) illustrate pointed pencils
in & and 4, () is a parallel pencil in & while (d) and (¢) are parallel pencils
in 4, and (f) and (g) are asymptotic pencils in .

The center of an asymptotic pencil may be thought of as an “ideal” point
in the following way. If two rays are asymptotic then intuitively they meet
“at infinity”. Any other ray asymptotic to these two rays also meets them “at
infinity”. Classically, this place “at infinity” is referred to as an “ideal” point.
In the Poincare Plane the “ideal” points are represented by the points along
the x-axis together with one other point. (See Problem B13 of Section 8.1.) In
the Poincaré Disk and Klein Plane the “ideal” points are represented by the
points on the boundary of the disk: x2 + y?> = 1. An asymptotic pencil
consists of all lines through an “ideal” point and thus.in some sense is
similar to a pointed pencil.

In Theorem 9.1.5 we saw that the perpendicular bisectors of the sides of a
triangle are concurrent in a Euclidean geometry. This means that the three
lines belong to the same pointed pencil. Our first result generalizes this
result to a neutral geometry.
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Figure 11-26

Theorem 11.4.1. In a neutral geometry the perpendicular bisectors of the
sides of a triangle AABC all belong to the same pencil.

PRrOOF. Let the perpendicular bisectors of AB, BC, and AC be I, m, n respec-
tively. There are three possible incidence relations between ! and m which
lead to three cases: [ nm # ¥, | and m have a common perpendicular ¢, or
! and m are asymptotic.

Case 1. Inm # . Let P e lnm. By Problem A10 of Section 6.4, Pe n
also so that /, m, n all belong to the pointed pencil Z,.

Case 2.1 and m have a common perpendicular t. We will show that n is
also perpendicular to ¢ so that [, m, n € 2. Let P be the midpoint of 4B and
let Q be the midpoint of BC. By Problem A2 none of A4, B, C, P, and Q
belong to t. Let A’, B, C’, P’, Q’ be the feet of the perpendiculars from A4, B,
C, P, Q to t. In Problem A2 you will also show that P’ # A, P’ # B,
Q' # B, Q' # C' and A’ # C'. This means that the various angles and seg-
ments in the next paragraph all exist. We will show that [(J4'ACC' is a
Saccheri quadrilateral.

B
P Q
R
A C
/ n m
. u .
A Plw Tor c

Figure 11-27
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Now 44', BB, CC', PP, and 0Q all belong to the pencil & and are
pairwise parallel to each other. Hence, since A—P—B and B—Q—C, we
have A'—P'—B’ and B—Q'—C'. AAPP' ~ ABPP'and ACQQ’' ~ ABQQ’
by SAS. Hence / APP~ /BP'P and £ CQ'Q~ /BQ'Q. Now Ae
int(/ A'P'P),Ceint(, C'Q'Q), Beint(/ B'P'P),and Beint(/ B'Q'Q)(Why?).
Hence we may use Angle Subtraction to obtain / AP'A’ ~ / BP'B’ and
L. C'Q'C~ ( BQ'B. Thus AAP'A’ ~ ABP'B' and ABQ'B' = ACQ'C’ by
HA. Hence AA’ ~ BB ~ CC and []4'ACC’ is a Saccheri quadrilateral.
Therefore the perpendicular bisector n of AC must also be the perpendicular
bisector of A’C’. Hence n L t and n € 2.

Case 3. 1|m. Note first that I|m implies that nn Il = nm = F, for if this
were not true then Case 1 would show that I, m, and n are concurrent which
is impossible since I|m implies 1||m. Notice also that Case 2 prohibits n from
having a common perpendicular with either [ or m. Thus m|n and [ |n. To
show that [, m, n belong to the same asymptotic pencil means we must show
that I, m, and n are “asymptotic at the same end.” We do this by first finding
a common transversal for [/, m, n.

A\
B P [” Q C
Figure 11-28

Suppose that BC is a longest side of AABC so that /£ A > / B and
L A > £ C. Then there are points P and Q on BC with 2 BAP ~ / B and
£ CAQ ~ £ C. See Figure 11-28. Thus PA ~ PB so that P is on I, the per-
pendicular bisector of AB. Likewise Q € n. Thus the line BC intersects | at
P, BC intersects n at 0, and BC intersects m at the midpoint of BC. Thus I,
m, and n have a common transversal, namely BC.

Finally, by Problems A3 and A4, the lines I/, m, n cannot form a trebly
asymptotic triangle but instead must all belong to the same asymptotic
pencil. d

Definition. Let 2 be a pencil. Two points P and Q are equivalent with respect
to 2, written P ~, Q, if there is a line [ € 2 such that Q is the image of P
under the reflection across [;i.e., Q = p,P.

We shall normally omit the subscript 2 in P ~4 Q if there is no danger
of confusion.
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Theorem 11.4.2. If 2 is a pencil in a neutral geometry then ~ 4 is an equiva-
lence relation.

ProOOF. Let P be any point. Then there is a line [ € £ with P el (Why?).
Since p,P = P, P ~ P and ~ is reflexive.

Suppose P ~ Q so that there is an le # with Q = p,P. Then p,Q =
p1pP = P and Q ~ P. Thus ~ is symmetric.

To show that ~ is transitive we assume that P ~ Qand Q ~ R. If P,Q, R
are not distinct points then either P = Q so that Q ~ R implies P ~ R, or
P = R so that P ~ R by the first part, or Q = R so that P ~ Q implies that
P ~ R. Hence we assume that P, Q and R are distinct. There will be two cases
depending on whether P, @ and R are collinear or not. Note that Q@ = p,P
and R = p,Q for some lines |, me £.

Case 1. P, Q, R are collinear. Since P, Q, and R are distinct, ! # m and
both [ and m are perpendicular to PQ. Hence I, me P so that 2 =2,
where t = PQ by Problem Al. Let n be the perpendicular bisector of PR.
Thenne & =2 and R = p,P. Hence P ~ R.

Case 2. P, Q, and R are noncollinear. / is the perpendicular bisector of
PQ and m is the perpendicular bisector of QR. Since ! # m Problem Al
implies that ! and m belong to a unique pencil, and that pencil must be 2.
By Theorem 11.4.1, the perpendicular bisector n of PR also belongs to 2.
Hence R = p,P and P ~ R. Thus ~ is transitive. : O

We now turn our attention to cycles. As we shall see, cycles generalize
the notion of circles. In a Euclidean geometry three noncollinear points lie
on a unique circle, but this need not be true in a hyperbolic geometry.
However, three noncollinear points will always lie on a unique cycle. There
will also be results on tangents to cycles which are quite similar to those with
circles. Most of these will be left as exercises.

Definition. Let 2 be a pencil in a neutral geometry. A cycle € of £ is an
equivalence class with respect to ~4. A cycle is degenerate if it is a single
point (the center of 2 = %) or a line (the line [ of # = ). All other cycles
are called nondegenerate. The center of a cycle is the center of the associated
pencil 2.

Theorem 11.4.3. In a neutral geometry a nondegenerate cycle with respect to
a pointed pencil % is a circle with center C. If € is a nondegenerate cycle of a
parallel pencil %, then every point of € is the same distance from | and € lies
on one side of L.

The proof of the above result is left as Problem AS. The second part of
the theorem is quite interesting because it says that a cycle € of & is an
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“equidistant curve” of I. Although this curve is a line in the Euclidean case,
it is not in a hyperbolic geometry. Can you find an example in 5#?

By Problem A6 the set of all points a distance r > 0 from a line ! consists
of two cycles. See Figure 11-29.

1
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Figure 11-29

Theorem 11.4.4. In a neutral geometry any three distinct points lie on a unigue
cycle.

PRrOOEF. Let the three points be P, Q and R. Let [ be the perpendicular bisector
of PQ and m be the perpendicular bisector of QR. Then Q = p,Pand R = p,,0.
Since P, Q and R are distinct, | # m so that [ and m belong to a unique pencil
2. With respect to this pencil we have P ~ Q and 0 ~ R. Hence P, Q, R
belong to the same equivalence class and thus the same cycle . Since & is
unique and P can belong to only one cycle of £, there is only one cycle that
contains P, Q, and R. O

The next idea is a generalization of the idea of a fixed point. It is extremely
important in many areas of mathematics and will be very useful as we prove
the classification theorem in Sections 11.5 and 11.6.

Definition. A set .o/ is an invariant set of a collineation ¢ if (&) = o.

Note carefully that the definition says that .o/ is invariant if for each
ae o, p(a) e «. It is quite possible that ¢(a) # a for a e o. For example, if
‘9:R?> R by ¢(x, y) = (x + 1, y) then & = {(x,y) e R*|—7 < y <3}isan
invariant set, but no point of o of fixed. The set # = {(x, y) e R*|x > 0} is
also invariant, but ¢(%) # #. We shall usually say “« is invariant” rather
than “sf is an invariant set for ¢” if it is clear which collineation we are
referring to.

It makes sense to ask if a pencil £ is invariant. £ is a set of lines so that
®(?) = {p()|l € 2}. Thus 2 will be invariant under ¢ if ¢(I) € & for every
le 2.

The remaining results are left as homework.

Theorem 11.4.5. Let ¢ be an isometry of a neutral geometry and let # be a
pencil. If @ can be written as a composition of reflections across lines of P
then the center of 2P, each cycle of #, and P itself are invariant under ¢.
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Theorem 11.4.6. Let €, and €, be two nondegenerate cycles of the pencil #
in a neutral geometry. Let |, m € 2. Suppose that | intersects €, and €, at A,
A, and m intersects €, and €, at B, B,. If ? = P, so that ¢, and €, are
actually circles with center C suppose further that C is not between A, and A,
and C is not between By and B,. Then A, A, ~ B, B,. Hence two “concentric
cycles” are the same distance apart.

It is possible to define a tangent to a cycle at a point. However, we cannot
use the same definition we did for circles.

Definition. Let ¥ be a nondegenerate cycle of the pencil 2 in a neutral
geometry. If P € € then the tangent line to ¢ at P is the line through P which
is perpendicular to the unique line of £ through P.

Theorem 11.4.7. In a neutral geometry, if the line | is tangent to the non-
degenerate cycle € at P then | N € contains just the point P.

The converse of Theorem 11.4.7 is false (Problem A11) which is why we
had to define tangents differently for cycles than we did for circles.

Theorem 11.4.8. In a neutral geometry, if | is tangent to the nondegenerate
cycle € at P then the set € — {P} lies on one side of 1.

Because of this theorem we can define the interior and exterior of a cycle.

Definition. Let ¢ be a nondegenerate cycle in a neutral geometry { &, £,d,m}.
For each P € € let Hp be the half plane determined by the tangent line to
% at P which contains ¢ — {P}. The interior of % is
int(®)= () Hp.
Pe¥®
The exterior of € is

ext(®) = & — € — int(%).

The next theorem is proved almost the same way as Theorem 6.5.10. The
hard part is finding a replacement for Theorem 6.5.9 to use.

Theorem 11.4.9. If € is a nondegenerate cycle in a neutral geometry and
P € ext(€) then there are exactly two lines through P tangent to €.

ProBLEM SET 114

Part A.

1. If { and m are distinct lines of a neutral geometry, prove that there is a unique
pencil # with [, me 2.
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2. In the proof of Theorem 11.4.1 show that
a. none of 4, B, C, P, and Q belong to t;
b. P#£AP#B,Q#B,Q £C, A #C.

3. Let I, m, n be three distinct lines in a neutral geometry with !|m, I|n and m|n. Prove
that either there is a ray PQ asymptotic to all three lines (so that all three belong

we have a trebly asymptotic triangle). See Figure 11-30.

A
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D
Figure 11-30

4. Let I, m, n be three distinct lines in a neutral geometry with /|m, m|n, and /|n. Prove
that if [, m, n have a common transversal t then [, m, n all belong to the same pencil.

S. Prove Theorem 11.4.3.

6. Let r>0 and let / be a line in a neutral geometry. Prove that & = {Pe &|
d(P,1) = r} is the union of two cycles.

7. Let ¢, be the isometry of Problem A12 of Section 11.1. What are the invariant
sets of ,?

8. Prove. Theorem 11.4.5.
9. Prove Theorem 11.4.6.
10. Prove Theorem 11.4.7.

11. Find a nondegenerate cycle %, a point P € €, and a line [ which intersects € only
at P but is not tangent to €.

12. Let € be a nondegenerate cycle in a neutral geometry. If P ¢ € and there is a line
through P tangent to %, prove there are exactly two lines through P tangent to €.

13. Describe the cycles of the different possible pencils of &£.

14. Let € be a nondegenerate cycle and let P € 4. How many lines intersect € just at
P? (Your answer will depend on the type of pencil associated with €)

15. Let! = ABand AP, BQ € #, = # Prove P ~,Q if and only if [5]APQB.
16. If m,ne # = # and P € m prove there is a unique Q € n with P ~5, Q.

17. Repeat Problem A16 for the pencil #5.



320 11 The Theory of Isometrics

18.

If [ is divergently parallel to m let F = {lines t|t is transversal to I, m with
alternate interior angles congruent}. Prove that 4 is contained in a pointed

. pencil if the geometry is hyperbolic.

19.

20.

2L

22,

In a neutral geometry let [ and m be distinct lines in a pencil  with Pel, Q e m.
Prove that P ~ Q if and only if P = Q or PQ is transversal to [, m with alternate
interior angles supplementary.

In a neutral geometry let [, m be two lines of a pencil 2 that intersect a cycle € of
2 at points A # B. Choose P on the same side of [ as B and Q on the same side
of mas A and with 4P and BQ tangent to & at 4, B. Prove that / PAB~ / QBA.

If (JABCD has its vertices on a cycle 4 in a neutral geometry prove that
m(LA)+m(LC)=m(LB)+m(LD).

Prove that the interior of a cycle is convex.

Part B. “Prove” may mean “find a counterexample”.

23.
24.
25.
26.
27.

Describe the possible cycles in the Poincaré Plane #.
Prove Theorem 11.4.8.

Prove Theorem 11.4.9.

Repeat Problem A16 for the pencil 2,.

For the situation in the proof of Theorem 11.4.1 find an example where 4" = Q'.
Thus it need not be true that 4, B, C', P, Q' are distinct.

