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Preface

This book is intended as a first rigorous course in geometry. As the title
indicates, we have adopted Birkhoff's metric approach (i.e., through use
of real numbers) rather than Hilbert's synthetic approach to the subject.
Throughout the text we illustrate the various axioms, definitions, and
theorems with models ranging from the familiar Cartesian Plane to the
Poincare Upper Half Plane, the Taxicab Plane, and the Moulton Plane. We
hope that through an intimate acquaintance with examples (and a model is
just an example), the reader will obtain a real feeling and intuition for non-
Euclidean (and in particular, hyperbolic) geometry. From a pedagogical
viewpoint this approach has the advantage of reducing the reader's tendency
to reason from a picture. In addition, our students have found the strange
new world of the non-Euclidean geometries both interesting and exciting.

Our basic approach is to introduce and develop the various axioms
slowly, and then, in a departure from other texts, illustrate major definitions
and axioms with two or three models. This has the twin advantages of
showing the richness of the concept being discussed and of enabling the
reader to picture the idea more clearly. Furthermore, encountering models
which do not satisfy the axiom being introduced or the hypothesis of the
theorem being proved often sheds more light on the relevant concept than
a myriad of cases which do.

The fundamentals of neutral (i.e., absolute) geometry are covered in the
first six chapters. In addition to developing the general theory, these
chapters include a rigorous demonstration of the existence of angle measures
in our two major models, the Euclidean Plane and the Poincare Plane.
Chapter Seven begins the theory of parallels, which continues with an in-
troduction to hyperbolic geometry in Chapter Eight and some classical
Euclidean geometry in Chapter Nine. The existence of an area function in
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any neutral geometry is proved in Chapter Ten along with the beautiful
cut and reassemble theory of Bolyai. The last (and most sophisticated)
chapter studies the classification of isometries of a neutral geometry and
computes the isometry groups for our two primary models.

The basic prerequisite for a course built on this book is mathematical
maturity. Certain basic concepts from calculus are used in the development
of some of the models. In particular, the intermediate value theorem as it
is presented in calculus is needed at the end of Chapter Six. The latter part
of the last chapter of the book requires an elementary course in group theory.

Courses of various lengths can be based on this book. The first six
chapters (with the omission of Sections 5.2 and 5.4) would be ideal for a one
quarter course. A semester course could consist of the first seven chapters,
culminating in the All or None Theorem and the Euclidean/hyperbolic
dichotomy. Alternatively, a Euclidean oriented course could include Section
7.1 and parts of Chapter 9. (The dependence of Chapter 9 on Chapter 8 is
discussed at the beginning of Section 9.1.) A third alternative would include
the first six chapters and the first three sections of Chapter 11. This gives the
student a thorough background in classical geometry and adds the flavor of
transformation geometry. A two quarter course allows a wider variety of
topics from the later chapters, including area theory and Bolyai's Theorem
in Chapter 10. The entire book can be covered in a year.

Mathematics is learned by doing, not by reading. Therefore, we have
included more than 750 problems in the exercise sets. These range from
routine applications of the definitions to challenging proofs. They may in-
volve filling in the details of a proof, supplying proofs for major parts of the
theory, developing areas of secondary interest, or calculations in a model.
The reader should be aware that an asterisk on a problem does not indicate
that it is difficult, but rather that its result will be needed later in the book.
Most sections include a second set of problems which ask the reader to supply
a proof or, if the statement is false, a counterexample. Part of the challenge
in these latter problems is determining whether the stated result is true or
not. The most difficult problems have also been included in these Part B
problems.

In this second edition we have added a selection of expository exercises.

There is renewed emphasis on writing in colleges and universities which
extends throughout the four years of the undergraduate experience. Going
under the name of "writing across the curriculum", this effort involves
writing in all disciplines, not just in the traditional areas of the humanities
and social sciences. Writing in a geometry course is discussed in more detail
in Millman [1990]. We feel that the expository exercises add another dimen-
sion to the course and encourage the instructor to assign some of them both

as writing exercises and as enrichment devices. We have found that a multi-
ple draft format is very effective for writing assignments. In this approach,
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there is no finished product for grading until the student has handed in a
number of drafts. Each version is examined carefully by the instructor and
returned with copious notes for a rewrite. The final product should show
that the student has learned quite a bit about a geometric topic and has
improved his or her writing skills. The students get a chance to investigate
either a topic of interest to them at the present or one that will be used later
in their careers. This approach is especially useful and effective when many of
the students are pre-service teachers.

A few words about the book's format are in order. We have adopted
the standard triple numbering system (Theorem 7.4.9) for our results. Within
each section one consecutive numbering system has been used for all theo-
rems, lemmas, propositions, and examples for ease in locating references.
The term proposition has been reserved for results regarding particular
models. Reference citations are made in the form Birkhoff [1932] where
the year refers to the date of publication as given in the bibliography.

We would like to thank our students at Southern Illinois University,
Michigan Technological University, and Wright State University whose feed-
back over the past ten years has led to the changes and (we hope) the
improvements we have made in this new edition. Our sincere thanks go to
Sharon Champion and Shelley Castellano, who typed the original manu-
script, and to Linda Macak, who typed the changes for this edition. Finally,
we would like to thank our wives for putting up without us while we
closeted ourselves, preparing this new edition.



Computers and Hyperbolic Geometry

After teaching a course out of the first edition of this book for several years,
it became clear to the second author that there were all sorts of interesting
computational problems in the Poincare Plane that were a bit beyond the
range of the average student. In addition, graphical aids could be very useful
in developing intuition in hyperbolic geometry.

Out of this realization grew a computer program POINCARE. The
program was written in Pascal over a three year period and runs on
MS-DOS computers. It allows graphical explorations in the Poincare Plane
as well as various calculations such as finding the midpoint of a segment,
finding an angle bisector, finding the common perpendicular of two lines (if
it exists), carrying out geometric constructions, testing quadrilaterals for
convexity and the Saccheri property, solving triangles, finding the cycle
through three points, and finding the pencil determined by two lines.

All of the code is based on the theory presented in this book, with the
exception of the hyperbolic trigonometry. Except for transformation geome-
try, all topics in the book are represented. Perhaps in the near future a
module on isometrics will be added to the program. POINCARE is currently
in its third major version and is ready for distribution.

Readers of this book who are interested in more information, who wish to
obtain a personal copy, or who wish to obtain it for use in their school
computer lab should contact the author:

George D. Parker
1702 West Taylor
Carbondale, IL 62901
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CHAPTER I

Preliminary Notions

1.1 Axioms and Models

Our study of geometry begins with two basic concepts. One is the notion of
points, and the other is the notion of lines. These are then related to each
other by a collection of axiar or first rincinles. For example, when we
discuss incidence geometry below, we shall assume as a first principle that
if A and B are distinct points then there is a unique line that contains both
A and B.

In th early developme of geometry the point of view was that an axiom
was a statement that described the true state of the universe. Axioms were
thought of as "basic truths." Such axioms should be "self-evident" Of the
basic axioms stated by Euclid in his Elements, all but one was accepted by
the mathematical community as "true" and self-evident. However, his fifth
axiom, which dealt with parallel lines, was not as well received. While
everyone agreed it was true (whatever that meant) it was by no means
obvious. For over two thousand years mathematicians tried to show that
the fifth axiom was a theorem which could be proved on the basis of the
remaining axioms. As we shall see, such efforts were doomed to fail. With
great foresight Euclid chose an axiom whose value was justified not only by
its intuitive contW but also by the rich theory it implied.

Th modern vi is that an axiom is a statement of a useful property.
Whe uall in a definition we are sav
we w t os ss ecia pr ty-..
We are a g nastatenaenLasio whether the. axiom is a statement about
the real world. Rather, we are saying "accept the following as a hypothesis."
(For a nice discussion of the modern axiomatic method seeKennedy [1472], )

1



2 1 Preliminary Notions

Although we may use any consistent axioms we wish, the choice of
axioms i three underlying principles. First, the axioms
must be "reason r "a paling" because t ey correspond to some in-

tbetuitive ictu a Ehic av f gene ge-o c proper Second
a rich varies of theorems and hence a

rich m a t h e m a t i c a l structure. .hir the x ioms must be consistent-there
must not ban internal inconsi tency or c ntrad'ctio_n.. As we shall see,
Euclid's choice of axioms (or rather the moder version which we shall

does satisf
eometrv..aUj:. the

theories which i e.uLft.-ow_thp_gngLdeanones. In
particular there is an Ite; a3lxcto uclid's fbfth.axiom swintc
a particularly beautiful andnterestng.subjectjprbolic geometry. One of
t Hi gdEif of this book is to investigate this alternative structure.

The moment we mentioned points and lines above you probably started
to visualize a picture, namely the plane with straight lines from high school
geometry. This is proper and also very useful in helping you understand all
the definitions that will follow. However, it does have its drawbacks. It is
very tempting to try to prove theorem or propositio C rxeeX4[aX.sirole

problem by looking at ayicture. If this is done, theictnre maimed
with the geometer itself. A picture_may be misleading, ejt)x hyn.©L_couexing
alIpo ssibilities,,orr,evven worse, by reflecting our unconscious bias as to
what is " ' This often leads to an incorrect "proof by picture." It It
is crucially important in a proof to use only the axioms and the theorems

j which have been derived fro heju, ran mot depend on any_Izr anra'vnd
or3 gicti (Of course, we may use a picture as an aid to our intuition. The
point here is that when the "final" proof of the result is written it cannot
depend on the picture.)

The discussion of pictures leads us to the idea. of a model for a geometry.
A model is nothin ach model of a geometry is
determined by giving a set whose elements will be called "points" and a
collection of subsets of this set which will be called "lines.". For instance,
if we are given the definition of an incidence geometry, we may write down
as an example the standard Euclidean geometry we met in high school. We
then must check to see if this example satisfies all the axioms that are listed
in the definition of an incidence geometry. When we are done we will have
one example. But h r are man her. examples of an incidence geometry
and hence manv_Qdes, as we shall see.

Throughout this book-there-will be several models, but we will concen-
trate on two.. particular. ones: the Euclidean Plane and the Poincare Plane.
This will mean that we will have at our fingertips two strikingly different
examples. Two main purposes will be served. The first is to insure that we
do not reason by pictures (pictures in the,Pctjnpare:Plane are a ery..:diflerent.
frorri those in the familiar Euclidean Plane). The second purpose is to give
valuable insight by allowing us to work with several examples while at-

WflrTr f[frok, WI4n{;t



1.2 Sets and Equivalence Relations 3

tacking some of the problems in the text. We can also benefit from different
examples by examining a newly defined concept in light of the definition.
For example, a circle in the "taxicab metric" of Chapter 2 is an amusing
phenomenon. This examination will add to our understanding as to what
the definition is saying (and what is is not saying).

At this point we cannot emphasize enough that the only proof that can be
given of a theorem or proposition in a geometry is one based just on the
axioms of that geometry. We must not go to a model and show that the
theorem holds there. All we would have shown in that case is that the
theorem is true in that particular model. It might be false in another model
(and hence false in general). There are many statements that are true in the
Euclidean Plane but false in the Poincare Plane, and vice versa.

Whenever we introduce a new axiom system or add axioms to an old
system, we are changing the faz the system. For instance,
consider the statement that "a slurb is a set which has only letters in it."
The set S = {X, Y, z} satisfies this statement and so is an example or model
of a slurb. If we further define that "a big Blurb is a slurb that contains only
capital letters" then the set S may or may not be a model for the new (en-
larged) axiom system. (Of course, S is not a model for this system; that is,
S is not a big slurb.) This means that if we continue to use certain models
we must prove that the obey the new axioms that -are cite Do noonfse
tit wifti proving an axiom Axioms are state nents of
to-be sftidied an3 A4 not.be proved. Verifying that something is a model of
a cerTain axiom M em is very much" like making a general statement and
then showing that it is applicable in the particular instance you want.

Wfiaf then is a.g rmall a eeo etr con fists of two sets-a
set of points and a set of.lines-together with a collection of relations ips,
ca a axioms, between those two-..sets. On the other hand; a mod)Rgrg
geometry is dust an example. That is a model for a geometry is. a, mathemat.cal
entity, which satisfies ail of the axioms for,:ihe_geometcyIt is unportant not
to confuse a model with the geometry of which it is a model.

1.2 Sets and Equivalence Relations

Intuitively a set, S, is a collection of objects which are called elements. It
must be described by a very specific rule which lets us determine if any
particular object belongs to the collection. (The collection of tall people is
not a set because the terminology is not precise-it is subjective. The collec-
tion of all living people at least 2 meters tall is a set-the characteristic for
tall is made precise.) We write a e S to mean that the object a belongs to S,
and read this as "a is an element of S. " Similarly we write a 0 S to mean
that a does not belong to the set S.
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Definition. The set T is a subset of the set S (written T c S) if every element
of T is also an element of S.

The set T equals the set S (written T = S) if every element of T is in S,
and every element of S is in T. (Hence T = S if and only if T c S' and
S c T.)

The empty set is the set with no members, and is denoted 0. Note
j c S for every set S.

As usual, the notation T = {x e S I } means that the elements of T are
precisely those elements of S which satisfy the property listed after the bar, I.

Definition. The union of two sets A and B is the set A u B = {xIx e A or
x e B}.

The intersection of two sets A and B is the set A n B = {xf x e A and
x e B}. If A n B = 0 then A and B are disjoint.

The difference of two sets A and B is the set A-B = {x I x e A and x B}.

The following example illustrates several of the above ideas. Note in par-
ticular the basic way we show two sets S and T are equal: we show that
S c T and that T c S.

Example 1.2.1. Show that A n (B u C) = (A n B) u (A n C).

SOLUTION. We first show that A n (B u C) (-- (A n B) u (A n C). Let x e A n
(BuC).Then xeAand xEBuC.SincexeBuCeitherxeBorxeC
(or both!). If x c- B then x e A n B. If x e C then x e A n C. Either way
xe(AnB)u(AnC).Thus An(BuC)c(AnB)u(AnC).

Next we show that (A n B) u (A n C) c A n (B u C). Let x e (A n B) u
(An C).IfxEAnBthen xeAandxeB.HencexcBuCandxEAn
(B u C). Similarly, if x e A n C then x e A and x e C. Hence, x e B u C
and xeAn (B u C). In either case, x e A n (B u C). Thus (A n B) u
(AnC)cAn(BuC).

Since An(BuC)c(AnB)u(AnC)and(AnB)u(AnC)cAn
(B L) C), we have A n (B. u C) = (A n B) u (A n Q. El

Definition. Let A and B be sets. An ordered pair is a symbol (a, b) where
a E A and b e B. Two ordered pairs (a, b) and (c, d) are equal if a = c and
b = d. The Cartesian product of A and B is the set

A x B= {(a,b)1aEAandbeB}.

Because of the use of the word "symbol", the definition above is somewhat
informal. The basic idea that the entries are "ordered" comes from the
definition of equality: (a, b) and (b, a) are not equal unless a = b. Thus,
changing the order. of the entries leads to a different object. It is possible to
give a purely set-theoretic definition of (a, b). This is done in problem B16,



1.2 Sets and Equivalence Relations 5

where the reader is asked to prove that (a, b) = (c, d) if and only if a = c and
b = d using the formal definition given in that problem.

Note that the notation 1f82 to denote the set of ordered pairs of real
numbers is an adaptation of exponential notation to represent l8 x R.

As a first use of the concept of ordered pairs we present a way to say that
two elements in a set are related in some particular way. A motivating
example is given by the idea "less than". The graph of the inequality x < y in
R2 consists of all ordered pairs (a, b) a U&2 such that a < b. (See Figure 1-1.)
When we say that 2 < 3, we are saying that (2, 3) is part of the graph.
Conversely, since (-3,'2) is part of the graph, -3 < 2. Thus the graph
carries all the information of the "less than" relation. A binary relation is a
generalization of "less than" that is described in terms of a graph.

Figure 1-1

Definition. A binary relation, R, on a set S is a subset of S x S. If (s, t) e R
then we say that s is related to t.

Example 1.2.2. Each of the following is a binary relation on the set R of real
numbers.

A=.{(s,t)eIJB2ls=t+2}.
B = { (s, t) a l82 I St is an integer}.

C={(s,t)el82IS <t}.
D={(s,t)EIB2Is2+t2=1}

We frequently name relations using symbols such as 5 (for relation
C above), -, ^ , p, or - instead of letters. We then indicate that two
elements are related by placing the name of the relation between the ele-
ments: (3, 5) e C becomes (3, 5) a <, which becomes 3 < 5. Thus we may
make statements about "the relation -" and write statements such as "a - b ".
Note that if two elements a, b are not related by the relation we write
a Lb.
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Because the idea of a relation depends on ordered pairs, the order that we
write the symbols is important: 2 < 5 but 5 3 2. For some special relations,
like those below, the order is not important-the relation is symmetric. Note
that if - is a relation on S and a e S, then it is possible that there is no
element b with a - b. For example, if S is the set of positive integers, and if
the relation is > (greater than) then there is no b a S with T > b. In this case
1 is not related to anything.

Definition. A binary relation, -, on S is an equivalence relation if for every
a, b, and ceS

(i) a - a (reflexive)
(ii) a - b implies b - a (symmetric)
(iii) a- b and b -r c implies a - c (transitive).

Note that an equivalence relation is a binary relation that satisfies three
axioms.

Example 1.2.3. Let Z be the set of integers and define a - b if a - b is
divisible by 2. Show that - is an equivalence relation.

SOLUTION. To say that a - b is divisible by 2 means that there is an integer k
such that a - b = 2k. Thus

a - b if and only if there is ke7Z with a-b=2k.

(i) Letae7Z.Then a-a=0= 2.0 so that a - aand - is reflexive.
(ii) Suppose that a, b e Z and a - b. Then there is a k e Z. with a - b = 2k.

This means that b - a = 2(-k). Since -k e 7L, we have b - a. Thus - is
symmetric.

(iii) If a - b and b - c then there are numbers k1 a 1L and k2 e Z with

a-b-2k1 and b-c=2k2.
Adding these equations we obtain a - c = 2(k1 + k2) and so a - c.
Thus - is transitive. - is therefore an equivalence relation. 0

Definition. If a and b are integers then a is equivalent to b modulo n if a - b =
kn for some integer k. This is written a = b(n) and means that a - b is
divisible by n.

The above example shows that -(2) is an equivalence relation. In Prob-
lem A7 you will show that -(n) is an equivalence relation for any n.

Example 1.2.4. Show that none of the binary relations in Example 1.2.2. is
an equivalence relation.

SOLUTION. A is not reflexive. It is certainly not true that a = a + 2 for all a.
(Neither is it symmetric or transitive.)
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B is not reflexive or transitive.
C is not symmetric.
D is not reflexive or transitive,

In an equivalence relation we view several elements of S as being alike (or
equivalent) if they have similar properties. In Example 1.2.3 all the odd
numbers are related to each other and thus are equivalent, It is convenient
to have a name for the set of all elements related (or equivalent) to a given
element.

Definition. If - is an equivalence relation on the set S and s e S, then the
equivalence class of s is the subset of S given by

[s] _ {xeSIx - s}= {xeSIs-x}.

Example 1.2.5. In Example 1.2.3 the equivalence class of 3 is the set of odd
integers, and the equivalence class of 2 is the set of even integers. Note in this
case that if x, y c 7L then either [x] = [ y] or [x] n [ y] = 0.

Example 1.2.6. Let S = { 1, 2, ... , 100} and define x - y if x and y have the
same number of digits in their base 10 representation. Then - is an equiv-
alence relation and, for example,

[5] = { 1, 2, 3, 4, 5, 6, 7, 8, 9} = [7] = [9] = [8], etc,

[11] = {s E S 110 < s < 99} = [63] = [43], etc.

[100] = {100}.

Note that, although different equivalence classes may have a different number
of elements, we still have the result that two equivalence classes are either
equal or disjoint. This is true in general as we now see.

Theorem 1.2.7. If - is an equivalence relation on S and tf s, t e S then either

[s] n [t] = 0 or [s] = [t].

PROOF. We will show that if the first case is not true (i.e., [s] n [t] : 0)
then the second holds. This is the standard way we show either... or...
results.

Assume that [s] n [t] o 0. Then there is an x e [s] n [t]. Hence x e [s]
and x E [t]. Thus x ti s and x - t. By symmetry s - x, and then by tran-
sitivity, s - x and x t imply that s - t. We use this to show [s] c [t].

Let y e [s]. Then y - s and, since s - t, we also have y - t by transitivity.
Thus y e [t]. Hence [s] c [t]. Similarly, since t - s, we can show [t] c [s].
Hence [s] _ [t].
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PROBLEM SET 1.2 Throughout this problem set, A, B, and C are sets.

Part A.

1. If A cB prove that A n Cc Br C.

2. Prove that C n (B-A) = (C n B)-A.

3. Prove that A u (B n C) = (A u B) n (A u Q.

4. Suppose that A c C and B = C. Show that A n B = 0 implies that B e C-A.

5. IfBcC-A show that AnB=0.

6. a. If x - y means that x - y is divisible by 3, show that -r is an equivalence rela-
tion on the set of integers.

b. What is [3]? [6]? [9]? [1]? [5]?

7. Show that -(n) is an equivalence relation on the integers for any n. What are the
equivalence classes?

8. Let 182 = {P = (x, Ax and y are real numbers}. We say that Pt = (xt, y,) and
P2 = (x2, y2) are equivalent if xi + y2 = xz + yz. Prove that this gives an equiva-
lence relation on 182. What is [(1,0)]? [(0, 1)]? [(2,2)]? [(0,0)]? What does an
equivalence class "look like?"

9. The height, h, of a rectangle is by definition the length of the longer of the sides.
The width, w, is the length of the shorter of the sides (thus h ? w > 0). If the rec-
tangle R1 has height ht and width w1 and the rectangle R2 has height h2 and width
w2, we say that Rt - R2 if h1/w1 = h2/w2. Prove that this defines an equivalence
relation on the set of all rectangles.

10. Let the triangle T1 have height ht and base b, and the triangle T2 have height h2
and base b2. We say that Tt T2 if b1h1 = b2h2. Show that this is an equivalence
relation on the set of all triangles. Show that Tt e [T] if and only if T, has the
same area as T.

Part B. "Prove" may mean "find a counterexample".

11. Prove that (A u B)-C = (A-C) u (B-C).

12. Prove that (A-C) n (B-C) _ (A n B)-C.

13. Let S be the set of all real numbers. Let s, - s2 if s2 = s2. Prove that is an
equivalence relation on S. What are the equivalence classes?

14. Let X be the set of all people. We say that p, - P2 if pt and p2 have the same
father. Prove that this is an equivalence relation. What are the equivalence
classes?

15. Let X be the set of all people. We say that p, - P2 if P1 lives within 100 kilo-
meters of P2. Show that - is an equivalence relation. What are the equivalence
classes?

16. A careful definition of ordered pair would be the following: If a e A and b e B,
then the ordered pair (a, b) is the set (a, b) = {{a, 11, {b, 2}}. Use this definition to
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prove that (a, b) = (c, d) if and only if a = c and b = d. (Be careful: {{a, 1}, {b, 2} } =
{{c, I}, {d, 2}} does not immediately imply that (a, 1) _ {c, 1}.)

17. Give a careful definition of an ordered triple (a, b, c) and then prove that
(a,b,c)=(d,e,f)if and only if a=d,b=e,and c=f

18. Let 683 = {v" = (x, y, z)lx, y, and z e 68}. Let v, w e 083-{0}. We say that v - w if
there is a non-zero real number, A, with v = AO. Show that - is an equivalence
relation on 1l-{ 0}. What are the equivalence classes? The set of all equivalence
classes will be called the (real) Projective Plane.

19. Let X = {(x, y)lx e 7L and y e 7L and y # 0}. We define a binary relation on X by

(x1,y1).(x2,y2) ifandonlyifxly2=x2y1

Prove that - is an equivalence relation. What are the equivalence classes?

20. Let - be a relation on S that is both symmetric and transitive. What is wrong
with the following "proof" that - is also reflexive? "Suppose a - b. Then by
symmetry b - a. Finally by transitivity a - b and b - a imply a - a. Thus - is
reflexive."

Part C. Expository exercises.

21. How would you explain to a high school audience the notion of an equivalence
relation? In that context, what would an equivalence mean? Where would it occur
in their daily lives?

22. Think of a binary relation as a graph. What is the geometric (graphical) meaning
of the three axioms for an equivalence relation?

1.3 Functions

In this section we review the standard material about functions and bi-
jections. The latter notion is an important part of the Ruler Postulate which
will appear in the next chapter. We will continue to use R to denote the
set of real numbers and 7L to denote the set of integers.

Definition. If S and T are sets, then a function f: S -> T is a subset f c S x T
such that for each s e S there is exactly one t e T with (s, t) e f. This unique
element t is usually denoted f(s). S is called the domain off and T is called
the range off.

In a very intuitive manner we may view a function as an archer who takes
arrows (elements) from her quiver S and shoots them at a target T. In this
analogy we say that the element s c S "hits" the element f (s) e T.

Following standard conventions, we frequently describe a function f by
giving a formula (or rule) for computing f(s) from s. Note that the function
consists of this rule together with the two sets S and T.
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Example 1.3.1. Let f : l -> R by the rule f(x) = x2. Let g:7L -* R by the rule
g(x) = x2. Note that f is not equal to g-they have different domains. Now
let R+ = {x e 18Jx >- O} and let h: R -> R' by the rule h(x) = x2. Note that
f and h are not equal-they have different ranges. 0

Definition. If f : S -> T is a function then the image of f is

Im(f) = ft c- T I t = f(s) for some s S}.

Thus, Im(f) consists of the elements of T that are actually "hit" by f. Of
course, Im(f) c Range(f), but these sets need not be equal. In Example 1.3.1,
Im(f) = l but Range(f) = R. (Some mathematicians use the word "range"
to mean "image". They then use "codomain" to mean what we call the
"range".)

Definition. J': S -> T is surjective if for every t e T there is an s e S with
f(s) = t.

In keeping with the target analogy above, this means that all elements of
the target T are "hit." Of course, an element may be hit more than once.
That is, there may be several s e S such that f(s) = t..It is common usage to
say that a function is "onto" instead of "surjective". In this text we shall use
the more correct terminology "surjective".

Example 1.3.2. Show that f R by f(x) = x3 - I is surjective while
g: R -> R by g(x) = x2 - 1 is not surjective.

SOLUTION. To show that f is surjective we must show that for every
t e Range(f) = R there is an s e Domain(f) with ,f(s) = t. That is, we must
show that the equation

s3 - 1 = t (3-1)

has a solution for every value of t. Since every real number has a cube root,
we may sets='t+1. Then

f(s)=(3t+1)3-1=t+
Hence f is surjective.

To show that g is not surjective we need only produce one value oft such
that the equation

s2 - 1 = t (3-2)

does not have a solution. Let t = -2. Then a solution to Equation (3-2)
must satisfy

s2-1=-2 or s2=-1.
This clearly cannot occur for any real numbers. Hence g is not surjective. El
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Example 1.3.2 illustrates how we actually attempt to prove that a function
is surjective. We set up the equation f(s) = t and try to solve for s (given t).
At least one solution for every value of t must be found.

Example 1.3.3. Let T = {t a IIR I t >_ e" 114} and h:ll --> T be given by h(s)
es2-'. Prove that h is surjective.

SOLUTION. Given t e T, note that In t >_ -4. Thus I + 4 In t >- 0. Let s be
the "obvious choice":

1+ 1+41nt
2

It is easy enough to show that Equation (3-3) defines an s e 18 with h(s) = t. 0

The above represents an absolutely correct (and totally unmotivated)
solution to the problem. The way that we came up with the "obvious choice"
(and the way to attack the problem) is to attempt to solve the equation
h(s) = t. Thus on scrap paper you might write: For fixed t, solve for s:

es
2-' = t.

First take the natural logarithm of both sides to get

s2-s=lnt or s2-s--int=0.
An application of the quadratic formula gives

I± ++4Int
2

Because we only need to exhibit one solution, we take the "+" sign:
s = 12(1 +,\5 -+4 In t). Of course, taking s = 2(l - 1 -+4 In t) would also
show that f is surjective. Once we have found what we believe is the
solution, we must verify that it is correct as in Example 1.3.3. This is similar
to solving an equation in algebra and then checking the solution to be sure
that we have not found an extraneous solution. Note that it was crucial that
we verified that 1 + 4 In t >- 0. If the range had included numbers t < e-'14
we would not always have 1 + 4 In t >- 0 and the function would not have
been surjective.

The concept of a surjective function deals with whether or not an equation
can be solved. Another important idea is the notion of an injective function,
which deals with the number of solutions to an equation. Thus "surjective"
deals with existence of a solution while "injective" deals with uniqueness.

Definition. f :S -> T is injective if f(s,) = f(s2) implies s, = s2.

In terms of the target analogy, J: S -p T is injective if no two arrows hit
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the same place on the target. (Note that this says nothing about whether all
of the target is hit.) It is common practice to use the term "one-to-one" to
mean injective. In keeping with our practice regarding the word "surjective"
we shall only use the term "injective" and not "one-to-one."

An alternative way of defining injective would be: f is injective if sl 0 s2
implies f(sl) # f(s2). While this is not as convenient to use, there are times
(e.g., Theorem 1.3.8) when it is helpful.

Example 1.3.4. Let f : R - R be given by f (s) = es3+ 1. Show that f is injective.

SOLUTION. We assume that there are real numbers sl and s2 such that

es1 = eS2+1 (3-4)

We must show that the only way that this occurs is if s i = s2. If we take the
natural logarithm of both sides of Equation (3-4) we obtain

si + 1 = sz + 1 or si = sz.

Since every real number has a unique cube root we must have sl = s2. Thus
f is injective.