11.5 Double Reflections and Their Invariant Sets

In the next section we shall classify isometries according to their geometric
properties. That is, we will partition the set of all isometries of a neutral
geometry into classes with two isometries in the same class if and only if
they act in a similar fashion. The primary geometric property that will be
used in this partitioning will be invariant sets. We shall start the process in
this section by studying reflections and isometries which are the composition
of two reflections (double reflections).

Convention. Throughout Sections 11.5 and 11.6 all results refer to
a neutral geometry {&, ¥, m,d}.

Theorem 11.5.1. If p; is the reflection across the line | then

(1) A point A is fixed by p, if and only if Ael.
(ii) A line m # lis invariant under p, if and only if m 1 1.
(i) A pencil 2 is invariant under p, if and only if eitherle # or P = P,.
(iv) p, interchanges the half planes determined by l.
™ ot =p
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This theorem, whose proof is left to Problem Al, fairly well sums up all
the important properties of a reflection. We may thus turn our attention to
isometries which can be written as the composition of two reflections.

Definition. A double reflection ¢ is an isometry which can be written as the
composition of two distinct reflections: ¢ = p,p,, with | # m. ¢ is a rotation
with center 4 if [ nm = {A}. ¢ is translation along n if nis a common perpen-
dicular of / and m. ¢ is a parallel displacement if | and m are asymptotically
parallel.

First we would like to see that rotations and translations behave essentially
as we would expect from our Euclidean experience. This is done in the next
two theorems. The proof of the first is left to Problem A2.

Theorem 11.5.2. Let | and m be distinct lines with | nm = {C} so that ¢ = p,p,,
is a rotation about C. Let 6 be the smaller of the measures of the angles
formed by | and m. If | is not perpendicular to m then m(/ PCoP) = 26 for
any P # C. (See Figure 11-31.) If | 1 m and P # C then P—C—¢P and
PC ~ CoP.

Figure 11-31

Theorem 11.5.3. Let | and m be distinct lines with common perpendicular t so that
@ =pp,, is a translation along t. If | and m intersect t at A and B respectively
then d(P,@P) = 2d(A,B) for all P et. If Q ¢ t then Q and ¢Q lie on the same
side of t and d(Q, Q) > 2d(A, B) with equality if and only if the geometry
is Euclidean.

PrOOF. Let f be a coordinate system for ¢ with f(B) =0 and f(4)=r> 0
so that d(4,B)=r. Suppose Pet and f(P)=s. Then p,P et and has
coordinate —s. Hence @ P = p,p,.P € t hascoordinater — (—s — r) = 2r + s.
Thus d(P,@P) = |2r + s — s| = 2r = 2d(4, B).

If Q ¢ t then 0p,,0 is perpendicular to m. Since m L t, we have 0p,0||t.
Hence Q and p,Q lie on the same side of t. Similarly p,.Q and p,p,0 = @Q
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lie on the same side of t. Hence Q and ¢Q lie on the same side of ¢.

Let P be the foot of the perpendicular from Q to t. Since ¢ preserves
perpendicularity, the foot of the perpendicular from ¢Q to t must be @P.
Now d(P,Q) = d(¢P, 9Q) so that [JPQpQ¢P is a Saccheri quadrilateral.
Hence

d(Q, Q) > d(P,@P) = 2d(A, B).

Since the upper base of a Saccheri quadrilateral is congruent to the lower
base only when the geometry is Euclidean, we are done. O

There are no parallel displacements in a Euclidean geometry because
parallel lines always have a common perpendicular there. In Problem A3
you will describe the parallel displacement in # determined by the asymp-
totically parallel lines ,L and ,L.

Clearly if ¢ is a double reflection then ¢ is either a rotation, a translation,
or a parallel displacement. However, it is conceivable that ¢ = p,p,, = PnPp
where [/ and m have a common perpendicular while # and p don’t. This would
mean that the ideas of reflection, translation, and parallel displacement are
not disjoint. Our first task is to show a double reflection can be only one of
the three possibilities. This will be done by investigating the fixed points and
invariant sets of a double reflection.

Theorem 11.5.4. Let ¢ = p,p,, be a double reflection. Then B is a fixed point
of pifandonlyif Be lnm.

PRrOOF. If B € I nm then by Theorem 11.5.1
¢B = p;p,B=pB=B.
This completes the proof in one direction.

Suppose now that ¢ fixes the point B so that p,p,,B = B. Since (p,)? =
identity,

1B = p)(p1pmB) = (p10)p B = pmB.

Let C=pB = p,B. We will show that C = B. This will imply that B =
piB = p,Band B el n mby Theorem 11.5.1. o

If B # C then [ and m are both perpendicular to BC at its midpoint by
the definition of a reflection. But this implies { = m, which is impossible.
Thus C = B and p,, p,, each fix B. Hence B belongs to both [ and m so that
Belnm O

Corollary 11.5.5. An isometry ¢ has exactly one fixed point if and only if
@ is a rotation.
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Proor. Thanks to the previous theorem a rotation ¢ = p,p,, fixes exactly
one point, namely the unique intersection of | and m. On the other hand
if @ fixes exactly one point then in order to prove that ¢ is a rotation it is
sufficient to prove that ¢ is a double reflection. We do this by showing that
2,0 1s a reflection for some line [.

Suppose the isometry ¢ fixes the point D. Let E # D be any other point.
By hypothesis E # @E so that we may let ! be the perpendicular bisector
of EE. Then d(D,E) = d(¢D,pE) = d(D,¢E) so that D belongs to the
perpendicular bisector of E@E, ie., D el Since p(@E) = E, the isometry
p0 fixesboth D and E and so it ﬁxes every pointonm = DE by Lemma 11.3.1.
If p,¢ is the identity then ¢ = p; ! = p, and ¢ has more than one fixed point,
contrary to the hypothesis. Hence by Theorem 11.3.4, p,¢ = p,, and

@ = 0 P = PiPm-

Since D e l and D € m, ¢ is a rotation with center D. d

Corollary 11.5.6. If ¢ is a translation or a parallel displacement then ¢ does
not fix any points and so ¢ is not a rotation.

Now that we know that a rotation is neither a translation nor a paraliel
displacement we turn our attention to showing that a translation is not a
parallel displacement. Whereas fixed points were the key to distinguishing
rotations, invariant lines will be the deciding factor in the next step.

Theorem 11.5.7. Let ¢ = p,p,, be a double reflection which is not a rotation.
If the geometry is Euclidean then @ is a translation. If the geometry is hyperbolic
then ¢ is atranslation along t if and only if ¢ leaves the line t invariant. Further-
more, in this case ¢ is not a parallel displacement.

Proor. In the Euclidean case every double reflection is a rotation or a
translation so there is nothing to prove. Furthermore if ¢ is a translation
along ¢ then ¢ is left invariant.

In the hyperbolic case we first assume that ¢ is left invariant by ¢ and
show that ¢ is a translation along t. Let 2 be the unique pencil containing
both ! and m. We shall show that & is the pencil &, consisting of all lines
perpendicular to ¢. This will mean that/ L ¢t and m L ¢ so that ¢ is a trans-
lation along t. The proof will be by contradiction. We assume that ¢ is not
the center of 2. Note that in a hyperbolic geometry ¢ is the center of 2 if
and only if Z = &,

Since t is not the center of 2 there is a point 4 € t which is not in the center
of 2. (Note that if 2 is an asymptotic pencil there are no points at all in
the center of 2.) Let € be the unique cycle of 2 through A. Since 4 is not
in the center of # and the geometry is hyperbolic, € is a nondegenerate
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cycle. Let B = ¢ A. B # A because ¢ is not a rotation. € is invariant under
@ so that B € ¥. Since t is invariant, B € ¢t also. Thus B € € n t. We claim
¢B = A.

Now @B e® nt since € and ¢ are invariant and Be ¥ nt. ff pB# A4
then A, B, @B are three distinct points which belong to two distinct cycles
% and t. (Note t may not be a cycle of 2 but it certainly is a cycle of some
pencil.) This contradicts Theorem 11.4.4 which says that three distinct points
belong to a unique cycle. Hence we must have @B = 4.

Thus the isometry ¢ interchanges 4 and B. By Problem A9 of Section 11.1,
¢ fixes the midpoint of AB. This contradicts the assumption that ¢ is not a
rotation. Hence it must be that ¢ is the center of £ after all and ! and m are
both perpendicular to t. Thus ¢ is a translation along ¢ and is not a parallel
displacement. O

Theorem 11.5.8. In a Euclidean geometry a translation along t leaves invariant
only those lines parallel to t. In a hyperbolic geometry a translation along t
leaves only the line t invariant. A parallel displacement has no invariant lines.

Proor. The Euclidean case is left to Problem A7. In the hyperbolic case if
@ = p,p,, is a translation along ¢ then ¢ is the center of the (parallel) pencil
determined by / and m. By Theorem 11.4.5 this center is invariant under ¢.

On the other hand, if ¢ = p,p,, is not a rotation and if ¢ leaves a line
invariant, then by Theorem 11.5.7 that line must be the center of the unique
pencil 2 determined by [ and m. Hence ¢ is not a parallel displacement
and t is the only line invariant under ¢. O

Corollary 11.5.9. If ¢ = p,p,, is a double reflection, then ¢ is exactly one of a
rotation, a translation, or a parallel displacement. ¢ is not a reflection.

Theorem 11.5.10. Two distinct asymptotic pencils Pz and Pep have a unique
line | in common.

PROOF. Let P be any point not in AB u CD. Choose points R, § so that
PR|4B and PS|CD. If P,:R, S are collinear then we may let | = PR. If P,
R, § are not collinear let [ be the line of enclosure of /. RPS {Problem A6
of Section 8.2). Either way, | € P N Psp.

Suppose '€ P35 N Pep with I # 1. Since |, I' € Pz, | and I are asymp-
totic at one end. Since [, I’ € Pep, | and I are also asymptotic at the other
end. This contradicts Problem AS of Section 8.3. Hence [ = I'. O

We have investigated invariant points and invariant lines of a double
reflection. We now turn to invariant pencils.

Theorem 11.5.11. In a hyperbolic geometry a parallel displacement ¢ = p,p,,
leaves invariant exactly one pencil, namely the pencil determined by | and m.
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PROOF. Let ¢ = p,p,, be a parallel displacement and let 2 be the (asymptotic)
pencil determined by | and m. By Theorem 11.4.5, ¢ leaves £ invariant. -
If ¢ leaves a pointed pencil & invariant then the center C must be fixed
by ¢, which is impossible. If the ¢ leaves the parallel pencil & invariant,
then the center ¢ is invariant also, which is impossible since ¢ is a parallel
displacement and so has no invariant lines. Finally if ¢ leaves an asymptotic
pencil #' # 2 invariant, then ¢ must leave the unique line le #' n 2
invariant. But this is impossible since parallel displacements have no in-
variant lines. Thus £ is the only pencil invariant under ¢. O

The invariant pencils of a translation are fairly simple to determine. The
proof of the next result is left to Problem A11. We will leave the determination
of the invariant pencils of a rotation until after we discuss half-turns, which
are a special type of rotation. This will be done in the next section.

Theorem 11.5.12. A translation never leaves a pointed pencil invariant. In a
Euclidean geometry a translation leaves every parallel pencil invariant. In
a hyperbolic geometry, a translation along a line t leaves invariant only the
parallel pencil @, and the two asymptotic pencils that contain t.

It is possible to write a double reflection in more than one way as a
composition of two reflections. For example, if I, m, n, p all belong to the
pointed pencil #; and | L m while n L p, then p,p,, = p,p, (Problem A12).
However, our next result says that even if an isometry can be written as a
double reflection in more than one way, all the lines must belong to the
same pencil.

Theorem 11.5.13. If the double reflection ¢ can be written both as ¢ = p,p,,
and as @ = p,p, then I, m, n, and p all belong to the same pencil.

ProOOF. Let 2 be the unique pencil that contains [ and m while 2’ is the
unique pencil that contains n and p. By Theorem 11.4.5, ¢ leaves the center
of 2 invariant and leaves the center of 2’ invariant. If ¢ is a rotation then
the pencils are pointed and their centers must consist of the same single
point. Hence Z = 2.

If ¢ is a translation then the pencils must be parallel pencils ? = 2,
and 2’ = &%, where a is a common perpendicular of / and m while b is a
common perpendicular of n and p. By Theorem 11.5.8, ¢ leaves a and b
invariant. If the geometry is Euclidean then a||b by the same theorem and
P =P, =P =P If the geometry is hyperbolic then a = b and # = 2".

Finally if ¢ is a parallel displacement then 2 and 2’ are their own centers.
Since a parallel displacement leaves only one pencil invariant by Theorem
11.5.11, # = 2'. Hence in all cases Z = 2’ and I, m, n and p all belong to
the same pencil. 0
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Our last result in this section is that the composition of two double
reflections is a double reflection. This will require two preliminary results.
The first gives a condition for when a composition of three refiections is
really a reflection. It illustrates how efficient it is to use the language of
pencils.

Theorem 11.5.14. If I, m, n belong to the same pencil P and if ¢ = pp,.p,
then ¢ = p, for some pe P.

Proor. Let A and B be distinct points on # that are not in the center of £.
Let & and # be the cycles of 2 through 4 and B. Assume that A is not
equivalent to B so that & # %. If p4 = A we define p to be n so that p e 2.
If 4 # A let p be the perpendicular bisector of ApA. In this case, since
@(f) = o/, we have 94 € o/ and so 4 ~ pA. Since p,4 = pA we must have
that p e 2. We claim that ¢ = p, in either case.

Now in either case p,¢ fixes A. Since pe 2, 2 is invariant under p,¢
by Theorem 11.4.5. Hence p,¢ must leave invariant the line n which is the
(unique) line of £ that goes through A. If £ is not a pointed pencil then n
intersects # in exactly one point B (Why?). Since p,¢ leaves both n and #
invariant, it must fix B. On the other hand, if 2 is a pointed pencil #. then
ppo must fix C e n. Either way p,¢ fixes two points of n (4, B or 4, C) and
thus fixes each point of n. Hence p,¢ is either a reflection (which must be
p.) or the identity.

If p,9 = p, then p,p,.p, = ¢ = p,p, so that p,p, = p,, which contradicts
Corollary 11.5.9. Hence p,¢ = id and ¢ = p, 'id = p, where p e 2. O

Note that the above proof is constructive—it tells us how to actually
find p if we are given I, m, and n.