Example 1.3.5. Show that h:IFB{ -> R+ by h(x) = x2
.

is injective.

SOLUTION. Assume that h(sl) = h(s2) so that s1 = s2. Then by taking square
roots we have si = ±s2. However, since the elements of 111 are not negative,

both sl and s2 must be greater than or equal to zero. Hence sf # -s2
(unless both are 0) and so sl = s2. Thus h is injective.

The words "injective" and "surjective" are adjectives. If we wish to have a
noun it is common to say "injection" for "injective function" and "sur-
jection" for "surjective function." Note that in Example 1.3.4 the function
was an injection but not a surjection, whereas in Example 1.3.5 the function
was both a surjection and an injection. The function h of Example 1.3.3
gives an example of a function which is a surjection but not an injection
(since h(O) = h(1) = 1). There are many examples of functions which are
neither injective or surjective. However, a function which is both has a
special name.

Definition. f:S -* T is a bijection if f is both an injection and a surjection.

Example 1.3.5 is a bijection. The term "one-to-one correspondence" is also
common, but we shall not use it here because readers have a tendency to
confuse the term with the idea of "one-to-one."

Recall the definition of the composition of functions.

Definition. If f : S -> T, g : U -i V, and Im(f) c U, then the composition of
f and g is the function g o f S - V given by (g o f)(s) = g(f(s)).
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Notice that the domain of g must contain the image off in order for the
composition of f and g to be defined.

Example 1.3.6. If f : I(8-> EI -{O} is given by f (s) = 2 + sin(s) and g: 118-{0}-- 18
is given by g(t) = 1/t find g o f.

SOLUTION. g o f : R -+ fi is given by

(g ° .f)(s) = g(.f(s))
f(s)

2 + sin(s)' El

Theorem 1.3.7. If f : S - T and g: T -a V are both surjections then g o f is
also a surjection.

PROOF. Let v e V. We must show that there is an s e S such that (g o f)(s) = v.
Since g is surjective, there is a t e T with g(t) = v. Then since f is surjective
there is an s e S with f (s) = t. Now

(g ° f)(s) = g(f(s)) = "(t) = v

so that g o f is a. surjection.

The next two results are left as Problems A6 and AT

Theorem 1.3.8. If f : S -; T and g: T -+ V are both injections then g o f : S -> V
is an injection.

Theorem 1.3.9. If f : S -. T and g: T -+ V are both bijection then g o f :S -+ V
is also a bijection.

If f : S -+ T is a bijection then for each t e T there is a unique s a S with
f(s) = t. This allows us to assign to each t e T a corresponding element s e S.
Thus we have manufactured a new function (called the inverse) which goes
backwards. More formally we have

Definition. If f : S -* T is a bijection, then the inverse of f is the function
g : T -+ S which is defined by

g(t) = s, where s is the unique element of S with f(s) = t (3-5)

The function g is frequently denoted f -1.

If f is the natural logarithm function given by f (s) = in(s), then the inverse
of f is the exponential function g given by g(t) = e` since e`(8) = s.

Definition. If S is a set, then the identity function ids: S -* S is given by

ids(s) = s.
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Theorem 1.3.10. If f : S -* T, then f is a bijection if and only if g o f = ids
and fog= idT for some function g: T ---> S. Furthermore, the inverse off is g
in this case.

PROOF. First we shall prove that if there is a function g: T - S with f o g =
idT and g o f = ids then f is a bijection and g is its inverse.

Assume there is a function g : T -> S with fog = idT and g o f = ids. If
t e T then g(t) e S and f(g(t)) = idT(t) = t. Hence t e Im(f) and f is sur-
jective. If f(s1) = f(s2) for s1, s2 a S, then g(f(s1)) = g(f(s2)) or ids(s1) =
ids(s2) or s1 = s2. Thus f is injective and hence is a bijection. Finally if t = f(s)
then g(t) = g(f(s)) = ids(s) = s, so that g satisfies Equation (3-5). Thus g is
the inverse of f.

Next we shall show that if f is a bijection then there is a function g: T -> S
with f o g = idT and g o f = ids. Since f is a bijection it has an inverse. Call
this inverse g: T -, S. Then g(t) = s whenever f(s) = t.

In particular, if t e T then

f(g(t)) = f(s) = t for all t e T

so that f o g = idT. Also if s e T let t = f(s). Then by Equation (3-5), g(t) = s
so that

Thus g o f = ids.
g(f(s)) = s for all se S.

Example 1.3.11. Let P+ _ It a R It > 0} and set f:R -+ P+ by f(s) = es.
What is f -1: I+ - R?

SOLUTION. Equation (3-5) says that we must find a function g = f -1: P'
R with the property that ,q(t) = s whenever es = t. This function is g(t) =1n t..

Since
eInt=t and lnes=s,

Theorem 1.3.10 gives a formal proof that our solution is correct.

Theorem 1.3.10 may be used to prove the next result.

Theorem 1.3.12. If f : S --* T and h : T -+ V are bijections then (h o f)-1 =
f-1oh-1.

PROBLEM SET 1.3

Part A.

1. Prove that each of the following functions is surjective.
a. f :l -{0} - ll-{2}; f(s) = 2 + 1/s
b. g:l --fl8;g(s)=s3 -6s
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c. h:682-.68; h(x,y)=xy
d. 1:68 -. {x j-- 2 < x< 2} ; 1(t) = 2 cos t

2. Prove that each of the following functions is injective.
a. f : 08 - 68 by f (s) = -Ys + I
b. g:68-{0} - 68 by g(x) = 3 - I/(2x)
c. h:682 - 682 by h(x, y) = (Y3, xy2 + x + 1)
d. 1:P+- 682 by 1(t) _ (t, In t), where P+is the set of positive real numbers

3. Which of the functions in Problem 1 are bijections? In these cases, find the inverse.

4. Which of the functions in Problem 2 are bijections? In these cases, find the inverse.

5. Give an example of a function f: R -. 68 which is neither injective nor surjective.

6. Prove Theorem 1.3.8.

7. Prove Theorem 1.3.9.

8. Prove Theorem 1.3.12.

*9. If f : S T is a bijection prove that f -1: T -> S is also a bijection.

Part B. "Prove" may mean "find a counterexample".

10. If g : T V and f : S -3 T and if g o f is surjective prove that both g and f are
surjective.

11. If g : T -> V and f : S - T and if g of is injective, prove that both g and f are
injective.

12. If f : S - T we define a binary relation on S by sl - s2 if f(sl) = f(s2). Prove that
- is an equivalence relation on S.

13. If h : X Y and g: Y Z and g o h is a bijection, prove that g is surjective and h
is injective.

14. If f: X -F Y and A c B c X, prove that f(B-A) c f(B) f (A).

15. If f : S -* 68 and g : S -* l are both injective and h : S -. 68 is defined by h(s) =
f(s) + g(s), prove that h is injective.

16. If f : S 68 and g : S - 68 are both surjective and h : S 68 is defined by h(s) =
f (s) + g(s), prove that h is surjective.

17. Prove that the set of all bijections from S to S forms a group. (Hint: Use
composition for the multiplication)

18. Let S be the set of all polynomials. Let f: S -+S by f(p(x)) = d/dx(p(x)) and
g : S - S by g(p(x)) = So p(t) dt. Show that f o g = ids but that f is not a bijection.
Does this contradict Theorem 1.3.10?
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Part C. Expository exercises.

19. Discuss at an intuitive level what injective and surjective functions are. How
would you explain them to an engineering student? to your parents or spouse? to
high school students? Note how your answer changes depending on your audience!



CHAPTER 2

Incidence and Metric Geometry

2.1 Definition and Models of incidence Geometry

In this section we shall define the notions of an abstract geometry and an
incidence geometry. These are given by listing a set of axioms that must be
satisfied. After the definitions are made, we will give a number of examples
which will serve as models for these geometries. Two of these models, the
Cartesian Plane and the Poincare Plane, will be used throughout the rest of
the book.

As we discussed in Section 1.1, a eomet , is a. Set . of points and a
set Y.of i4 s.:between,sthe;;poiats;and,:,lnes,
What relationship shall we insist on first? We would certainly want every
two points to be on some line, and we would want to avoid the pathology
of a line with only one point. We will add more relationships between points
and lines later and so change the nature of the geometry.

Definition. A&19 stract__ eom 4 consists. ofa set 9' whose: ellements
are. calf ed:.goints,.,,together .uyith:._a _collection . of no tyemgty: subse:.ts;:of

, cai1ed:.hnes; ;such tha..L

(i) 1?or _ever two points fl, B e `f there is a..line I e 2 with A, E.:t and.B.,,.E,l.
(ii) Fver_yAine.h s.at.Ieast:two.:pomts

If d = {.', 2} is an abstract geometry with P.e ..',..1 E.9 and ..P. e 1,
we say that Plies. on the line 1, or that I passes through,.P. In this language
the first axiom of an abstract geometry reads: "every pair of points lies on
some line." A word of warning is necessary, however. Just because we use
the. word.."line,".you should not think "straight line." "Straight" is a biased

17
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term that comes from your previous exposure to geometry, and particu-
larly Euclidean geometry. To us a "line" is just an element of Y. See Proposi-
tion 2.1.2 below, where the "lines" do not "look straight."

Proposition 2.1.1. Let {(x, y) I x, y e 18}. We define a set of "lines"
as follows. A vertical line is any subset of FR2 of the form

La={(x,y)eF2Ix=a} (1-1)

where a is a fixed real number. A non-vertical line is any subset of F2 of the
form

_ (1-2)

where in and b are fixed real numbers. (See Figure 2-1.) Let 'E be the set of
all vertical and non-vertical lines. Then W...=...{Rz,2E:}.is..an.abstract.geometry.

PROOF. We must show that if P = (x.,, y,) and Q = (x2i y2) are any two
distinct points of FR2 then there is an I EYE containing both. This is done
by considering two cases.

Case 1. If xt = x2 let a = x, = x2. Then both P and Q belong to 1=
LaeYE

Case 2. If x, 0 x2 we show how to find m and b with P, Q E L,,,,b. Motivated
by the idea of the "slope" of a line we define m and b by the equations:

m=Y2-Yt and b=y2-mx2.
x2 - x,

It is easy to show that Y2 = mx2 + b and that y, = mx, + b, so that both
P and Q belong to I = L,b E ^'E-

It is easy to see that each line has at least two points so that ' is an abstract
geometry.

Definition. The model - ?, is alied tt , a_rtes an Ian (The nota-
tion L. and Lm,b will be reserved for the lines of the Cartesian Plane and
certain other models that are developed later using the same set of. points
and lines.)

X a

La

Figure 2-I
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We use the letter E in the name of the set of Cartesian lines (PE) to
remind us of Euclid, the author (c. 300 B.C.E.) of the first axiomatic treat-
ment of geometry. Later we shall add the additional structures of distance
and angle measurement to the Cartesian model to obtain the familiar
Euclidean model of geometry that is studied in high schdol. The name
Cartesian is used to honor the French mathematician and philosopher Rene
Descartes (1596-1650), who had the revolutionary idea of putting co-
ordinates on the plane. Our verification that '' satisfied the axioms depended
heavily on the use of coordinates. Descartes is also responsible for many of
our conventions in algebra, such as using x, y, z for unknown quantities and
a, b, c for known quantities, and for introducing the exponential notation x".

Recall from your elementary courses that there are other ways to describe
straight lines in R2. The way chosen above (that is, through L. and L6)
is the best suited for this chapter. In Chapter 3, the results are proved most
easily if the vector form of the equation of a line is used, and so we will
start to use that approach there. Another approach is included in Problem
A14.

Proposition 2.1.2. Let =.,U II..= (x,_x} IfBz ^ > 0 As in the case of the
Cartesian plane, we shall describe two types of lines. A type I line is any subset
of IFI of the form

L= (x (1-3)

where a is a fixed real number. A type.. II line is any subset of V-I of the form

Zjr,L x y} IFD. y s"2 (1-4)

where c and r are fixed real numbers with r.> 0. (See Figure 2-2.) Let Y R
tk s,Rn.bstractbe the set of all type I and type 11 lines. Then

geometry.,,

PROOF. Let P = (xl, y1) and Q = (x2, y2) be distinct points in I so that
Y1>0andy2>0.

Case 1. If x1 = x2 then P and Q both belong to I = ,L e fH where
a= x1 =x2.

Case 2. If xl # x2 define c and r by
2 2 2 2Y2-Yi + x2-x1

2(x2 _ xl) (1-5)

:r. =. (x c)2 +Y21. 1 (1-6)

(In Proposition 2.1.5 below we will see what led to this choice of c and r.)
In Problem A6 you will show that P and Q both belong to I= cL, E YH.

It is easy to see that each line has at least two points so that .° is an abstract
geometry.
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aL

Figure 2-2

Definition. The model .4 =:._{D O, rc li.>he call;,( :.the.. -oineare:,Plan , (The
notation L and L, will be used only to refer to lines in 0.)

.' is called the Poincare Plane in honor of the French mathematican
Henri Poincare (1854-1912) who first used it. Poincare was a prolific re-,
searcher in many areas of pure and applied mathematics. He is particularly
remembered for his work in mechanics, for his study of elliptic functions
which tied analysis and group theory together, and for his work in geometry
which led to the development of modern topology. The letters ., H, and H
are used to remind us of the word "hyperbolic". We shall see later in this
chapter that the hyperbolic functions are important in this model, just as the
trigonometric functions are important in Euclidean geometry. Once we have
added more structure to .° it will be a model of what we call a hyperbolic
geometry.

In the models given in Propositions 2.1.1 and 2.1.2 it seems clear that
through any two points there is a unique line. This need not be the case
in all abstract geometries as we see in the next example. This example will
have a particular subset of l83 = {(x, y, z){x, y, z e ff8} as its set of points, Y.

Definition. The u a"pk zeIn_ is

JGX

A ppaAejn_R3 is a set of the form

where a, b, c, d are fixed real numbers, and not all of a, b, c are zero.

Note that in the definition of a plane if the constant d = 0, then the plane
goes through the origin (0,0,0).

Definition. A gr ,t,,ae e,..T, _of.the.sphere :Sz. is-the intersection. of Sz. with a
plane:.through..the..origin. Thus 5 is a great circle if there are a, b, c e l8, not
all zero, with

1._.__.{(x,_y,..z).,e S2Iax + by,+ cz
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Figure 2-3

Proposition 2.1.3. Let 9.= S2.and..let:.2 . be..the set.of great circles on S2.

PROOF. We must show that if P = (xi, yi, zi) a SZ and Q = (x2, y2, z2) e SZ
then there is a great circle 9 with P e <9 and Q e . Thus we must find a,
b, c real numbers (not all zero) such that

axi + by, + czz = 0 and axe + bye + cz2 = 0. (1-7)

View Equations (1-7) as two equations in the three unknowns a, b, c.
Since two homogeneous linear equations in three unknowns always have
a non-zero solution (in fact, infinitely many solutions), we may always
find a, b, and c solving Equations (1-7). Thus, there is a great circle T with
P e Ir and Q e 9. Finally each great circle has at least two points. D

Definition. Thelgl'11t?,geometry
The Riemann Sphere is named after G. B. F. Riemann (1826-1866)

who wrote foundational papers in geometry, topology and analysis. His
paper on geometry, Uber die Hypothesen, weiche der Geometrie zu Grunde
liegen (On the Hypotheses which lie at the Foundation of Geometry),
which was written in 1854.(see Spivak [1970, vol. II] or Smith [1929]),
provided geometry with a great unifying idea, that of a Riemannian metric.
This concept, which is quite advanced, is the basis for modern differential
geometry (see Millman and Parker [1977]) and the mathematics of Einstein's
theory of general relativity. The name Riemann Sphere comes from Rie-
mann's work in functions of a complex variable and not from his work in
geometry.

Note that it is "geometrically obvious" and was proven above that any
two points on S2 lie on a great circle. However, unlike the first two examples,
two points on Sz may have more than one great circle ioining them. Con-
sider the north and south poles N and S as in Figure 2-4. There are infinitely
many great circles joining N to S. The uniqueness of lines joining two points
is such an important concept that it is singled out in the definition of in-
cidence geometry.
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Figure 2-4

Definition. t ,n .abc r cwt ggomeiry,,,.{ itcidence: geome _ if

(i) inet...oi unigpe (
(ii} ThE e exict three min c As R which do not iie all ltiy

Notation. If {.°, 2'} is an incidence geometry and P, Q e Y,
then the.unique line I on which both, P,and,Q,lie.:will be.:writte.n
as l = PQ.

It is useful to restate the second axiom-of an incidence geometry in terms
of the concept of collinearity.

Definition. A..s.et.of:points..#>is_ oIIinea f.there,is.,aJine. i_such c,l.
,..is .non collinear...tf..M is_:nat,a,.collinear.set.

Sometimes we will say that "A, B, and C are collinear" instead of saying
"{A, B, C) is a collinear set" This abuse of notation and language makes it
easier to state some results. Axiom (ii) of the definition above can be restated
as

(ii)' There exists. a set of three non-collinear points.

Although the manr__ . e t , s a.. i cidence geometry both the
e as we shall now see.Carte la g al?s ; e gkfig4 .

Proposition 2.1.4. The Cartesian Plane ' is an incidence geometry.

PROOF. We must show that two distinct points uniquely determine a Car-
tesian line. Let P = (x y,) and Q = (x2i y2) with P # Q. We shall assume
that P, Q belong to two distinct lines and reach a contradiction.

Case 1. Suppose P, Q belong to both L. and La with a # a'. Then a =
x1 = x2 and a' = x, = x2 so that a = a', which is a contradiction.

Case 2. If P, Q belong to both L. and then P = (a, y,) and Q =
(a, Y2). Since both belong to Lm,b we also have

yt =mx,+b=ma+b and y2=mx2+b=ma+b.
Thus yi = Yz, which contradicts (a, Yi) = P 0 Q = (a, Y2).

Case 3. Suppose that P, Q belong to both Lm,b and L, and that Lm,b 0
L,,, Then
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y1= mx1 + b, y2 = mx2 + b. (1-8)

By Case 2, P, Q cannot both belong to a vertical line so x1 x2. Hence we
may solve Equation (1-8) for m:

Y2 - Y1m=
x2 - X1

From this value of m we obtain b:

h.=y1 -mx1

A similar calculation for the line L,,, yields

Y2 - Y1n= c=Y1-nxl.
X2 - X1

But this implies m = n and b = c, which contradicts Lm,b L,.
Thus in all cases, the assumption that P, Q belong to two different lines

leads to a contradiction so that P, Q belong to a unique line. In Problem
A5 you will show there exists a set of three non-collinear points. Hence

' is an incidence geometry. p

Note that in the above proof we did not depend on any pictures or "facts"
we already know about "straight lines." Instead we were careful to use only
the definition of the model and results from elementary algebra.

Proposition 2.1.5. The Poincare Plane ' is an incidence geometry.

PROOF. Let P, Q e H with P # Q. If P and Q lie on two type I lines QL and
a,L then we can show that a = a' just as in Proposition 2.1.4. Thus P and Q
cannot lie on two different type I lines. In Problem A7 you will show that P
and Q cannot lie on both a type I line and a type II line.

We are left with proving that if P = (xl, yt) and Q = (x2i y2) are on both
,L, and 1L.. then cLr = dL,. We will show that c = d and r = s. This will be
done by deriving Equations (1-5) and (1-6) and so will motivate the choice
of c and r in Proposition 2.1.2. Since P and Q are on L,,

(x1 - c)2 + yl = r2 and (x2 - c)2 + y2 = r2.

Subtracting, we obtain (x1 - c)2 - (x2 - c)2 = y2 - y2 or

xi-2cx1-x2+2cx2= Y2 -y.
We then solve for c:

Y2 - Yi + x2 - xi
c=

2(x2 - x1)

which is Equation (1-5). An identical computation using the fact that P and
Q are on dL5 will yield
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so that c = d. Since

r= (x1-c) +yi= {x1-d)2+yis
we see that r = s and so cLr = dLs.

In Problem AS you will show there is a set of three non-collinear points.

Theorem 2.1.6. Let 11 and 12 be lines in an incidence geometry. If 1.n I has

PROOF. Assume that P Q, P e 11 n l2, and Q e 11 n 12. Then since both
P and Q are on 11, PQ = 11. However, P and Q are also on 12 so that PQ = 12.
Hence l1 = 12.

Definition. If l1 and 12 are lines in an abstract geometry then

The study of parallel lines has a central place in the history of geometry.
It and its history will be dealt with in detail later in this book. In Problems A10,
All, and A12 the different "parallel properties" of our models are highlighted.
Theorem 2.1.6 can be restated in terms of parallelism as the next result shows.

Corollary 2.1.7. lines
tlte.y..Wea "4 e Cag IJI 4 tz -

PROBLEM SET 2.1
rt A.

L ind the Poincare line through (1, 2) and (3, 4).

2. ind the Poincare line through (2, 1) and (4, 3).

3. Find a spherical line (great circle) through (Z, 2, i) and (1, 0, 0).

4. Find a spherical line (great circle) through (0, 21 12-,/ ) and (0, -1, 0).

5. Show by example that there are (at least) three non-collinear points in the
Cartesian Plane.

6. Verify that P = (x1, y1) and Q -- (x2, Y2) do lie on .L,, where c and r are given by
Equations (1-5) and (1-6).

7. Prove that if P and Q are distinct points in H then they cannot lie simultaneously
_}on both L and L,

c 8. how by example that there are (at least) three non-collinear points in the
/Poincare Plane.

9. Let P and Q be in H and PQ = ,L,. Use your knowledge of Euclidean geometry to
prove that c is the x-coordinate of the intersection of the Euclidean perpendicular
bisector of the Euclidean line segment from P to Q with the x-axis. (Hint: Use
Equation (1-5).)
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P ------------
Figure 2-5

ind all lines through (0, 1) which are parallel to the vertical line L6 in the
- -Cartesian Plane.

11, ind all lines in the Poincare Plane through (0, 1) which are parallel to the type ISline 6L. (There will be infinitely many!)

12. Find all lines of 3P through N = (0, 0, 1) which are parallel to the spherical line (great
circle), le, defined by the plane z = 0.

13. Let a' = {P,Q,R} and 2 = {{P,Q}, {P,R}, {Q,R}}. Show that {S°,2'} is an
incidence geometry. Note that this example has only finitely many (in fact, three)
points. It may be pictured as in Figure 2-5. It is called the 3-point geometry. The
dotted lines indicate which points lie on the same line.

14. Let .P = 182 and, for a given choice of a, b, and c, let

{(x,y)s R2Iax+by= c}.

Let `Zi be the set of all J,,b,, with at least one of a and b nonzero. Prove that
{R2, Tj is an incidence geometry. (Note that this incidence geometry gives the
same family of lines as the Cartesian Plane. The point here is that there are
different ways to describe the set of lines of this geometry.)

15. Let Y = 182-{(0, 0)) and .0 be the set of all Cartesian lines which lie in .P
Show that {So, P} is not an incidence geometry.

p -----------R
I i

I

I

Ip

IQ

(c)

Q S{
-----------

(a)

\

IQ Si

(b)

(d) (e) (f)
Figure 2-6

I
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16. Prove that the Riemann Sphere is not an incidence geometry.

17. Show that the conclusion of Theorem 2.1.6 is false for the Riemann Sphere. Explain.

18. Prove Corollary 2.1.7.

Part B. "Prove" may mean "find a counterexample".

19. Some finite geometries are defined pictorially (as in the 3-point geometry of
Problem A13) by Figure 2-6.

i. In each example list the set of lines.
ii. Which of these geometries are abstract geometries?

iii. Which of these geometries are incidence geometries?

*20. Let {.9, £°} be an abstract geometry and assume that 9, c 9. We define an
,5,-line to be any subset of of the form In .9' where 1 is a line of 2 and where
1 n 9, has at least two points. Let rT, be the collection of allV1-lines. Prove that
{91, .', } is an abstract geometry. {.-,, T,) is called the geometry induced from

*21. If (Y1, 2,) is the geometry induced from the incidence geometry {.9', 2'}, prove
that {91, 2, } is an incidence geometry if .9, has a set of three non-collinear
points.

22. Let {So,, Y, } and {22, 221 be abstract geometries. Let .9' = fP, v 22 and 2' =
Y, v 22. Prove that {b", 2} is an abstract geometry.

23. Let {b,, 21 } and {.912, 92} be abstract geometries. If .' _ 2, n b2 and P =
Y, n 2 prove that {.9', 2} is an abstract geometry.

24. Let {.50, 2'} be an abstract geometry. If 1, and 12 are lines in 2 we write 1, - 12 if
11 is parallel to 12. Prove that - is an equivalence relation. If {.', 2} is the
Cartesian Plane then each equivalence class can be characterized by a real
number or infinity. What is this number?

25. There is a finite geometry with 7 points such that each line has exactly 3 points
on it. Find this geometry. How many lines are there?

26. Define a relation - on S2 as follows. If A = (x1, y,, z1) and B = (x2, y2, z2) then
A - B if either A = B or A = - B = (_X21 -y2, -z2). Prove - is an equivalence
relation.

27. Let P = {[X]IX e S2} be the set of equivalence classes of - in Problem B26. If
c' is a great circle (spherical line) let [W] = { [X] IX e'g}. Let Y. = { [W] J`e E YR}.
Prove that & = {P, T p} is an incidence geometry. (9 is the Projective Plane.
There is a natural bijection between P and the set described in Problem B18 of
Section 1.2.)

28. Prove that there are no distinct parallel lines in IP (i.e., if 1, is parallel to I2 then
11 =

Part C. Expository exercises.

29. Discuss the mathematical career of Ren6 Descartes.
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30. Discuss the statement "parallel lines meet at infinity" in terms of the three models
that are given in this section. Is there even a meaning to the phrase "at infinity"
in the Poincar$ Plane or the Riemann Sphere?

2.2 Metric Geometry

At this level there are two fundamental approaches to the type of geometry
we are studying. The first, called the sytttltetjc appr.,gach, involves deciding
what are.the important properties of the concepts you wish to study and
then defining these concepts axiomatically by their properties. This approach
was used by Euclid in his Elements (around 300 B.C.E.) and was made
complete and precise by the German mathematician David Hilbert (1862-
1943) in his book Grundlagen der Geometric [1899; 8th Edition 1956; Second
English Edition 1921]. Hilbert, as did Poincare at the same time, worked in
many areas of mathematics and profoundly affected the course of modern
mathematics- He put several areas of mathematics on firm axiomatic footing.
In an address to the International Congress of Mathematicians in 1900 he
proposed a series of seventeen questions which he felt were the leading
theoretical problems of his time. These questions (not all of which have been
answered yet) directed mathematical research for years.

The second approach, called the nzaW"l l QagC i, is due to the American
mathematician, George David Birkhoff (1884-1944) in his paper "A Set of
Postulates for Plane Geometry Based on Scale and Protractor" [1932]. In
this approach, the. concept of. distance..(or a metric) and. angle measurement
is added to that of an incidence geometry to obtain basic ideas of betweenness,
line segments, congruence, etc_ Such an approach brings some analytic tools
(for example, continuity) into the subject and allows us to use fewer axioms.
Birkhoff is also remembered for his work in relativity, differential equations,
and dynamics.

A....third..approa.ch, championed by Felix Klein (1849-1925), has a very
different flavor-that of abstract algebra-and is more advanced. because. it.
uses. group theory.. Klein felt that geometry should be studied from the
viewpoint of a group acting on a set. Concepts that are invariant under this
action are the interesting geometric ideas. See Millman [1977] and Martin
[1982]. In Chapter 11 we will study some of the ideas from this approach,
which is called transformation geometry.

In this book we will follow the metric approach because the concept of
distance is such a natural one. (Modern treatments of the synthetic approach
can be found in Borsuk and Szmielew [1960] or Greenberg [1980]. We will
briefly outline the synthetic approach in Section 6.7.) Intuitively, "distance" is
a function which assigns a number d(P, Q) to each pair of points P, Q. It
should not matter whether we measure from P to Q or from Q to P (i.e.,
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d(P, Q) = d(Q, P)). Furthermore, the only time the distance between two
points is zero should be when the points are actually the same. More
formally we have the following definition.

on, a , is..a. function d:.' x Y - R suchDefinition. A, 's=f
(i) d. P(z(

(ii) and only if-P = Q; and
(iii) d(P,.Q) = d(Q, P).

The following definition gives a distance function for the Cartesian Plane.
See Problem Al.

Definition. Let 99 = a, P = (x1, y,) and Q = (x2, y2). The Eudidean
dE is given by

X2), 2 Y, -.Yz) (2-1)

To give an example of a reasonable distance function in the Poincare
Plane requires more thought. Suppose that P and Q belong to a type I line.
A reasonable guess for the distance between P = (a, y,) and Q = (a, y2)
might be ly, - y2j However, this is somewhat displeasing because it 'means
that as y2 tends to zero (and thus Q goes toward the x-axis or "edge") the
distance from P to Q tends to yl, which is a finite number. It would be "nicer"
if the "edge" were not a finite distance away. One way to avoid this is to use
a logarithmic scale and say that the distance from (a, y,) to (a, y2) is J1n(y,) -
ln(Y2)J = iln(y,/y2)!. (Note that as Y2 -+ 0, ln(y,/y2) -), co.) This gives some
justification for the following definition (which looks rather artificial.) The
reasons for this definition will be clearer after we discuss the Ruler Postulate.

Definition. If P = (xt, y,) and Q = (x2, y2) are points in the Poincare Plane
the Pncar d6t$cedgiven by

dl(P,Q) = 1ln(2!) if x1.= x2 (2-2)

if P.,and.

The verification that dg, as defined by Equations (2-2) and (2-3), actually
satisfies axioms (i) and (iii) of a distance function is left to Problem A2.
Axiom (ii) is more difficult, especially for points on a type II line. Essentially,
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we need to show that the function f :,L, - IR given by f (x, y) = In

is injective. We will do this in the proof of Proposition 2.2.6.

We shall now present an example with a different twist. This example,
called taxicab distance, comes from thinking of a taxi driving on the rectangu-
lar grid of a city's streets. The taxicab distance measures the distance the
taxi would travel from point P to point Q if there were no one way streets. See
Figure 2-7.

Definition. If P = (x1, yl) and Q = (x2, Y2) are points in..R2, the taxicab
distance between them is given by

dx, Pa Q xt...- [...+ IYt Y21 (2-4)
1 i"11

Proposition 2.2.1. The taxicab distance is a distance function on ll82.

PxooF.Note that dT(P, Q) > 0 since it is a sum of absolute values, each of
which is always nonnegative. Thus axiom (i) for a distance holds.

The second axiom states that dT(P, Q) = 0 if and only if P = Q. Clearly
if P = Q then dT(P, Q) = 0 by Equation (2-4). On the other hand, if dT(P, Q) =
0 then lxt - x21 + jyl - y2l = 0. Since each of these two terms is at least
zero, they must both be zero: Ixl - x21 = 0 and I yl - Y21 = 0. But this means
x1 = x2 and Yl = y2. Therefore, if dT(P, Q) = 0 then P = Q.

Finally axiom (iii), dT(P, Q) = dr(Q, P), holds because la - bl _ lb - a!.

Note that dT anddE.are.both distance functions on the same underlying
set...IFl2. In.general, a set-may have many-different._distance functions on it
(see, for example, Problem B16). Thus, when we want to talk about a
property of distance on a set, we.. need.., to :specify, both the set 9 and the
distance.: function d.

The concept of a ruler is central to the remainder of this book. This was
the idea introduced by Birkhoff to move geometry away from the very

Qt

P-`--- -J

Figure 2-7
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synthetic methods. Intuitively,.a ruler.n a.line that has been marked so that
it-can be used to measure. distances.. We shall "mark" our lines by assuming
that for every line there is a bijection between that line and R in such a way
that the "markings" measure distance.

Definition. Let l be a line in an incidence geometry {b°, 2 . Assume that
there is a distance function don Y. A function.j,;L ± i uIe (orRate
(ii) fo ir. oLpaints P._and.. on. l

l f P).. w. f___ d(P, Q). (2-5)

Equation (2-5) is called the Ruler Equation and f(P) is called the coordinate of
P with respect to f.

Example 2.2.2. Let I be the nonvertical line L2, 3 in the Cartesian Plane rP
with the Euclidean distance. Show that if Q = (x, y) then f(Q) = F 5x gives
a ruler f for 1 and find the coordinate of R = (1, 5) with respect to f.

SOLUTION. f is certainly a bijection so all we need verify is the Ruler Equation.
Note that (x, y) e L2,3 if and only if y = 2x + 3 so that if P = (x1, yx) then

d(P, Q) ` (xl x)2 +(y 1
-y) 2 (x1 - x)2 +4 (x 1 -x) 2

= Ixl - xl = If(P) - f(Q)I.

Thus the Ruler Equation holds.
The coordinate of R = (1, 5) is f(R) = 53. El

Some comments are in order. The terms ruler and coordinate system are
typically used interchangeably in the literature, and we will use both. Note
also that since a point may lie on more than one line it may have different
"coordinates" with respect to the various lines or rulers used. In particular,
ifP.lies. on.the line !',.and if 1'.has a ruler. (',then there need not be any relation
between . the. coordinate. of P with. respect .to Land .the coordinate of P. with
respect. to.. 1'. (See Problem A4.) In addition, we shall see that if.a. line-has
one .. ruler. f, it has, many. rulers, and thus many..possible...coordinates for P.
(The analogous situations for coordinates in analytic geometry are that the
rectangular coordinates of a point may be quite different from its polar co-
ordinates and that by translating the origin we also get different coordinates.)

Definition. qn. incidence geometry (Y, 2) together with a distance function
d satisfies the RjAM&gHWLe_ if a .SP x. . In this case we
say: Pw, Z4. a:l! .tllc,geQn e....

Why do we study metric geometries? It is because many of the concepts
in the synthetic approach which must be added are already present in the



2.2 Metric Geometry 31

metric geometry approach. This happens because we can transfer questions
a ruler. f. In 11 we un et-about..a::Iinel_in. ....to.the-real..numbersI by using

stand concepts like "between" and so can transfer them back (via f -') to 1.
This is the advantage of the metric approach alluded to in the beginning of
the section. After we have more background (i.e., in Chapter 6), we will
return to the question of a synthetic versus metric approach to geometry.

The definition states that in order to prove {,°, ., d} is a metric geometry,
we need to find for each I E 2' a function f :I -. Il which is a bijection and
which satisfies Equation (2-5). However, because of the next lemma, we do
not really have to prove that f is an injection. This lemma will then prove
useful in the problems at the end of the section as well as in Propositions 2.2.4
and 2.2.7.

Lemma 2.2.3. Let 1;. __anc : f I ,;ffg.,$e surjective and;satisfy Equation (2 5).
T.:hen f a Iu1gct0 and,hmq' _aruter,fQr 1.

PROOF. Since we assume that f is surjective we need only show that it is
injective. Suppose that f(P) = f(Q). Then by Equation (2-5) we have

d(P, Q) = If(P) - f(Q) I = 0

so that P = Q by the second axiom of distance. p

Proposition 2.2.4. The.. Cartesian:,Plane,with,.the Euclidean.distance, dE, is a
metric eemetr.

PROOF. Let I be a line. We need to find a ruler for 1. This will be done in
two cases.

Case 1. If I = L. is a vertical line then P e LQ means P = (a, y) for some y.
We define f: I -; R by

f(P) = f((a, y)) = y. (2-6)

f is clearly surjective. If P = (a, yl) and Q = (a, yz), then

If(P) - f(Q)I = IY1 - Yzl = d(P, Q).

Therefore f is a ruler by Lemma 2.2.3.

Case 2. If I = Lm,b then P E Lm,b means that P = (x, y) where y = mx + b.
Define f : Lm,b -> R by

f(P) = f((x, y)) = x l -+M2. (2-7)

Ifta08letx=t/ 1+mz,y=(mt/ 1+mz)+b. Certainly, P=(x,y)ELm.b
Furthermore,

f(P)
= t

1+rnz
1+m2=t

so that f is surjective.
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Now suppose that P = (x, yt) and Q = (x2, y2). Then

If(P}-/(Q)I=Iz. 1+m2-x.Nil +M21

+m2

On the other hand

- x21.

dE(P,Q) _ (xl - x2)2 + (Yi - Y2)2

= [(xt x2)2 + m2(xl -x2)2

1 + yn2 (xl - x2)2

l + rn2lxt - x21.

Combining these two sets of equations we have I f(P) - f(Q) I = d&, Q).
Hence by Lemma 2.2.3, fis a ruler.

Definition. The Euclide_ag tage is the model

Our next step is to show that the Poincare Plane with the Poincare dis-
tance is a metric geometry. To do this it will be useful to use hyperbolic
functions. Recall that the hyperbolic sine, hyperbolic cosine, hyperbolic tan-
gent and hyperbolic secant are defined by

2
s n = cos 2

;

(2-8)

tanh(t) _
sinh(t) e` - e-' 1

sech(t) =
2

cosh(t) et + e-" cosh(t) e' + e-'

From the above it is easy to prove

Lemma 2.2.5. For every value of t:

(i) [cosh(t)]2 - [sinh(t)]2 = 1;
(ii) [tanh(t)]2 + [sech(t)]2 = 1.

The first equation of Lemma 2.2.5 is particularly suggestive. Whereas the
trigonometric (or circular) functions sine and cosine satisfy sin 2 t+cos2 t=1
and remind us of a circle: x2 + y2 = 1, the hyperbolic sine and cosine lead
to an equation of a hyperbola: x2 - y2 = 1. We should also note that if
x = tanh(t) and y = sech(t) then (x, y) lies on the circle x2 + y2 = 1.

e` e-'
i h(t)

e`+e-`
h(t) =
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Proposition 2.2.6. dH... is.. .a distance. function for the Poincare Plane and
J is.a. metrcgeometry.

PROOF. By Problem A2, dH satisfies axioms (i) and (iii) of a distance function.
We must verify axiom (ii) and find appropriate rulers. Clearly, if P = Q then
dH(P, Q) = 0. We need to show that if dj,(P, Q) = 0 then P = Q. To do this
we consider two cases depending on the type of line that P and Q belong to.

Suppose that P, Q belong to a type I line aL with P = (a, yt) and
Q = (a, Y2). If du(P, Q) = 0 then Iln(y1/Y2)I = 0 so that Y,/Y2 = I and yl =
Y2. Thus .if P, Q belong to a. type I line and dH(P, Q) = 0 then P = Q. In
Problem A8 you will show that the function g: ,,L -> I I given by g(a, y) _
ln(y) is a bJe tion and satisfies the Ruler Equation. Thus g is a ruler for.9L.

Now suppose that P, Q belong to a type II line L, and that dH(P, Q) = 0.

Let f maLrR be given b f(x,Y)=In kx=c + r
We will eventually show.

Y

that f is a ruler. First we musts ow tt is a 6ilection. (Lemma 2.2.3 cannot be
used because we do not yet know that dH is a distance function.) To show
that f is bijective we must show that for every t e R there is one and only
one pair (x, y)-which satisfies

(x - c)2 + y2 = r2, y >0, and f(x y) = t. (2-9)

We try to solve f(x, y) = t for x and y.

e. Thus
Y Y

e_` -
y - y(x-c-r) _ y(x - c - r) y(x - c - r)

x-c+r (x-c+r)(x-e-r) (x-c)2-r2 -y2

x-c-r
Y

since (x, y) E EL,. Hence

e=+e-`

or

Also

or

x-c+r x-c-r 2r

Y Y Y

y = r sech(t).

x-c+r x-c-r
e` - e-' y y 2(x-c) x - c
e`+e 2r 2r r

y

x -- c = r tanb(t).
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Hence the only possible solution to Equation (2-9) is

x = c + r tanh t, y = r sech t. (2-10)

A simple computation using Lemma 2.2.5 shows that x and y as given in
Equations (2-10) satisfy (x - c)2 + y2 = r2 and that y > 0. Thus Equations
(2-10) define a point in EL,. Finally, a straightforward substitution verifies
that for this x, y we have f(x, y) = t. Thus Equations (2-9) have one and only
one solution for each t e R and therefore f : cL, - 1B is a bijection.

Next, if P = (x,, y,) and Q = (x2, y2) belong to cL then by Equation
(2-3) and the properties of logarithms

dH(P, Q) = Jf(x1, Yi) - f(x2, Y2)1

Hence,.f satisfies the Ruler Equation. Finally, if dH(P, Q).=0, then f(x,,Y,)=
f(x2, Y2). Since f is bijective, this means (x1, y,) _ (x2, y2) and dH satisfies
axiom (ii) of a distance function.

Since we have proved that dH is a distance and each line in A" has a ruler
(g and f above) {H, 2H, d11} is a metric geometry.

Convention. From now on, the terminology Poincare Plane and
the symbol Y will include the hyperbolic distance dH:

Note that with the given rulers in Ye, if P, Q e l and if we let Q tend to the
"edge" (i.e., the x-axis) along 1, then f(Q) tends to ±cc so that,

d(P,Q) f(P) - f(Q)I -> oo.
That is, the "edge" of the Poincare Plane is not a finite distance away from
any point P. To a creature living in the geometry the edge is not reachable,
hence not observable. The x-axis that we sketch in our pictures of the
Poincare Plane is the "horizon".

Proposition 2.2.7. The-Cartesian Plane with the taxicab distance .isa metric
eomeir .

PRooF. If I is a vertical line La we define f :I-+ 11 by f((a, y)) = y. If l is a
nonvertical line L.,b we define f :l -- 01 by f((x, y)) = (1 + Im[)(x). We leave
the proof that these really are coordinate systems to Problem A12.

Definition. The model ._= ..{082, L'E, dT} will be called the Taxicab-Plane

Note that we started with a single incidence geometry (the Cartesian
Plane), put two different distances on it, and obtained two different metric
geometries. Thus we have two metric geometries with the same underlying
incidence geometry. In general, there are many metric geometries ..which
have the same underlying incidence geometry.
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How do we actually construct models of a metric geometry? In our three
examples we started with an incidence geometry, defined a distance and
hunted for rulers so that Equation (2-5) was satisfied. We can reverse this
process in a certain sense. That is, we can start with a collection of bijections
from the lines to 08 and use them to define a distance function which has
these bijections as rulers. In fact, this method (which is described in Theorem
2.2.8 below) is really how we decided what the "right" definition was for a
distance in H.

Theorem 2.2.8. Let ..{ P,: }...be.:an.,irecide.nce..: georrtetry,.:,. lssume;..:that,::for..each

:A. Thenllaere is
a metric geometry and each f : I - U8 is a ruler.

PROOF. If P, Q c ' we must define d(P, Q). If . P =_Q ie dLP , Q,L 0. If
P 0 Q let I be the unique line through P and Q, and f : I -f 08 be the bijection
described in the hypothesis. Define "P)= [fj(P) -f;(Q)L In Problem A 13
you will verify that d satisfies the three properties of a distance. Finally
each f is clearly a ruler for the line 1.

The opposite problem in which we start with a distance and ask if there is
metric geometry with that distance is more subtle. In Problem $15 we give
an example of a distance on the incidence geometry, 082, which does not have
rulers and hence does not give a metric geometry.

We close this section with a table which summarizes the rulers which we
have discussed for the three major models of a metric geometry.

Model

Euclidean
Plane, 60

Poincare
Plane, Ye

Taxicab
Plane, 9

Type of line

1 {(a, A), l}

= {(x, Y)E Ir2ly=mx+b}

,L={(a,y)EO-0Iy>0}

eLr = {(x, y) E I f(x - C)2 + y2 = r2}

La= {(a, y) j y e RI

Lm,b = {(x, y) a R' l y = mx + b}

Standard Ruler or
coordinate system for line

f(a,y) y

f(x, y) = x l + mZ

f(a, y) = In y

f(x,Y)=In
x---C+ rf

y //

f(a, y) ° y

f(X, Y) _ (I + ImI)x

Convention. In discussions about one of the three models above,
the coordinate of a point with respect to a line I will always mean
the coordinate with respect to the standard ruler for that line as
given in the above table.

In the next section we will discuss some special rulers for a line. These
should not be confused with the standard rulers defined above.
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PROBLEM SET 2.2

Part A.

1. Prove that the Euclidean distance function as defined by Equation (2-1) is a
distance function.

2. Verify that the function d11 defined by Equations (2-2) and (2-3) satisfies axioms (i)
and (iii) of the definition of a distance function.

3. Prove Lemma 2.2.5.

\n the Euclidean Plane, (i) find the coordinate of (2,3) with respect to the line
x = 2; (ii) find the coordinate of (2,3) with respect to the line y = -4x + 11. (Note
that your answers are different.)

5 ? Find the coordinate of (2,3) with respect to the line y = -4x + 11 for the Taxicab
Plane. (Compare with Problem 4.)

6. Find the coordinates in 0-0 of (2,3) (i) with respect to the line (x - 1)2 + y2 = 10;
(ii) with respect to the line x = 2.

7. Find the Poincare distance between
i. (1, 2) and (3, 4) (See Problem Al of Section 2.1.)
ii. (2, 1) and (4, 3) (See Problem Al of Section 2.1.)

8. Show that the function g: aL -. 68 given by g(a, y) = In(y) is a bijection and that it
satisfies the Ruler Equation. Show that the inverse of g is given by g-1(t) = (a, e`).

9. Find a point P on the line L2,_3 in the Euclidean Plane whose coordinate is -2.

10. Find a point P on the line L2,_3 in the Taxicab Plane whose coordinate is -2.

11. Find a point P on the line _3L f in the Poincarb Plane whose coordinate is In 2.

12. Complete the proof of Proposition 2.2.7.

13. Complete the proof of Theorem 2.2.8.

Part B. "Prove" may mean "find a counterexample".

14. We shall define a new distanced* on 682 by using dE. Specifically:

d*(P, Q) =
dE(P,

Q) < 1

1.1 if dE(P, Q) > 1.

(i) Prove that d* is a distance function. (ii) Find and sketch all points P e 682 such
that d*((0, 0), P) < 2. (iii) Find all points P e 6R2 such that d*((0, 0), P) = 2.

15. Let d* be the distance function of Problem B14. Prove that there is no incidence
geometry on 682 such that 1182, 9 d*} is a metric geometry. (Thus not every
distance gives a metric geometry.) Hint: Suppose by way of contradiction that
there is a ruler f : I -+ 68 and that Po e I has coordinate zero. Consider the set of all
points on I with coordinate ±2.

16. If do and d1 are distance functions on 9, prove that if s > 0 and t > 0, then
sdo + tdt is also a distance function on Y.
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17. If {Y, ., d} is a metric geometry and P e .9, prove that for any r > 0 there is a
point in .9' at distance r from P.

18. Define the max distance (or supremum distance), ds, on t82 by

ds(P,Q)= max{Ix1 -x21,1Y1 -Y21}

where P = (x1, y,) and Q = (x2, y2).
i, Show that ds is a distance function.

ii, Show that {R2, YE, ds} is a metric geometry.

19. In a metric geometry {2, -W° d} if P e 9 and r > 0, then the circle with center P
and radius r is le = {Q e .9'Id(P, Q) = r}. Draw a picture of the circle of radius 1
and center (0, 0) in the 182 for each of the distances dE, dT, and ds.

20. Let {So, .2', d) be a metric geometry, let P e 9, let 1 e 2 with P e 1, and let le be a
circle with center P. Prove that 1 n'' contains exactly two points.

21. Find the circle of radius 1 with center (0, e) in the Poincare Plane. Hint: As a
set this circle "looks" like an ordinary circle. Carefully show this.

22. We may define a distance. function for the Riemann Sphere as follows. On a great
circle ' we measure the distance dR(A, B) between two points A and B as the
shorter of the lengths of the two arcs of ' joining A to B. (Note dA(A, -A) a.)
Prove that dR is a distance function. Is {S2, .2'R, dR} a metric geometry?

23. On the Projective Plane (see Problem B26 of Section 2.1) define dp([A], [B]) _
minimum of the two numbers dR(A, B) and dR(A, - B). Prove that dp is a distance
function. Is (P, 2P, dp) a metric geometry?

Part C. Expository exercises.

24. Compare and contrast the definition of the taxicab metric as given in this section
with that of Byrkit [1971]. .

2.3 Special Coordinate Systems

In this section we shall prove the existence of a special kind of coordinate
system. This coordinate system will play an important role in our study of
betweenness in Chapter 3. We shall also see that, as a consequence of the
Ruler Postulate, every line in a metric geometry must have infinitely many
points.

Theorem 2.3.1. Let f be a coordinate system for the tine tin a metric geometry.
If is .+J and f we def ne, ha : l t I{8 by

then-h, is..a::coordireate,syst

PnooF. By Lemma 2.2.3 we need only show that ha,, is surjective and satisfies
the Ruler Equation. If t e II is given we know that there is an R E I with
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f(R) = t/e + a since f is surjective. But then

l
ha.E(R) =e(f(R)-a)=a((e+a)-a}=t

so that h,,,E is surjective.

/
///

As for the Ruler Equation,

Iha.E(P) - ha,E(Q)I = Ie((P) - a) - s(.f(Q) - a)I

1e1 If(P) - f(Q)I

=1 f(P) - f(Q)f
d(P, Q)

since f is a coordinate system for 1.

Geometrically, when a = 0 and e = -1 the coordinate system of Theorem
2.3.1 interchanges the positive and negative points of I with respect to
f. More precisely, if, Pa is that ,point of I. with f(P0) = 0 then. ho,-, is the
result..of reflecting the.ruler..f..about.PO. See Figure 2-S. W.emay.also.translate
a.,.coordinate...system..by, an,,.element .. a e R.. This.. amounts.. to_ changing. the
origin (i.e., the point which corresponds to 0). In Figure 2-9, we assume
that f(P1) = a and f(PO) = 0 so that P1 corresponds to a and PO corresponds
to the origin in the coordinate system f. If we apply Theorem 2.3.1 with
e = 1 then P1 corresponds to the origin and PO to -a in the new coordinate
system ha,,.

PO P
0 1

Figure 2-8

1 h0,-1

- 0

PO P1

1
f

PO P

PO Pl

1
ha,,

1

iR

IR 0 - iR
0 a -a 0

Figure 2-9
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Theorem 2.3.2 &$iacPmnTLet I be a line in a metric geometry
and let A and B be points on the line. There.is a: caordinate systeMg,0n- with

PROOF. Let f : l -,, P be a coordinate system for l and let a = f(A). If f(B) > a
let s = + 1. If f{B) < a let e = -1. By Theorem 2.3.1 g = ha., is a coordinate
system for 1, and

g(A)=h4,,(A)=s(f(A)-a)=s'0=0;
g(B) = h.,,(B) = s(f(B) - a) = If(B) - al > 0.

Thus g is a coordinate system with the desired properties.

The special coordinate system of Theorem 2.3.2 is so useful that it merits
a special name.

Definition. Let I = AB. If g: t --f P is a coordinate system for I with g(A) = 0
and g(B) > 0, then g..-is ..called.. a .coordinate. system with.. A. as origin . and . B
positive.

It is reasonable to ask if there are any other operations (besides reflection
and translation) that can be done to a coordinate system to get another
coordinate system; that is, is_.every._coordinate.-sy_atet i..of,the,,,fo,.,rm,., ha E?
The next theorem says the answer is yes. This result will not be used in the
rest of the book. It is included for the sake of completeness and is optional.

Theorem 2.3.3. If I is a line in a metric geometry and if f t l. -*..R..and..g.:I -* P..::
are both coordinate:sy.stems:for.l,:.then:ther..e,is.an,;a:E:,118..and:..an 1.with
g(P)...=:c(f(P) -.a). for all-P e 1.

PRooF. Let Po e l be the point with g(PQ) = 0. Let a = f(P0). Since both f
and g are rulers for 1, we have for each P e I that

Ig(P)I = Ig(P) - g(Po)I = d(P, Pa)

= I f(P) - f(PO)I

If(P)-al.
Thus for each P e 1,

g(P) = ±(f(P) - a). (3-1)

We claim we can use the same sign for each value of P.
Suppose to the contrary that there is a point Pt 0 PO with g(P1) _

+ (f (Pt) - a) and another point P. PO with g(P2) (f (Pl) - a). Then

d(P1, P2) = I g(P1) - g(P2)1
if(P1)-a+f(P2)-al

= I f(P1) + f(P2) - 2al.
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d(P1, P2) = l f(P1) - f(P2)j.

lf(P1) - f(P2)1 = If(P1) + f(P2) - 2a1

f(P1) - f(P2) = f(P1) + f(P2) - 2a

f(P1) - f(P2) = -f(P1) - f(P2) + 2a.

In the first case f(P2) = a = f(P0) and in the second case f(P1) = a = f(P0).
Either way we contradict the fact that f is injective. Thus by Equation (3-1),
either

g(P) = f(P) -- a for all P e I

or

g(P) = -(f(P) - a) for all P c 1.

Thus for an appropriate choice of a (either + I or -1), g(P) = s(f (P) - a) for
allPe1. D

A metric..geometry: always,has:.aninfinite.,number.of...points (Problem A5).
In' particular, a«&nite geometry (Problems A 13, B19, and B25 of Section 2.1)
cannot..be-a=metrric geometry. On the other hand, Problem A6 shows that
neat earery..distance on an._ ncidttnee,geQmetr:} ,give_s. a_metriS jeometry
even .i# it.has infinitely many points. The points must "spread out." (Problems
B14 and B15 of Section 2.2.) The Ruler Postulate is therefore a very strong
restriction to place on an incidence geometry.

PROBLEM SET 2.3

Part A.

1. n the Euclidean Plane find a ruler f with f(P) = 0 and f(Q) > 0 for the given pair
PandQ:
i. P = (2, 3), Q = (2, - 5)
li. P = (2, 3), Q = (4, 0).

1 the Poincare Plane find a ruler f with f(P) = 0 and f(Q) > 0 for the given pair
PandQ:
i. P=(2,3),Q=(2,1)
ii. P = (2, 3), Q = (-1, 6).

3. In the Taxicab Plane find a ruler f with f(P) = 0 and f(Q) > 0 for the given pair
P and Q:
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I. P=(2,3),Q=(2,-5)
ii. P=(2,3),Q=(4,0)-

4. Let P and Q be points in a metric geometry. Show that there is a point M such that
M e PQ and d(P, M) = d(M, Q).

5. Prove that a line in a metric geometry has infinitely many points.

6. Let {9, 2, d) be a metric geometry and Q e Y. If 1 is a line through Q show that
for each real number r > 0 there is a point P e I with d(P, Q) = r. (This says that the
line really extends indefinitely.)

Part B.

7. Let g: R - R by g(s) = s/(tsI + 1). Show that g is injective.

8. Let {50, d} be a metric geometry. For each I e P choose a ruler f. Define the
function d by

d(P, Q) = I g(f (P)) - g(f (Q))I

where 1= PQ and g is as in Problem B7. Show that d is a distance function.

9. In Problem B8 show that {.P, 21, d} is not a metric geometry.



CHAPTER 3

Betweenness and Elementary Figures

3.1 An Alternative Description of the
Cartesian Plane

In Chapter 2 we introduced the Cartesian Plane model using ideas from
analytic geometry as our motivation, This was useful at that time because it
was the most intuitive method and led to simple verification of the incidence
axioms. However, treating vertical and non-vertical lines separately does
have its drawbacks. By making it necessary to break proofs into two cases,
it leads to an artificial distinction between lines that really are not different
in any geometric sense. Furthermore, as we develop additional axioms to
verify we will need a more tractable notation. For these reasons we introduce
an alternative description of the Cartesian Plane, one that is motivated by
ideas from linear algebra, especially the notion of a vector.

Definition. If A = (x1, yl), B = (x2i Y2) E U82 and r E 118 then

(i) A+B=(x1+ X2, Y1+y2)Ef182
(ii) rA = (rx 1, ryl) a OBz

(iii) A - B = A + (- 1)B = (xl -x2,Y1 -Yz)
(iv) <A, B> = xlx2 + YIYz e OB
(v) IIA 11 = <A, A) e R.

For those of you familiar with the ideas, all we are doing is viewing]
as a.y_ecto.,K sipup.,with_its. standard.addition scalar.:multipiication,.andinner
product. (Note that you probably wrote <A, B> as A B before.) The following
results are easily verified and are left as Problem Al.

42
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Proposition 3.1.1. For all A, B, C e 082 and r, s e 08

(i) A+B=B+A (ii) (A+B)+C=A+(B+C)
(iii) r(A + B) = rA + rB (iv) (r + s)A = rA + sA
(v) <A, B> _ <B, A> (vi) <rA, B> = r<A, B>

(vii) <A + B, C> _ <A, C> + <B, C> (viii) IIrAII = Irl IIAII
(ix) IIAII > 0 if A (0, 0).

Using this notation we make 082 into an incidence geometry by defining
the line through the distinct points A and B to be LAB where

E. Z.I X..= A ± t -A) for some te 08}. (1-1)

Proposition 3.1.2. If 2' is the collection of all subsets of R' of the form LAB,
then {082, 2'} is the Cartesian Plane and hence is an incidence geometry.

PROOF. Let .B be the set of Cartesian lines as given in Chapter 2. We will
show that YE c 2' and 2' c YE.

Step 1. Let I e 2E be a Cartesian line. If I is the vertical line La, choose
Ato be (a,0)andBto be

I={(a,t)It eR}={(a,0)+t(0,1)It eR}=LABe P'.

Thus Ie2'.
If I is the non-vertical line L.,b choose A to be (0,b) and choose B to be

(1, b + m). A, B e 1.

l={(x,y)Iy=mx+b}={(x,y)=(t,mt+b)IteR}
= {(x,y)=(0,b)+t(1,m)ItaRI =LABE2'

Thus I e 2' and hence 2E c 2".

Step 2. Let LAB e 2' with A = (x1, y1), B = (x2, y2), and A B. If x1 = x2,
then (since A 0 B) y2 - i 0 0 and

LAB = {(x1, Y1) + t(0, y2 - Y1) It a 08}

= {(x1, y1 + t(Y2 - Y1))I t ei }
= {(x,y)e R2Ix=x1} =Lx, aYE.

Thus LAB a 2's.
If x1 0 x2 then x2 - x1 0 0, and we let

Y2-Y1 and b=y1-mxt.
x2 - x1
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Then
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LAS= {(xi,yi)+t(x2 -xi,y2-yi)It E08}
= {(x1, mxl + b) + t(x2 - x1, m(x2 - X1)) It C- R1

= {(X1 + t(x2 - x1), m(xt + t(x2 - x1)) + b)It e 18)

_ {((x,mx+b)IxE08)
= {(x, y) e R I y mx + b} = Lm,b E 2E.

Hence LAB e 2E and 2' c 2E.
Thus we have shown that YE = 2' so that {182, Tl} is the Cartesian

Plane.

In .Problem B6 you are asked to prove directly that {R2, 2') is an
incidence geometry without any reference to the initial model {082, 2'E).

In terms of our new notation, the distance function dE is described
slightly differently as you will show in Problem A2. We also have a nice
description of some rulers.

Proposition 3.1.3. If A, B e H2 then dE(A, B)=AA - B11.

Proposition 3.1.4. If LAB is a Cartesian line then f : LAB - 08 defined by

f(.A All...:.

is.azuler_for {H2, 2E, dE}.