Corollary 11.5.15. If I, m, n belong to the pencil P then there exists p, q € P
such that p,p,, = p,p, and pip = Pgfn-

ProorF. By Theorem 11.5.14, p,pp,, = p, for some p € #. Hence p,p,, =
pitp, = pnp,. Likewise p,p,.p, = p, for some g € 2 so that p;p,, = p,p, ' =

PaPr- [

Theorem 11.5.16. The composition of two double reflections is a double re-
fection or the identity.

ProoF. This insidious proof is based on producing two pencils #’ and 2,
and applying Theorem 11.5.14 twice. 2, is simply the pointed pencil at an
arbitrary point A4 of the line d. 2’ will be constructed below.

Let ¢ = p,p,p.ps be the composition of two double reflections. If b = ¢
then ¢ = p,p, which is a double reflection (or the identity if a = d). Hence
we assume that b # c. Let & be the unique pencil that contains b and c.
Let A be any point on d and let [ be the line of # through A. By Theorem
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11.5.14, p,p.p, = p,, for some me 2. Let ' be any pencil containing a and
m (% is unique if a # m). Let n be a line of # through A4. (n is unique if
P # P,.) Then

O = PaPsPcPs = PalPsPPIPIPG = PaPmP1Pd = (PaPrmPr) PrP1P)-

Since a, m, n € Z, p,p,.p, 1s a reflection across a line of #'. Since n, [, d are
in the pointed pencil 2, p,p,p, is a reflection across a line of #,. Hence ¢
is a double reflection (or the identity if these two reflections are the same).

O

Corollary 11.5.17. The composition of three reflections is not a double
reflection.

Proor. If p,p,0. = p1p,, then p,p,p.0, = p;- By the previous theorem
0aP5P.P 18 @ double reflection. But a double reflection is not a reflection

(Corollary 11.5.9) so that p,p,p. cannot be a double reflection. O

PROBLEM SET 11.5

Part A.

Throughout this set all geometries are assumed to be neutral.
1. Prove Theorem 11.5.1.
2. Prove Theorem 11.5.2.

3. Let! = ,L andm = ,L be two distinct type I lines in 3 so that ¢ = p,p,, is a parallel
displacement. Find a (simple) formula for ¢(x, y) where (x,y) € H.

- 4. Let ¢ = p;p,, be a double reflection and 4 a point with ¢A # A. If n is the per-
pendicular bisector of ApA prove that /, m, n all belong to the same pencil.

5. Let ¢ be a rotation about A and let ¥ be a rotation about B. If A # B prove that
oY # Y.

6. Prove Corollary 11.5.6.

7. Prove the Euclidean part of Theorem 11.5.8.

8. Let ¢ be a translation along [ and let y be a translation along m with [ # m. Prove
that gy = Yo if and only if the geometry is Euclidean.

9. Prove Corollary 11.5.9.

10. Let 2 and 2 be two pencils. By considering cases, describe 2 n 2.
11. Prove Theorem 11.5.12.

12. If,m,n,pe - with! L mand n L p prove that p,p,, = p,p,-
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13. Let I, m, n be the perpendicular bisectors of AB, BC and AC respectively. Prove
that p,p,.p, is a reflection in a line through A.

14. If /, m, n do not belong to the same pencil then prove that p;p.p, is not a reflection.

15. Let ¢ and ¥ be two double reflections associated with the pencil 2 (i.e., ¢ = p,p,,
with |, me P). If A =yYA and P +# &, then prove that ¢ = y.

16. Let ¢ and ¥ be two double reflections and suppose 4 # B. If A = YA and ¢B =
¥ B prove that ¢ = . (Thus double reflections which agree on two distinct points
are equal.)

17. Given AABC let ¢ be the translation along AB such that ¢4 = B, let i be the
translation along BC with YB = C, and let 7 be the translation along AC with
1C = A. Prove that ¢ = ¢ is a rotation about A and that if P # A then
m PA6P = 6(AABC). (This result is a special case of an important result in dif-
ferential geometry called the Gauss-Bonnet Formula. See Millman-Parker [1977].)

11.6 The Classification of Isometries

As mentioned before, we want to classify isometries according to their
geometric properties. A classification theorem will partition the set of iso-
metries of a neutral geometry into a collection of disjoint geometrically
meaningful subsets. A simple but rather usé¢less classification is given by
{identity} U {all other isometries}. The classification which we will even-
tually prove will show that every isometry is either the identity, a reflection,
a rotation, a translation, a parallel displacement, or a glide. (Glides will be
defined later.) Our first approach to the classification theorem will be a
parity check involving the number of reflections needed to write an isometry.
By Corollary 11.3.6 every isometry can be written as a composition of
(three or fewer) reflections.

Definition. An isometry ¢ is an even isometry if it can be written as the
composition of an even number of reflections. ¢ is an odd isometry if it can
be written as a composition of an odd number of reflections.

We wish to prove that an isometry is either even or odd but not both.

Theorem 11.6.1. Every even isometry is either the identity or a double reflection.
Every odd isometry is either a reflection or a product of three reflections. An
isometry cannot be both even and odd.

ProoF. Suppose that ¢ can be written as a composition of k reflections. If
k > 4 then we can use Theorem 11.5.16 to rewrite ¢ as a composition of
k — 2 or k — 4 reflections. This may be repeated until we have ¢ written as
a composition of three or fewer reflections. This will not affect the even-
or oddness of ¢ since k, k — 2, and k — 4 are either all odd or all even. Thus
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every even isometry is either the identity or a double reflection while every
odd isometry is either a reflection or the composition of three reflections.
Since the latter two are neither the identity nor double reflections (Corollary
11.5.9 and Theorem 11.5.17) the theorem is proved. O

The next result is left as Problem Al.

Theorem 11.6.2. If ¢ is an isometry then op0 ' = Pouy:

Definition. An involution is an isometry ¢ # identity such that ¢ = ¢~ *. A
half-turn about the point A is a rotation about A which is also an involution.

Every reflection is an involution. Intuitively a half-turn is a “rotation
through 180 degrees.” We will show in Theorem 11.6.5 that every involution
is either a half-turn or a reflection. This will use the following fact which
says that distinct reflections commute exactly when they are across per-
pendicular lines.

Theorem 11.6.3. If | # m then p,p,, = pnp;if and only if | L m.

PrOOF. Let ¢ = p,,. If | L m then ¢(I) = so that by Theorem 11.6.2, p, =
Poty = PP10 "' = Pnp1py ' Hence pyp,, = ppy- On the other hand, if pp,, =
PmpPy then py = p,ppn " = poq S0 that ¢(!) = L Since [ # m, we must have
I L m by Theorem 11.5.1. O

Theorem 11.6.4. A double reflection ¢ = p,p,, is an involution if and only if
I L m. In this case ¢ is a half-turn. For each point A there is a unique half-turn
0,4 about A.

PROOF. p,p,, is an involution if and only if | # m and p,p,, = (p,p,,)"*. Since
(0iPm) ™ = P07 = pupy

the first assertion follows from Theorem 11.6.3. If | 1 m then p,p,, is a half-
turn about the point where | and m intersect.

For each A we can find lines ! and m which are perpendicular at 4. Hence
there is at least one half-turn p,p,, about A. Suppose that p,p, is also a
half-turn about 4. By Corollary 11.5.15 there is a reflection p; with p,p, =
p1ps- Since p,p, = pip, is a half-turn about 4,/ L sand I n s = {4}. Thus
s=m and p,p,, = pps = Pap,- Hence there is only one half-turn about A.

O

Theorem 11.6.5. Every involution ¢ is either a half-turn or a reflection.

PrOOF. Let 4 be any point with 4 # @A. Since ppA = A, ¢ interchanges
A and ¢ A. Hence ¢ fixes the midpoint M of ApA.
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If M is the only fixed point of ¢ then ¢ is a rotation about M by Corollary
- 11.5.5 and is thus a half-turn since it is an involution. If ¢ also fixes the
point N then ¢ is the reflection in the line MN by Theorem 11.3.4. O

We are now able to determine the invariant pencils of a rotation. The
proof of the following result is left to Problem AS8.

Theorem 11.6.6. A rotation which is not a half-turn does not have any invariant
lines. The invariant lines of a half-turn about A are the lines through A. The
only invariant pencil of a rotation which is not a half~turn is the pointed pencil
associated with the fixed point of the rotation. The invariant pencils of the
half-turn n 4 are Z and all the parallel pencils B, for lines l with A e L.

We already know that every even isometry is either a rotation, a trans-
lation, a parallel displacement, or is the identity. The only isometries we
have not really studied are the triple reflections g, p,,p, when I, m, n do not
belong to the same pencil. The first step will be to identify a special type of
triple reflection called a glide. A glide along a line ! will consist of a trans-
lation along ! followed by a reflection across I. In Figure 11-32 we see the
result of applying a glide several times to a geometric figure. The result
reminds us of the gliding strokes of an ice skater.

e
~ sz\. |

P
Figure 11-32

Definition. A glide along | is an isometry ¢ = p,p,,p, where p,.p, is a transla-
tion along [

Theorem 11.6.7. If ¢ = p,;p,p, is a glide along | then

() P1PmPy = PmPup
(i) ¢ has no fixed points.
(iii) [isthe only invariant line of .
(iv) ¢ interchanges the half planes determined by L.

ProoF.
(i) Since p,,p, is a translation along ! both m and n are perpendicular to

l. Hence by Theorem 11.6.3, p,.p, = p,0,, and p,p; = p,p, so that
Pi1PmPn = PmP1Pn = PmPnPi-
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(1) If @ fixes exactly one point then it is a rotation by Corollary 11.5.5.
But then ¢ is both even and odd which is impossible. If ¢ fixes two points
A and B then it fixes every point on the line AB. ¢ is not the identity so that
by Theorem 11.34, p,p,.p, =@ = p, for some t. Then p,p, = p,p, ! =
p,p, so that by Theorem 11.5.13, I, m, n and ¢ belong to the same pencil.
Since m# n, m L I, and n L [, this pencil must be the parallel pencil 4.
This is impossible because [ ¢ 4, and ¢ cannot have any fixed points.

(iii, iv) Clearly ¢ leaves ! invariant and interchanges the half planes of
. If t # 1 is left invariant and A et then ¢4 # 4 and t = ApA. A ¢! so
that A and @A are on opposite sides of I. Thus ¢ intersects | at a point B.
Since both / and t are invariant, B € | N t so that ¢ B = B. This contradicts
the second part of the theorem so that / must be the only invariant line of
o O

We leave to Problem A9 the determination of which pencils are invariant
under a glide.

Theorem 11.6.8. If r is a line and B ¢ r then p; is a glide.

PRrROOF. Let m be the perpendicular to r through B and let n be the per-
pendicular to m through B as in Figure 11-33. Since B¢ r, n # r and p,p,
is a translation along m while the half-turn 55 is nz = p,p..- Hence

PP P0) = (P:00)Pm = Po(PrPm) = P,MB

and p,np is a glide along m. O

m
Figure 11-33

The next result classifies all odd isometries.

Theorem 11.6.9. A triple reflection @ = p1p,,p, is either a reflection or a
glide but not both.

ProOF. If [, m, n belong to the same pencil then ¢ is a reflection by Theorem
11.5.14. Hence we will assume that I, m, n do not belong to the same pencil
and will show that ¢ is a glide. We do this by rewriting ¢ in a different
manner in Equation (6-3).
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Let A el and let p # | be the line through A that is in the pencil £ deter-
mined by m and n. Then there is a t € 2 with

PoPmPn = Pr- - (6-1)

See Figure 11-34. Let B be the foot of the perpendicular s from A to t. Since
I, p, and s all intersect at A, they all belong to the same pencil £,. Thus
thereis anr € 2, with

P1PpPs = Py- (6-2)

Figure 11-34

Now B¢ r (or else r = AB = 5, and Equation (6-2) implies p, = p, so that
I = p). Thus, using Equations (6-1) and (6-2) we have

e3P = (P1P PSP P pPrmPr) = (PP (PpPmPr) = P1PmPu = @.  (6-3)

Since s Lt and s nt={B}, p,0,=1ng. Because B¢r, ¢ =p,p.p, =
p.1p is a glide by Theorem 11.6.8. Since a reflection has a fixed point and
a glide does not, ¢ cannot be both a glide and a reflection. O

We can now prove our main theorem which classifies all isometries
based upon their invariant sets.

Theorem 11.6.10 (Classification Theorem). Every isometry of a neutral
geometry is exactly one of the following

(1) identity (ii) reflection
(iil) rotation (@iv) translation
(v) parallel displacement (vi) glide

Proor. If ¢ is an isometry then it is either even or odd but not both. If ¢
is even it is the identity or a double reflection. By Corollary 11.5.9 every
double reflection is either a rotation, a translation, or a parallel displacement
but not any two of these. If ¢ is odd then by Theorem 11.6.9, ¢ is either a
reflection or a glide but not both. O
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Our classification theorem was proved by considering isometries as
compositions of reflections. Interesting theorems regarding even isometries
can be found by considering double reflections as the basic building blocks.

Theorem 11.6.11. Anisometry ¢ is a translation if and only if it is the composi-
tion of two distinct half-turns.

PROOF. Let ¢ = n,np be the composition of two half-turns with 4 # B.
Let I = AB, let m be perpendicular to [ at A4, and let n be perpendicular to
at B. Then

© = NN = (PmP)(P1P) = PmPn

so that ¢ is a translation along I.

On the other hand, if ¢ = p,,p, is a translation along I then there are
points A and B with m perpendicular to ! at A and with n perpendicular to
at B. Since m # n we have A # B and ¢ = p,,0, = PmP101Px = N 4N d0

Theorem 11.6.12. In a Euclidean geometry the composition of three half-
turns n Mgnc is a half~turn np. In a hyperbolic geometry n mgnc is a half-turn
if and only if A, B, C are collinear.

Proor. If A, B, C all lie on the line p and if [, m, n are perpendicular to p
at A, B, C then

Naistlc = (010:)(0pPm)PnPp) = P1PmPRPy = PsP)p

for some s L p by Theorem 11.5.14. Let s » p = {D}. Then y #g1c = 1p.

Now assume that A, B, C are not collinear. Let | = AB and let E be the
foot of the perpendlcular m from C to I. The isometry ¢ = 5,5z may be
written, thanks to Theorem 11.6.11, as p,p,, for some n L I Let F be the
point where »n intersects I See Figure 11-35. Let p be the line through C
perpendicular to mso that n¢ = p,,p,. Then

Naflgtlc = ONc = (PuPm N PmPp) = Pnbp-

C

F HE
A] B
n

m

Figure 11-35

Thus for A, B, C noncollinear 5 yg#, will be a half-turn if and only ifn L p.
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Nown LI,1 L mandm L p.If nnp={D} then JCEFD is a Lambert
quadrilateral. If the geometry is Euclidean n L p and n41g%c = pspp = 1p.
Ifthe geometry is hyperbolic the rotation p,p, is not a half-turn since 2 FDC
is not a right angle. If n is divergently parallel to p then p,p, is a translation
and if n is asymptotically parallel to p then p,p, is a parallel displacement.
Hence in the Euclidean case 7,71 is always a half-turn and in the hyper-
bolic case it is a half-turn if and only if A, B, and C are collinear. O

Note that, courtesy of Theorem 11.6.11 every translation is the composi-
tion of half-turns. By Theorems 11.6.11 and 11.6.12 the only rotations in
a Euclidean geometry which are the compositions of half-turns are half-
turns. However, the situation is different in the hyperbolic case.

Theorem 11.6.13. In a hyperbolic geometry, every double reflection is a
composition of half-turns.

ProoF. We know the result is true for translations (Theorem 11.6.11).
Suppose that p,p, is a rotation about C (so a # b). Let a = AC, b = BC,
and [ be the line of enclosure of /. ACB. Set D to be the foot of the perpendic-
ular from C to [ and choose E with C—D—E. Let m be perpendicular to
CDatE. | |a and I|b while m is divergently parallel to both a and b. See
Figure 11-36. Hence p,p,, and p,,p, are translations since divergently par-
allel lines have a common perpendicular. Then p,p, = p.PmPmPs 15 @ COM-
position of two translations and hence a composition of four half-turns.

Figure 11-36

If p.p, is a parallel displacement let X ec, Yed and I = XY. Then
p.p: and p,p, are rotations so that p.p, = p.p,;p,0,4 is @ composition of two
rotations and hence a composition of eight half-turns. ]

ProBLEM SET 11.6

Part A.
Throughout this set all geometries are assumed to be neutral.
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1. Prove Theorem 11.6.2.

. If I'is a line and A ¢ [ then prove that (/) is divergently parallel to [
. Prove that if ¢ is an isometry then ¢n,p ™1 =1,

. If ¢ 1s an isometry prove that ¢p, = p,¢ if and only if o(I) =1

. If ¢ 1s an isometry prove that ¢n, = 5,40 if and only if pA4 = 4.

(=AY N )

. Let ¢ be a rotation about A4. If the line ! is invariant under ¢ prove that ¢ =y,
and Ael

7. If ppupn = PuPmp; PrOve that I, m, n belong to the same pencil.
8. Prove Theorem 11.6.6.
9. If ¢ 1s a glide along [, what are the invariant pencils of ¢?

10. If P # Q how many rotations send P to Q? Half-turns? Translations? Parallel
displacements? Reflections? Glides? (Be careful to distinguish between the Eu-
clidean and hyperbolic cases.)

11. If ¢ and ¥ are glides along I, prove that ¢y is either a translation along ! or the
identity.

12. If ¢ = p;p,,p, prove that ¢? is either a translation or the identity.

13. If ¢ is a glide along | and B e | prove there is a line r with ¢ = p 5.

14. If ¢ is a glide along ! and y is a glide along m with | L m prove that ¢y is a half-turn
if and only if the geometry is Euclidean.

15. Prove Hjelmslev’s Lemma: Let ¢ be a glide along / and let m be a line which is not
invariant under ¢. If P € m then the midpoint of PoP lies on I If Q is any other
point of m, the midpoint of 00 is the same as the midpoint of PeP if and only if
I1lm.

16. Given a glide ¢ how would you find the invariant line / along which ¢ is a glide?

17. Prove Hjelmslev's Theorem: If ¢ is an isometry and m is a line which is not
invariant then there is a line n such that for any P € m, the midpoint of PP is on
n. Furthermore, the midpoints of all such segments PoP with P € m are either
distinct or are all the same.

18. Is Hjelmslev’s Theorem still true if m is an invariant line of ¢?

Part B. “Prove” may mean “find a counterexample”.
19. Prove that any translation is the composition of two rotations.
20. Prove that any translation is the composition of two glides.

21. In a hyperbolic geometry, prove that any translation is the composition of two
parallel displacements.

22. In a hyperbolic geometry prove that any rotation is the composition of two
parallel displacements.
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23. In a hyperbolic geometry prove that any rotation is the composition of two
translations.

24. In a hyperbolic geometry prove that any parallel displacement is the composition
of two rotations. '

25. In a hyperbolic geometry prove that any parallel displacement is the composition
of two translations.

26. In a hyperbolic geometry prove that any even isometry is the composition of
three half-turns.

27. In a Euclidean geometry show that a rotation is never the composition of two
translations.

11.7 The Isometry Group

We shall see in this section that the collection of all isometries of a metric
geometry forms a special algebraic structure called a group. Groups are
a major object of study in a course in abstract algebra. (For example, see
Herstein [1990] or McCoy-Janusz [1987].) We shall assume in this section
that the reader has some familiarity with the subject and will give only a few
introductory words about the theory of groups. This language will then be
applied to the group of isometries of a neutral geometry.

Definition. A group {G, -} is a set G together with an operation, -, for combin-
ing elements of G such that

() if g, he G then g -he G;
() ifg, h, ke Gthen(g-h)- k=g (h-k);
(ii1) there is an element e € G, called the identity, such that e g =¢g-e =
g for every g € G;
{iv) for each g € G there is an element g ™! € G, called an inverse of g, such
thatg-g =g !l -g=e

Among the first results in group theory are the facts that each group has
exactly one identity element and each element has a unique inverse. Further-
more, in order to show that A is the inverse of g it is only necessary to show
that gh = e (and not hg = e also). Simple examples of groups are given by
the integers under addition (¢ =0 and inverse means negative) and the
positive real numbers under multiplication (¢ = 1 and inverse means re-
ciprocal). Both of these examples have the property that they are commu-
tative: the order two elements are combined does not matter. This is not
typical of groups in general.

Example 11.7.1. Show that the set SL(2,R) of 2 x 2 matrices with real
entries and determinant +1 form a group under matrix multiplication.
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b
Sorution. Recall that the product of two matrices A = (Z d> and B =

<e f) is given by
g h

B ae + bg af + bh
“\ce+dg cf +dn)

If det(A) = (ad — bc) = 1 and det(B) = (eh — fg) = 1 then a straightforward
calculation shows that

det(AB) = (ae + bg)(cf + dh) ~ (af + bh)(ce + dg)
=(ad —bc)eh — fg)=1-1= 1.

Thus the product of two elements of SL(2,R) is in SL(2,R) and axiom (i)
is satisfied.
A straightforward but tedious calculation shows that (4B)C = A(BC)

" . . . . 1 0\ .
so that axiom (ii) is satisfied. The identity element is I = (0 1). Finally

the inverse of (a b> is ( d —b) because
c d —c a

a b d —-b _f(ad~bc —ab+ab\ (1 O _
c dN\—c al \ed—cd —bc+ad) \O 1/

01

2 0
andB=< 1). a
0 3

The group SL(2,R) will be very important when we study the collection
of isometries of the Poincaré Plane s#. We will see that it is essentially the
set of even isometries of 5.

. . 11
Note that in this example, 4B need not equal BA4; e.g, let 4 =( )

Theorem 11.7.2. The collection of all collineations of an incidence geometry
with itself forms a group under composition of functions.

PrOOF. Let ¢: - & and y:¥ — % be collineations. Then @oy is a
collineation by Problem A19 of Section 11.1. Thus axiom (i) is satisfied.

The composition of functions is associative so that axiom (ii) is satisfied.
The identity element is given by the identity function

d:¥—-% by 1d(P)=P forallPe¥,

which is clearly a collineation.

If ¢ is a collineation let ¢ ~! denote the inverse of the bijection ¢. By
Problem A4 of Section 11.1, ¢! is also a collineation. Hence the set of
collineations of & forms a group. O

We leave the proof of the next result as Problem Al.
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Theorem 11.7.3. If ¥ = {¥,¥,d} is a metric geometry then the set S(%)
of all bijections of & which preserve distance forms a group under composition
of functions. In particular, the set of isometries of a neutral geometry forms
a group under composition. '

Definition. The isometry group of a neutral geometry A" = {¥,.¥,d,m} is
the group #(A") of all isometries of A"

The isometry group of a neutral geometry is a group in its own right
and also a subset of the group of all collineations. This arrangement has a

formal name.

Definition. If {G, -} is a group and if H is a subset of G, then H is a subgroup
of Gif {H,-} is a group.

Theorem 11.7.4. The set of all even isometries of a neutral geometry N
is a subgroup of the isometry group F(N).

Theorem 11.7.5. Let & be a pencil in a neutral geometry and set
D = {pp|l and m are in P}.
Then 9 is a subgroup of the isometry group and is commutative.

Proor. Suppose ¢ = p;p,, and ¥ = p,p, belong to 2. Then by Corollary

11.5.15 there is a te & with ¥ = p,p, = p,p,- Hence oy = p;p,.p,p, =
P1PmPmPr = Pi1P: € D. Hence axiom (i) is satisfied. Axiom (ii) is trivial and
id=p;p,e 2 if le P so axiom (iii) is satisfied.

fo=pp,eDthenp™ =p ' p ! = p,.p, € D so that ¢ has an inverse
in 2. Hence 2 is a subgroup of the isometry group.

Finally we must show that if ¢, Y € 2 then oy = Y. Let ¢ = p,p,,
and ¥ = p,p,. By Corollary 11.5.15 there are lines 5, t € # with = p,p, =
PmPrs Y@ = PsPiP1Pm = PsPm- Thus since Y~ = (pnp) ™' = p,pm,

Yo = ppm = POV ™ m = PPy Pm)Pm
= PiP: = P1PmPmPr = QY.
Hence ! is commutative. 0

By taking different kinds of pencils in Theorem 11.7.5 we get subgroups of
rotations, translations or parallel displacements.

Theorem 11.7.6. In a Euclidean geometry the set of all translations together
with the identity form a commutative subgroup of the isometry group.

The statement of Theorem 11.7.6 needs the words “together with the
identity” because by definition the identity is not a iranslation. However, it
is the product of two reflections: Id = p,p;.
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Definition. Let S be a subset of a group G and let H be a subgroup of G
which contains S. Then H is generated by S if every subgroup of G which
contains S also contains H. (This is the same as saying that every element of
H can be written as a product of elements of S or their inverses.)

Theorem 11.7.7. In a hyperbolic geometry the subgroup H of even isometries
is generated by the set of half-turns.

Proor. By Theorem 11.6.13 every double reflection is a product of half-turns,
as is the identity. Hence H is generated by the set of half-turns. O

There are several other special sets that generate the even isometries.
See Problems A6, A7, and AS.

The isometry group of a neutral geometry is very large. The classification
theorem partitions it into subsets (not subgroups) according to certain
geometric properties. These geometric properties are reflected as certain
algebraic properties involving the order of a group element.

Definition. If {G,-} is a group and g € G then g has finite order if g" = e
for some positive integer n. In this case the order of g is the smallest positive
integer r such that g" = e.

Clearly the identity has order 1 and every involution has order 2. If
n is an integer greater than 2 then it is possible to find a rotation with order
n (Problem A9). However, not every rotation has finite order (Problem
A10). The next result, whose proof is left to Problem All, says that if an
isometry ¢ has order n > 2 then ¢ must be a rotation.

Theorem 11.7.8. In a neutral geometry if ¢ is either a translation, a glide,
or a parallel displacement then ¢ does not have finite order.

Just as two geometries are equivalent if they are isometric, there is a
notion of equivalence of groups. This is given by saying that there is a
bijection that preserves the group operation.

Definition. Two groups {G,-} and {G’, *} are isomorphic if there is a bijec-
tion f:G — G’ such that f(g, ' g.) = f(g,) * f(g,) for every two elements
91,92 of G.

In the last section we will determine the isometry groups of & and .
Because of the next result we will then know the (abstract) structure of the
isometry group of any neutral geometry.

Theorem 11.7.9. Let 4, &, be two neutral geometries and let ¢ be an isometry
from A to N'. Then the isometry groups of N, and A, are isomorphic.
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Proor. If ¢ : &, — &, is an isometry we define a function f: (A7) - F(A,)
by

flo) =pop™! ifae F(AN).

Note first that f(o) € #(A") because it is the composition of isometries and
Sf(o): &, - A,. We must show that f is a bijection and that f(o,0,) =
flo)f(o,) forall oy, o, € B(A).

If f(6,) = f(o,) then @0, ' = @po,0 ! so that

0~ Npo,0” Yo =0 Hpo0™ N or 6, =o0,.

Hence f is injective.

If te #(A),) let 6 = ¢~ '1¢p. 0 € F(A) because it is the composition of
isometries and o: 4] — A. Clearly f(o) =1 so that f is surjective and
hence a bijection.

Finally, if 6,, 6, € #(A4) then

floyo,) = (P¢7102(P_’1 = 00,0 'po0 ™!
= fle.)f (02}

Hence #(.A4) is isomorphic to #(A5). O

ProBLEM SET 11.7
Part A,
1. Prove Theorem 11.7.3.
2. Prove Theorem 11.7.4.
3. Prove Theorem 11.7.6.
4

. Prove that the isometry group of a neutral geometry is generated by the set of
reflections.

5. Prove that the isometry group of a neutral geometry is generated by the set of
glides.

6. Prove that the subgroup of even isometries of a neutral geometry is generated by
the set of rotations.

7. Prove that the subgroup of even isometries of a hyperbolic geometry is generated
by the set of translations.

8. Prove that the subgroup of even isometries of a hyperbolic geometry is generated
by the set of parallel displacements.

9. Let 4 be a point in a neutral geometry and let n be an integer greater than 2. Find
a rotation about A whose order is n.

10. Let A be a point in a neutral geometry. Find a rotation about A which does not
have finite order.
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11. Prove Theorem 11.7.8.
12. If &, and &, are Euclidean geometries prove that #(4)) is isomorphic to 4(&,).