PROOF. The function f makes sense only if for each point P e LAB there is a
unique value of t with P = A + t(B - A). This can be seen to be true as
follows.

Suppose P = A + r(B - A) and P = A + s(B - A). Then

(0,0) = P - P = (A + r(B - A)) - (A + s(B - A))
=(r--s)(B-A)

so that either r-s=0or B-A=(0,0).Since A0B,B-A:A (0,0) and so
r - s = 0. That is, r = s and there is a unique value of t with P = A + t(B - A).

Hence the function f makes sense.
The proof that f actually is a ruler is Problem A3.

In a college algebra or linear algebra course you probably learned that
the dot product of two vectors is given by the product of the lengths of the
vectors and the cosine of the angle in between:

IIall IIbII cos9.
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Since Icos 01< 1, we have la bl <_ Ilall Ilbll The Cauchy-Schwarz Inequality
(Proposition 3.1.5) is a careful statement of this result without any reference
to angles or the measurement of angles. It will be used in Chapter 5 when we
develop angle measurement. We will apply it in this section to prove a special
property of the Euclidean distance function (Proposition 3.1.6).

Proposition 3.1.5 (C u - :r grz me.q.Ral iy.). If X, Y e R2 then

_l<X'>L:f_JINLI.U.YII. (1-2)

Furthermore, equality holds in inequality (1-2) if and only if either Y = (0, 0)
or X = tY for some t e R.

PROOF. If Y = (0,0) we clearly have I<X, Y>I = 0 = IIXII - IIXII and Inequality
(1-2) is true. Hence we assume Y # (0, 0). Consider the function g: R -- 18 by
g(t) = lIX - tY112. Then

g(t)=<X -tY,X-tY>=<X,X>-2t(X,Y>+t2<Y,Y>.

Because Y ;A (0, 0), <Y, Y> # 0 and g(t) is a quadratic function. Now g(t) >- 0
for all t so that g cannot have two distinct real zeros. Since a quadratic
function at2 + 2bt + c has distinct real zeros if and only if b2 - ac > 0, it
must be that

<X, Y>2 - <Y, Y><X,X> 5 0

or

1<X1 Y>1:5 <X, X><Y, Y> = IIXII - IIXII

This gives the desired inequality.
When do we get equality in Inequality (1-2)? If Y 0 0 then equality holds

only when g(t) = 0 has a repeated real root. But g(t) = 0 if and only if
IIX - tYll = 0, i.e., X = tY. Thus equality holds if and only if either Y =
(0,0)orX=tYforsometrR.

F-1

So far all our results about distance concerned points on a single line. The
more important results of geometry will involve non-collinear points. The
first property we will discuss is called the triangle inequality. It is so named
because it says that the length of any side of a triangle is less than or equal
to the sum of the lengths of the other two sides.

Definition. A distance function d on satisfies the_trianeualitlr.,if

Proposition 3.1.6. I h ucJidean _ distance function.,. cl .satisfi_,.es, :the triangle
inatt;.?ty.
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PROOF. First we use Proposition 3.1.5 to show that if X, Y e Q82 then

IIX+ YIi::! II4 +1IYII-
l1X+Y112=<X+Y,X+Y)=<X,X>+2<X,Y>+<Y,Y)

= !IXil2 + 2<X, Y) + IIYI12

IIXI12 + 21<X, Y>i + 11Yli2

iIX112 + 211XII I[Y11 + 11Y112

_ (IIXU + IIYil)2

Hence lix + Y112 <
(IIXi! + 1lY1l)2

or IIx + Yll IIXII + i[Yll
To complete the proof let X = A - B and Y = B -- C.

We shall see later that the triangle inequality is a consequence of certain
other axioms that we will want our geometries to.satisfy. In particular, it.
w.il hnid in Plane. (A direct proof of this fact is for the mas-
ochistic.) However, i do c n old in! ever. ,uet;ige. xnetty as Problem
B9 shows.

PROBLEM SET 3.1

Part A.

1. Prove Proposition 3.1.1.

2. Prove Proposition 3.1.3.

3. Complete the proof of Proposition 3.1.4.

4. Complete the proof of Proposition 3.1.6.

5. Show that the ruler in Proposition 3.1.4 is a coordinate system with A as origin
and B positive.

Part B. "Prove" may mean "find a counterexample". .

6. Let Y' be the collection of subsets of R2 of the form given by Equation (I-1).
Prove directly that {l 2, 3'} is an incidence geometry without using our previous
model of the Cartesian Plane.

7. Prove that the Taxicab distance dT satisfies the triangle inequality.

8. Prove that the max distance ds on R' satisfies the triangle inequality. (See Problem
B18 of Section 2.2.)

9. Define a function dF for points P and Q in Rz by
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10 ifP=Q
dF(P, Q) = dE(P, Q) if LpQ is not vertical

3d5(P, Q) if L, is vertical.

a. Prove that dF is a distance function on R2 and that {E 2,2E,dF} is a metric
geometry.

b. Prove that the triangle inequality is not satisfied for this distance, dF.

Part C. Expository exercises.

10,. What other descriptions of the Cartesian Plane can you find in various mathe-
matic books? Why is it useful to have more than one description of an object
such as the Cartesian Plane? (The answer could deal with either technical
reasons or the level of the intended audience.)

11. Another example of different descriptions of the same mathematical concept is
given by the notion of a "vector". Discuss different definitions of a vector, why
they are the same, and what their possible uses are. (Note: a use need not be an
application of vectors to another subject-it might be to use vectors to do
mathematics.)

3.2 Betweenness

The concept of one point being between two others is an extremely important,
yet at the same time, an extremely intuitive idea. It does not appear formally
in Euclid, which leads to some logical flaws. (Euclid made certain tacit
assumptions about betweenness. These often occurred as he reasoned from
a figure-a shaky practice at best!) These flaws were first rectified by Pasch
[1882] who axiomatized betweenness. Without a precise definition of between
it is possible to produce erroneous "proofs." (What would Euclid have
thought of the fallacious "proof" which will appear in Problem Set 6.4B that
every triangle is isosceles?) In this section we shall use the distance function
to define betweenness. In turn, betweenness will allow us to define elemen-
tary figures such as segments, rays, angles, and triangles.

Definition. B its etwee A and C if A, B, and Caredistinct collinear points
in the geomexry },_and.. if

d(A, B) + d(B, C) = d(A, Q. (2-1)

Note that the definition of between requires that.,the. tutee<points .all lie
9n ihe.same.line. (See Problem A10.) Because we will be using betweenness
and distance constantly throughout the rest of the book we adopt the fol-
lowing simplified notation.
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Notation. In a metric geometry (.p, P, d)

(t) 8- ' meant g-7- tweon.,4

Thus in this notation, Equation (2-1) becomes, for distinct collinear points,

A-B-C if and only if AB + BC = AC. (2-2)

The axioms of the distance function are written in this notation as

(i) PQ 0;
(ii) PQ = 0 if and only if P = Q;

(iii) PQ = QP; and
(iv) PQ = If(P) - f(Q)( for a ruler f on PQ. (2-3)

Note that by using PQ for the distance we have dropped all reference to
which distance function we are using. Since an incidence geometry may have
more than one distance function, whenever we use the notation PQ for
-d(P,Q) it..must.be.clear.. which. distance..is:involved. In our basic models we
will continue to use the notation dE, dH, and dT.

Example 3.2.1. Let A = (-?, /3-/2), B = (0, 1), and C = (Z, f/2) be points
in the Poincare Plane. Show that A-B-C.

SOLUTION. A, B, and C are on the type II line 0L1 = {(x, y) E H I x2 + yZ =1}.
From Equation (2-3) of Chapter 2

_Z+1

AB = d1(A, B) = In
[3/

2 ln.

BC = dH(B, C) _ 1l n 1 =1n f and AC = dH(A, C) =1n 3.

Thus d1(A, B) + d1(B, C) = dH(A, C) and A-B-C. Note that in Figure 3-1
the point B "looks" like it is between A and C. D

A 1B C

Figure 3-1
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Theorem 3.2.2. I A-B-C then. C- -B-A.

PROOF, If A, B, and C are distinct and collinear, then so are C, B, and A.
Since A-B-C, Equation (2-2) shows that AB + BC = AC. Since PQ = QP
for all P and.Q, we have BA + CB = CA or

CB + BA = CA

which is what we needed to show.

I,(Lis. a.line with.aruler,.the next. theorem will. allow us to. interpret between-
nm.on.l.in terms..of a corresponding,nptxctn.of..betweenness_for.real:numbers..
This will be a useful method of proving certain results involving betweenness.
Thus we will be using the notion of betweenness on the real line to help
us with the betweenness in a metric geometry.

Definition. If x, y, and z are real numbers, then and z. (written
x 4if..either

Note that if x, y, and z are distinct real numbers then e..xactIy::,one:.is
beilyeen one is largest, one is smallest, and the other
between them.

Theorem 3.2.3. Let 1 be a line and f a coordinate system for 1. If
axe-three..points-of:..l:with coordinates,-x,y;

PROOF. Note that if A, B, and C are not distinct then both A-B-C and
x * y * z are false. Hence we may assume A, B, and C are distinct. We first
prove that x * y * z if A-B-C.

We are given that x - f (A), y -- f (B), and z = f (C), and that AB + BC= AC.
The Ruler Equation (2-3) indicates that

AB=If(A)-f(B)(=Ix-yl, BC=ly-zl, and AC=Ix-z[

so that
ix-yI+ly-zI=fx-z._ (2-4)

We shall show that Equation (2-4) implies that either x < y < z or z < y < x.
Since A, B, C are distinct then so are x, y, z and exactly one of the following

cases must occur: -

{i) x<y<z {ii) z<y<x
(iii) y<x<z (iv) z<x<y
(v) x<z<y (vi) y<z<x

We will show that case (iii) leads to. a contradiction. Similar arguments
dispose of cases (iv), (v), and (vi).
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Case (iii) implies that

Ix - yl = x - y, ly-zl =z-y, and Ix-zl=z-x.
If we substitute these equations into Equation (2-4) we obtain

x-y+z-y=z-x
so that

x = Y. (2-5)

This contradicts the fact that x, y, z are distinct. Hence case (iii) does not
hold. By Problem A4 neither do cases (iv), (v), or (vi). Thus x * y * z (cases
(i) and (ii) ).

We now show that if x * y * z then AC. Assume that x < y < z.
(The case z < y < x is similar.) In this case ix - yl = y - x, Ix - zI = z -- x,
and ly - zl = z - y so that

Ix - yl+ly - zl=lx - zI
or

or

I1(A) -- f(B) I + If(B) - f(C)I = If(A) - f(C)I

AB + BC = AC:

Thus since A, B, and C are collinear and distinct, A-B-C.

Corollary 3.2.4. Given.three, distinct .points ..on .a.line,..one and. only one. of.tkese
poj itsjs:b.etw.een the,other two.

PROOF. This is immediate since the corresponding statement is true for three
distinct real numbers.

Note that this result says that if we have three distinct points on a line,
we may name them as A, B, and C with A-B-C. However, if the points
are already named A, B, C in some way, then all we can say is that one of
A-B-C, B-A-C, or A-C-B is true.

The next result (whose proof is left as Problem A5) gives a useful charac-
terization of betweenness for the Euclidean Plane.

Proposition 3.2.5. In.ihe..Euclidean.plane A-B.-C. if .and.only if there is a
number.t with 0 < t.<.. I and..B_= A+ t(C_--_A).

Theorem 3.2.6. If-A.:and..B...are..dist.inct.Points, n.,a.;rnetric_geometry then

(i) there..is:.a pczinL G. tatitk.,A_,,- B,-C_; and
(ii) thetQ

a ruler for the line AB with f (A) < f (B) and set x =f(A)
and y = f (B). To prove (i) let z = y + 1 and C = f -'(z)- Then A-B-C
since x<y<z.
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To prove (ii)) we define well and D e AB by w = (x + y)/2 and D =
f-'(w). Then A-D-B since x < w < y. El

In the next section we will define what is meant by a segment. Once we
have that terminology we will see that Theorem 3.2.6 (i) says that a segment
may be extended (one of Euclid's axioms). Part (ii) says that given two
points, there is always at least one point between them. In fact, a careful
examination of the proof of part (ii) shows that we could prove that there
are _

Definition. A,-B--C-D...means...that A-B-D, A-C---D,
and B-C-D.

This definition can be visualized as meaning that A, B, C, and D lie on
the same line (see Problem A6) and are in forward or reverse order as in
Figure 3-2. To remember the four conditions of the definition merely drop
one letter out of A-B-C-D. The resulting betweenness relations are
the conditions of the definition. Actually only the conditions A-B-C
and B-C-D are needed (see Problem A7). Note that this definition does
notsay that A-_B .C_-D if A,._B,..G, lip r- and,.AB.:± BC +
CD.-= .A.D..The reason for this is that the latter statement is not strong enough
to prove that A-B-C.

Given four distinct collinear points can we name them A, B, C, D so that
A-B-C-D? This seems obvious, but a careful proof requires the use of a
ruler.

A B C D D C B A

Figure 3-2

PROBLEM SET 3.2

Part A.

1. Let A = (x1, yi ), B = (x2, y2), and C = (x, y) be three collinear points in the
Euclidean Plane with x, < x2. Prove that A -C-B if and only if xl < x < x2.

2. Formulate and prove a condition for A-C-B if A and B are on the same type
I line in the Poincare Plane.

3. If A = (4,7), B = (1, 1), and C = (2,3) prove that A-C-B in the Taxicab Plane.

4. Prove that cases (iv), (v), and (vi) of Theorem 3.2.3 also lead to contradictions.

5. Prove Proposition 3.2.5. _
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6. If A-B-C--D in a metric geometry, prove that JA, B, C, D} is a collinear set.

7. Prove that if A-B-C and B-C-D in a metric geometry, then A-B-D and
A-C-D also so that A-B-C-D.

8. Let A, B, C be three (not necessarily distinct) collinear points in a metric geometry.
Give all possible betweenness relations (A = B or A-B-C or ... ).

9. Let four distinct collinear points be given in a metric geometry. Prove that they
can be named A, B, C and D in such a manner that A-B-C-D.

10. In the Taxicab Plane, find three points A, B, C which are not collinear but
dT(A, C) = dr(A, B) + dr(B, Q. This problem shows why the definition of between
requires collinear points,

Part C. Expository exercises.

11. Discuss the problems that can result if one is not careful with the notion of
"between". An excellent reference is Chapter 3 of Greenberg [1980]. How would
you present this subtlety to high school students? What mistakes did Euclid
himself make?

12. What are the Hilbert axioms for betweenness (see Greenberg [1980])? Why do
we not have to use all these axioms in our development? Which way do you
prefer, and why?

13. Let A, B, and C be three points on a great circle on the Riemann Sphere.
Doesn't it look like any one of them is between the other two? How would you
explain this apparent contradiction of Corollary 3.2.4? There is a fundamental
concept of betweenness involved here.

3.3 Line Segments and Rays

The notion of a line is an integral part of geometry. We are now in a position
to talk about parts of a line: line segments and rays. In the next section the
concept of a triangle will be defined in terms of line segments, while angles
will be defined in terms of rays. In this section we will develop some of the
basic properties of segments and rays and will iintroduce the idea of con-
gruence of segments. This concept will be needed for the study of congruence
of triangles and is fundamental in geometry.

Definition. If A.and,B.are distinct, points.. in a metric geometry {Y,Y,d}theng a A tt,as the set

AB =PLC e,+e 4 A or C _or C. = R}.

Example 3.3.1. Let A =.(xi, y1) and B = (x2, y2) lie on the type II line L. in
the Poincare Plane. If xl < xz show that
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AB= lC=(x,Y)e L,!x1 <x:! x2}.
SOLUTION. Since x = x1 corresponds to C = A and x = x2 corresponds to
C = B we must show that A-C-B if and only if x1 < x < x2i where
C = (x, y) e EL,. Recall that for l = L,, the standard ruler f :l -+ II$ is given by

f(x,y)=ln('x-c+r

-Y)
as in Equation (2-12) of Chapter 2. Now Theorem 3.2.3 says that if A-C-B
then

f(A) * f(C) * f(B). (3-1)

The inverse of f is the function g: 08 cL, given by

g(t) = (c + r tanh(t), r sech(t)).

(See Equation (2-10) of Section 2.2.) If we let f(A) = t1, f(B) = t2, and f(C) =
t3 then Equation (3-1) becomes

t1 * t3 * t2. (3-2)

Since tanb(t) is a strictly increasing function, Equation (3-2) implies that

(c + r tanh(t1)) * (c + r tanh(t3)) * (c + r tanh(t2))
or

x1 * x * x2. (3-3)

Since x1 < x2 by hypothesis, we have x1 < x < x2. Hence if C e AB with
C = (x, y), then x1 < x < x2. The other direction of the proof (x1 < x:5
x2 implies C e AB) is left to Problem Al. See Figure 3-3 for a sketch of
AB. F1

Figure 3-3

Definition. Let d .be a subset of a metric geometry. A, point E .is ._a
assing,polst ..,sa? X B. wI'tbevise

The concept of extreme points and the next result allow us to define the
end points of a segment.
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Theorem 3.3.2. If A and B are two points in a metric geometry then the only
grrcfrhaament AB re gnd.Bthornselues. In particular,'
AB = CD then,{A N, (I}.
PROOF. We use proof by contradiction to show that A is not a passing point
of AB. Suppose that A is between two points X, Y of AB so that X-A-Y.
The proof hinges on the fact there is then no place for B. There are six
possibilities: B-X-A-Y B =X,X-B-A-Y, X-A77 B = Y,
or X-A-Y-B The three that B __1 that Y AB)
and the last three cases imaly that X - A - B (so that X CAB). Either way,
we have a contradiction of X, Y e AB. Thus A is not between two points of
A R Similarly ,B is not between two points of A. Thus A and B are extreme
points.

Me next show that any other point of AB is a passing point of AB. if
Z E AB and Z s A, Z 0 B, then A-Z-B. Hence _Z is between two points
of AB and is a passing Dint- Thus A and B are the only extreme points
of AB.

Finally, suppose that AB = CD. Then

{A, B} = {Z e 71-BIZ is an extreme point of AB}

_ {Z e CD(Z is an extreme point of CD}

= {C, D}.

The importance of this result is the following. AB.-is...defined as, a set.
When we say that AB =. CD we are.saying that the two segments are equal
as.sets.,.The..theorern, says..that.the.two.points..A,..B.used..in-defining,AB -are
important :geometricall:y..and..are..:: determined.by.,the..set..AB. For this reason
we may single them out and give them a special name.

Definition. and.B. The
ag _..

Definitio f A.and B are distinct points in a metric geometry {. 0,2,d}
then t y firm; set

Note the ra .. B the Euclidean Plane
and the Poincare Plane are illustrated in Figures 3-4 and 3-5.
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F

Figure 3-4 Figure 3-5

The next two results are left as exercises.

Proposition 3.3.3. In 'd e, line segments and rays are given by

AI{: C ..OB .C_ ._ _ A ± t. B -. A or some t with 0< t:5 l
AB- rsomet>'0

Theorem 3.3.4. In a metric geometry

4
{ii) i.AB = CDthen. - C.

Theorem 3.3.4 (i) tells us that a given ray can be named in many ways.
Part (ii) says that one point of AB is special. (A can be shown to be the only
extreme point of AB.) For this reason we can give it a special name.

Definition. Tkefterfe .(oz:.initial glint.}Yof-.th ,is..>the paint.A.

Theorem 3.3.5. If A and B are distinct points in a metric geometry then there
is a rule L-B mR, Akch that

ABA{XAB f(X) >_SOil.

PROOF. Let f be the special coordinate system with origin A and B positive.
We claim that this ruler f is the one we desire. We first show that

{X c 701 f(X) > 0} c AB. (3-5)

Suppose X E22 with f(X) 0. Let x = f(X) and let f(B) = y, which is
positive by assumption. If x = 0 then X = A and X E AB. If x = y then
X = B and X E AB. There are only two possibilities left. Either 0 < x < y,
in which case A-X-B so that X E AB and X e AB, or 0 < y < x, in which
case A-B-X and so X E AB by Equation (3-4). In all cases, X E AB and
Condition (3-5) is proved.
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To finish the proof we need to show that

AB c {X e AB 1 f(X) >_ 0}. (3-6)

Let D e AB (so that D e AB) and assume that x = f(D) < 0. Since f(A) =
0 and f(B) = y > 0, we have x < 0 < y. This means that D-A-B which
is impossible if D e AB. Hence all elements of AB have a nonnegative co-
ordinate with respect to f. p

Note that Theorem 3.3.5 says there is a ruler with a certain property.
However, there-.was-only-one possible choice for -be- the ruler
which.is.:zeroat the.(unique).:vertexand positive. elsewhere on the ray,

One of the most familiar (and most basic) topics in geometry is the study
of congruences, especially the congruence of triangles. In order to reach
the point where we can develop this rigorously, we must consider the
cang etwo; of a et es. We consider the
former here and the latter in Chapter 5.

Definition. TaucL_2_i . _ e .eats ; and GLi 4L.j metri.geometry...are-
g t- eiz lenghs a "qual; that iq

AB - CD if AB = Q.

The next result will be used continually when dealing with congruence in
triangles. It allows us to mark off:.(or..construct).on a...ray_a,unique..segment
which.i s.congruent..ta :a gi.ven.. segment.

Theorem 3.3.6
?k GI 9 4 t..

f be a special coordinate system for the line 11 3' A as origin
and B positive. Then f(A) = 0 and a = {X E RB'I f( 0). Let r =
PO and set C = f-'(r). Since r = PQ > 0, we have Cu AB. Furthermore,

AC=1f(A)-f(C)l =l0-rl=r=PQ

so that.AC PQ. Thus we have at least one point C on AB with AC - P.
Now suppose C' e AB with PQ: Then since C' E AB, f(C) > 0

and

f(C) = f(C) - f(A) = l f(C) - f(A)l
AC = PQ = f(C).
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Since f is injective, C' = C and so there is exactly one point C e AB with
AC pQ
Example 3.3.7. In the Poincare Plane let A = (0, 2), B = (0, 1), P = (0, 4),
Q = (7, 3). Find C e AB so that AC PQ.

SOLUTION. First we must determine PQ. Both P and Q lie on 3L5 so that

PQ = dH(P, Q)
=' =Iln6=In 6.In

3

Since C = (0, y) is on the type I line AB, dH(A, C) = In y/21. In order that
AC PQ we need in y/2 = ±ln 6. Hence

y=6 or Y-
2 2 6

Thus
1y=12 or y=3.

Since we want C e Aff we must take C = (0,-s). See Figure 3-6.

p

IA

4C

Figure 3-6

Note that in this example a segment from a type I line is congruent to a
segment from a type II line. Of course, two such segments could never be
equal but they can be congruent. Do not confuse "congruent" and "equal"!
Congruence of segments means "equal in length" whereas equality of
segments means "equal as sets."

Theorem 3.3.8 In a metric geometry, if A ,-C,..,.

I'-Q.--

Theorem 3.3.8 says that w, .:.create.;._coclgzuent...segments:..by:.`...`adding"
congruent,.;segments,.The following theorem, whose proof is also left as an
exercise, says we may also "subtract" congruent segments.
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Theorem 3.3.9 (l_ E t Gr t int ). In a metric geometry, , if.. - ,-C,
P.,-Q::. (?, AB.=aP >,aud..AC:. =;PR,.,then,B..G:-R..

PROBLEM SET 3.3

Part A.

1. Complete the solution of Example 3.3.1.

2. Prove Proposition 3.3.3.

3. Prove Theorem 3.3.4.

*4, Prove that "congruence" is an equivalence relation on the set of all line segments
in a metric geometry.

5. Prove Theorem 3.3.8.

6. Prove Theorem 3.3.9.

7, In the Taxicab Plane show that if A = (-Z, 2), B = (2, 2), C = (2, 2), P = (0, 0),
Q = (2, 1) and R = (3, Z)then A-B-C and P--Q-R. Show that AB a PQ,
BC x QR and AC ^- P'R. Sketch an appropriate picture.

8. Let A = (0, 0), B = (moo, 1), and C = (1, 1) be points in 682 with the max distance
ds(P, Q) = max{1xl - x2J, Jy, - y2J}. Prove that AB A. Sketch the two seg-
ments. Do they look congruent? (ds was defined in Problem B18 of Section 2.2.)

9) In the Poincare Plane let P = (1, 2) and Q = (1, 4). If A = (0, 2) and B = (1, V3),
find C e AB with AC PQ.

DO n the Taxicab Plane let P = (1, - 2), Q = (2, 5), A = (4, -1) and B = (3, 2). Find
C E AB with AC PQ.

* Suppose that A and B are distinct points in a metric geometry. M C AB is called
a midpoint of AB if AM = MB.
a. If M is a midpoint of AB prove that A-M-B.
b. If A = (0, 4) and B = (0, 1) are points in the Poincare Plane find a midpoint,

M, of A. Sketch A, B and M on a graph. Does M look like a midpoint?

*12. If A and B are distinct points of a metric geometry, prove that
a. the segment AB has a midpoint M..(See Problem All..)
b. the midpoint M of AB is unique.

13. Prove that AB = BA for any distinct points A and B in a metric geometry.

14. If D e AB-AB in a metric geometry, prove that AB = AB u AD.

15. If A s B in a metric geometry, prove that 7fB = AA v TA_ and AB = AB n NA.

Part B_ "Prove" may mean "find a counterexample".

16. Prove that in a metric geometry, AB is the set of all points C e X Y such that A is
not between C and B.
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17. Prove that in a metric geometry any segment can be divided into n congruent parts
for any n > 0. More formally: Let A and B be distinct points in a metric geometry.
a. Prove there are points X0, X ... , X on AB such that X0 = A, X = B, X;-

X;+ 1-X;+Z for i = 0, 1, ... , n - 2; X;X;+ 1 = AB/n, and AB = U;=o X;Xl+1.
b. Prove that the points X; given by the above are unique.

18. If AB = CD in a metric geometry, prove that A = C and B = D.

19. If D Thin a metric geometry, prove that AD n AB {A}.

20. If D e X Y in a metric geometry, prove that either AD = AB or AD v AB = X Y.

21. In a metric geometry suppose that A-B--C, AB PQ, AC = PR, BC = QR
Prove that P-Q-R.

Part C. Expository exercises.

22. Rays, segments, and points can be quite beautiful. Go to an art book such as
Feldman [1981] or McCall [1970) and identify pictures with significant geometric
content. The work of artists such as Seurat, Mondrian, and Kandinski show
manifold geometric ideas. See Millman-Speranza [1990] for a presentation of
these ideas at the elementary or middle school level.

23. Discuss the statement "Congruent triangles are the same" on both a mathematical
and a philosophical level.

3.4 Angles and Triangles

In this section we will define angles and triangles in an arbitrary metric
geometry. Just as in the case of segments and rays, they will be defined as
sets using the concept of betweenness. We will also show that the idea of a
vertex of an angle or a triangle is well defined. It is important to note that
an,.an a pL ot ,a gpber like 45°. We will view numbers as properties
of angles when we define angle measure in Chapter 5.

For us an.angle..will ..consist-of two..rays.:which.,are,not...collinear but, have
the same: n tial..poin.t

Definition. If
the. set

.L.A.8C.,=..BA u BC.

Note that a, line.,is.::.not,,..permitted,:::to_be.,.an ray since
{A, B, C} in the definition must be noncollinear. This,..is.,for_convenience:It.
"straight,.angles"...or...-"zero.,angles,'... were...allowed,,we...would have to. make
assumptions to, deal with those:..special,>case.s_.w.hen...stating_Theorems. Some
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Figure 3-7 Figure 3-8

angles in the Euclidean and Poincare Planes are sketched in Figures 3-7
and 3-8.

It is customary to talk about the vertex of L ABC as the point B.
However, a priori, it is not clear that the point B is well defined. After all, it
might be possible for L ABC = L DEF without B = E. (Of course, we will
prove that B does in fact equal E.) If this seems unnecessarily pedantic, ask
someone if L ABC = L DEF implies that A = D and C = F. Theorem 3.4.2
below contains the "well defined" result referred to above and is similar in
spirit to Theorem 3.3.2. Its proof needs a preliminary lemma.

Lemma 3.4.1. In a metric geometry, B_ _,t e o ee&LM? aint ABC.

PROOF. We first show that ff-Z A and B the Z is a nassi noirlt
of L ABC. If Z e /-ABC and Z 0 B then either Z e BA or Z E BC. Since the
two cases are similar we may assume Z e BA. Since Z # B, Theorem 3.3.4
implies that BA = BZ. There exists a D e BZ such. that B-Z-D. (Why?)
Thus D e BA and Z is between two points of L ABC, namely B and D.

® Next we show that B is not a passing point of ABC. We do this with a
proof b contradiction. Suppose that X-B-Y with X, Y c- L ABC. X
belongs to either BA or BC. Both cases are similar so that we may assume
that X E BA. Since X OR, BA = BY by Theorem 3.3.4. Since Y-B-X,
Y 0 BX = BA. Since Y e LABC, this means that Y e BC and BC = BY. But
then AeBA=BX eXYBeXYcXY,andCeBC=BYcXYThus A
B, and C are collinear,.. which is impossible since we are given LABC. Thus
B is not between two points of L ABC and is the only extreme point
of L ABC.

Theorem 3.4.2. In a metric geometry, if / ARC' = DF.F ihet?..B;=wE

PROOF.

{B} _ {Z e LABCJZ is an extreme point of LABC}
= {Z a LDEFJZ is an extreme point of LDEF}
= {E}. 0
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After Theorem 3.4.2 we may make the following definition without any
ambiguity.

Definition. Then tex f .the.,ang1 ,LA.B_..C,in_..arnet is tbe;:point B.:.