Part B. “Prove” may mean “find a counterexample”.

13. If N is a subgroup of G then N is a nermal subgroup if gng ™" € N forevery g € G
and n € N. Prove that the subgroup of even isometries of a neutral geometry is a
normal subgroup.

14. Prove that the subgroup of even isometries of a neutral geometry is generated by
the set of translations.

15. A transformation of a neutral geometry is a collineation which preserves between-
ness, segment congruence, and angle congruence. Prove that the set of trans-
formations of a neutral geometry forms a group. Is it the same as the isometry
group?

The remaining problems completely determine the finite subgroups of the isometry
group. A group is finite if it has only a finite number of elements. A group is eyclic if it
is generated by a single element g. (In this case the group consists just of powers, positive
and negative, of g.) A finite group is a dihedral group if it is generated by two elements
¢ and h such that

(1) g has finite order n for some n
(1) h has order 2
(i) gh = hg"~*.
16. Prove that a finite group of isometries does not contain translations, parallel
displacements, or glides.

17. If a finite group of isometries contains more than one rotation, they all have the
same center. (Hint: Suppose that ¢ is a rotation about A and ¥ is a rotation
about B with A # B. Let | = A B, show that y "1 'Y can be written as (p,p,p,,)*
and use Problem A12 of Section 11.6.)

18. If G is a finite group of isometries with more than 2 elements, then prove there is
a unique point fixed by each of the isometries in G.

19. If a finite group G of isometries does not contain any reflections then prove G is a
cyclic group.

20. If a finite group G of isometries contains a reflection then prove that G is a
dihedral group.

11.8 The SAS Axiom in J#

In this section we shall finally verify that the Poincaré Plane # =
{H, %y, dy,my} actually satisfies the Side-Angle-Side Axiom. Because of
Theorem 11.3.7, we may prove that 5 is a neutral geometry by showing that
there is a mirror for every line [ € &
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The first step in this program is to introduce an alternative description of
H which comes from viewing R? as the set C of complex numbers. The point
(x, y) € R? may be identified with z = x + iy € C, so that

H={z=x+iyeC|y>0}

That is, we view H as the set of complex numbers with positive imaginary
part. This observation is the basis for a great deal of advanced mathematics
(e.g., geometric function theory, Riemann surface theory, eigenvalue problems
for the Laplace operator among others) because it blends complex variables
and geometry. We shall describe below the notion of a fractional linear
transformation from the theory of complex functions. (The only prerequisite
for the material that follows is how to add, subtract, multiply and divide
complex numbers.)

Definition. A real positive fractional linear transformation (which we abbre-
viate as FLT) is a function @:H - H of the form

()_az+b
plz T cz+d
where a, b, ¢, de R and ad — bc > 0.

Note that the defining equation gives ¢(z) as a complex number. In
Problem Al you will show that the imaginary part of ¢(z) is positive if
ze H so that ¢(H) = H. One of our goals is to show that an FLT is an
isometry of H. In fact it will turn out that the set of FLT’s is precisely the set
of even isometries. To this end we set up a correspondence between matrices
and FLT’s.

a b . . .
Definition. If ¢ = ( d) is a matrix with a positive determinant, then the
c

FLT associated with @ is
az+b
cz+d

o(z) =

If we just say that ¢ is the FLT associated with the matrix @ then it is
assumed that det(®) > 0. Note that the FLT associated with the identity
matrix I is the identity FLT, ¢(z) = z. Every 2 x 2 matrix of positive deter-
minant determines an FLT. On the other hand, it is possible that two different
matrices give the same FLT. We will see when this happens in Proposition
11.8.3. First we need a result whose proof is left to Problem A2.

Proposition 11.8.1. If ¢ and Y are the FLT’s associated with the matrices
@ and ¥ then @  \ is the FLT associated with the product matrix @Y.

Proposition 11.8.2. If ¢:H — H is an FLT then ¢ is a bijection.
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PrROOF. Let ¢ be associated with the matrix @. Since det @ > 0, ¢ has an
inverse ® !, whose determinant is also positive. Let  be the FLT determined
by @71, Since 1@ = | = &P, an application of Proposition 11.8.1 shows
that both ¢ and ¢y are the identity FLT. Hence ¥ is the inverse of ¢, and
@ is a bijection. O

Proposition 11.8.3. Let 1 # 0 and let ¢ and  be the FLT’s associated with ®
and V. If ¥ = A® then ¢ = . On the other hand, if ® and ¥ determine the same
FLT then ¥ = A® for some nonzero real number .

.. a b Aa Ab
ProoF. First, if @ = (C d> then ¥ = (Ac Ad) so that

laz+ b _az+b
ez + Ad cz+d

Ylz) = o(2)

and y = @.
Next, suppose that the identity FLT ¢(z) = zis associated with the matrix

a b
= <c d> so that

Thus az + b = ¢z? + dz or
cz2+d—az—b=0 forallzeH. (8-1)

az+ b

——— =1z forallze H.
cz+d

Since the quadratic polynomial equation in Equation (8-1) has more than
two solutions (in fact, all of M), its coefficients must all be zero: ¢ =0,
d—a=0,—-b=0.Hencea=d=Jforsome land b=c=0. Thus

10 10
¢=<0 )v>=l(o 1)"”

and A # 0 since A% = det @ # 0.

Finally suppose that both ¢ and ¥ determine the same FLT ¢. Then by
Proposition 11.8.1, ¥® ! determines the identity FLT, pp ~!. Hence by the
second part of the proof,

Yo 1=/ or ¥=Ai9 forsomel #0. J

The value of this result is that it allows us to “normalize” the matrix @

when desired either by assuming that det(®) = 1 (i.e, let A = /(det ¢}~ 1),
that a particular entry of @ is >0 (A = t1), or that a particular nonzero
entry of @ is 1 (A = reciprocal of that entry).

Definition. A special translation is an FLT 7 whose associated matrix may be

b
written as (:)n 1) where m > 0. In this case ©(z) = mz + b.
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. . {0 -1
The special inversion is the FLT ¢ whose associated matrix is (1 0) SO

that o(z) = —1/z.

cos@® —sinf
sin 0 cos @

A special rotation is an FLT {; whose associated matrix is (

for some 0 € R.

We will eventually see that a special translation is a translation (in the
sense of Section 11.5) if m # 1 and is a parallel displacement if m =1 and
b # 0. ¢ will turn out to be the half-turn about i & (0,1) and {; will be a
rotation about i. For convenience we may omit the word “special” in this
section.

Proposition 11.8.4. Every FLT is either a (special) translation or can be written
as a composition 1,61,, where t, and 1, are (special) translations and o is the
(special) inversion. :

i we may assume that

¢ > 0 by Proposition 11.8.3. If ¢ = 0 we can assume that d = 1 by the same
result and so ¢ is a translation (possibly the identity).
If ¢ > 0 then by matrix multiplication we have

ad — bc
c 0 —1\/c d\ fa b

1 o/\0o 1) \c 4/
Thus we may let 7, be the FLT determined by

0 1
ad — bc
c

0

Proor. If the FLT ¢ corresponds to the matrix <Z

olR

ol

—

d
and 7, the FLT determined by <S 1). O

This proposition is useful because it allows us to show that an FLT is a
collineation by considering only translations and the special inversion. The
first part of this program is a routine calculation and is left to Problem A4.

Proposition 11.8.5.
(i) If 7 is the (special) translation 1(z) = mz + b then
T(aL) = ma+bL
T(ch) = mc +bLmr
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(i) If o is the (special) inversion then o(,L) = (L; if a # 0, o(,L) = ,L with
d=—1/2a, s=|d|; if c# £r, o(.L,)=,L, with d=c/(r*—c?), s=|r/(r* —c?)];
0(+,L,)= L witha=—1/2r.

(iii) A special translation or special inversion is a collineation.

Proposition 11.8.6. An FLT ¢ is a collineation.

PRrOOF. If ¢ is a translation then the result follows from Proposition 11.8.5.
If ¢ is not a translation then ¢ = t,67,. By Proposition 11.8.5,7,,7, and ¢
are collineations, so their composition is also a collineation. O

Our next step is to show an FLT preserves distance. This will use the
following lemma whose proof is left to Problem AS.

Lemma 11.8.7. If ¢:% — & is a collineation of a metric geometry then ¢
preserves distance if and only if for each line | there is a ruler f:¢(l) = R such
that f - @:1—> R is a ruler for .

Proposition 11.8.8. If ¢ is an FLT then ¢ preserves distance.

PROOF.
Case 1. ¢ is a special translation. Suppose ¢(z) = mz + b and | = ,L so
that ¢(l) = ,.,+sL. The standard ruler for ¢(I) is f(x, y) = In y. Then

(f o @)x,y) = f(mx + b,my)=In(my) =Ilny + Inm.

S o @ is certainly a ruler for I
Likewise if | = .L, so that ¢(l) = .. +3L., and if f is the standard ruler for
¢(l) then

mx+b~(mc+b)+mr>_ln<x—c+r)

(f © @)(x, ) = f(mx + b, my) =1n<
my y

and f o ¢ is a ruler for [.

Case 2. ¢ is the special inversion o. The proof in this case proceeds along
similar lines and considers four subcases (as in Proposition 11.8.5(ii)). In each
case choose f to be the standard ruler for ¢(!). The calculations are messy
but not difficult. We will consider only the case where | = ,L with a # 0 and
leave the rest to Problem BS.

¢(,L) = 4Ly where d = —1/2a and s = |d| The standard ruler for ,L, is
f(x,y) = In((x — d + s)/y). Hence, since

f(_—* Y
o(x,y) <x2+y2,x2+y2),
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we have
. y —-lexyz —d+s
o = :1
(feo)x,y) f(x2+y2,x2 _+_y2) n
x? + y?
—a 1 1 ) 1 1
‘a2+y2+ﬂ+’2[ a+(a +y)(2a+2a
=1In =In
y y
a? -+-y2
ln<X>=1ny—lna ifa>0
a

1n<'7“> ~In(—a)—Iny ifa<O0.

In either case (a@ > 0,a < 0) f < ¢ is a ruler for ,L.

Case 3. ¢ = 1407,. By the first two cases and Lemma 11.8.7, translations
and the inversion preserve distance. Hence so do compositions of them and
in particular ¢ = 1,01, preserves distance. |

Now we want to show that an FLT preserves angle measure. In this
case we will not use the factorization ¢ = 7,07, of an arbitrary FLT but
will exploit the homogeneity of H. By this we mean that we will prove that
FLT’s preserve the measure of angles whose vertex.is at B =(0,1)—i and
then translate, via a special translation, the general case to this case.

Recall that if /7 ABC is an angle in 5# then

- <TBA’ TBC>
my( L ABC) = cos 1(——%
" [ Toall[| el

where the tangent vector Ty, of the ray BA is defined by

©,y,~yp ifAB=,L
Tsa=< (yg,c—xp ifAB=_L andxz < x,
—(yp, ¢ — xp) if AB= L, and x> x,.

Proposition 11.8.9. If © is a(special) translation then T preserves angle measure.

Proor. First note that if T, = Tp,/|| T5,/| then
my(L ABC) = cos_l(<TBA’ TBC))'
We claim that if 7(z) = mz + b then Tp, = T.p.4.
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Case 1. AB = ,L with A = (a,y,) and B = (a, y5). Then

1A= (ma+ b,my,) and 1B= (ma+ b, myg)
so that

T.pa=0,my, —myy) and T, , = <0, M) .
|}’A - )’BI

since m > 0.
Case 2. AB = L,. Here 1(.L,) = . .,L,, so that by a routine calculation

T.p.4 = L(myg, mc + b — (mxy + b)) = £(myg, mc — mxy)
where the sign is the same as the sign of
(mx, + ¢) — (mxg + c) = m(x,4 — Xp).

Since Ty, = +(yg, ¢ — xg) where the sign is that of x, — x5, and since
m > 0, we see that T 5., = Ty,. Thus

mH( LTATBTC) = Cos~ 1(<T:B:A’ 7.:‘:B:C>
= cos™*((T'g4, Tac) = my(L ABC)

and 1 preserves angle measurement. ]

Proposition 11.8.10. If ¢ ={, is a (special) rotation and B = (0,1) e H,
then mg(/. ABC) = myx(L ¢ A@B@C).

ProoF. Since B = (0, 1) we have

©0,y,—1) ifAdB=,L
Tea=4 (1,0 ifAB =L, 0<x,
—(1,0) ifAB= L, 0>x,.

Since the vector T, has length 1, it can be written as T, = (sin o, cos )
where

w=180 if , va<l1
0<w<180 and cotw=c ifAB=_L, 0<x,
180 <w <360 and cotw=c ifAB=,L, 0>x,

Case I. ¢ = {, = id. The proof in this case is immediate.
Case2. ¢ ={go=0. If A=(0,y)e L =AB then @A =(0,1/y) and
Tpy= —Typ,u. f A=(x,y) e L, =4B then as noted above

Tsa = t(1,c¢) where the sign is that of x.
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Furthermore

—X y

A= y———= e L.
¢ (x + 2 x2 + )2 )
so that
Lo —-Xx
T,p,4 = t(1,¢) where thesignis that of x,,, = 21
Hence T,p,4 = — T4 and Tqu»A =—Tpa
Since in all cases T¢B¢A = — Ty, is clear that ¢ preserves the measure

of angles with vertex Bif ¢ = {4y = 0.
Case 3.9 = {, where cos 0sin 6 # 0. By Problem A6, ¢ sends oL to

L, where ¢ = cot 20 and r = |csc 26|. The tangent to L, at B=(0, 1) is
T = +(1, cot 20). Let D = (0, 2) so that Ty, = (0, 1). Now
3 sin 6 cos 6 2
¢(0.2)= (4 sin® 6 + cos® 6’ 4 sin § + cos? 6)'
When (3 sin 6 cos 9)/(4 sin? 0 + cos? 8) > 0 we need to take the plus sign
for T:

T

@

sop = (1, cot 26).
In this case sin 6 cos 6 > 0 so that sin 26 > 0 and
i,gq,,, = (sin 26, cos 26).
When sin 6 cos § < 0 we have
T,,0 = —(1,cot 26) and Twwn = (sin'26, cos 20).

Hence either way T, »Bep = (8in 20, cos 20).
Now suppose that BA is a ray with Ty, = (sin 24, cos 2a) so that BA is
the image of BD under {,. Then

Lo(BA) = 4La(BD) = {y.,(BD)
which has tangent (sin 2(8 + ), cos 2(9 + a)). Hence the ray with T=
(sin 24, cos 2a) is sent to the ray with tangent (sin 2(8 + ), cos 2(6 + a)). If
Tpe = (sin 28, cos 28) then
m(L ¢ApB@C) = cos({(sin 2(6 + a), cos 2(8 + ),
(sin 2(8 + B),cos 2(6 + B))))

= cos™!(sin 2(6 + @) sin 2(8 + B) + cos 2(0 + a) cos 2(0 + B))

=cos (cos 2(0 + . — 0 — B))

= cos !(cos 2(x — B))

= cos™1({(sin 2a, cos 2a), (sin 28, cos 28)))

= m(, ABC).

Hence ¢ = {, preserves angle measure of angles with vertex at B=(0,1). O
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Proposition 11.8.11. If | is a line in # and B = (p,q) € I, then there is a trans-
lation 1 that sends B to (0,1) (and 1 to a line through (0, 1)).

ProoF. Let 1 be the FLT associated with the matrix
/9 —p/q
< o 1) D

Proposition 11.8.12. If an FLT ¢ fixes the point B = (0,1) then  is a special
rotation.

b
Proor. Since (0, 1) < i, (i) = i. Ify is associated with the matrix ¥ = C d>

then (i) = i implies that

m_+b=i or ai+b=—c+di
ci+d
a b
Hence a=d and b= —c so that ¥ = b a for some a and b. By
Proposition 11.8.3 we may assume that det(¥) = a* + b* =1 so that a =
cos B, b = —sin 0 for some 6 and ¥ is a special rotation. 0

Proposition 11.8.13. If ¢ is any FLT then ¢ preserves angle measure.

ProOF. Let £ ABC be given and let T be a translation sending B to (0,1)
while 7’ is a translation sending ¢B to (0, 1). (r and 7’ exist by Proposition
11.8.11.) Then = U@t~ ! is an FLT sending (0,1) to (0,1). Hence it is a
special rotation by Proposition 11.8.12 and preserves the measure of angles
with vertex at (0, 1). Therefore

my(L ABC) = myx( /L 1A1B1C)
= my( LYt AYTBY1C)
=my(L ¢A@BpC)
since ¢ = 7'~ 1. O
Recall that a mirror for the line [ is a collineation which preserves distance
and angle measure, fixes each point of I, and interchanges the half planes

determined by . We will show that # is a neutral geometry by finding a
mirror for oL and transporting it to any other line by way of FLTs.

Definition. The special reflection p is the function p:H - H by p(x,y) =
(_xry) (i'e-a P(z) = _E)

Proposition 11.8.14. p is a mirror for (L.
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PRrOOF.

Step 1. p is a bijection since p~! = p. p sends ,L to _,L and L, to _ L,
so that p is a collineation.

Step 2. We must show that p preserves distance. Let ! be a line and f
be the standard ruler for the line p(I). An easy calculation shows that f - p
is the standard ruler for [if / is a type I line and is the negative of the standard
ruler for I if I is a type II line. Hence by Lemma 11.8.7, p preserves distance.

Step 3. We must show that p preserves angle measure. If the ray AB
has tangent T4 = (4, v) then T, 4,8 = (—u,v). Since {(,v), (r,5)> = {(—u,v),

(—r,5)> and ||(u, v)]| = ||(—u,v)||, the result follows from the definition of my.
Step 4. p certainly interchanges the half planes of oL and leaves each
point of oL fixed. Hence p is a mirror. Qg

The next result will be useful in transporting mirrors from one line to
another. It is also important in its own rlght because it is the formal state-
ment that »# is homogeneous.

Proposition 11.8.15. If [ and m are lines in # then there is an FLT ¢ with
o) =

ProOOF. We will show there is an FLT ¢, sending (L to I Then ¢,¢,* will
be the desired FLT.

If | = L define @, to be the translation ¢(z) =z +a. If | = L, let ¢, =
7{,s where 7 is the translation z(z) = rz + ¢. The special rotation {, s sends
oL to oLy while 7 sends oL, to .L,. In both cases ¢, sends (L to L. O

Proposition 11.8.16. % = {H, %, dy, my} satisfies the Mirror Axiom and is
thus a neutral geometry.

PROOF. Let [ be any line in &, let ¢, be an FLT that sends ,L to [, and let p
be the special reflection across L. Set

P = @ipp; !

We claim that p; is the desired mirror. Clearly p, is a collineation, preserves
distance, and preserves angle measure since ¢,, p, and ¢;”! all do.

Suppose that A¢ I Then ¢; 4 ¢ ,L so that ¢, !4 and pp;'4 are on
opposite sides of ,L.

Thus ¢; *App; 1A intersects (L atapoint Band Ap,A = @0, 'Ap,pe; T4
intersects | = ¢,(,L) at ¢,B. Hence A and p,4 are on opposite sides of [
and p, interchanges the half planes of

If Aelthen ¢ 'A € L so that pp; 1A = ¢; 'A and p,A = @,pp; A =
0,9 'A = A. Hence p, fixes each point of I. Thus p, is a mirror. Because
the Mirror Axiom is equivalent to SAS (Theorem 11.3.7) 5 is a neutral
geometry. [}
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PrOBLEM SET 11.8
Part A.
1. Prove ¢(H) c H if ¢ is an FLT.
. Prove Proposition 11.8.1.

. Prove that (0, 1) is a fixed point of {, for each 6.

2
3
4. Prove Proposition 11.8.5.
S. Prove Lemma 11.8.7.

6

. Prove that py(,L) = .L, where ¢ = cot 26 and r = |csc 20| if 9 # 90n for any
integer n.

7. Prove that the special reflection p is not an FLT. (Hence the collecton of FLT’s is
not the entire isometry group of )

Part B.
8. Complete the proof of case 2 in Proposition 11.8.8.

9. Let G = GL*{(2, R) be the group of 2 x 2 matrices with real entries and positive
determinants. Let N = {4 € G|4 = Al for some A # 0}.
a. Prove that N is a normal subgroup of G.
b. Prove that the set of all FLT’s forms a group F under composition.
¢. Prove that F is isomorphic to the quotient group G/N. (G/N is called the
special projective linear group and is denoted PSL(2, R).)

10. Show that you can replace G in Problem B9 with SL(2, R) and obtain the same
result. That is, let N' = {4 € SL(2, R)|4 = Al for some 4 # 0} = {+1} and prove
F is isomorphic to SL{2, R)/N".

11.9 The Isometry Groups of & and #

In this final section we shall explicitly determine the isometry groups of
our two basic models—the Euclidean Plane & = {RZ,_?E,dE,mE} and the
Poincaré Plane ¢ = {H, %y, dy, my}. In the Euclidean Plane we will show
that the isometry group is almost the product of two groups. In particular,
every isometry can be written as a rotation about (0, 0) (or possibly the
identity) followed by either reflection across the y-axis (or the identity), and
then followed by a translation (or the identity). In the Poincaré Plane every
isometry will either be an FLT or an FLT preceded by the special reflection.

The keys to determining the two isometry groups will be the classification
theorem (Theorem 11.6.10), the fixed point properties of the various types
of isometries, and the following observation.
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Theorem 11.9.1. If A, B, C, D are points in a neutral geometry and AB ~
CD then there are exactly two isometries which send A to C and B to D. One
of these is even and the other odd.

ProoF. By Problem Al there is at least one such isometry ¢. If [ = CD,
then p,p is a second (different) isometry sending A4, B to C, D. Note one of
@, p;@ is even and the other is odd.

Now suppose ¥ is any isometry sending A and B to C and D. Then o~
fixes both C and D. By Theorem 11.3.4, either Yo~ ! = identity (so that
¥ = @) or Yo~ = p, (so that ¥ = p,p). Hence ¢ and p, are the only iso-
metries sending 4 and B to C and D. O

1

We first consider the Euclidean Plane and identify all translations and
all rotations about (0, 0).

Definition. If 4 € R?, then the Euclidean translation by 4 is the function
7,:R? - R? given by \
T(P)=P+ A.

Proposition 11.9.2. An isometry ¢:R?> - R? of the Euclidean Plane is a
translation if and only if it is a Euclidean translation t, for some A # (0,0).

PRrOOF. Since
dg(t4P,t,Q) = “(P +A)— (@ + A)H = “P - Q“ = dg(P,Q)

7, is an isometry for each 4 € R2. If 4 # (0,0) then 7, has no fixed points
and is either a glide or a translation. If O = (0,0) then every line parallel
to OA4 is invariant under 7, so that t, cannot be a glide. (Glides have only
one invariant line by Theorem 11.6.7.) Thus if 4 # (0,0), t4 is a translation.

Let ¢ be a translation along a line [. Let I’ be the unique line through
O parallel to . I’ is invariant so that 4 = @O € I'. We will show that ¢ =
Tq.

Since Ael’, pA € !’ also. Furthermore

d5(0, A) = dg(@0, pA) = dg(A4,9A) = dg(pA, A).

Because 0, A, and @A are collinear, either O = ¢4 or O—A—¢A. If pA =
O then the translation @2 has a fixed point, which is impossible. Thus
O—A—@A. Since dg(0, A) = dg(A, pA) this implies that o4 = 4 + A.

Thus the two translations ¢ and 7, send O to 4 and 4 to A + A. Since
both ¢ and t, are even (they are translations) Theorem 11.9.1 says they are
equal: ¢ =1,. O

Definition. If 8 is a real number, then the special orthogonal transformation by
6 is the function ¢,: R? — R? given by

@g(x, y) = (x cos 8 — ysin 8, x sin § + y cos ).
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If we write elements of R? as column vectors then ¢, can be given by
matrix multiplication

C o x cos@ —sinf\/x
= 9-1
o (y) (sin 0 cos 6) <y> ©-1)
We shall say that the matrix on the right hand side of Equation (9-1)
represents the special orthogonal transformation by 6, ¢,. By Problem A2,
¢, is an 1sometry for each 8. Note that ¢, = @g,160- (We are assuming the

standard extension of cos(z) and sin(t) to all values of ¢, not just those
between 0 and 180.) The next result tells us that ¢, is a rotation.

Proposition 11.9.3. An isometry ¢:R2 — R? is a rotation about O if and only
if @ = g for some 0 which is not a multiple of 360.

PrOOF. A point (x, y) is fixed by ¢, if and only if

xcosf —ysinf=x
xsinf+ycosf =y
or

{x(cos §—-1)—ysinf0=0 9.2

xsin 8+ y(cos@ —1)=0
Equations (9-2) have a unique solution (x, y) if and only if
0# (cos @ — 1)+ sin2 0 =cos? @ —2cos 6 + 1 +sin? 0
=2—2cos¥.
Therefore ¢4 has a unique fixed point if and only if 2 cos € #* 2, which occurs
if and only if 8 is not a multiple of 360. Thus @y 1s a rotation if 0 is not a
multiple of 360.

On the other hand, let ¢ be a rotation about O and let ¢(1,0) = (g, b).
Note a # 1.

1 = dg((0,0), (1,0)) = dg(9(0,0), ©(1,0)) = dg((0,0), (a, b)).
Hence a? + b? = 1. Let § be a number such that a = cos 8 and b = sin 6.

Since a # 1, 6 is not a multiple of 360. The two rotations ¢ and ¢, are both
even and agree on (0,0) and (1,0). Hence ¢ = ¢, by Theorem 11.9.1. []

A matrix representing a special orthogonal transformation (Equation
(9-1)) has the property that its inverse is its transpose:

cosf —sin@\' [ cos6 sin6
sin 0 cosf/  \—sinf cos@
Any matrix with the property that 47! = A' is called an orthogonal matrix.

If A=! = A' then I = AA' so that
1 = det(l) = det(44") = det(4)det(4") = det(d)det(A).
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Thus det 4 = +1. In Problem A3 you will show that the only orthogonal
2 x 2 matrices with determinant +1 are the special orthogonal matrices.
We now consider those with determinant — 1.

-1 0 '
Let R be the matrixR=< 0 1.Clearly R=R'=R"?' so that R

is an orthogonal matrix. Let 4 be any orthogonal matrix. Then
(RA)"'=A4"'R™! = A'R' = (RA)

so that R4 is also an orthogonal matrix. Since
det(RA) = det(R)det(4) = —det(A),

if det(4) = —1 then RA is a special orthogonal matrix B. This means that
A= R 'B=RB. By Problem A4, R represents reflection across the y-
axis and is thus an isometry. Hence 4 = RB also represents an isometry.

Definition. An orthogonal transformation of R? is any isometry that can be
represented by an orthogonal matrix. The set of all 2 x 2 orthogonal trans-
formations is denoted O(2). The set of all 2 x 2 special orthogonal transfor-
mations is denoted SO(2).

Proposition 11.9.4. If ¢ is an isometry of R? that fixes the origin O then
@ is an orthogonal transformation. If ¢ is even then it can be uniquely repre-
sented by a special orthogonal matrix A. If ¢ is odd then it can be uniguely

-1 0
represented by RA, where A is a special orthogonal matrix and R = ( 0 1)-

Proor. Suppose ¢ fixes O. If ¢ is even then ¢ is a rotation (or the identity).
By Proposition 11.9.3, ¢ = ¢, for some . (# = 0 gives the identity.) @, is
unique even though @ is not.

If ¢ is odd then p¢ is even where p is reflection across the y-axis. Hence
po is represented by a unique special orthogonal matrix 4 and ¢ is repre-
sented by RA. In particular, ¢ is an orthogonal transformation. O

Proposition 11.9.5. Any isometry ¢ of R® can be uniquely written as ¢ =
Ty when t 4 is a Euclidean translation and ¥ € 0(2).

ProorF. Let 4 = ¢(0) so that ¢ =1 ¢ is an isometry which fixes 0. By
Proposition 11.9.4, y € O(2). Hence ¢ = 1,Y.