De ition.If._{A,...B,:.C}..are.noncollinear_:points. in . a metric_geometry.then.the

AB

Triangles in the Euclidean Plane and the Poincare Plane are given in
Figures 3-9 and 3-10. The Poincare triangles certainly do not look standard!

Figure 3-9 Figure 3-10

We now know that the vertex of a ray, the pair of endpoints of a segment,
and the vertex of an angle are all uniquely determined by the ray, segment or
angle. We shall show that the points C.of.:/AB.C; a> e..also. uniquely
determined, in Theorem 3.4.4. This also needs a preliminary result.

Lemma 3.4.3. In a metric geometry,.' a-, a ttol.;cM1inear.,then.;A:. s

PROOF. Our proof is by contradiction. Suppose that D-A-E with D,
E e /ABC. We show that this implies that both D and E are in BC, which
leads to a contradiction.

If D e AB then either D = B so that E-A-B or D # B so that E-A-
D-B and E-A-B (D 0 A because D-A-E). Either way E 0 A. If E
belongs to AC or BC then either C-E-A-B or C E so that C-A-B.
But A, B, C are not collinear. Hence we cannot have D e AB because E must
belong to one of AB, AC, or BC.

In a similar fashion D 0 AC. Since D e /ABC it must be that D E BC. A
similar proof shows that E e BC also. Thus D, E e BC.

But D-A-E implies A e BC also, which is contrary to the hypothesis
that A, B, C are noncollinear. Hence it cannot be that A is between two points
of /ABC. F1
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Theorem 3.4.4. In a metric geometry, i[QABC._- LiDEF

PROOF. If X e /ABC and X 0 {A, B, C} then X is in one the segments AB,
BC, or AC but is not an end point. Then X is a passing point of that
segment and hence a passing point of QABC. By Lemma 3.4.3 we have

{A, B, C} _ {X e AABCIX is an extreme point of QABC}

{X e LDEFIX is an extreme point of /DEF}
_ {D, E, F}. Q

Definition. In a metric geometry t
Th sides r..edof,,AC aze $

The exercises suggest several alternative proofs of Theorem 3.4.4.

PROBLEM SET 3.4A

Part A.

1. Prove that L ABC= L CBA in a metric geometry.

In problems 2 through 8 do not use Lemma 3.4.3 or Theorem 3.4.4.

2. Let D, E, and F be three noncollinear points of a metric geometry and let I be a line
that contains at most one of D, E, and F. Prove that each of DE, DF and EF inter-
sects 1 in at most one point.

3. Prove that if /ABC = /DEF in a metric geometry then .4B contains exactly two
of the points D, E and F.

4. Use Problem A3 to give an alternative proof of Theorem 3.4.4.

5, In a metric geometry, prove that if A, B and C are not collinear then AB
ABr, tABC.

6. Use Problem A5 to prove-Theorem 3.4.4.

7. Prove that, in a metric geometry, if QABC = ADEF then AB contains two of the
three points D, E; and F.

8. Use Problem A7 to prove Theorem 3.4.4.

Part C. Expository exercises.

9. Prior to Lemma 3.4.1 there is a discussion of the idea of what it means for a
concept to be "well defined". What examples do you know about from your
previous mathematics courses where a concept needed to be well defined? What
concepts in this course need to be well defined? Explain what the notion of "well
defined" is in your own words.



CHAPTER 4

Plane Separation

4. i The Plane Separation Axiom

The .Plane... Separation.. Axiom.:. is a,...careful.. statement .of the very. intuitive
an idea seems so natural that we

might expect.it..to.'be a consequence of our
present

axiom system. However,
..

as we shall see in Section 4.3, there are. models s., f,4:, metric geometry that. do
not..satisiy, ;this new axiom Thus.

the a metric geometry, and it is therefore necessary to
add.. it to our, list.. of axiomsif.wewish.to.useit. In this section we will
introduce the concept of convexity, use it to state the Plane Separation
Axiom, and develop some of the very basic results coming from the new
axiom. In the second section we will show that our two basic models, the
Euclidean Plane and the Poincare Plane, do satisfy this new axiom. In the
third section we will introduce an alternative formulation of plane separation
in terms of triangles. This substitute for the Plane Separation Axiom is called
Pasch's Postulate.. We.shall see that.it. is. equivalent to the Plane Separation
.Axiom: ,any, metric.. geometry.. that.. satisfies, one, ofthese. axioms satisfies the
other.
Definiti .,,Let (.9,!', d } be a metric geometry and let 91, G 9..9''.'is said
to..be onvex if for..every,two points-P,. Q.u 9l, the segment. M;Lsubset

In Figure 4-1 each of the individual subsets of F is convex while each of
those in Figure 4-2 is not convex. In Figure 4-2 the segment PQ is contained
in Yx but the segment P'Q' is not. This means that 91 is not convex:
convexity requires that the segment between any two points of .9l be in Y1,

63
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Figure 4-I

4 Plane Separation

Figure 4-2

not just some. To.,.sho...w:.:that.a.set is convex,we-must show that for every pair
of.. points., n.. the,.: set,: the.. segment:..joining..them.: is..contained, in..the. set.. To

is not convex, ewe need only find one pair.. of.points such.-that.-the
line-segment:: joining.them._is notentirely contained in..the.set.

We should also note that th ..concept-.of convexity ..depend&.on..,the;.metric
geometry. This is because. convexity involves line segments, which in turn
involve betweenness,.which is defined in terms of distance. Thus a change
in the distance. function. affects which sets are convex. For example, consider
the set of ordered pairs (x, y) with (x -- 1)2 + y2 = 9, 0 < x < 4 and 0 < y
(see Figure 4-3). This set is not convex as a subset of the Euclidean Plane.
However it is convex as a subset of the Poincare Plane. (This is because a
line..in..a,metric::geometry: is..always,:convex. See Problem A2.) In this example
we changed both the set of lines and the distance function. See Problem B20
for an example where a set Y1 is convex in {9, &, d} but not in [.9', V, dN}.

Figure 4-3

Definition. A metric. geometry [9',. d} satisfies the _anesepration
ax o). if for, every t there..are:two. ubsets H1 -and. ..H2 of:.5o: (called
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alf lanes:.determined by 1such. that

(t) H!.. U H?;
(ii) H,, and H.z..are disjoint and each is convex;
(iii) if A F H, and B c- H2 then.4B n I,0.O.

The definition demands that the linel have, two.. sides. (H.,. and. H2) both
of..

which.are..convex. Further, condition (iii) says that you, cannot get from
one side. to th.e. other .without.cutting. across..I.Of course AB..r I:..:can, only
have .: one.: point.: in.it,..otherwise AB = 1. In Figure 4-4 we see the situation in
the Euclidean Plane whereas Figure 4-5 gives the picture for a type II line
in the Poincare Plane. Note.. the re is to.:distinguish:,.H,.::from.. H2.
They..,are.,distinct,..,but. no..geometric: property.. makes, one. different. from the
other.

Figure 4-4 Figure 4-5

To be pedagogically correct, we should now prove that both the Euclidean
Plane and Poincare Plane satisfy PSA. However, to do this requires a bit of
work, which is left to the next section. Thus we will illustrate our theorems
and definitions in this section by using the Euclidean and Poincare' Planes
and assume that they satisfy PSA. In the next section, we will prove that
they really do. In Section 4.3. we will give an example, the Missing Strip
Plane, which does not satisfy PSA.

First, we want to show that a:,pair; of,: half,.;pla
unique. Then it will make sense to talk about the,,.pair<of,.half;planes:deter-
mined : by:1.

Theorem 4.1.1. Let I be a line in a metric geometry. If both H,, H2 and Hi,
H'2 satisfy the, conditions. of PSA for the line I then either H, H'1 .

(and H2 :.H;).

PROOF. Let A e H,. Since A 0 1, either A E Hi or A e H2. Suppose that
A e H. We will show that in this case H, = H. The case where A a HZ
yields H, = H2 in a manner similar to what follows.
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To show that Hl c HI let. B e Hl. We must prove that B e Hi. This is
obvious if B = A. Suppose that B 0 A. If B Hi then B e H since B 0 1. This
means that AB n 196 0 since A e H; and B e HZ. On the other hand, A and
B belong to the convex set H, so that AB c H, and AB n I = 0: This
contradiction shows that B e Hi and thus H, c H'j -

The proof that Hi c H, is similar. Thus H, =H;. Finally H2 =Y--1-H1 =
Y-1-H' , = Hz-

We may now formalize the idea of two points being on the same side of
a line.

Definition. Let {.9',2,d} be a metric geometry which satisfies PSA, let
1 e 2, and let H, and H2 be the half planes determined by 1. Two points. A
and B lie on the same side of I if.they...bo.th.belang:.to.H,.,or..both. belong to

on.onuosite.sides.of 1:if one belongsto..H,...and.one:belongs
to,H2. If A e H1, we say that H, is the side of 1 that contains A.

Figure 4-6 shows two points on the same side of a type II Poincare line
while Figure 4-7 shows two points on opposite sides of a Euclidean line.

A

g

Figure 4-6 Figure 4-7

An alternate but useful interpretation of "same side"/"opposite side" is
contained in the next result whose proof is left to Problem A6.

Theorem 4.1.2. Let {.9°, 2, d } be a metric geometry which satisfies PSA. Let A
and B be two points of .9 not on a given line 1. Then

(i) A and Bare on..opposite.sides of .1 f..and..only if AB. n.1.0..0.
(ii) A. and B. are on_the.same.side of 1. f andonly if. either A..= B or AB n 1= 0.

The next two results will be used frequently. Their proofs are left as
Problems A9 and A10.
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Theorem 4.1.3. Let I be a line in a metric geometry which satisfies PSA. If...P.
and Q.are on opposite. sides. of 1 and if, Q and.R are on opposite sides of I then
P andRare on the. same side of I.

Theorem 4.1.4. Let I be a line in a metric geometry which satisfies PSA. If ,P. .
and Q: are on opposite. sides. of I and. if Q and R are on the same: side of I. then
P and R. are.. on opposite sides of 1.

In Theorem 4.1.1 we showed that a line I had a unique pair of half planes
associated with it. Now we will show that a.giv.en;.ha1Lplane comes,.from.just
one line.

Theorem 4.1.5. Let I be a line in a metric geometry with'PSA. Assume that H.1
.is a haf.plane.determined by, the line I. If H1 is also a half plane: determined by
the.line,1', then.l._ I'.

PROOF. Suppose that I # 1'. Then I n I' has at most one point. Since every
line has at least two points, there must be a point P e 1-I' and a point
Q e I'-l. Notethat`PQ # land`PQ yE l'sinceQ 0land P 01'. ThusPQ n I
{P} and PQ n 1' = {Q}. Choose points A and B on PQ with A-P-Q and
P-Q-B, so that A-P-Q-B. See Figure 4-8. Since A-P-B, Pa AB n 1.
On the other hand, AB n I c PQ n I = {P}. Hence AB n I = {P}. By
Theorem 4.1.2, A and B are on opposite sides of 1. Hence either A e H1 or
B e H1. We assume A e H1 and leave the case that B e H1 to Problem AT

ow AP n I' c: PQ n I'= {Q}. Since A-P-Q, Q $ Ate' and AP n 1'=,O.Now-_7P__

Thus by Theorem 4.1.2, A and P are on the same side of I', and that side is
the half plane H1 since A e H1. But this means P E H1 which is impossible
since P e 1. This contradiction implies I = 1'.

Definition. If H.I. is.a.half plane . determined. by the-line 1, then the.A_gLPLHI
is 1.

Figure 4.8
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The point of Theorem 4.1.5 is that a : half,plane..has,exactly.,oneedge. Thus
we have shown that a line uniquely determines its half planes and a half
plane uniquely determines its edge.

You should note that nowhere have we said that .1X,: and,H2. are. nonempty.
However, this is true as you will prove in Problem A4,

Martin [1975] uses the suggestive, term "scissors geometry" to refer to a
metric geometry which satisfies PSA. The idea is that a line "cuts" tie plane
into two parts..,,

PitoBLEM SET 4.1

Part A.

1. If 6° and Y2 are convex subsets of a metric geometry, prove that ,Y, n Sot is
convex.

2. If ! is a line in a metric geometry, prove that 1 is convex.

3. If H, is a half plane determined by I prove that H, u 1 is convex.

4. If H, and H2 are the half planes determined by the line 1, prove that neither H,
nor H2 is empty.

5. If H, is a half plane determined by the line 1, prove that H, has at least three non-
collinear points.

6. Prove Theorem 4.1.2.

7. Complete the proof of Theorem 4.1.5 in the case B e Hs.

*8. Let I be a line in a metric geometry {.5' Y, d} which satisfies PSA. We write
P ti Q if P and Q are on the same side of 1. Prove that - is an equivalence
relation on .?-L How many equivalence classes are there and what are they?

9. Prove Theorem 4.1.3.

10. Prove Theorem 4.1.4.

Part B. "Prove" may mean "find a counterexample".

11. If 99, and P. are convex subsets of a metric geometry, prove that .1, v.5°2 is
convex.

12. Let {b . d} be a metric geometry and assume that .9 c .5' c b that Sot is
convex, and that both $ and .912 -. have at least two points. Prove that
.V2 - .f, is not convex.

13. If A, B, C are noncollinear in a metric geometry, prove that LABC is convex.

14. Let So, be a subset of a metric geometry which satisfies PSA.9, is a passing set if
every point of. is a passing point of S1, Prove that a line is a passing set.
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15. If .9', and Y2 are passing sets in a metric geometry which satisfies PSA, prove that
99, u 6'2 is a passing set.

16. If .5 and .902 are passing sets in a metric geometry which satisfies PSA, prove
that bo, n 6' is a passing set.

17. Prove that if 'V1 is a convex subset of a metric geometry which satisfies PSA and
has more than one point, then .1 is a passing set.

18. Let 9(.9'1) denote the set of all passing points of where $', is a subset of a
metric geometry which satisfies PSA. Prove that 9(,V,) is convex.

19. We define a new distance on the Cartesian Plane {182, YE} as follows. Let
f : Lo -' 68 by

f(0, Y) =
if y is not an integer

if y is an integer.1.-Y

a. Prove that f is a bijection.
For every other line of RI choose a Euclidean ruler. By Theorem 2.2.8 this col-

lection of bijections determines a distance function dN which makes {682, £E, dN)
into a metric geometry. Now

b. Prove that {(O, y) I 2-
(R2,

< y } is convex in the Euclidean Plane but not in
-eE, dN)

c. In {182, YE, dN}, what is the segment from (0, ) to (0, Z)? Show that this set is
convex in {R2, 2'E, dN} but not in the Euclidean Plane.

d. Show that {n82,-FE,dN} does not satisfy PSA. (Hint: Consider the line I = Le,1
and the three points (0, z), (0, z), (1, Z). Use Problems AS, A9, A10.)

Part C. Expository exercises.

20. Perform the following experiment and then write up what happened. If you have
access to middle or high school students, show it to them and record their
reactions. What conclusions can you draw from the way they responded? The
purpose of what follows is to show the sort of non-intuitive difficulties that can
occur if concepts are not defined carefully or if geometries do not satisfy some of
the axioms we would like.

Take a long narrow strip of paper and draw a line down the middle of it on
both sides. On one side mark both ends with the letter X. Tape or glue the two
ends together, twisting the strip so that the two Xs are touching and not visible.
Note that you have a line drawn on the new figure (which is called a Mobius
Strip). With a pair of scissors carefully cut the strip along the line and see what
happens. Are you surprised? What happens when you cut the Euclidean or
Poincare Plane along a line? Is there a difference in the qualitative behavior of
these constructions?
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4.2 PSA for the Euclidean and Poincare Planes

In this section we will show that both, the; Euclidean. and.; Poincare Planes
satisfy PSA, as was promised in the last section. As a homework problem
(Problem A5), you will show that the. Taxicab:,,.P...lane,:also....satisfies.:., PSA.

For the Euclidean Plane, it is useful to have- the following notation.

Notation. If X = (x, y) a ll then X1 (read "X perp") is the
element

X1 = (-y,x) a R2. (2-1)

Intuitively, X1 is obtained by rotating the vector X counterclockwise
about the origin 90°. Note that this is just an intuitive idea-we have not
defined what is meant by "90°." The reason for the .name is that X1 is per-
pendicular to X in the following sense.

Lemma 4.2.1. (a) If X e U82 then <X, X-> = 0.
(b) If X e 112 and X A (0, 0) then <Z, X'> = 0 implies that Z = tX for

some t e R.

PROOF. We leave part (a) to Problem Al. For part (b) we proceed as follows.
Let X = (x, y) and Z = (z, w) so that X1= (- y, x). Then <Z, X1> = 0 means

- zy + wx = 0. (2-2)

Since X : (0, 0) one of x and y is not zero. If x 0 then we may solve Equa-
tion (2-2) for w = zy/x so that Z = tX with t = z/x. If y 0 0 then z = xw/y
so that Z = tX with t = w/y. Either way Z = tX for some t e R. E

Using X1 we can give an alternative description of a line in R 2. Our mo-
tivation here is the idea from linear algebra that a line can be described by
giving one point on the line and a vector normal to it. See Figure 4-9.

Proposition 4.2.2. If P and Q are distinct points in Q82 then

PQ = {A e l 2 I <A - P, (Q - P)1) = 0}. (2-3)
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Figure 4-9

PROOF. First we show that PO c {A e ll2 I <A - P, (Q - P)> = 0}. Let A
e PO so that A = P + t(Q - P) for some t e R. Then

<A - P, (Q - P)1> = t<Q - P,(Q - P)1) = 0.

Thus PO c.{A e 6821 <A - P, (Q - P)> = 0}.
To prove the reverse containment assume that A e 682 with <A - P,

(Q - P)> = 0. Now Q - P (0, 0) since Q 96 P. Thus by Lemma 4.2.1 there
is a real number t with A - P = t(Q - P). Hence

A=P+t(Q-P)EPQ'.
Thus {A e R2 I <A - F, (Q - P)1-) = 0} c P. We now have containment
in both directions so the sets are equal. M

Definition. Let I =.PO be a Euclidean line. The.Euclidean.i alf..planes..deter-
mined. by .1. are

} =. A.e.l82 S4.:-: P); (:Q--.P)1;)> 01

(See Figure 4-10.)
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Proposition 4.2.3. The Euclidean half planes determined by 1 = PQ are convex.

PROOF. We will handle only the case of H+ and leave H- as Problem A2.
Let A, B E H+ so that

<(A - P), (Q - P)'> > 0 and <(B - P), (Q - P)1> > 0 (2-5)

We must show that if C E AB then C E H+. Since A, B E H+ we need only
consider the case A-C-B. Thus by Proposition 3.3.3 we may assume that
there is a number t with 0 < t < 1 so that C = A + t(B - A). Therefore

C=(1-t)A+tB withO<t<l
Then

<(C - P), (Q - P)'> _ <((1 - t)A + tB - P), (Q - P)1)

=<((1 -t)(A-P)+t(B-P)),(Q-P)1)
=(1 - t)<(A - P), (Q-P)1)+t<(B-P), (Q-P)'>

Since 0 < t < 1, Inequalities (2-5) show that each term on the right of the
last equality is positive. Thus <(C - P), (Q - P)'> > 0 and C e H.

Proposition 4.2.4. The Euclidean.P1a ,satisfies PSA.

PRooF. Let I = PQ' be a line. If A E 1182 then <(A - P), (Q - P)'> is either
positive (so that A e H+), zero (so that A e 1 by Proposition 4.2.2), or negative
(so that A E H-). Thus R2 - I = H+ u H-. Since H+ and H- are clearly
disjoint and Proposition 4.2.3 says they are convex, we need only show that
condition (iii) of PSA holds.

Let A E H+ and B E H-. To show that AB n 10 0 we must find t with
0 < t < 1 and A + t(B - A) E 1. We could at this point write down the
explicit formula for t. (It is given by Equation (2-9).) However, it is more
illuminating to see how the formula for t is derived.

According to Proposition 4.2.2, A + t(B - A) E l if and only if

<(A + t(B - A) - P), (Q - P)1> = 0 (2-6)

Equation (2-6) may be rewritten as

<(A - P), (Q - P)'> = - t<(B - A), (Q - P)1>
= t<(A - B), (Q - P)'> (2-7)

Since A E H+, the left hand side of (2-7) is positive. We now show that
<(A - B), (Q - P)'> is also positive.

Since A - B = (A - P) - (B - P) we have

<(A - B), (Q - P)1) = <(A - P), (Q - P)'> - <(B - P), (Q - P)'> (2-8)

The first term on the right is positive because A E H+, whereas the second
term is negative because B e H-. Thus the difference is positive. Hence
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we may divide Equation (2-7) by <(A - B), (Q - P)'> to obtain

t=<(A-P),(Q-P)1>>0
(2-9)

<(A - B), (Q - P)1>

To finish the proof we must show that the value of t in Equation (2-9)
is less than one. Note that Equation (2-8) implies that the numerator of t
is less than the denominator. Hence t < 1. With the value of t given by
Equation (2-9) we have a point X = A + t(B - A) e AA n 1.

An alternate proof that condition (iii) is satisfied is given in Problem A3.
Now we turn our attention to the Poincare Plane. In this proof we shall

use calculus. A reader who has not had calculus should skip the proof and
go on to Section 4.3. The results we need from calculus are

(i) if f'(t) > 0 for all t then f(t) is an increasing function;
(ii) the Intermediate Value Theorem, which says that if f(t) is a continuous

function and f (a) < r < f (b) then there is a point c between a and b
with f(c) = r.

L is a type I line in the Poincare Plane then the PoiDefinition. If I = incarko

,halLplanues.determined by 1 are

H+ _ (xy,) E Dil x > a)--
al.

(2-10)

If I = cLr is a type II line then the Poincare half planes determine by I are

H+ __ {(x, Y) E l (x - c)2 + Y2 > r2}
IL_ x ''

(2-11)

The half planes for a type II line were sketched in Figure 4-5.

Proposition 4.2.5. The Poincare-Plane satisfies. PSA.

PROOF. Let I be a line in Y. Let H+ and H_ be the Poincare half planes
determined by 1. Clearly from the definition of Poincare half planes,
IM-1= H+ u H_ and H+ n H_ = 0. We must show that each half
plane is convex and that condition (iii) of the definition of PSA holds.

Case 1. 1 is a type I line. This is left to Problem A4.
Case 2. Let 1= L, be a type II line and suppose that A and B are distinct

points of I-I-1. We shall parametrize the line segment A. The form of this
parametrization depends on whether AB is type I or type II. This parametri-
zation is used to show H+ and H _ are convex. We write A = (x 1, y1) and B =
(x2i y2). If AB is a type I line then we will assume that y1 < y2. If All is a
type II line then we will assume that x1 < x2. Our plan is to show that, no
matter where A and B are, a certain function g(t) is either always increasing,
always decreasing, or constant. This function will be zero at points of 1.
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If A B = oL is a type I line then X9 may be parametrized by (x, y) E X Y
if and only if (x, y) = (a, e`) for some t E R. Define f,(t) _ (a, e`). f, is the
inverse of the standard ruler for L. We let

gr(t) = (x - c)2 + (a - c) + ez`_=r2.

Since g,(t) = 2e2` > 0, g, is always increasing.
If AB = dLs is a type II line we parametrize AB by (x, y) E AB if and only

if
(x, y) _ (d + s tanh(t), s sech(t)) =f is the inverse of the standard ruler for dLs. Again we let

grr(t)=(x-c)z+y2-r2
z z z_ (d - c + s tanh(t))+ (s sech t r

and find that

2(d - c + s tanh(t))s sech2(t)
+ 2(s sech(t))(-s sech(t)tanh(t))

= 2(d - c)s sech2(t),

so that g is either increasing (d > c) or decreasing (d <-c) or constant
(d = c).

We let f = f, and g = g, if AB is a type I line and we let f = f and
g = g11 if A B is a type 11 line. Thus we have a function f from the real
numbers to AB and real numbers t1 < t2 with f(t,) = A and f(t2) = B. We
also have a continuous real valued function g such that g(t) >_0 if t c H+,
g(t) < 0 if =,.,end g(t)_=Qif_f jt)_E l..

We now prove that H+ is convex. Suppose A, B e H+ and let f, g be as
above so that A = f(t1) and B = f(t2) with tl < t2. If A-C-B then C =
f(t3) with t1 < t3 < t2. Since g is strictly increasing, strictly decreasing,
or constant, this means g(t3) is between g(t1) and g(t2) (or equal to both if
g is constant). Since A, B E H+, g(t,) and g(t2) are both positive. Thus g(t3) is
positive and C E H. Thus H+ is convex. Similarly H_ is convex.

a Finally suppose that one of A and B is in Hi and the other is in H_.
We show that AB n 10 0. Using f and g as before, A = f(t1), B = f(t2)
and one of g(t1) and g(t2) is positive while the other is negative. Since g is
continuous, the Intermediate Value Theorem implies that there is a number
t3 between t1 and t2 with g(t3) = 0. But then C = f(t3) is a point on AB
since t1 < t3 < t2 and is a point on I since g(t3) = 0. Thus C e AB n 10 0.

PROBLEM SET 4.2

Part A.

1. Prove Lemma 4.2.1(a).

2. Prove that the Euclidean half plane H- is convex.
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3. Let 1 be a line in the Euclidean Plane and suppose that A e H+ and B E H-. Show
that AB n 154 0 in the following way. Let

g(t)=<A+t(B-A)-P,(Q-P)'> if te R.

Evaluate g(0) and g(1), show that g is continuous, and then prove that ABnI 54 0.

4. If I = L is a type I line in the Poincari Plane then prove that
a. H+ and H_ as defined in Equation (2-10) are convex.
b. If AeH.f andBeH_ then AFB r) 1 96 0.
(Hint: One way to do this is to mimic what was done when I was a type II line,
but use a different g. Another way involves Example 3.3.1.)

5. For the Taxicab Plane {l 2,YE,dT} prove that
a. If A = (x1, y1), B = (x2, y2) and C = (x3, y3) are collinear but do not lie on a

vertical line then A-B C if and only if x1 * x2 * x3.
b. The Taxicab Plane satisfies PSA.

4.3 Pasch Geometries

We are now ready to prove our first important theorem. Roughly, it will
say that in a metric geometry which satisfies PSA, a line which intersects
one side of a triangle must intersect one of the other two sides. Despite the
simplicity of its statement and proof, this result is remarkably powerful. Its
importance was initially noticed by Pasch [1882] when he gave the first
modern axiomatization of geometry.

One remark is in order about Pasch's Theorem. It is easy not to realize
that there really is something to prove here-after all, the situation is so
obvious geometrically! In fact it is this kind of result (which involves be-
tweenness) that Euclid "forgot" to prove. We will use Pasch's Theorem to
end this section with an example of a metric geometry which doesn't satisfy
PSA.

Definition. A metric geometry satisfie asch's if for any line
1, any triangle AABC, and any point D E 1 such that A-D-B, then either
I n AC 0 or I n BC : 0. (See Figure 4-11.)

'Theorem 4.3.1 (Pasch's Theorem). If a metric geometry satisfies PSA then it
also satisfies PP.

PROOF. Let AABC and a line 1 be given. Assume that there is apoint De l
with A-D-B. We will show that either I n AC 0 0 or I n BC 0 0.
See Figure 4-11.
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Figure 4-11

Suppose that AC n 1= O. We will show that BCn l :A 0. Now 1_j4AB
since A e AC n AB. Thus A and B are not on l and must be on opposite
sides of 1 since AB n l = {D} 0. A and C are on the same side of l
(AC n 1 0). By Theorem 4.1.4, B and C are on opposite sides of 1. Hence
BC n 1 . Thus either AC n 10 QJ or BC n I 0.

Note that another way of stating Pasch's Theorem is that if a line inter-
sects a triangle, then it intersects two sides of the triangle, possibly at the
common vertex. Even when a line intersects the interior of a side, the second
point of intersection could be a vertex. See Figure 4-12.

Figure 4-12

We now turn to a kind of result which we have not discussed before. By
assuming the Plane Separation Axiom we got Pasch's Postulate for free. We
now show that the reverse is true: If a metic geometry satisfies Pasch's
Postulate then it also satisfies PSA. Logically, _and PP arg univalent
and either may be assumed as an axiom with the other then becoming a
theorem. Before we explore the logical equivalence involved we make the
following definition.

Definition. A PPasch Geometil is a metric geometry which satisfies PSA.

Theorem 4.3.2. Let {.9, £ d} be a metric geometry which satisfies PP. If A, B,
C are noncollinear and if the line I does not contain any of the points A, B, C,
then 1 cannot intersect all three sides of LABC.
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PROOF. In search of a contradiction, we assume that I does intersect all
three sides in points other than vertices, i.e., AB n I = {D}, A n 1 =
{E}, BC n 1= {F} with A-D-B, A-E-C and B-F-C. Since D,
E, and F all lie on 1, one is between the other two. We assume D-E-F.
(The other cases are similar.) The situation is illustrated in Figure 4-13
(which looks funny because it is an impossible situation!).

Figure 4-13

Now B, D and F are not collinear (or else A, B, C are collinear). Thus we
have a triangle, Q.L.QBFSince AEn DF = {E}, we know that A C intersects
either BD or BF by Pasch's Postulate applied to

First note that

ACnRD cWnBA={A}.
Since A 0 BD (because A-D-B) we have ACn_ BD = 0.

On the other hand,

ACnBF_Wr)K{C}.

Since C 0 BF we have A C n BF = 0. This contradicts Pasch's Postulate (ap-
plied to /BDF) which says that A C n BF 54 0 or A C n BD 0. Hence,
our original assumption that I intersects all three sides at points other than
the vertices is erroneous and the theorem is proved.

Theorem 4.3.3. If a metric geometry satisfies PP then it also satisfies PSA.

PROOF. Let l be a line and let Pbe a point not on 1. (P exists because a
metric geometry has at least three noncollinear points!) We shall define two
sets H1 and H2 and show they satisfy the axioms for half planes. Define sets
H1 and H2 as follows:

H1={Qe.9IQ=Por QPnI=O}
(3-1)

H2={Q E.°IQ01and QYn1:O}.
Clearly H, n H, = QS and .9'-1= H1 u H2. We need to show that H1
and H2 are convex and that condition (iii) of PSA holds.
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Step 1. First we show H, is convex. Let R, S E H1 and suppose R-T-S.
We must show T e H1. We shall need two cases.

Case la. R, S, P are collinear. In this situation either R = P, S = P,
R-S-P, S-R-P, or R-P-S. In all of the possibilities

1 c PR U Pg. (3-2)

Since R e H1, PR n I = 0. Hence any element F e PR has the property
PF n 1= 0. Thus PP c H1. Similarly P_Y c H1, and thus by Equation
(3-2), RS c H1.

Case 1b. R, S) P are not collinear. Then we have a triangle ORSP (Fig-
ure 4-14). Since I n PS = 0 and l n PR = 0, Pasch's Postulate tells us that
1n== 0 also. Now consider LRTP. Since 1 n RS = 0 and R T c RS,
RT n 1= 0 also. Since RP n 1 = O another application of Pasch (to
QRTP) yields PT n l = 0. But then T e H1 and so H1 is convex as required.

I

Figure 4-14

Step 2. Next we show that H2 is convex. Let R, S E H2 so that RP n 10 0
and RPn1:0.

Case 2a. R, S, P are collinear (and distinct). Then RP n 1= 'YP n I
{Q} for some Q and either P-Q-R-S or P-Q-S-R. Hence if S-T-R
then P-Q-T and TP n 1:A 0. Hence i c H2.

Case 2b. R, S, P are not collinear. Then if R-T-S, Theorem 4.3.2
says that T 0 I (or else I intersects all three sides of LPRS). Another applica-
tion of Theorem 4.3.2 shows that RS n I = 0, so that RT n I = 0. But
PR n 1 : 0 so PP (applied to /RPT) implies PT n 1 j4 0. Thus T e H2 and
RS c H2. Hence H2 is convex.

Step 3. Finally, suppose _R c- H1 and S e H2. We must show RS n 1 # 0.
If R = P then Rk n I = PS n 1 0 and we are done. Hence we assume
R0P.

Case 3a. R, S, P are not collinear. Then since RP -r) I = 0 and SP n 10 0,
PP implies RS n 10 0.

Case 3b. R, S, P are collinear. Then since 3 n 10 0 we may let S7 n
I = {Q} with P-Q-S. Since R e 3P and R 0 P, R 0 S, R = Q, either

P-Q-R, R-P-Q, or P-R-Q.



4.3 Pasch Geometries 79

The first situation cannot occur since R e H1 implies PR n I = 0. If the
second situation (R-P-Q) occurs then R-P-Q-S and RS n I = {Q}.
In last situation, P-R-Q, we have P-R-Q-S and again RS n 1 = {Q}.
Hence RY r) 10 0.

We have thus shown that H1 and H2 are convex in steps 1 and 2 and that
any segment from a member of H1 to a member of H2 must intersect 1 in
step 3. Hence the geometry satisfies PSA.

We now give an example of a metric geometry where PSA fails to hold.
What we will really show is that the geometry does not satisfy PP, which is
equivalent to PSA. This geometry can be found in Martin [1975].

Definition. The Missing Strip. Plane is the abstract geometry {5' 2'} given by

.9'={(x,y)e1821x<Oor 1 <x}
2'= {1 n .9'Il is a Cartesian line and I n 9 0 0}.

You are asked to prove in Problem A4 that the Missing Strip Plane is an
incidence geometry. To make the Missing Strip Plane into a metric geometry
we need to define a ruler for each line. If I = L,,,,6 is a nonvertical line, recall
that f,:l-> 18 which is given by

I(x,y)=x'[1- +m2

is the standard Euclidean ruler for 1. We cannot use f, as a ruler for the line
I n So of the Missing Strip Plane because f, is not a bijection. (f,(l n 5")
omits the half open interval [0, 1 -+m2).) We remedy this by defining a new
function g, which is f, before the strip (i.e., x < 0) and which moves every
point after the strip to the left by f,(1, m + b) = 1 + m . More precisely,
define g,: l n 3' --> l by

g1(x, y) =
If A, y)lI(x,y)- +m2

The next result is Problem A5.

ifx<0
ifx> 1.

Proposition 4.3.4. If {.50, .} is the Missing Strip Plane and I= then
g,:l n .9' -> 11 is a bijection.

The coordinates of several points on the lines Lo,3 n 91 and L1, _ 2 n 9
are shown in Figure 4-15.

For each vertical line I in 9 let g, be any Euclidean ruler. By Theorem
2.2.8 this collection of rulers g, determines a distance d' on .9' that makes
{., 2', d'} a metric geometry.
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-2 -1 I ` 0 1 2

Figure 4-15

Proposition 4.3.5. The Missing Strip Plane is not a Pasch geometry.

PROOF. Consider /ABC where A = (2, 0), B = (2,3) and C = (- 2, 0).
The line I n 9', where 1 = L0,2, intersects AB at D = (2, 2). However,
(I n .9') n AC 0 0 and (1 n .9') n BC = 0, contradicting PP. See Figure 4-16.

irg r

A

Ira

Figure 4-16

Note that if PSA were to follow from the axioms of a metric geometry
then every model of a metric geometry would satisfy PSA. Proposition
4.3.5 gives a model of a metric geometry which doesn't satisfy PSA. Thus,
Proposition 4.3.5 shows us that PSA really is an addition to our list of axioms
and cannot be deduced from the previous ones. In Problems B6 and B8
there are two more examples where PSA is not satisfied.

PROBLEM SET 4.3

Part A.
1. (Peano's Axiom) Given a triangle n ABC in a metric geometry which satisfies PSA

and points D, E with B-C-D and A-E-C, prove there is a point F e DE with
A-F-B, and D-E-F.
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2. Given /ABC in a metric geometry which satisfies PSA and points D, F with
B-C-D, A-F-B, prove there exists E c DFF with A-E-C and D-E-F.

3. Given /ABC and a point P in a metric geometry which satisfies PSA prove there
is a line through P that contains exactly two points of /ABC.

4rove that the Missing Strip Plane is an incidence geometry.

5. Prove Proposition 4.3.4.

Part B. "Prove" may mean "find a counterexample".

6. Let {682, 2E, dN} be the metric geometry of Problem B20 of Section 4.1. Prove that
PP is not satisfied.

7. Given /ABC in a metric geometry and points D, E with A-D-B and C-E-B,
prove AE n CD s 0.

8. Let 68' = {(x, y, z)Ix, y, z e 68}. If A, B e 683 define LAB = {A + t(B - A)It e 68}. Let

2' = {LABIA, B e 683, A * B}. If A, B e 68' let d(A, B) _ 11A - Bib. Prove that
{683, 2', d} is a metric geometry but that it does not satisfy PSA.

Part C. Expository exercises.

9. We have just shown (Theorems 4.3.1 and 4.3.3) that two axioms are equivalent.
Write a short essay on the equivalence of axiom systems using as a reference an
appropriate book on mathematical logic.

10. Find some middle or high school students, ask them to draw a triangle and to
pick a point on the triangle. Then ask them to draw a line through the point.
They will probably construct it so that it crosses one of the other sides. Ask them
how they know it would cross the side and write up their reactions. (The answer
that Euclidean geometry satisfies Pasch's Postulate will be too subtle for them.)
After the experiment be sure to tell them not to feel bad about not knowing the
answer-neither did Euclid!

4.4 Interiors and the Crossbar Theorem

In this section we will be interested in interiors-the interior of a ray, of a
segment, of an angle, and of a triangle. These concepts will aid us in proving
the main theorem of this section which says that a ray starting at a vertex
of a triangle and which passes through a point in the interior of the angle at
that vertex must intersect the opposite side; that is, it must "cross the bar."

Theorem 4.4.1. In a Pasch geometry if .sad is a nonempty convex set that does
not intersect the line 1, then all points of .s' lie on the same side of 1.
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PROOF. Let A e d and let B be any other point of d. Since .sad is convex,
AB c sV. Since .sd n 1= 0, AB n 1= 0. Thus A and B are on the same
side of 1. Thus every point of d is on the same side of 1 as A is.

Definition. The interior o the_ M. AB in a metric geometry is the set

int(AB) = AB-{A}.

The interior, of..the_segment AB in a metric geometry is the set

int(AB) = AB-{A, B}.

In Problem Al you will show that the interior of a ray or a segment is
convex. Theorem 4.4.1 can then be applied in a number of interesting cases.
The proof of the next result is left to Problem A2.

Theorem 4.4.2. Let d be a line, ray, segment, the interior of a ray, or the
interior of a segment in a Pasch geometry. If 1 is a line with d n I = 0 then
all of d lies on one side of 1. If there is a point B with A-B-C and AC n I =
{B} then int(BA) and int(BA) both lie on the same side of 1 while int(BA) and
int(BC) lie on opposite sides of 1.

Theorem 4.43 (Z Theorem). In a Pasch geometry, if P and Q are on opposite
sides of the line A B then BP n AQ = 0. In particular, BP n AQ = 0.

PROOF. See Figure 4-17. By Theorem 4.4.2, int(BP) lies on one side of AB
and int(AQ) lies on the other (since P and Q are on opposite sides). Thus
int BP n int(AQ) = . Since B 0 A (because A, B, Q are not collinear) we
have BP n int(AQ) = 0. Since Al BP, we have BP n A . The rest
follows from BP c BP_and AQ c A.

Figure 4-17

Theorem 4.4.3 is surprisingly useful. The key to using it is to recognize a
"Z configuration" in the picture you have sketched. With a little imagination
Figure 4-17 looks like a Z. The name of the theorem comes from this observa-
tion. The Z Theorem will be used repeatedly in the proof of the Crossbar
Theorem.



4.4 Interiors and the Crossbar Theorem 83

Definition. In a Pasch geometry of L ABC, written int(LABC),
is the intersection of the side of AB' that contains C with the side of BC that
contains A. (See Figure 4-18 for a picture in ('.)

Figure 4-18

Note that the definition of int(L ABC) uses the points A and C. However,
L ABC can be named in more than one way, say as LA'BC'. How do we
know we get the same interior when we use A, C as when we use A', C'?
This is a question of "well-defined." Does the definition depend on our
choice of name? The answer is no, as the next theorem shows. Philosophically
this is similar to Theorems 3.3.2 and 3.4.2.

Theorem 4.4.4. In a Pasch geometry, if L ABC = L A'B'C' then int(L ABC) _
int(L A'B'C').

PROOF. By Theorem 3.4.2, B = B' and BA is either B'A' or Assume that
BA = BA' (so that BC = BT-0). Then A, A' c- int(BA) and by Theorem 4.4.2
both A and A' lie on the same side of I = BC = BC'. Thus the side of BC = 1
containing A is the same as the side of B'C' = I containing A'. Similarly the
side of R X containing C is the same as the side of B'A' containing C'. Hence
the intersection of the sides giving int(L ABC) is the same as the intersection
of the sides giving int(LA'B'C').

If BA = B-`C' then we may repeat the above argument with A' and C'
interchanged.

The following two theorems, whose proofs are left as exercises, as well as
Problems A9 and A10, give tests for when P e int(L ABC).

Theorem 4.4.5. In a Pasch geometry, P e int(L ABC) if and only if A and P
are on the same side of BC and C and P are on the same side of BA.

Theorem 4.4.6. Given LABC in a Pasch geometry, if A-P-C then
P e int(LABC) and therefore int(AC) c int(L ABC).

We can now prove the theorem we have been working towards, the
Crossbar Theorem. Both Pasch's Theorem and the Crossbar Theorem deal
with what happens after a line enters a triangle. Pasch's Theorem can be
thought of as saying that when a line enters through a non-vertex, it must
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pass out one of the other two sides (possibly at a vertex). The Crossbar
Theorem tells us what happens if the line enters through a vertex-it must
pass out the opposite side. Of course, "enters" must be made precise because
a line may intersect a triangle just at a vertex.

Theorem 4.4.7 (Crpbbar Theorem). In a Pasch geometry if P e int(L ABC)
then BY intersects AC at a unique point F with A-F-C.

PROOF. Let E be a point such that E-B-C (see Figure 4-19). P and C are
on the same side of A B by Theorem 4.4.5. C and E are on opposite sides of
AB by Theorem 4.4.2. Thus P and E are on opposite sides of AB. By the Z
Theorem, BP n AE Let Q be a point such that P-B-Q Then Q and
A are on opposite sides of B C = KU. By the Z Theoremain BQ n AE _ O.
Hence BP n, E . Applying Pasch's Postulate to AECA we see that
BP n AC Qf. Since A, B, C are not collinear, BP n AC = {F} for some F.

F_ j4 (or else BPP n AE 0) and FF : CC (or else B, P, C are collinear).
Thus F e int(A C.l. Finally P, A, and F are all on the same side of BC so that
F E BP implies F e BP. Hence BP intersects AC at a unique point F with
A-F-C.

Figure 4-19

The following two results will be used frequently to verify that a point is
in the interior of an angle. Their proofs are left to Problems A9 and A10.

Theorem 4.4.8. In a Pasch geometry, if CP n _A_B = 0 then P e int(L ABC) if
and only if A and C are on opposite sides of BP.

Theorem 4.4.9. In a Pasch geometry, if A-B-D then P e int(L ABC) if and
only if C e int(LDBP).

Definition. In a Pasch geometry, the interior of AABC.written int(,LABC),
is the intersection of the side of AB which contains C, the side of BC which
contains A, and the side of CA which contains B.
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The next result, as well as two other characterizations of int(LABC), is
left to the problem set.

Theorem 4.4.10. In a Pasch geometry int(QABC) is convex.

PROBLEM SET 4.4

Part A.

1. Prove that in a metric geometry, int(AR) and int(AB) are convex sets.

2. Prove Theorem 4.4.2.

3. Prove Theorem 4.4.5.

4. Prove Theorem 4.4.6.

5. In a Pasch geometry, if P e int(LABC) prove int(BP) c int(LABC).

*6. In a Pasch geometry, given /ABC and points D, E, F such that B-C-D,
A-E--C, and B-E-F, prove that F E int(LACD).

7. Prove the strong form of Pasch's Theorem: In a metric geometry which satisfies
PSA, if A-D-B and C and E are on the same side of A B, then DE n AC 0 0
or DE r BC :,ol- 0. How is this different from Pasch's Theorem?

8. In a Pasch geometry, if P e int(L ABC) and if D E AP n BC, then prove that
A-P-D.

9. Prove Theorem 4.4.8.

10. Prove Theorem 4.4.9.

11. In a Pasch geometry, if CP n AB = 0, prove that either BC = BP, or P E
int(L ABC), or C e int(L ABP).

12. Given L ABC and a point P in a Pasch geometry, prove that if BP n int(A') 0
then P E int(L ABC). (This is the converse of the Crossbar Theorem.)

13. In a Pasch geometry, if LABC = LDBE and BF n int(AC) # 0 then prove
BF n int(DE) 0.

14. In a Pasch geometry, if int(LABC) = int(LDEF), prove LABC = LDEF.

15. Prove that in a Pasch geometry, int(L ABC) is convex.

16. Prove that in a Pasch geometry, int(/ABC) is convex.

17. Prove that if I is a line in a Pasch geometry and In int(/ABC) # 0 then I n
LABC has exactly two points.

18. In a Pasch geometry, prove int(LABC) = int(L ABC) n int(L BCA) n int(L CAB).

19. In a Pasch geometry, prove int(LABC) _ {PIthere exists a D with B-D-C and
A-P-D}.

20. In a Pasch geometry, prove that LABC u int(LABC) is convex.



86 4 Plane Separation

21. Show that the conclusion of the Crossbar Theorem is false in the Missing Strip
Plane. Explain.

Part B. "Prove" may mean "find a counterexample".

22. Prove that int(AB) c int(AB) in a metric geometry.

23. Prove that in a Pasch geometry if 1 n int(L ABC) 96 0 then I n L ABC = 0.

24. In a Pasch geometry, given AABC and two points P, Q with A-P-B and
B-Q- C, prove that if R e PQ n int(LABC) then P-R-Q.

25. In a metric geometry define the crossbar interior of z_ ABC to be cint(L ABC) =
{PAD-P-E for some Deint(BA) and some Eeint(BC)}. Prove that cint(LABC) =
int(L ABC) in a Pasch geometry.

26. In a Pasch geometry if P E int(LABC) prove that there is a line through P which
intersects both BA and BC but which does not pass through B.

4.5 Convex Quadrilaterals

We end this chapter with a short section giving an application of the Cross-
bar Theorem. The main result will be that the diagonals of a convex quadri-
lateral intersect in a Pasch geometry. The preliminary results are left to the
exercises. This material will not be needed until Chapter 7 and may be
postponed until then.

Definition. Let {A, B, C, D} be a set of four points in a metric geometry no
three of which are collinear. If no two of int(AB), int(BC), int(CD) and
int(DA) intersect, then

is a uadrilateral,
ABCD=ABuBCuCDuDA

In Figure 4-20, parts (a) and (b) represent quadrilaterals while part (c)
does not. Note that although we use a square as the symbol for a quadri-
lateral, you should not think that ABCD is a square. In fact we don't
even know what a square is yet!

B

A
(a)

C

D
(b)

Figure 4-20

(c)
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Theorem 4.5.1. Given a quadrilateral ABCD in a metric geometry then

ABCD = BCDA = CDAB = DABC = ADCB
= DCBA = CBAD = BADC.

If both ABCD and ABDC exist, they are not equal.

Definition. Itn he quadrilateral sides fare AB, BC, CD, and
DA; the erticeg are A, B and D; theles are L ABC, L BCD, L CDA,
and L DAB; and the agon are AC and BD. The endpoints of a diagonal
are called flppQsto ve t, If two sides contain a common vertex, the sides
axe adjacent; otherwise they areosite-If two angles contain a common
side, the angles are adjacent; otherwise they are o site.

Just as for earlier geometric forms (segments, angles, triangles) we must
show that the angles, sides, vertices, etc. of a quadrilateral are well defined.

Theorem 4.5.2. In a metric geometry, if ABCD = PQRS then {A, B, C,
D} {P, Q, R, S}. Furthermore, if A = P then C = R and either B = Q or
B = S so that the sides, angles, and diagonals of ABCD are the same as
those of PQRS.

Definition. A quadrilateral ABCD in a Pasch geometry is a onvex_quad-
ri ate if each side lies entirely in a half plane determined by its opposite
side.

In Figure 4-20 (a) is convex while (b) is not.

Theorem 4.5.3. In a Pasch geometry, a quadrilateral is a convex quadrilateral
if and only if the vertex of each angle is contained in the interior of the
opposite angle.

Theorem 4.5.4. In a Pasch geometry, the diagonals of a convex quadrilateral
intersect.

PROOF. Let ABCD be a convex quadrilateral. We must show that AC n
BD 0 0. By Theorem 4.5.3, D E int(L ABC). By the Crossbar Theorem,
BD intersects AC at a unique point E with A-E-C. (See Figure 4-21.)
We must show that E E BD (not just E E BD). C E int(LDAB) so by the
Crossbar Theorem, AC intersects DB at a unique point F with B-F-D.
Then {E}=ACnRD =ACnBD=WC nBD={F} since AC:BD.
Thus E = F and AC n BD = {E}.
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Figure 4-21

The last result will be extremely useful in Chapter 7. It says that a
"trapezoid" is a convex quadrilateral.

Theorem 4.5.5. Let ABCD, be a quadrilateral in a Pasch geometry. If
BC JJAD then ABCD is a convex quadrilateral.

PROOF. Since BC 11A6, BC lies on one side of AD and Al) lies on one side of
B C. See Figure 4-22. We now show that AB lies on one side of CD. Suppose
to the contrary that AB does not all lie on one side of CD. Then int(AB) n
CD 54 0. Let Hl be the side of B C that contains A and let Hl be the side
of AD that contains B. Int(AB) c Hl n H* by Theorem 4.4.2. Therefore
0:Aint(AB)nCDcHInH*nCD=int(CD). Hence intAB nintCD
0, which contradicts the definition of a quadrilateral. Thus AB lies all on
one side of CD. Similarly CD lies all on one side of A B. Therefore ABCD
is a convex quadrilateral.

Figure 4-22

PROBLEM SET 4.5

Part A.

1. Prove Theorem 4.5.1.

2. Prove Theorem 4.5.2.
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3. Prove Theorem 4.5.3.

ketch two quadrilaterals in the Poincare Plane, one of which is a convex quadri-
lateral and the other of which is not.

5. Prove that the quadrilateral ABCD in a Pasch geometry is a convex quadrilateral
if and only if each side does not intersect the line determined by its opposite side.

6. Give a "proper" definition of the interior of a convex quadrilateral. Then prove
that the interior of a convex quadrilateral is a convex set.

7. Prove that in a Pasch geometry if the diagonals of a quadrilateral intersect then
the quadrilateral is a convex quadrilateral.

Part B. "Prove" may mean "find a counterexample".

8. Prove that a convex quadrilateral in a Pasch geometry is a convex set.

9. Prove that for any quadrilateral ABCD in a Pasch geometry either AB n CD =
0orABnCD=0.

10. Prove that in a Pasch geometry at least one vertex of a quadrilateral is in the
interior of the opposite angle.

11. Prove that in a Pasch geometry the lines containing the diagonals of a quadri-
lateral intersect. How does this differ from Theorem 4.5.4?

12. If the quadrilateral ABCD in a Pasch geometry is not a convex quadrilateral,
prove that either BC n A D # 0 or RC n AD # 0.

13. Let ABCD be a quadrilateral in a Pasch geometry with An E5 = {E}, An
BD = {F}, and AD n BC = {G}. Prove that E, F, G are not collinear.

14. Suppose that ABCD and ABDC are both quadrilaterals in a Pasch geometry.
Prove that neither one is a convex quadrilateral.



CHAPTER 5

Angle Measure

5.1 The Measure of an Angle

As we have progressed through the first four chapters, we have built up an
axiom system piece by piece. Starting with the underlying set structure in
an abstract geometry, we added the incidence axioms, the ruler postulate, and
the plane separation axiom. Now we add another axiom to make our geome-
try look more like the geometry that is studied in high school. In this section
we shall define what is meant by an angle measure and indicate how angle
measures are defined in our two basic models. In the second section we shall
develop a new model with some very interesting properties. In the third
section, some of the basic results associated with angle measure are discussed.
The last section is devoted to the technical details of verifying the existence
of angle measure on Q8z and H.

After we have an angle measure our geometry will look very much like
"high school geometry." However, we will still be missing one important
assumption. That assumption is the Side-Angle-Side (SAS) congruence
axiom. Without it, some results can occur which are very unusual for someone
accustomed only to Euclidean geometry. In particular, we will see in examples
that without SAS it is possible for the sum of the measures of the angles of
a triangle to be greater than 180 degrees, or for the length of one side of a
triangle to be longer than the sum of the other two. The SAS axiom will be
formally introduced in Chapter 6.

Definition. Let ro be a fixed positive real number. In a Pasch geometry, an
angle measure (or protractor) based on ro is a function m from the set .sd of
all angles to the set of real numbers such that

(i) If L ABC E sV then 0 < m(L ABC) < ro;

90
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Figure 5-2

(ii) If BC lies in the edge of the half plane H1 and if 0 is a real number with
0 < 0 < ro, then there is a unique ray BA with A E H 1 and m(L ABC) = 0
(see Figure 5-1);

(iii) If D E int(L ABC) then (see Figure 5-2)

m(LABD) + m(LDBC) = m(LABC). (1-1)

We should note that the definition of an angle measure does not even
make sense unless we have PSA (or equivalently, Pasch) since we must use
the idea of the interior of an angle. If ro =-180, m is called degree measure. If
ro = i, then m is called radian measure. If ro = 200, then m is called grade
measure. Traditionally, degree measure is used in geometry. Radian measure
is used in calculus because it makes the differentiation formulas most natural.
The origin of degree measure is not really known. Perhaps it was chosen
because a year has (almost) 360 days and in degree measure, a complete
revolution is one of 360 degrees. Another possible explanation is that 360 has
many factors so that there are many "natural" subdivisions of a circle into
equal parts. Although the precise value of re is not crucial (see Problem A4)
we adopt the following convention.

Convention. Except in Section 5.4, we shall always use degree
measure (ro = 180) without further assumption.

Definition. A protractor geometry {.V, Y, d, m} is a Pasch geometry {b, 2', d)
together with an angle measure m.

The various axioms contained in the definition of an angle measure are
worth discussing. One of the consequences of the first axiom is that an angle
cannot have measure 0 or measure 180. What we might intuitively think of
as an angle of measure 0 is not an angle-it is a ray. Likewise, what we might
think of as an angle of measure 180 is also not an angle-it is a line. LABC
makes sense only if A, B, C are not collinear. Note we never use the word
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"degrees" or the symbol for degrees in our measure. The measure of an
angle is a number.

The second axiom is called the angle construction axiom (or ray construc-
tion axiom). It says that if we are given a number 0 between 0 and 180 then we
can construct a unique angle of measure 0 lying on a particular side of a
given ray (see Figure 5-1). If we do not specify on which side of BC the angle
is to lie, then there are two choices (see Figure 5-3). The emphasis in the axiom
is on both the construction and the uniqueness, not just the construction.
The term "construction" should not be confused with the notion of "compass
and straight edge construction." The axiom does not say we can build an
angle in that fashion. Rather, it is really postulating the existence of an angle
of any particular measure between 0 and 180 with no indication as to how
it is found.

Figure 5-3

The third axiom is called the angle addition axiom and reflects the familiar
statement that the whole is the sum of its parts. Note in Figure 5-2 we illus-
trated this by marking the various angles with lower case Greek letters which
denote their measure. This will be our standard procedure.

The Euclidean Plane has an angle measure which we have been accus-
tomed to using since high school. Yet to carefully show that there really is
an angle measure in j2 can be quite involved. The basic idea is to use the
familiar formula for the scalar product of two vectors

<a, b> = IIaII IlbIlcos 0 (1-2)

when 0 is the measure of the angle between the vectors. If we solve Equation
(1-2) for 0 we have

0 = cos-1 <a, b>

IIaII IIbII

This is fine, provided we know what the function cos-1(x) is. Unfortunately,
cos(x) (and cos-1(x)) is usually defined in terms of angle measures and so
cannot be used to define angle measure. The main work involved in defining
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an angle measure for E2 is to develop the function cos(x) without reference
to angles at all. This will be done in Section 5.4. However, those readers who
are willing to accept the existence and standard properties of cos-1(x) may
omit Section 5.4 and assume Proposition 5.1.2.

Definition. In the Euclidean Plane, the Euclidean angle measure of L ABC is

mE(LABC) =cos
\

<A-B,C-B> l
(1-3)IiA - BII :liC_ - BII /

Example 5.1.1. In ' what is mE(L ABC) if A = (0, 3), B = (0, 1) and C=(,/3-,2)?

SOLUTION. A - B = (0, 2) and C - B = (,[3-, 1) so that

<A-B,C-B> 2 1

IIA - BII'IIc - BII 2.2
_

2

mE(L ABC) = cos-1(Z) = 60.

The following proposition will be proved carefully in Section 5.4.

Proposition 5.1.2. ME is an angle measure on {ff82,YE, dE}.

Since the Poincare Plane as a set is a subset of the Euclidean Plane, and
since its lines are defined in terms of Euclidean lines and circles, it should not
be surprising that we define Poincare angle measure in terms of Euclidean
angle measure. The basic idea is to replace the Poincare rays that make up
the angle by Euclidean rays that are tangent to the given Poincare rays. The
measure of the angle formed by the Euclidean rays will be used as the
measure of the Poincare angle.

The Euclidean tangent rays are determined by finding tangent vectors of
the given Poincare rays when those rays are viewed as curves. In the case
of a type I ray BA, there is a natural choice for the tangent vector to BA at B:
If A = (XA, YA) and B = (xB, yB) belong to a type I line, then XA = xB and
A - B = (0, YA - YB) is the tangent vector. See Figure 5-4.

A

TBA

B

Figure 5-4
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We now investigate what the tangent to a type II ray should be in order
to motivate the definition of Poincare angle measure. Suppose that BA is
part of the type II line L, so that if (x, y) E BA then

(x - c)2 + y2 = r2. (1-4)

The slope of the tangent to the curve in l 2 whose equation is given by
Equation (1-4) at the point B = (XB, YB) should be given by the derivative
(dy/dx)(B). This is found by implicit differentiation of Equation (1-4):

2(x - c) + 2ydx
0

or

dy c - x

dx y

Thus the slope of the tangent at B should be (c - xB)/yB. The vectors
±(yB, c - XB) have this as their slope and so are prime candidates for the
tangent vector. The ± sign reflects whether A is to the right (+) or left (-)
of B. See Figure 5-5.

n'

Figure 5-5

TBA
A,

If TBA denotes the tangent vector to BA as found above and if A' _
B + TBA, then the Euclidean ray BA' is parallel to the vector TBA and is the
desired Euclidean tangent ray.

The preceding discussion is summarized and formalized in the following
definition.

Definition. If BA is a ray in the Poincare Plane where B = (xe, ya) and A =
(xA, yA), then the Euclidean tangent to BA at B is

(0, yA - yB) if AB is a type I line

TBA = (ye, c - xB) if AB is a type II line L,, XB < XA

- (yB, c - xB) if AB is a type II line EL,,xB > XA.