Suppose that ¢ = 15¢’ also with ¥’ € O(2). Then B = 15(0) = 15¢/(0) =
¢(0) = A so that B=A. Hence ' =1;'¢ =1,'¢ = . Thus ¢ can be
uniquely written in the form ¢ = 1,4 with ¥ € O(2). O

Proposition 11.9.5 says that every isometry of R? can be written as a
product of a Euclidean translation and an orthogonal transformation. The
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collection of Euclidean translations forms a group isomorphic to R2?:
T4Tg = T4+p5. By Problem A5 the set of all orthogonal transformations
O(2) also forms a group. You might think that #{(&)is thus the direct product
of the groups R? and O(2). (Recall that the direct product of two groups G
and H is G x H={(g,h)|ge G,he H} with operation (g,,h)(g,.h;) =
(9192, hyh5).) This is not true as the next result shows. The proof is left to
Problem A6.

Proposition 11.9.6. The group structure of the isometry group of & is given
as follows.
F(6) = {914 e R* ¥ € 0Q2)}
with
(ta¥)(zp0) = (tatypY9) = 14 +ys¥® 9-3)

() =y %-4)

Because of the way V¥ affects 75 and “twists” it to 1,5, the group structure
on #(&) is often referred to as a twisted product of the groups R? and O(2).

We now turn our attention to determining #(5#). The first step is to
prove that the set of even isometries is precisely the set of FLT’s. This
requires an investigation of special translations.

Proposition 11.9.7. A special translation ¢ of H# is either a translation along
a type I line or else a parallel displacement whose invariant asymptotic pencil
is the pencil of type I lines.

ProoF. Let ¢ be the special translation ¢(z) = mz + b where m > 0. We
first show that ¢ has no fixed points. If m = 1 and b # O there are clearly no
fixed points. Assume m # 1. If ¢(z) =z then mz + b=z so that z=
—b/(m — 1). Since b and m are real numbers, the imaginary part of z is zero
and so z ¢ H. Thus no point of H is fixed by ¢.

What lines are invariant under ¢ ? By Proposition 11.8.5

(P(ch) = mc+bLmr and (p(aL) = ma+bL'

Thus if a type II line is invariant under ¢ then mc +b=c and mr =r.
Hence m = 1 and b = 0 so that ¢ is the identity. If ¢ is not the identity, ¢
has no invariant type II lines. The type I line ,L is invariant if and only if
a=ma+b, or a= —b/(m— 1). Hence ¢ has a unique invariant type I
line if m # 1. In this case ¢ must be either a translation or a glide.

Ifm+# 1and x > —b/(m — 1) then

—b —mb +mb—»b —b
mx+b>ml——|+b= =
m—1 m—1 m—1

so that mx + b > —b/(m — 1) also. This means that ¢ does not interchange
the half planes of ,L. Thus ¢ cannot be a glide and so is a translation along
JLfora= —b/m—1)if m# 1.
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If m=1 and b # O then ¢ has no invariant points or lines. Hence ¢ is
a parallel displacement. Since ¢ leaves the pencil of type I lines invariant,
the proof is complete. O

Proposition 11.9.8. The special inversion ¢ is a half-turn about i<(0,1). In
particular o is a rotation.

PROOF. a(z) = z implies —1/z =z or z2 = —1. Thus the only fixed point
of g in H is i <> (0, 1). Therefore o is a rotation about i. 6%(z) = o(5(z)) =
—1/(—1/2) = z so that ¢* = identity. Thus ¢ is an involution and hence a
half-turn. O

Proposition 11.99. ¢ is an even isometry of # if and only if ¢ is an FLT.

Proor. If ¢ is an FLT then ¢ can be written as a product of special translations
and the special inversion by Proposition 11.8.4. Since these isometries are
even any FLT is an even isometry.

Suppose ¢ is an even isometry and that 4'# B. Let C = ¢4 and D = ¢B
so that AB ~ CD. By Problem A7 there is an FLT y with y4 = C and
¥B = D. Since both ¢ and ¢ are even they are equal by Theorem 11.9.1.
Hence ¢ is an FLT. 0O

The next result is left to Problem A10.

Proposition 11.9.10. The special reflection p:H — H by p(z) = Z is a reflec-
tion. Any odd isometry Y of K can be uniquely written as Y = @p where
¢ isan FLT. '

If the FLT ¢ sends z to (az + b)/(cz + d) then ¢p sends z to (—az + b)/
. 4 —a b .
(—cZ + d). The matrix C, d’) = < Z d) satisfies a'd’ — b'c¢’ < 0. Hence
. - . b . .
every odd isometry corresponds to a matrix < d> with negative
¢
determinant.

Definition. A function ¢:H — H by

az +b .
|//(z)—67+d with ad — bc < 0

is called a conjugate fractional linear transformation (CFLT).
The next two results are left as exercises.
Proposition 11.9.11. The composition of two CFLT’s is an FLT. The com-

position of an FLT and a CFLT is a CFLT. The matrix associated with the
product of two FLT’s or CFLT’s is the product of the corresponding matrices.
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Proposition 11.9.12. The set of all 2 x 2 matrices with nonzero determinant
forms a group which is denoted GL(2,R). Every element of GL(2,R) deter-
mines an isometry, either an FLT or a CFLT. Every isometry of # arises
in this way. Two matrices ®, ¥ € GL(2,R) determine the same isometry if
and only if ¥ = A® for some A #£0

The final description of #(J') involves the ideas of normal subgroups
and factor groups. (See Problem B9 of Section 11.8.) To understand the
statement of the theorem and its proof requires a knowledge of homomor-
phism, kernels, and the Fundamental Theorem of Homomorphisms. (See
Herstein [1990] or McCoy-Janusz [1987].)

Proposition 11.9.13. The isometry group of # is isomorphic to PGL(2,R) =
GL(2,R)/N, when N is the normal subgroup of GL(2, R)

16 e

Proor. The function f that takes a matrix ® € GL(2,R) to its associated
FLT or CFLT is a homomorphism (f(®¥) = f(®)f(¥)) by Proposition
11.9.11. By Proposition 11.9.12, N is the set of matrices sent to the identity
so that N is the kernel of f. Since f:GL(2, R) » JF(s#) is surjective (Prop-
osition 11.9.12), the Fundamental Theorem of Homomorphisms says that
JF(#) is isomorphic to the factor group GL(2, R)/N. O

The group PGL(2, R) = GL(2, R)/N is called the real projective linear
group. It arises in the study of projective geometry as the set of transformations
of a projective line. By Theorem 11.7.9 and the result (which we did not prove)
that any two hyperbolic geometries with the same distance scale areisometric,
the isometry group of any hyperbolic geometry (say the Poincaré Disk or
the Klein Plane) is isomorphic to PGL(2, R).

PRrOBLEM SET 11.9
Part A.

1. In a neutral geometry prove there is an isometry ¢ with ¢4 = C and ¢B =D
if and only if 4B ~ CD.

2. Prove that ¢, as given by Equation (9-1), is an isometry of &.

3. Let A be a 2 x 2 orthogonal matrix. If det A = +1 prove

that 4 = c.os 6 —sind for some 6.
sin 6 cos 6

0
). Show that R corresponds to reflection

—1
4. Let R be the orthogonal matrix < 0 1

across that line L.
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o 0 O

10.
11.
12.

. Prove that O(2) is a group and that SO(2) is a subgroup of O(2).
. Prove Proposition 11.9.6.

. In # if AB ~ CD prove there is an FLT sending 4 to C and B to D.
 Let B=(0,0, C=(50),D=(0,5, E=(3,2, F=(—1,5 and G = (6, 6) in &.

Find the unique isometry ¢ sending B, C, D to E, F, G respectively. Express your
answer in the form ,y for some A4 € R? and ¢ € O(2).

. Let A=(0,1), B=(0,2), C=(3,6) and D =(3,3) in #. Find the unique FLT

which sends 4 to C and B to D.
Prove Proposition 11.9.10.
Prove Proposition 11.9.11.
Prove Proposition 11.9.12.
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PART I: The Notation

% (Cartesian Plane) 18

%,(C) (circle) 150

9 (Poincaré Disk) 304

€  (Euclidean Plane) 32

4 (great circle) 20

X (Poincaré Plane) 20

J(N) (isometry group) 338

X (Klein Plane) 302

#{  (Moulton Plane) 97

@ (Projective Plane) 26

% (pointed pencil) 313

%, (parallel pencil) 313

P  (asymptotic pencil) 313
(Riemann Sphere) 21

(set of polygonal regions) 249
(Taxicab Plane) 34

(unit disk) 300

(upper half plane) 19

(set of projective points) 26
R (real coordinate plane) 18
§? (unitsphere) 20

TIO WYWRRN

&, (P-lines) 302
&, (Cartesian lines) 18
X, (Poincaré lines) 19
£ (K-lines) 300
% Moulton lines) 97

5,, (Projective lines) 26
¢
R

(great circles) 19

dp  (Poincaré disk distance) 304
dy  (Euclidean distance) 28, 44
d, (hyperbolic distance) 28

dx  (Klein distance) 302

d,, (Moulton distance) 99

dy  (twisted distance) 69

d, (projective distance) 37

dp  (spherical distance) 37

dy  (taxicab distance) 29

mp (Poincaré disk angle measure) 304
m, (Euclidean angle measure) 93

my, (Poincaré angle measure) 95

my  (Klein angle measure) 302

m,, (Moulton angle measure) 101

d(P,Q) (distance between points) 28

d(P, 1) (distance from point to line) 145,
216

d(l, 1) (distance between lines) 216

int (interior) 82, 83, 84, 153, 249

L, (vertical Cartesian line) 18

L,, (nonvertical Cartesian line) 18

L (Cartesian line) 43

oL (type I Poincaré line) 19
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L, (type I Poincaré line) 19
M, ,  (Moulton line) 97

Toa (Euclidean tangent) 94

'f‘, y (Euclidean unit tangent) 346
r(P, 1) (critical number) 188
§(AABC)  (defect) 205

$o (hyperbolic rotation) 344
N4 (half-tun) 329

I(¢)  (critical function) 192
P (reflection) 306

T, (Euclidean translation) 352

A (value of isometry on A) 288

0 (Euclidean rotation) 352

AB  (line)22

AB  (ry)5e

AB (segment) 52

AB (distance) 48

A—B—C  (between)48
A—B—C—D (between) Sl
PART II: The Models
The Cartesian Plane

abstract geometry 18
incidence geometry 22, 24 (AS), 25 (A14),
47 (B6)

Index

LABC

OABC

AABC

OABCD

[s]aBcp

[(L]4BcD
(A15)

Oa B... E (polygon) 248

QA4B...E (polygonal region) 250

(A,B) (dot product) 42

Al (length) 42

Xt (Xperp)70

~ (similar) 234

~ (equivalence of rays) 197

~ ¢ (equivalent mod a pencil) 315

41 (perpendicular) 106

= (equivalent by finite decomposition)
272

] (parallel) 24

| (asymptotic) 197

(angle) 59
(triangle) 61
(triangular region) 249
(quadrilateral) 86
(Saccheri quadrilateral) 178
(Lambert quadrilateral 186

lines 18, 25 (A14),43,70
parallel lines 25 (A10)

The Euclidean Plane &=(R?, %,,d,, m)

abstract geometry 18

angle addition 117

angle construction 115

angle measure 93, 96 (A6), 115, 119

betweenness 50, 51 (A1)

circles 150

collineation 285,296 (A1, A2, A3)

critical function 195 (A3)

cycles 319 (A13)

distance 28, 36 (A1), 44

EPP 195 (AS)

fixed points of isometries 312 (A2)

half planes 71, 68 (A2), 69 (A3)

incidence geometry 22, 24 (AS), 25 (A14),
47 (B6)

isometry 358 (A8)

isometry group 355

Linear Pair Theorem 118

lines 18,25 (A14),43,70

metric geometry 31

orthogonal transformation 354
parallel lines 25 (A10), 177 (A7)
PSA 72

Pythagorean Theorem 130 (A6)
rays 55

rulers 35, 36 (A4, A9), 40 (A1), 44, 46 (AS)
SAS 128

segments 55

triangle construction 165 (AS)
triangle inequality 45
irigonometric functions 130 (A7)
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The Klein Plane X' ={D, %, d, m,}

angle measure 302, 305 (B13)
distance 302, 305 (B13)

The Max Plane {R?, %, dg, m;)
angle measure 96 (B8)

circles 158 (A1), 159 (A6, A8)

distance 37 (B18)

equidistant lines 186 (B27)

The Missing Strip Plane (<, ¥, d’})

circles 159 (B22)
Crossbar Theorem 84 (A21)
EPP 177 (B2)

lines 300, 305 (A6, A8)
parallel lines 305 (A9)

metric geometry 37 ((B18)
segment construction 58 (A8)
triangle inequality 46 (B8)

incidence geometry 81 (A4)
lines 79
PSA 80

The Moulton Plane 4 ={R?, %,,,d,,, m,,)

angle measure 101
angle sum 103 (A10)
circles 159 (B17)
distance 99

EPP 177 (B12)
incidence geometry 97
lines 97, 102 (A1)

metric geometry 99
perpendicular lines 109 (B23)
protractor geometry 102

PSA 99

SAS 130 (B11)

triangle inequality 103 (B12)

The Poincaté Disk 2 =(D, <, dp, mp}

angle measure 304, 305 (B14)
distance 304, 305 (B14)

The Plane o' =(H, &,,,d,, m,)

abstract geometry 19

alternate interior angles 177 (AS)

angle addition 122

angle bisector 109 (A11, A12), 213 (A8)

angle construction 122

angle measure 95, 96 (A1, A2, A3), 120

area 269, 271 (A10, Al1, B12)

asymptotic rays 204 (B13)

asymptotic triangle 204 (A8, A9)

betweenness 48, 51 (A2)

CFLT 356

circles 151, 158 (A2)

circumscribed circle 246 (AS)

collineation 286, 296 (A 10)

concurrence of perpendicular bisectors 230
(A19)

critical function 190, 195 (A4), 213 (A3)

cycles 320 (B23)

distance 28, 36 (A2), 223 (B14)

distance scale 222 (A8)

equidistant sets 195 (A7, A8, A9)

lines 302
parallel lines 305 (A11)

Euclidean tangent to a ray 94, 120
FLT 342, 358 (A7, A9)

half planes 73, 75 (A4)

HPP 195 (A6)

incidence geometry 23, 24 (A8)
isometry 222 (A10)

isometry group 357

line of enclosure 213 (A7)

lines 24 (A1, A2, A6, A7, A9)
metric geometry 33

midpoints 58 (A11)