The Euclidean tangent ray to BA is the Euclidean ray BA' where A' = B +
TBA .
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Definition. The measure of the Poincare angle L ABC in H is

mH(LABC) = nIE(LA'BC) = cos-'
T B Bc

(1-5)(--)J<TBAA1 ITBC

where A'= B + TBA and C' = B + TBC, and m5(L A'BC') is the Euclidean
measure of the Euclidean angle L A'BC'. (See Figure 5-6.)

Figure 5-6

Note that in Equation (1-5), we do not really need A' and C' to compute
mH(L ABC), only TBA and TBC

Example 5.1.3. In the Poincare Plane find the measure of L ABC where
A = (0, 1), B = (0, 5), and C = (3, 4).

SOLUTION. It is easy to see that G = 0L5, that CA = 4LJ17, and that
BA = L. Hence

TBA = (0, - 4) and TBC = (5, 0).

Thus mH(L ABC) = 6 where

<TBA, TBC> 010COS B =
TBAI I I TBCI l 20

cos(h) = 0 and mH(L ABC) = 90.

In Problem Al you will find the measure of the other angles of L. ABC
and will show that the sum of the measures of all three angles is approximately
155. Thus the angle sum of a triangle in the Poincare Plane need not be
180!

The proof of the following Proposition will be left to Section 5.4.

Proposition 5.1.4. mH is an angle measure on {l-l, 1H, dH}.
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Convention. From now on the terms Euclidean Plane, Poincare
Plane, and Taxicab Plane will refer to the protractor geometries

. _ {182,YE,dE,ME}

.*9 _ {l,,'H,dH,mH}}i

7 _ {R2,SE,dT,mEJ

PROBLEM SET 5.1

Part A.

1.L.et A = (0, 1), B = (0, 5), and C = (3, 4) be points in the Poincare Plane . Find
the sum of the measures of the angles of /ABC.

Repeat Problem 1 with A = (0, 5), B = (0, 3), and C = (2,,[2-1).

Repeat Problem 1 with A = (5,1), B = (8,4), and C = (1, 3).

4. Let m be an angle measure for {91, P d} based on a. Let t > 0 and define m, by

m,(L ABC) = t m(L ABC).

Prove that in, is an angle measure for {91, . d}. What value is m, based on?

5. Assume that ME is an angle measure for Euclidean metric geometry {182, 2E, dE}.
Prove that ME is an angle measure for the Taxicab Plane {182,YE,dr}.

6. Show that Euclidean angle measure is well defined; i.e., if L ABC = L A'BC' prove
that mE(LABC) = mE(LA'BC') by using Equation (1-3).

Part B. "Prove" may mean "find a counterexample".

7. Let 6 be a real number with 0 < 0 < 180 and let BC lie in the edge of a half plane
H, in a protractor geometry. Prove that there is a unique point A E Hl with
m(LABC) = 0.

8. Assume that ME is an angle measure for the Euclidean Plane. Prove that
{1182, YE, ds, mE) is a protractor geometry, where ds is the max distance defined in
Problem B18 of Section 2.2.

Part C. Expository exercises.

9. Write an essay contrasting degree, radian, and grade measure. You should include
information on their practical use, history, and development.
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5.2 The Moulton Plane
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In this section whose details are optional we shall develop another model
of a protractor geometry-the Moulton Plane. This model was introduced
by the American mathematician Forest Moulton [1902] and is an important
example in the study of projective geometry. It will have some strange
characteristics. In fact, we will eventually see (Problem A10) that the sum
of the measures of the angles of a triangle in the Moulton Plane may be
more than 180.

The underlying set of the Moulton Plane will be R2, but the set of lines
will not be YE. Some lines will be Euclidean and the rest will be in the form
Mm,,b as follows.

2 y=mx+bifx<O
Mm.b=

c
(x,Y)Eli y=2mx+bifx>0

The Moulton line M1,2 is sketched in Figure 5-7. One way to view a
Moulton line Mm,b is as the path of a ray of light that is bent or refracted
as it crosses the y-axis. (Not every line of the form Mm,b will be used, only
those with m > 0.)

Figure 5-7

Definition. The Moulton Plane is the collection f _ {i82, PM} where

22M={LQEYE} u {Lm,bEYEIm<0} U {Mm,bIm>0}.

Proposition 5.2.1. The Moulton Plane is an incidence geometry.

PROOF. It is clear that {(1, 0), (0, 0), (0, 1)} is a noncollinear set and that each
line has at least two points. We need only prove that there is a unique line
between any two distinct points A and B. We shall show that there is at least
one line and leave the proof of uniqueness to Problem A2. The proof
proceeds by examining cases which depend on the relative positions of A
and B.
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If A B then A and B lie on a unique Euclidean line 1 e YE. If I = Lo
or 1= Lm,b with m < 0 then l e $M. Hence we need only consider the case
where 1=Lmbwith m>0.

Let A = (a1, a2) and B = (b1i b2). We may assume that a1 < b1. Note that
since m > 0, a2 < b2. See Figure 5-8 for three possible situations.

BA A

B

case 1 case 2

Figure 5-8

case 3

Case 1. a1 <b1 <0.In this case A,BeMm,b.
Case 2. 0 < a1 < b1. In this case A, B e M2m,b.

Case 3. a1 < 0 < b1. In this case we must work harder to find what
Moulton line A and B lie on. We want to show that A, B e M, for some n, c.

If A,BeM, we must have

a2 = na1 +c and b2 = Znbl + c.

Since a1 < 0 < b, b1 2a1 and so these equations have a unique solution

n=b2-a2 and c=a2-nat.
zbl - a1

Since a2 < b2i a1 < 0 and b1 > 0, we have n > 0. Thus in the given case
A, B e M,,,c e IPM where n and c are given by Equations (2-1).

We have shown that in all cases, if A * B then there is at least one line
1c- PM with A, B e 1. Hence . ff is an abstract geometry. Once you show that
the line through A and B is unique, we will know that A' is an incidence
geometry.

The next step is to make A' into a metric geometry. We will define the
distance between two points to be the Euclidean distance unless the two
points lie on opposite sides of the y-axis on a "bent line". In this case we will
view the Moulton segment joining the points as the union of two Euclidean
segments and add their lengths. Note the condition x1 x2 < 0 in the next
definition means that (x1, y1) and (x2, y2) lie on opposite sides of the y-axis.

Definition. The Moulton distance between the points P = (x1, yl) and Q =
(x2i Y2) in fi82 is given by
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(,2) -
dE(P, (0, b)) + dE((0, b), Q) if P, Q E Mm b with xtx2 < 0

dE(P, Q) otherwise.
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Example 5.2.2. Find the lengths of the sides of AABC in the Moulton
Plane, where A = (-1, 0), B = (2, -1), and C = (2, 2).

SOLUTION.
du (A, B) = dE(A, B) = 10

dM(B, C) = dE(B, C) = 3

A, C lie on Mt,t by Equation (2-1). Hence if D = (0,1) then

dM(A, C) = dE(A, D) + dE(D, C) _ + ,.
See Figure 5-9.

Figure 5-9

Proposition 5.2.3. {682, 2'M, dM} is a metric geometry.

PROOF. In Problem A3 you will show that dm actually is a distance function.
Thus we need only show that each line has a ruler. We may use a Euclidean
ruler for each line of the form L. or Lm,b. Hence we need only consider the
lines Mm,b.

D fi M -+ 68be ne f: mb y
1 1 2 f <0

f (x, y) =

x +m I x_

In Problem A4 you will show that f is a ruler.

Proposition 5.2.4. {682,2'M,dM} satisfies the plane separation axiom.

PROOF. We must verify the three parts of PSA for every line 1. The proof
breaks into three cases depending on the line I E PM.
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Case 1. 1 = L. E YF. In this case the half planes determined by 1 are the
Euclidean half planes H+ and H- determined by 1. Clearly R'-/= H+ U H .

Also, we see that H+ n H- _ 0 and that both of H+ and H- are Moulton
convex.

All that remains is to let A E H+ and B e H- and show that AB n Lo :A 0.
If AB is a segment of a Euclidean line then this follows from the fact that
Euclidean geometry satisfies PSA. Suppose that AB' = Mm b. If a < 0 then
X = (a, ma + b) e AB n La. If a> 0 then X = (a, 2ma + b) e AB n La. In
either case, TB- r) La 0 0 so that H+ and H- are half planes for La.

Case 2. 1= Lm,b with m < 0. Again we let the half plane determined by
1 be the Euclidean half planes H+ and H- determined by 1. Clearly JI2-1=
H+ u H- and H+ n H- = 0. We leave the proof that H+ and H- are
Moulton convex to Problem A5.

Suppose that A e H+ and B e H- where H+ = {(x, y)I mx + b <y}. If
the Moulton segment AB is actually a Euclidean segment then AB n 10 0.
Thus we assume that AB is the union of two Euclidean segments AC and
CB where C = (0, r) for some r. If C e 1 we are done because then AB n 10 0.
If C 0 1 then either r> b so that C e H+ and CB n 1 0 because C and
B are on opposite Euclidean sides of 1, or r < b so that C E H- and AC n 1=
0. In either case ABn1=(ACuCB)n1#Qf.

Case 3. 1 = M,,,,,. In this situation we have to be quite explicit in our
definition of H}-and H-. Let

Hi ={(x,y)lmx+b<y}, Hi ={(x,y)jmx+b>y}
HZ = {(x, y) I Zmx T b -<y}, HZ = {(x, y) I Zmx + b > y}.

We define H+ = H; u H, and H- = H,- n HZ (H+ is shaded in Figure
5-10). By Problem A6, 112-I = H+ u H- and H+ n H- = 0.

Figure 5-10

We must show that H+ and H- are convex. Suppose that A, B E H+.
If A and B lie on the same (Euclidean = Moulton) side of the y-axis or on
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the y-axis then A and B either both belong to H; or both belong to HZ .
In either case the Moulton segment AB is actually Euclidean so that AB
is either in Hi or in HZ . Hence AB c H.

If A and B lie on opposite sides of the y-axis, Lo, we may assume that
A is in the left half plane of Lo and hence in Hi while B is in the right half
plane of Lo and hence in H'. The Moulton segment AB intersects Lo at
some point C by Case 1. If C e H+ then the Euclidean segment AC c Hi
and CB c HZ so that the Moulton segment AB = AC u CB c H+.

We will now show that C 0 H-. Mm,b is the union of two Euclidean rays
PQ and P with Q to the right of Lo and R to the left. If C e H-, the Euclidean
Crossbar Theorem applied to /APC and the ray PR shows that PR n
int AC 0 0. Likewise PP n int CB 0. Hence the Moulton line K =
Lm.b intersects the Moulton segment AB = AACC u CB in two points, which
is impossible. See Figure 5-11. Hence C 0 H-. We leave the proof that
C Mm,b to Problem AT

Figure 5-11

The proof that H- is convex is left to Problem A8. Finally, the proof
that if A e H+ and B e H- then AB intersects Mm,b is left to Problem A9.

Next we want to define an angle measure for the Moulton Plane using
the Euclidean angle measure. If B is not on the line Lo, then given L ABC
we may choose A' c- int(BA) and C' e int(BC) so that A', B, and C' all lie
on the same side of Lo. Then we set mM(L ABC) mE(L A'BC'). See Figure
5-12. If B e Lo we proceed as follows. For each b e I and each P = (x, y) let

_ (x,2y-b) ifx>Oandy>b
Pb

(x, y) otherwise.

Then if B = (0, b) a Lo set

mM(LABC) = mE(LAbBCb).

See Figure 5-13. Note that if B = (0, b) e Lo what we are doing is "unbending"
All before we compute the angle measure.
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Figure 5-12 Figure 5-13

The detailed proof that mM actually is an angle measure is lengthy but not
hard. It is left to Problem B11.

Proposition 5.2.5. ill = {IIBZ, 2M, dM, mM} is a protractor geometry.

Convention. From now on the term Moulton Plane and the
symbol . e ' mean the protractor geometry . A ' _ {R 2 , 1M, dM, mm).

The main value of studying the Moulton Plane is that it supplies us with
counterexamples of familiar results in Euclidean geometry. In Problem A10
we have a triangle for which the sum of the measures of the angles is greater
than 180. We also will have problems with existence and uniqueness of lines
through a given point, perpendicular to a given line. This illustrates our need
for an additional axiom in order to obtain familiar results. This triangle
congruence axiom will be introduced in Chapter 6.

PROBLEM SET 5.2

Part A.

1 yind the Moulton lines through the following pairs of points:
a. (2,3) and (3, -1)
b. (1, 4) and (2, 6)
c. (-1,3)and(-3,-2)
d. (-1, 4) and (2,7)
e. (-4, -4) and (4,4)

2. Complete the proof of Proposition 5.2.1 by showing that for every pair of points
A 0 B there is exactly one line l e YM through A and B.

3. Prove that dM is a distance function f o r {R2, -Tm).
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4. Complete the proof of Proposition 5.2.3 by showing that f as defined by Equa-
tion (2-2) is a ruler.

5. Complete the proof of Proposition 5.2.4 in Case 2 by proving that H+ and H-
are Moulton convex.

6. In Case 3 of the proof of Proposition 5.2.4 show that 112-I = H+ U H- and that
H+r H-=0.

7. In Case 3 of the proof of Proposition 5.2.4 show that C M,, b.

8. In Case 3 of the proof of Proposition 5.2.4 show that H is convex.

9. Complete the proof of Proposition 5.2.4 in Case 3 by showing that if A e H+ and
B E H- then the Moulton segment AB intersects M,,,b.

*1t\\In the Moulton Plane let A = (- 5, 0), B = (0, 5), C = (10,10), D = (-5,10), E _
(5, 0), and F = (2, 6) as in Figure 5-14.
a. Show that A-B-C and D-B-E.
b. Find the sum of the measures of the angles of L\BFE.
c. Repeat part (b) for QBFD.

Figure 5-14

Part B. "Prove" may mean "find a counterexample".

11. Prove that mm is an angle measure for ,ff.

12. Prove that dM does not satisfy the triangle inequality. (Hint: Consider QABC
where A = (-1, 0), B = (2, 2) and C = (0, 3).)

13. In the Moulton Plane show that it is possible to have three points A, B, C which
are NOT collinear but AC = AB + BC. (This illustrates again why we insist on
collinearity in the definition of between.) If you have access to a computer algebra
system (program) such as DERIVE, MAPLE, or MATHEMATICA, let A =
(-1, 0), B = (0, b), and C = (2, 2). Find the exact value of b so that AC =
AB + BC and A, B, C are not collinear. (The calculation may be done by hand if
you so desire and have the time.)

14. Show that the Moulton Plane satisfies Pasch's Postulate directly. This gives an
alternative proof that !! is a Pasch geometry.
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Part C. Expository exercises.

15. Write a short essay which gives a description of the Moulton Plane and describe
its important properties. What is relevant here is what you think is important
about the model.

5.3 Perpendicularity and Angle Congruence

In terms of angle measure there is some standard terminology for angles. This,
in turn, can be related to certain configurations of angles. This section will
deal especially with one such configuration-that of a right angle.

Definition. An acute angle is an angle whose measure is less than 90. A right
angle- is an angle whose measure is 90. An obtuse angle is an angle whose
measure is greater than 90. Two angles are supplementary if the sum of their
measures is 180. Two angles are complementary if the sum of their measures
is 90.

Definition. Two angles L ABC and L CBD form a linearpair, if A,-. B-D
(see Figure 5-15). Two angles L ABC and LA'BC' form a vertical pair if
their union is a. pair of intersecting lines. (See Figure 5-16. Alternatively,
L ABC and L A'BC' form a vertical pair if either A-B-A' and C-B-C',
orA--B-C'and C-B-A',)

V.

D B A
Figure 5-15 Figure 5-16

Theorem 5.3.1. If C and D are points of a protractor geometry and are on the
same side of AB and m(L ABC) < m(L ABD), then C e int(L ABD).

PROOF. Either Aand C are on the same side of RD, or C e BD, or A and C
are on oosite sides of D. We eliminate the latter two cases as follows. If
C e then since C and D are on the same side of AB, then-C e int(B-B).
Hence L ABC = L ABD and m(L ABC) = m (L ABD) which is a contradiction.

If A and C are on opposite sides of D, then by Problem A9 of Section 4.4,
D e int(L ABC). This means that

LABD mU ABC) < m(LAB.

Hence (LDBC). < O_which is impossible. Thus the only possibility is that
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A and C are on.the rng. side of _5 and so C E int(LABD).

The next theorem is sometimes taken as an axiom (for example, in Moise
[1990]). However, as we shall now see, it is a consequence of the other
axioms.

Theorem 5.3.2 (Linear Pair Theorem). If L ABC and L CBD form a linear
pair in a protractor geometry then they are supplementary.

PROOF. Let m(L ABC) = a and m(L CBD) /3. We must show that a + 1 _
180. We do this by showing that both a + /3 < 180 and a + /3 > 180 lead to
contradictions.

s Suppose a + $ < 180. By the Angle Construction Axiom, there is a
unique ray B with E on the same side of All as C and with m(L ABE) _
a + P. See Figure 5-17. By Theorem 5.3.1, C e int(L ABE) so that m(L ABC) +
m(L CBE) = m(L ABE). Thus

a+m(LCBE) =a+/3 or m(LCBE)=/3.

On the other hand, E E int(L CBD) (Why?) so that m(L CBE) + m(L EBD) _
m(L CBD). Thus

/3+m(LEBD)=l3 or m(LEBD)=0
which is impossible. Thus a + /3 < 180 cannot occur.

Now suppose a + 8 > 180. Since both a and /3 are less than 180, a + /3 <
360 and 0 < a + /3 - 180 < 180. Then there exists a unique ray BF with F
on the same side of AB as C and m(LABF) = a + /3 - 180. See Figure 5-18.
Since /3 < 180, a + /3 - 180 < a and so F e int(L ABC). Hence m(L ABF) +
m(L FBC) = m(L ABC). Hence

a+/3-180+m(LFBC)=a or m(LFBC)=180-fl.
On the other hand, C E int(L FBD) (Why?) so that m(L FBC) + m(L CBD) _
m(L FBD). Thus

180 - 9 + /3 = m(L FBD) or m(L FBD) = 180

which is also impossible. Hence a + /3 > 180 is false.
Thus the only possibility is that a + Q = 180.

a-180

B A D B

Figure 5-17 Figure 5-18

Now we can prove the converse of axiom (iii) for an angle measure.
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Theorem 5.3.3. In a protractor geometry, if m(L ABC) + m(L CBD) _
m(L ABD), then C e int(L ABD).

PRooF. We shall show that C and D are on the same side of AB by con-
tradiction. Suppose that C and D are on opposite sides of AB. Now neither
A nor D lies on BC. If A and D lie on the same side of BC then A e int(L CBD).
(Why? See Figure 5-19.) But then

m(L CBA) + m(L ABD) = m(L CBD) < m (L ABD)

which is impossible. Hence A and D are on opposite sides of BC (see
Figure 5-20). Choose E with E-B-A and note that E and D are on the same
side of C. Then E a int(/ CBD) (Why?) and so

m(L CBE) + m(L EBD) = m(L CBD).

Figure 5-19 Figure 5-20

Since L ABC and L CBE form a linear pair, m(L CBE) = 180 - m(L ABC)
and therefore

or

180 - m(L ABC) + m(L EBD) = m(L CBD)

180 + m(LEBD) = m(LABC) + m(LCBD) = m(LABD).

But this means m(LABD) > 180, which is impossible. Thus C and D cannot
be on opposite sides of AB, so they must be on the same side. The result then
follows from Theorem 5.3.1.

Note that the result about distance that corresponds to Theorem 5.3.3 is
false. If AB + BC = AC it need not be true that B e int(AB). We have seen
examples in the Taxicab Plane and in the Moulton Plane.

The next result, whose proof is left to Problem A2, is the converse of
Theorem 5.3.2.

Theorem 5.3.4. In a protractor geometry, if A and D lie on opposite sides of
BC and if m(L ABC) + m(L CBD) = 180, then A-B-D and the angles
form a linear pair.

Definition. Two lines l and t' are perpendicular (written 111') if l v 1' contains
a right angle. Two rays or segments are perpendicular if the lines they deter-
mine are perpendicular.
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The existence and uniqueness of a perpendicular to a line through a point
on the line is guaranteed in the next theorem, whose proof is left to
Problem A3.

Theorem 5.3.5. Given a line I and a point B E I in a protractor geometry, there
exists a unique line I' that contains B such that I 1 1'.

Example 5.3.6. In the Poincare Plane, find the line through B = (3, 4) that
is perpendicular to the line

0L5 = {(x, y) E H ix 2 + y2 = 25}.

SOLUTION. We use our knowledge of analytic geometry as motivation.
Clearly the solution is a type II line. Its tangent at B must be perpendicular
to the tangent to oL5 at B. Thought of as a semicircle in 682, the desired line
must have its radius through B tangent to oL5. Hence the slope must be - 4.
The Euclidean line of slope - a through (3,4) has equation

(y-4)= -4'(x-3).
This line crosses the x-axis at x = 3 . Hence the desired line should be L,
where c = 23 and r = ( )2 + 4 = 20. See Figure 5-21. We leave the
verification that L, actually is the desired line as Problem A8.

Figure 5-21

We should note at this time that if B 0 I we do not know if there is a
unique line through B perpendicular to 1. In fact, there may not be any such
line unless we add another axiom relating protractors and rulers. Also note
that the familiar Pythagorean Theorem may not be true in this setting. You
will show in Problem A9 that the triangle QABC of Example 5.1.3 has a
right angle at B but (AC)2 : (AB)2 + (BC)2.

The remaining results of this section are left to the problems.

Corollary 5.3.7. In a protractor geometry, every line segment AB has a unique
perpendicular bisector; that is, a line 11 AB with 1 n AB = {M} where M is the
midpoint of AB.
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Theorem 53.8. In a protractor geometry, every angle L ABC has a unique.angle
bisector that is, a ray BD with D e int(L ABC) and m(L ABD) = m(L DBC).

Recall that two line segments in a metric geometry are said to be congruent
if they have the same length. We mimic this idea to define the congruence of
angles.

Definition. In a protractor geometry {.9, -T, d, m}, L ABC is congruent, to
L DEF (written as L ABC ^-, L DEF) if m(L ABC) = m(L DEF).

Many of the results of this section can be stated in terms of the notion
of congruence and are very easy to prove. Be careful, however, not to confuse
"congruent" with "equal."

Theorem 5.3.9 (Vertical Angle Theorem). In a protractor geometry, if L ABC
and L A'BC' form a vertical pair then L ABC - L A'BC'.

Theorem 5.3.10 (Angle Construction- Theorem). In a protractor geometry,
given L ABC and a ray ED which lies in the edge of a half plane Hl, then
there exists a unique ray EF with F e H, and L ABC - L DEF.

Theorem 5.3.11 (Angle Addition Theorem). In a protractor geometry, if D e
int(L ABC), S e int(L PQR), L ABD ^_- L PQS, and L DBC L SQR, then
LABC ^_ LPQR.

Theorem 5.3.12 (Angle Subtraction Theorem). In a protractor geometry, if D e
int(L ABC), Sc int(L PQR), L ABD - L PQS, and L ABC -- LPQR, then
L DBC - L SQR.

PROBLEM SET 5.3

Part A.

(1 ,Prove that any two right angles in a protractor geometry are congruent.

2. Prove Theorem 5.3.4.

3. Prove Theorem 5.3.5.

4. Prove Corollary 5.3.7.

5. Prove Theorem 5.3.8.

6. Prove Theorem 5.3.9.

7. Let LABC and L ABC' form a vertical pair in a protractor geometry. Prove
that if L ABC is a right angle so are L A'BC, L A'BC' and L ABC'.

Verify that the line found in Example 5.3.6 really is perpendicular to 0L5 at (3, 4).

Show that if AABC is as given in Example 5.1.3, then (AC)2 9(= (AB)2 + (BC)2.
Thus the Pythagorean Theorem need not be true in a protractor geometry.
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10. Prove Theorem 5.3.10.

11. In . find the angle bisector of L ABC if A = (0, 5), B = (0, 3) and C = (2,,/2-1).

12. Repeat Problem 11 with A = (1, 3), B = (1, f) and C = (f,1).

13. Prove Theorem 5.3.11.

14. Prove Theorem 5.3.12.

15. Prove that in a protractor geometry L ABC is a right angle if and only if there
exists a point D with D-B-C and L ABC ^ L ABD.

16. In the Taxicab Plane let A = (0, 2), B = (0, 0), C = (2, 0), Q = (- 2, 1), R = (-1, 0)
and S = (0, 1). Show that AB ^- QR, L ABC z L QRS, and BC RS. Is AC r - QS?

Part B. "Prove" may mean "find a counterexample".

17. A trisector of L ABC is a ray AD with D e int(L ABC) such that either
m(L ABD) = 3 m(L ABC) or m(L CBD) = 31(L ABC). Prove that for every angle
L ABC in a protractor geometry there are exactly two trisectors.

18. Let /ABC be a triangle in a protractor geometry with AB c- CB. Prove
LBAC LBCA.

19. Suppose that in the Poincare Plane the line I is perpendicular to the line aL.
Prove that I is a type II line and that its "c" parameter is equal to a.

20. Prove that if two angles in a protractor geometry are supplementary then they
form a linear pair.

21. Prove that any two right angles in a protractor geometry are equal.

22. In a protractor geometry assume that D e int(L ABC) and that L ABD ^- L PQS,
L DBC c L SQR, and L ABC ^- L PQR. Prove that S e Int(L PQR).

23. In the Moulton Plane .,# find a line I and two points P, Q such that there are
two lines through P perpendicular to l and no lines through Q perpendicular to 1.
(Hint: Figure 5-14.)

Part C. Expository exercises.

24. To do this exercise you will need the computer program POINCARE which is
described in the preface. Prepare a demonstration of geometry in the Poincare
plane for high school students using the program. As the written part of the
work, first describe what you would hope to accomplish, how you would go
about it, and then how you would determine if you were successful.

5.4 Euclidean and Poincare Angle Measure

In this optional section we shall carefully verify that the Euclidean and
Poincare angle measures defined in Section 5.1 actually satisfy the axioms
of an angle measure. The key step will be the construction of an inverse
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cosine function. This will involve techniques quite different from those of
the rest of the book. As a result, you may choose to omit this section knowing
that the only results that we will use in the sequel are that ME and mH are
angle measures and that the cosine function is injective. On the other hand,
it is interesting to see a variety of mathematical techniques tied together to
develop one concept as is done in this section. The material on the construc-
tion of Euclidean angle measure is taken from Parker [1980].

Precisely what are we assuming in this section? We are assuming the
standard facts about differentiation and integration but nothing about
trigonometric functions. This will force us to consider the notion of an
improper integral in order to define the inverse cosine function. Since general
results about differential equations may not be familiar to the reader, we
shall need to develop some very specific theorems regarding the solutions
of y" = -y. (In calculus we learned that both sin(x) and cos(x) are solutions
of this differential equation. That is why we are interested in this equation.)

Definition. Let f(t) be a function which is continuous for c :!g t < d and
which may not be defined at t = d. Then the improper integral f° f(t) dt
converges if limb,d- j' f(t) dt exists. In this case, we say limb.d- f b f(t) dt =
f° f(t) dt.

Lemma 5.4.1. The improper integral f' dt/ 1 - t converges.

PROOF. Since we are trying to develop the trigonometric functions and we are
assuming nothing about them, we cannot use the "fact" that sin-'(t) is an
antiderivative of 1/,/1 - t2. Instead, we note that

b dt _ 1/2 dt b dt

° 1t -f0 1-2 fl/2 1-t2
for every choice of b with j < b < 1, so that to show that f to dt/ 1 - t2 con-
verges we need only show that f i/2 dt/ 1 - t2 converges. We proceed by
integrating by parts:

f/I'b dt b 1 tdt
,J1/2 t2-Ji/2t 1-t2

1-t2
t

b I('b V/1 - t2 dt
2 - J1/2 t21 /

3- 1-b b 1-t
dt

b - /2 t2

Now 1 - t /t2 is continuous on the interval [1, 1] (including at t = 1) so
its integral over that interval exists. Thus
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lim
rn dt -\-0- ('1 l2 tz

dt
b 1- .J1/2,.J1 - t JI/2 t

exists. Hence the improper integrals J I/2 dt/ 1 - t2 and fo dt/ 1 - t2 both
converge.

A similar argument shows that the improper integral f °_ dt/ 1 t
converges so that j o 1 dt/ 1 - t2 also exists.

We define a number p to be twice the value of the integral in Lemma 5.4.1:

(1 dt _ fo dt f1 dt 1 dt
P 2

Jo 1-t -J 1 1-t2+°0 1-t2-J-1

tz.

Of course, from calculus we know that p = ir but that will be irrelevant for
our purposes. All that matters is that p > 0.

We wish now to define a function which will turn out to be the inverse
cosine function. Motivated by calculus, we feel the inverse sine of x can be
given as f o 1/ 1 - t2 dt. Since cos-1(x) = r</2 - sin-1(x), we will define a
function I(x) as in Equation (4-1).

Lemma 5.4.2. The function I(x) given by

I ( X ) fx dt for-1<x<1 (4-1)J0
1 - t2

is a bijection from [ -1,1] to [0, p].

PROOF. By the Fundamental Theorem of Calculus, I(x) is differentiable
for -1 < x < 1 and, in fact,

1'(x) _ - 1 (4-2)
x2

Since a differentiable function is continuous, we know that I(x) is continuous
for -1 < x < 1. Since the improper integrals that define I(1) and 1(- 1)
converge, I(x) is actually continuous for -1 < x < 1.

Equation (4-2) shows that I'(x) < 0 for -1 < x < 1 so that 1(x) is a
strictly decreasing function. In particular, 1(x) is injective.