Mirror Axiom 350

parallel displacement 327 (A3)
parallel lines 25 (A11), 173, 177 (A6, A10)
perpendicular lines 107, 109 (B19), 173
PSA 73

Pythagorean Theorem 108 (A9)
quadrilateral 89 (A4)

reflection 312 (A4)

ruler 35, 36 (A6, A8, All)

Saccheri quadrilateral 185 (A1, A2)



364

SAS 350
segment congruence 58 (A9)
segment construction 57

segments 52
triangle congruence 130 (A2)
triangle construction 165 (B10)

The Projective Plane 2= (P, £,,d,}

distance 37 (B23) parallel lines 26 (B28)

lines 26 (B27) points 9 (B18), 26 (B26, B27)
The Riemann Sphere # ={S2, %, dz)

betweenness 53 (C13) lines 20, 24 (A3, A4)
distance 37 (B22) parallel lines 25 (A12)

The Taxicab Plane 5 =(R2, 2, dy, mg)

angle measure 96 (AS)
betweenness 51 (A3), 52 (A10)
circles 150, 158 (AS)

collineation 297 (A11)

distance 29

equidistant lines 186 (B26)
metric geometry 34

perpendicular bisectors 149 (B15)
perpendicular distance 148 (A4)
Pons asinorum 130 (B12)

The Twisted Plane (R?, %, dy)

circles 159 (B18)
distance 69 (B19)

PART III: The Terminology

AAA Congruence Theorem 208

Absolute geometry (see Neutral geometry)

Abstract geometry 17
All or None Theorem 194
Altitude 145
concurrence of 241
foot 145
Angle 59
acute 104
Addition Axiom 92
Addition Theorem 108
altemate interior 171
base 129, 178
bisector 108
concurrence of 239
comparison 135
complementary 104

PSA 75 (AS)

Pythagorean Theorem 148 (AS)
rulers 35, 36 (AS, A10), 40 (A3)
SAS 126, 143 (B11)

segment congruence 58 (A7)
segment construction 58 (A10)
SSS 135 (B1S5)

triangle congruence 109 (A16)
triangle construction 165 (A6)
triangle inequality 46 (B7)

PSA 69 (B19)

congruence 108
Construction Axiom 92
Construction Theorem 108
corresponding 171
exterior 135, 205
measure 90

degree 91

grade 91

radian 91
obtuse 104
remote interior 135
right 104
Subtraction Theorem 108
sum for hyperbolic geometry 207
supplementary 104
trisector 109 (B17)

Area function 251

Index
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Euclidean 263
uniqueness 263
hyperbolic 269
special form in ¥ 269
uniqueness 281
special 278
Aristotle’s Theorem 218
ASA Congruence Axiom 131
equivalent to SAS 133
Asymptotic lines 203
convergence of 219
Asymptotic rays 197
stricily 196
Asymptotic triangle 203
congruence 203
doubly 213 (A6)
trebly 319 (A3)

Beltrami, E. 299
Betweenness 47
of numbers 49
Biangle (see Open Triangle)
Bijection 12
Binary relation 5
Birkhoff, G. 27
Bolyai, J. 170
Bolyai's Theorem 272, 283
for triangles 279
for special area 280
Boundary of polygonal region 250

Carroll, L. 170
Cartesian Plane 18 (see also Part 1l of this
index)
Cartesian product 4
Cauchy-Schwarz Inequality 45
Cayley, A. 299
Centroid 240
Change of Scale 220
Chord 150
Circle 37 (B19), 150
chord 150
determined by three points 152
diameter 150
radius 150
secant of 154
tangent to 154
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Circumcenter 241
Circumcircle 229 (A6), 246 (A4)
Classification Theorem 332
of double reflections 324
of finite isometry groups 341
of involutions 329
of triple reflections 331
Closed triangle (see Asymptotic
triangle)
Collinear points 22
Collineation 285
Comparison:
angle 135
segment 135
Complementary angles 104
Composition of functions 12
Concurrence 226
of altitudes 241
of angle bisectors 239
of medians 240
of perpendicular bisectors 226, 241
Congruence:
of angles 108
of asymptotic triangles 203
of quadrilaterals 179
of Saccheri quadrilaterals 180
of segments 56
of triangles 125
Conjugate fractional linear transformation
356
Consecutive vertices 248
Continuous function 155
Convex set 63
Convex polygonal region 251
defect of 266
Coordinate system (see Ruler)
Corresponding angles 171
Cosh(t) 32
Cosine function 112
Critical function 192
decreasing 206
nonincreasing 192
surjectivity of 210
Critical number 188
Crossbar Theorem 84
converse 85 (A12)
Crossbar interior 86 (B25)
Cycle 316
center of 316
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degenerate 316
determined by three points 317
Dedekind 167
Defect 205
Addition Theorem 207
of convex polygonal region 266
of polygonal region 269
of triangle 205
of triangular region 265
Descartes, R. 19
Diameter of circle 150
Distance:
between lines 216
between a point and a line 145, 216
between points 28
scale 221
change of 220
Divergently parallel lines 214
distance between 216
divergence of 218
Dodgson, C. 170
Domain 9
Double reflection 321
classification 324
Doubly asymptotic triangle 213 (A6)

Endpoints of segment 54
uniqueness 54
EPP (see Euclidean parallel property)
Equiangular triangle 130 (AS)
Equiangular quadrilateral 186 (A28)
Equidistant sets 183
Equilateral triangle 129
Equivalence relation 6
Equivalent by finite decomposition 272
Equivalent rays 197
Equivalent with respect to a pencil 315
Erlangen Program 299, 308
Euclid 169
Fifth Postulaie of 169, 174
equivalence to EPP 176
Euclidean geometry 194
angle sum 182
Euclidean parallel property (EPP) 176
equivalent to Euclid's Fifth Postulate 176
equivalent forms 224
and Pythagorean Theorem 237
and rectangles 225

Index

and Saccheri quadrilaterals 225
Euclidean Plane 32 (see also Part II of this
index)
Euler line 243
Euler points 243
Even isometry 328
Exterior angle 135
of open triangle 205
Exterior Angle Theorem 136
for closed triangle 206
Exterior of circle 153
Exterior of cycle 318
External Tangent Theorem 158
Extreme point 53

Family of parallel lines 259
Finite geometry 26 (A19)
Fixed point of isometry 306
Fractional linear transformation (FLT) 342

associated matrix 342

conjugate 356
Function 9

bijective 12

domain of 9

identity 13

image of 10

injective 11

inverse 13

range of 9

surjective 10

Gauss, C. 170
Geometry:
absolute 127
abstract 17
Euclidean 194
finite 26 (A19)
hyperbolic 194
incidence 22
induced 26 (B20), 288, 299
melric 30
neutral 127
Pasch 76
protractor 91
scissors 68
Giordano's Theorem 184
Glide 330
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Great circle 20

Group 336
cyclic 341
dihedral 341
finite 341
isometry 338
isomorphism 339
order of element 339

HA Theorem 147
Half planes determined by a line 64
edge 67
uniqueness 67
unique 65
Half-turm 329
Hilbert, D. 27
axioms of geometry 166
Hinge Theorem 140
Hjelmslev's Lemma and Theorem 335
(AlS, AL7)
HL Theorem 146
HPP (see Hyperbolic parallel property)
Hyperbolic functions 32
Hyperbolic geometry 194
Hyperbolic parallel property 194
Hyperbolic Plane (see Poincaré Plane)
Hypotenuse 143
uniqueness 143

Ideal point 204 (B13), 313
Identity function 13
Image 10
Improper integral 110
Incenter 239
Incidence of geometry 22
Induced angle measure 298
Induced distance function 297
Induced geometry:

by a bijection 288, 298

on a subse1 26 (B20)
Injection 12
Inscribed circle 246 (A2)
Inside of a polygonal region 250
Intermediate Value Theorem 73, 155
Interior:

of angle 83

of circle 153
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of convex polygon 249

of cycle 318

of ray 82

of segment 82

of triangle 84
Internal bisector 134 (A13)
Invariant set 317
Inverse cosine 111
Inverse function 13
Inversion, special 344
Involution 329

classification of 329
Isometry 221, 288

as a collineation 293

classification 332

even 328

odd 328

preserves angle measure 292
Isometry group 338

finite subgroups 341

of 355

of 357
Isosceles triangle 129

Klein, E 27, 299, 308

Klein Plane 300 (see also Part I of this
index)

K-line 300

Lambert, J. 170

Lambert quadrilateral 186 (A15)

Law of cosines 128

Least upper bound 188

Legs 143,178

Length of segment 54

Line-Circle Theorem 157

Line of enclosure 213 (A6), 228

Line segment 52

Linear pair 104

Linear Pair Theorem 105
converse 106

Lobachevsky, N. 170

Longest side 143

Manifold 59 (C22)
Max Plane 37 (B18) (see also Part II of this
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index)
Median 148 (A3), 240
concurrence 240
Metric geometry 30
Midpoint 58 (A11)
existence and uniqueness 58 (A12)
Mirror 310
Mirror Axiom 310
and SAS 310
Missing Strip Plane 79 (see also Part II of
this tndex)
Mobius Strip 69 (C20)
Morley's Theorem 244
Moulton Plane 97 (see also Part II of this
index)

Nassir-Eddin 170
Neutral geometry 127
Nine point circle 243
Noncollinear points 22

0Odd isometry 328
Omar Khayam's Theorem 185 (A11)
One-to-one (see Punction, injective)
Onto (see Function, surjective)
Open Mouth Theorem 140

converse 142 (A9)
Open triangle 196
Opposite sides of line 66
Opposite sides of quadrilateral 87
Ordered pair 4
Orthocenter 241
Orthogonal group 354

Pappus 129
Parallel decomposition 260
Parallel displacement 321
Parallel lines 24
Parallelogram 183
Pasch, M. 75
Pasch geometry 76
Pasch’s Postulate 75
equivalent 10 PSA 76
Pasch’s Theorem 75
strong form 85 (A7)
Passing point 53

Index

Passing set 68 (A14)
Peano’s Axiom 80 (Al)
Pencil 313
asymptotic 313
center of 313
parallel 313
pointed 313
Perpendicular bisector 107, 147
concurrence 226, 241
Perpendicular circles 302
Perpendicular Distance Theorem 144
Perpendicular lines 106
Perpendicular to a line:
existence 107, 133
uniqueness 107, 137
Plane 20
Plane Separation Axiom (PSA) 64
Playfair, J. 170
Plethora of lines (see Pencil)
P-line 302
Poincaré, H. 20, 27, 170, 302
Poincaré Disk 302 (see also Part II of this
index) .
Poincaré Plane 19 (see also Part II of this
index)
Polygon 248
convex 249
interior of 249
Polygon Inequality 180
Polygonal region 249
boundary of 250
defect of 269
Pons asinorum 129, 134 (A10)
converse 121
PP (see Pasch’s Postulate)
Preserve
angle measure 290
distance 288
lines 285
right angles 290
Proclus 169, 170
Projective Plane 9 (B18), 26 (B27) (see
also Part II of this index)
Protractor 90
Protractor geometry 91
PSA (see Plane Separation Axiom)
Ptolemy 170
Pythagorean Theorem 130 (A6), 143, 147,
157,236,255 (A10, All)
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equivalent to EPP 237

Euclid’s proof 253

Garfield's proof 255 (A11)
Quadrilateral 86

angles of 87

congruence of 179

convex 87

diagonal of 87

sides of 87

veriex of 87

Radius 150
Range 9
Ray 54
in 1erms of a ruler 55
Rectangle 183
Reflection 306
double 321
special 349
Regular polygon 256 (B16).
Remote interior angle 135
Riemann, G. 21
Riemann Sphere 21 (see also Part I of this
index)
Right triangle 143
Rotation 321
special 344
Ruler 30
Ruler Placement Theorem 38
Ruler Postulate 30

SAA Theorem 138
Saccheri 170, 178
Saccheri quadrilateral 178
congruence 180
Saccheri’s Theorem 181
Same side of line 66
SAS Congruence Axiom 127
SAS Similarity Theorem 238 (A7)
Scalene triangle 129
Scissors geometry 68
Secant of a circle 154
Sech(t) 32
Segment 52
comparison 135
congruence 56
length 54
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Segment Addition Theorem 57
Segment Construction Theorem 56
Segment Subtraction Theorem 58
Similar triang'es 234
Similarity theory from area 255 (A12)
Simson line 246 (B14)
Sine function 112
Sinh(t) 32
Size of polygonal region 257
Sloping Ladder Theorem 160
Special area function 278
Special orthogonal group 354
Square 183
SSS Congruence Axiom 132
equivalence to SAS 164
SSS Similarity Theorem 236
Standard rulers 35
Stereographic projection 301
Subgroup 338
normal 341 (B13)
Subtangent 159 (B19)
Supplementary angles 104
Surjection 12
Synthetic approach 165

Tangent

of circle 154

existence and uniqueness 155

of cycle 318
Tanh(t) 32
Taxicab Plane 34 (see also Part II of this

index)

Transformation 341 (B15)

fractional linear 342

orthogonal 354

special orthogonal 352
Translation 321

Euclidean 352

special hyperbolic 343
Transversal 170
Trapezoid 252
Trebly asymptotic triangle 319 (A3)
Triangle 61

asymptotic 203

closed 203

congruence 125

and isometries 308
defect of 205
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equiangular 130 (AS)

equilateral 129

isosceles 129

open 196

right 143

scalene 129

sides of 62

similar 234

vertices 62

uniqueness 62

Triangle Construction Theorem 161
Triangle Inequality 45, 139

general form 141 (A6)
Triangular region 249

defect of 263
Triangulation 257

base 257, 258

refinement of 263

star 265
Trigonometric functions 123 (A7)

Twisted Plane 69 (B19) (see also Part I of

this index)
Two Circle Theorem 163

Uniqueness

of angle measure in a neutral geometry 293

of cycles through three points 317
of Buclidean area 263
of Buclidean Geometry 294
of hyperbolic arca 281
of hyperbolic geometry 295
Unit sphere 20

Vertex
of angle 61
uniqueness 60
of polygon 248
of ray 55
uniqueness 55
of segment 54
uniqueness 54
of triangle 62
uniqueness 62
Vertical angles 104
Vertical Angle Theorem 108
Vitale, G. 170

Wallis, J. 170

Z Theorem 82
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