Since I is decreasing, its largest value occurs at the left endpoint and is

p-1 dt -p+ o dt pp
2- r° 1-t2 2 1 1-t22 2

Thus I(x) < p for all x in [-1,1]. On the other hand, the smallest value of
I(x) occurs at x = 1 and is
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2 ° 1-t2 2 2

so that 1(x) > 0 for all x in [-1,1]. We have therefore shown that
1: [ -1,1] --* [0, p] and is a continuous decreasing function. I is surjective
because it is continuous and sends endpoints of [ -1, 1] to endpoints of
[0, p]. (This is the Intermediate Value Theorem.) Thus I is bijective.

Since I: [-1, 1] --> [0, p] is a bijection, it has an inverse, which we shall
call c. Of course, we expect that c(O) is really cos(O).

Definition. The cosine function c: [0, p] -+ [ -1,1] is the inverse of I:
[ -1,1] -[O, P]

The sine function s: [0, p] -+ [0, 1] is the function given by

s(O) = Vf-1 - c (0) where c2(0) = (c(0))2.

Lemma 5.4.3. c(O) and s(O) are both differentiable for 0 < 0 < p.

PROOF. From calculus we know that c'(0) exists because I'(x) 0 0. In fact,
using Equation (4-2), we see that

c'(0) = I = - 1 --c2(0) s(0) for 0 < 0 < p. (4-3)
I (c(B))

On the other hand, we have

s'(0) = 2 1 1 ?(0) (-2c(0) c'(0)) = c(0) for 0 < 0 < p. (4-4)

Furthermore,

c"(0) c(0) and s"(0) s(0) for 0 < 0 < p. (4-5)

0

Note that Equations (4-3), (4-4), and (4-5) are the familiar differential
equations for the sine and cosine functions.

In order to prove the angle addition axiom holds for mx, we shall need to
prove the addition law for the cosine function. This in turn depends on the
uniqueness of the solution of the initial value problem for the special case of
differential Equation (4-5).

Lemma 5.4.4. Let a and b be real numbers with 0 < a < b. Then the only
solution of the initial value problem

Solve: y"(0) = - y(0) for 0 < 0 < b I

(4-6)with y(a) = 0 and y'(a) = 0
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is given by y(O) = O for all 0 < B < b.

pRooF. Note that y(9) = 0 is a solution of Problem (4-6). Let z(O) be any
solution of Problem (4-6). We want to show that z(O) = 0 for 0 < 0 < b. Let
w(B) _ z'(0) so that (z'(B), w'(B)) = (w(0), - z(0)) since w'(B) = z"(O) = - z(0).

We may integrate a vector valued function such as (w(0), -z(6)) by
integrating each component separately. Alternatively, we can define such
an integral as the limit of a sum. Either way, we have

(z(0), w(0)) =
JaB

(z'(t), w'(t)) dt = f
e

(w(t), - z(t)) dt. (4-7)

In the proof of Proposition 3.1.6, we saw that IX + YII < IIXII + IIYIL
By induction we have

n

Y Xi
i=1

n

< Y-
i=1

Xi

where Xi e R2. By taking the appropriate limits this yields the inequality

fa

X(t)dt f B IIX(t)II dt for a< 0 < b (4-8)

where X(t) = (w(t), - z(t) ). If we let

u(0) = II(z(B), w(B))II = Jz2(B) + w2(0) (4-9)

then we can combine Equations (4-7), (4-8), and (4-9) as

u(0) = II(z(B), w(B))II

f0(w(t), - z(t)) dt

= f e u(t) dt.
a

Thus

< fe

II(w(t), -z(t))Ildt

u(0) f e u(t) dt where u(0) >- 0 and u(a) = 0. (4-10)

We will show that u(0) - 0 for 0 < 0 < b. This implies that z(6) - 0 (and
w(0) - 0).

By Inequality (4-10) we have

u(0) - f e u(t) dt < 0
a

and so for any 0,
e-Bu(0) - e-B f

o
u(t)dt < 0.

a

But the expression on the left in this last inequality is the derivative of
e_°

f o u(t) dt. Thus
e-e f o u(t) dt is a decreasing function whose value at

a is 0. Hence
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e-B eu(t)dt<0 fora<0<b.
a
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Thus fa u(t) dt < 0 for a:5 0 < b. But since u(0) is non-negative, 0 < u(0) <
Ja u(t) dt < 0 so that u(0) = 0 for a -< 0 < b.

To handle the case 0 < B < a consider - (z(0), w(6)) _ 1e (w(t), - z(t)) dt
and show that ee je u(t) dt is increasing. This yields u(0) = 0 for 0 < 0 < a.
Hence 0 = u(O) _ jI(z(0), w(B))Ij for 0 < 0 < b so that z(0) = 0 for 0 <
0<b.

Lemma 5.4.5. Suppose that 0 < b < p and that f : [0, b] ---), R is continuous
with f"(0) = -f(0) for 0 < 0 < b. Then there exist unique real numbers A
and B such that

(4-11)f(B) = Ac(B) + Bs(B) for 0 < 0!5b.

PROOF. Consider the initial value problem

Solve: y"(B) = - y(0) for 0 < 0 < b,
with y(a) = f(a) and y'(a) = f'(a).

(4-12)

If y(0) is a solution of Problem (4-12) then y(0) - f(0) is a solution of Problem
(4-6) so that y(O) = f(0) for 0 < 0 < b.

On the other hand, if y(0) = Ac(B) + Bs(B), then y'(B) = -y(O) so that
y(0) is a solution of Problem (4-12) if and only if A and B satisfy

Ac(a) + Bs(a) = f(a)
(4-13)

- As(a) + Bc(a) = f'(a).

Since c(a) c(a) - (-s(a)) s(a) = c2(a) + s2(a) = 1 0, Equations (4-13)
have a unique solution, namely

A = f(a) - c(a) - f'(a) . s(a), B = f'(a) c(a) + f(a) - s(a).

For these unique values of A and B

f(B)=y(B)=Ac(B)+Bs(0) for0<0<b.
Since both f(0) and Ac(B) + Bs(B) are continuous on [0, b], f(0) = Ac(B) +
Bs(B) for 0S0<b.

What we have really done so far is prove the existence and uniqueness
of solutions to the differential equation f" = -f with a given set of initial
conditions. We now use this result to prove the addition law for cosine.

Lemma 5.4.6. If 0, tp, and 0 + p are all in [0, p] then

c(B + (p) = c(B)c(cp) - s(B)s(cp). (4-14)

PROOF. If qp = 0 or if qp = p (so that 0 = 0) the result follows easily. (See
Problem At.) Now we assume that cp is fixed with 0 < cp < p and set f(0) _
c(0 + qp). By Lemma 5.4.5 with b = p - qp we have
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c(9 + (p) = f (O) = Ac(O) + Bs(O).

Now f'(0) exists because f(O) is differentiable for -cp < 0 < p - cp. Thus
A = f (O) = c((p) and B = f'(0) = c'((p) = - s(Q). Hence

c(0 + (P) = c(0c(0) - s(q)s(0).

This completes our development of the cosine and inverse cosine func-
tions. We are now ready to prove that the Euclidean Plane has an angle
measure. Recall that our motivation is the fact that if 0 is the measure of the
angle between the vectors (A - B) and (C - B) then

<A-B,C-B>=IIA-BII IIC-BIIcos0.

Definition. If A, B, C are noncollinear points in the Euclidean Plane, then the
Euclidean angle measure of L ABC is

m(LABC) =MI
AA - BII

I
C--BBII

We should note that since A # B and B 0 C, IIA - BII and IIC - BII are
nonzero. Furthermore, the Cauchy-Schwarz Inequality (Proposition 3.1.5)
says that -1 < <A - B, C - B>/IIA - BII IIC - BII < 1 so that the definition
makes sense. (We have dropped the subscript E to ease the notation a bit.
Also, m is radian measure and not degree measure.)

Proposition 5.4.7. For all angles L ABC in w'

0<m(LABC) <p.

PROOF. Since 0 < I(x) < p for all x between - 1 and 1, we need only show
that 0 and p cannot occur as the measure of an angle. Since A, B, and C are
not collinear, A - B t(C - B) for any t and C - B : (0, 0). Thus by
Proposition 3.1.5

<A - B, C - B>-1< IIA - BIIIIC - BII
< 1.

Since I(-1) = p, I(1) = 0, and I is injective,

0<m(LABC)=III<A

- BII)<p
ElA-BII IIC - B

Proposition 5.4.8 (Angle Construction). In the Euclidean Plane let BA be a
ray in the edge of the half plane H1 and let r be a real number with 0 < r < p.
Then there exists a unique ray BC with C E H1 and m(L ABC) = r.

PROOF. Let X = (A - B)/IIA - BII. Let W be either Xl or - X' where the
sign is chosen so that H1 = {

I ' (
P - B, W> > 0}. Set

C = B + c(r)X + s(r)W and A' = B + X.
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Then L ABC = L A'BC and

m(L A'BC) = I
<X, c(r)X + s(r)W >

( IIXII Il c(r)X + S(r)W11

5 Angle Measure

= I(c(r)) = r

because IIXII = II WII = Ilc(r)X + s(r)W11 = 1 by Problem A2 and <X, W> _
0. Since <C - B, W> = s(r) > 0, C e H1. Thus we have the existence of a ray
with the desired property. See Figure 5-22 which illustrates the case where
W = -Xl.

Figure 5-22

To show uniqueness of the ray suppose that D E Hl with m(L ABD) = r.
We must show that BD = BC.

Choose D' e BD with IIB - D'II = 1. Then L ABD = L A'BD'. Let Z =
D'- B. We claim that Z = <Z,X>X + <Z, W>W. Since <W, W> = 1,
<Z - <Z,W>W,,W> = <Z,W> - <Z, W> = 0. Thus, since W = ±X1, Prop-
osition 4.2.1 implies that Z - <Z, W>W= tX for some t e R. We find t by
taking the scalar product with X:

t = t<X, X> = <tX, X> = <Z - <A, W>W, X> = <Z, X>.

Thus Z = <Z, W> W + <Z, X>X as claimed.
Since IIXII = IIZII = 1, we have

r = m(LA'BD') = I
` IIXII IIzII J

1(<X, Z>).

Thus c(r) = <X, Z>. Since IIZII = 1, we have

<Z, W> 1 - <Z, X> C2(r) _ ±s(r).

Since Y e H1, <Z, W> > 0 and so <Z, W> _ +s(,r). Thus Z = c(r)X +
s(r)W and D' = C. Hence BD = BD' = BC and there is a unique ray BBR
with C e H1 and m(L ABC) = r.

In order to verify the Angle Addition Axiom it is necessary to prove first
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two results which you would normally expect to be consequences of Angle
Addition.

Proposition 5.4.9. In the Euclidean Plane, if Dc int(LABC) then
m(L ABD) < m(L ABC).

PROOF. Let X = A - B, Y = C - B, and Z = D - B. By replacing A, C, and
D by other points on the appropriate rays we can make IIXI I = 11 YII = 11Z11 =1.
See Figure 5-23.

Figure 5-23

Since D E int(L ABC), <Z, X1> and <Y, X 1> have the same sign. Choose
W to be either X' or -X1 in a manner so that <Z, W> > 0. As in the proof
of Proposition 5.4.8 we have

Y = c(r)X + s(r)W and Z = c(p)X + s(p)W

where r = m(L ABC) and p = m(L ABD).
Now Y1 = +(s(r)X - c(r)W). Since Dc int(LABC), <X, Y1> and

<Z, Y'> have the same sign. Thus

<X, s(r)X - c(r)W> = s(r)
and

<c(p)X + s(p)W, s(r)X - c(r)W> = c(p)s(r) - s(p)c(r)

must both be positive. Hence

s(p)c(r) < c(p)s(r) and
s(r) <

s(p)Mp)

.

By Problem A3, f(O)=c(O)1s(O) is a strictly decreasing function. Thus
p < r and m(LABD) < m(L ABC).

Proposition 5.4.10. In the Euclidean Plane, if L ABC and L CBD form a
linear pair then m(L ABC) + m(L CBD) = p.
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PROOF. Let X = A - B, Y = C - B, and Z = D - B and assume that
IJXJI = JJYJJ = JJZIJ = 1 as before. Note that since B is between A and D we
have Z = - X. See Figure 5-24. By Problem A4, I(- x) = p - I(x). Thus

m(LABC) + m(LCBD) = I(<X, Y>) + I(<Y,Z>)

= I(<X,1'>) + I(- <Y, X>)
= I(<X, Y>) + P - I(<X, Y>)
=A

Figure 5-24

Proposition 5.4.11 (Angle Addition). In the Euclidean Plane if D e int(L ABC)
then m(LCBD) + m(LDBC) = m(LABC).

PROOF. Choose E so that B is between A and E. Then C e int(L DBE). By
Propositions 5.4.9 and 5.4.10

m(LDBC) < m(LDBE) = p - m(LCBD)

so that m(LABD) + m(LDBC) < p. Hence we can apply Lemma 5.4.6 with
6 = m(L ABD) and p = m(L DBC). See Figure 5-25.

Figure 5-25
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Asbefore X=A-B,Y=C-B,Z=D-BandIIXII=IIYII=IIZII=1.
Note that m(L ABC) = I(<X, Y>), m(L ABD) = I(<X, Z>), and m(L DBC) _
I(<Z, Y>). Hence

c(m(L ABD) + m(L DBC)) = c(I(<X, Z>) + I(<Z, Y>))

= c(I(<X,Z>))c(I(<Z, Y>))

- s(I (<X, Z>))s(I (<Z, Y>))
=<x,z><z,y>- 1-<x,z>Z 1-<z,Y>2.

By Problem AS, (X Z1> 1- (X, Z>Z and (Y, Z1> (Y, Z>2.

Since D E int(L ABC), <X, Z-> and <Y, Z1> must have opposite signs so that

<X,Z1>(Y,Z1> = _11 - (X,Z>Z 1 - (Y,Z>2.
Hence

c(m(LABD) + m(LDBC)) = <X,Z>(Y,Z> + <X,Z1><Y Z1>
= <(<X,Z>Z + <X, Z1>Z1), Y>

= <X, Y>
= c(m(L ABC) ).

Since the function c(O) is injective, we have

m(LABD) + m(LDBC) = m(LABC).

Propositions 5.4.7, 5.4.8, and 5.4.11 show that m is an angle measure based
on p. By Problem A4 of Section 5.1, the function mE = (180/p)m is an angle
measure based on 180. It is the measure we actually use in the Euclidean
Plane. The function 1(x) is really cos-1(x) (in radians). c(O) is cos(8) and s(8)
is sin(g). It is possible to build up all of the trigonometric functions from
what we have here and have them defined for all 0, not just 0 < 0 < 7C. You
should feel free now to compute

ME(LABC) =cos 1 <A-B,C-B>
IIA - BIIIIC - BII

using cos-1(x) in terms of degrees.

Example 5.4.12. Let A = (2,1), B = (3, -2) and C = (-1,3). What is
mE(L ABC)?

SOLUTION. A-B=(-1,3), C-B=(-4,5)

(L ABC) -cos - 1
<(-1, 3), (- 4,5)>

mE

= cos-1

41,110

19

4101

20.225.
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We now turn our attention to the Poincare Plane. Recall the following
definitions from Section"5.1.

Definition. If BA is a ray in the Poincare Plane, where B = (xB, yB) and A =
(xA, yA), then the Euclidean tangent to BA at B is

(0, yA - yB) if AB is type I

TBA = (ye, c - xB) if AB is EL,, xB < xA

-(YB,c-xB) ifABisEL,,xB>xA .

The Euclidean tangent ray to BA is the Euclidean ray BA' where
A' = B + TBA. The Poincare measure of L ABC in H is

mH(L ABC) = mE(L A'BC') = cos-' CTBA, TBC)

II TBA 1111 TBC 11

We must show that mH is an angle masure. Because it is defined in terms
of mE we expect that the basic results about Poincare angle measure should
follow fairly easily from similar statements about Euclidean angle measure.

Proposition 5.4.13. For every hyperbolic angle L ABC, 0 < mH(L ABC) <
180.

PROOF. This is immediate since 0 < mE(L A'BC') < 180.

The key step for the rest of this section is the next proposition. It tells us
that for each possible tangent direction there is a unique Poincare ray.

Proposition 5.4.14. Let B = (xB, YB) e H and let T = (t1, t2) 0 (0, 0). Then
there exists a unique ray BA in H with TBA = AT for some 2 > 0.

PROOF.

Case 1. t1 = 0. The ray should be of type I. Let A be any positive number
with YB + At2 > 0. This is possible since YB > 0. Let A = (xB, yB + At2) E H.
Then TBA = (0, At2) = AT. This gives existence.

On the other hand, if C = (xC, yc) E 1-0 with TBC = yT for some µ > 0
then the first component of TBC must be zero so that BC is a type I line. Thus
BC' = N. Finally, since YA - YB and yc - YB have the same sign as t2, B is
not between A and C. Hence, BC = BA.

Case 2. t1 0. Let 2 = yB/It1l, c = XB + (yBt2/tl), and r = Al Th
.
Then

- C)2 + (YB)2 =
()2

(t2)2 + (YB)2(xB
1

= 22(t2)2 + A2(t1)2

= A21ITI12 = r2
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Thus B e EL,. Choose A e L, with XA > xB if tl > 0 and XA < XB if tl < 0.
Then c - xB = YBt2/tl so that

(YB, C - xB) = (2t1,2t2) = 2T if t1 > 0
TBA -(YB, C - XB) = -(-1tl, -At2) = AT if t1 < 0.

Hence TBA = AT and we have existence.
On the other hand, suppose that C e El-0 and TBC = µT for some µ > 0.

Then BC is a type II line A. since tl 0, and TBC = ± (yB, d - XB) = µ(t 1, t2).
Thus µ = ±yB/tl, where the ± sign must be the sign of tl since µ > 0. Thus
µ = YB/Itll = A. Hence

±(d - XB) = µt2
or

d = XB ± µt2 = XB + (ygt2/tl) = c

S = (xB - d)2 + (YB)2 = (xB - c)2 + (yB)2 = 2IITIJ = r.

Thus A and C belong to EL,. We need only show that B is not between A
and C to have BC = BA.

TBC= ±(YB,d-xB)=µT=AT =TBA
where the ± sign is the sign of t1. But by the definition of TBC and TBA, the
± sign is the sign of XC - XB and of XA - XB. Hence xC - XB and xA - xB
have the same sign so that B is not between A and C. Thus there is a unique
ray BA with TBA = AT for some 2 > 0.

Before we go any further, let us adopt some informal terminology
regarding the sides of a line. If I is a vertical Euclidean line or a type I
Poincare line, it is clear what "left side" and "right side" mean. Similarly, if I
is a non-vertical Euclidean line or a type II Poincare line, then "top side"
and "bottom side" have intuitive meaning. This terminology could be made
formal if needed. Given a Poincare ray BA, there is a tangent Euclidean ray
BA' where A = B + TBA. Note that BA and BA' are either both vertical or
both not vertical. Then given a side of one ray, there is a corresponding side
of the other ray (left, right, top, or bottom). The proof of the next result is left
to Problem A6. See Figure 5-26.

A = A'

C'

Figure 5-26
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Proposition 5.4.15. Let BA be a Poincare ray and let BA' be the tangent
Euclidean ray. Then the side of the Poincare line BA that contains C cor-
responds to the side of the Euclidean line BA' that contains C' = B + TBc.
(See Figure 5-26.)

Proposition 5.4.16 (Angle Construction). Let BA be a ray in 0-fl which lies in
the edge of the half plane Hl and suppose that 0 < 0 < 180. Then there is a
unique ray BC in H with C e H1 and mH(LABC) = 0.

PROOF. Let A' = B + TBA. There are exactly two Euclidean rays, BC' and
BD', with mE(L A'BC') = 0 = m5(L A'BD'), C' and D' lie on opposite sides
of the Euclidean line BA'. By Proposition 3'.14 there are unique Poincare
rays BC and BD which have BC' and BD' as tangents. By Proposition 5.4.15,
C and D must lie on opposite sides of the Poincare line Y X Hence exactly
one of them lies in H1. Assume it is C. Then m f(L ABC) = mE(L A'BC') = 0,
and we have existence.

On the other hand, if F e Hl with my(L ABF) = 0, then mE(L A'BF') = 0.
Thus BF' = BC' and BF = BC.

Proposition 5.4.17 (Angle Addition). In the Poincare Plane if D e int( L ABC)
then m1(L ABD) + mf(L DBC) = mH(L ABC).

PROOF. Let A' = B + TBA, C' = B + TBc, and D' = B + TBD. By Proposi-
tion 5.4.14, D' E int(LA'BC'), where LA'BC' is the Euclidean angle. Then

mH(LABD) + mJ(LDBC) = mE(LA'BD') + mE(LDBC')
= mE(L A'BC')

= mH(L ABC).

Propositions 5.4.13, 5.4.16, 5.4.17 prove that mH is an angle measure on 11-II.

PROBLEM SET 5.4

Part A.

1. Verify Equation (4-14) for the cases cp = 0 and cp = p.

2. If IIXII = 1 and W = ±X, show that JIWJI = 1 and Ilc(r)X + s(r)Wjj = 1.

3. Prove that f(0) = c(6)/s(0) is a strictly decreasing function by showing that f'(0) < 0.

4. Prove that 1(-x) = p - I(x).

5. If IJXII = 1 = IIZIh prove that (X,ZL> = ± / i 2 2 .
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6. Prove Proposition 5.4.15.

7. Let 0 be a number with 0 < 0 < p. Let A, B, C e 682 with A = (1, 0), B = (0, 0) and
C = (c(8), s(0)). Prove that m(L ABC) = 0. This means that c(0) and s(0) are the
cosine and sine functions defined in trigonometry. See Figure 5-27.

Figure 5-27



CHAPTER 6

Neutral Geometry

6.1 The Side-Angle-Side Axiom

One of the most fundamental problems in mathematics is finding the ap-
propriate notion of equivalence for each particular area of mathematics.
In geometry the appropriate notion of equivalence is that of "congruence."
We have already discussed congruence for segments and angles. In this
chapter we will define and work with congruence :between-triangles.

Before we take up the study of triangle congruences, it is appropriate to
discuss briefly the general notion of congruence of geometric figures. Intui-
tively, t wo,.figures are . congruent.. if one-can be "picked .up .and, laid. down
exactly on the other so:that the,two coincide. Euclid used this "method of
superposition" but only sparingly. Roughly, it means that the figure is not
distorted-as it is moved. Whatever the first statement in quotes means
exactly, it should include the fact that there is a bijection -between the-1wo
figures and. _that hoth.thecorresponding sides and the corresponding angles
are congruent. We shall make these ideas precise below. The general notion
of superposition is made concrete with the idea of an isometry in Chapter 11.

We shall now formally define what is meant by congruent triangles. This
will consist of order to show-- that two triangles
are-congruent. We will then introduce a new axiom (Side-Angle-Side, SAS)
which allows us to verify only three conditions to show that two triangles
are congruent. In later sections we shall develop various results that follow
from SAS.

As in any case in which we add an axiom, we must determine whether
our standard examples satisfy the axiom. We will see that although the
Taxicab Plane does not, both the Poincare and Euclidean Planes do satisfy
the new axiom.

124
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Convention. In LABC, if there is no confusion, we will denote
LABC by LB, etc., so that

L A = L CAB, LB =LABC, and LC = L BCA.

Definition. Let LABC and LDEF be two triangles in a protractor geometry
and let f .; {4 B.Cj ,{ E , F}, be a bijection between the vertices of the
triangles. f is, ruen if

and

AB f(A)f(B), BC ^ f(B)f(C), CA (C)1(A)

LA.?' Lf(A), LB,., L f(B), LC Lf(C)
Two triangles, _QABC a congruence

f: {A, B, C} -. {D, E, F}. If the congruence is given by f (A) = D, f (B) = E,
and f (C) = F, then we write AABC - LDEF.

A congruence is pictured in Figure 6-1. In this case f(A) = E, f(B) = D,
and f(C) = F. Thus AABC - LEDF. Note that the notation - for con-
gruent triangles includes the particular bijection. Thus, it is incorrect to
write LABC - LDEF in Figure 6-1, even though LDEF = LEDF. Given
a bijection between the vertices of two triangles there is induced a bijection
between sides and between angles. Therefore, a congruence is a bijection
for which corresponding sides are congruent and for which corresponding
angles are congruent. As an aid in visualization, it is useful to mark cor-
responding sides with the same number of slash marks when they are known
to be congruent. Similarly, if they are known to be congruent, we mark
corresponding angles with the same Greek letter which gives their measure.

The fundamental question of this section is: How, much do we need to
know about a triangle so that it is determined up to.congruence? More
precisely, if we are given AABC and ADEF for which some sides of LABC
are congruent to the corresponding sides of ADEF and some angles of
LABC are congruent to the corresponding angles of LDEF, is LABC
congruent to LDEF? As the question is worded, the answer is no. Certainly
if AB ^- DE and L A - L D it need not be true that LABC ^_- LDEF. (There
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are examples in every protractor geometry.) What happens in the case of two
sides and the included angle? That is, if AB DE, AC ^ DF and L A ^ L D,
must LABC be congruent to LDEF? In the Euclidean Plane the answer is
yes, but in an arbitrary protractor geometry the answer need not be yes. (An
example in the Taxicab Plane is given in Example 6.1.1.) Thus if .we want
our protractor geometries to have this property we must add it to our list of
axioms. Because the question involves two sides and the angle between them,
the axiom is called Side-Angle-Side or SAS. To see what might "go wrong"
in the general case we will consider the following situation.

Suppose that we are given LABC and a ray EX which lies on the edge
of a half plane H1. Then we can construct the following by the Segment
Construction Theorem (Theorem 3.3.6) and the Angle Construction Theorem
(Theorem 5.3.10)

(a) A unique point D e EX with BA ^- ED
(b) A unique ray EY with Y e H1 and L ABC - L XEY
(c) A unique point F e ET with BC - EF.

See Figure 6-2. Is LABC ^ LDEF? Intuitively it should be (and it will
be if SAS is satisfied). However, since we know nothing about the rulers for
DF and AC, we have no way of showing that AC -t DF. In fact, Example 6.1.1
will show that AC need not be congruent to DF.

The philosophical problem is as follows. To, get a protractor geometry, we
put two different structures on an incidence geometry. One was the notion
of rulers and the other was that of protractors. There was no assumption
in the axioms which said that the rulers, and protractors must "get along."
That is, no relation was assumed between the rulers and the angle measure.
In fact, rulers for one line need not be related to rulers for another.line and
protractors atone point need -not be related to protractors at another point.
Because of this we should not expect LABC to be congruent to LDEF in
the above construction.

Example 6.1.1. In the Taxicab Plane let A = (1, 1), B = (0, 0), C = (-1, 1),
E _ (0, 0), X = (3, 0), and let H1 be the half plane above the x-axis. Carry
out the construction outlined above and check to see whether or not LABC
is congruent to LDEF.

C

E D X

Figure 6-2
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Figure 6-3
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SOLUTION. dT(B, A) = 1 + 1 = 2 so that D = (2, 0). mE(L ABC) = 90 so that
we may take Y = (0, 3). dT(B, C) = 1 + 1 = 2 so that F = (0, 2). Since Taxicab
angle measure is the same as Euclidean angle measure, we have

mE(L BCA) = 45 = iE(L EFD) so that L BCA -- L EFD

mE(L CAB) = 45 = mE(L FDE) so that L CAB c LFDE.

On the other hand,

dT(A,C)=2 and dT(D, F) = 2 + 2 = 4 so that AC$DF.

Hence LABC is not congruent to /DEF. See Figure 6-3.

Example 6.1.1 shows that we need to add another axiom to our protractor
geometry in order to have our intuition about triangle congruence be valid.
The axiom we will add can be remembered informally as: IfJwo sides and
the included angle of a triangle are congruent to two sides and the included
angle of another triangle,.. then the, two triangles, are congruent.

Definition. A,protractor geometry satisfies th Anode
ifwhenever /ABC and LDEF are two triangles with AB ME, LB ~ LE,
and B C n EF, then n ABC _QDEF.

Definition. Autral geome , (or absolute geometry) is a protractor geometry
which satisfies SAS.

The traditional term "absolute geometry" is somewhat misleading because
it connotes some finality or uniqueness of the resulting object of study.
We have chosen to use the term "neutral" geometry which was introduced
by Prenowitz and Jordan [1965]. This term indicates we are taking a neutral
course relative to a choice of parallel axioms. See Section 7.3.

We have seen that the Taxicab Plane is- not -a neutral geometry.. In Problem
B11 you will show that the Moulton Plane..is.not a neutral geometry either.
However, our two basic models are neutral geometries. To show that the
Euclidean Plane is a neutral geometry requires the familiar law of cosines.
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Although the result follows easily from Section 5.4 (Problem A3), those who
skipped that part of the book should be willing to accept the following
theorem without proof. (For c(O) read cos(O).)

Proposition 6.1.2 (Euclidean Law of Cosines). Let c(O) be the cosine function
as developed in Section 5.4. Then for any LPQR in the Euclidean Plane

dE(P, R)2. dE(P, Q)2 + dE(Q, R) 2 - 2dE(P, Q)dE(Q, R)c(mE(L PQR)) (1-1)

Note for the triangle in Figure 6-4, Equation (1-1) merely says that
q2 = p.2 + r2 - 2pr cos(O).

P

Figure 6-4

Proposition 6.1.3. The Euclide n _Pi e, , aii$)ies SAS.

PROOF. Let LABC and LDEF be given with AB ^ DE, L B ~ L E, and
BC EF. Then by Proposition 6.1.2

(AC)2 = (AB)2 + (BC)2 - 2(AB)(BC)c(mE(LB))

_ (DE)2 + (EF)2 - 2(DE)(EF)c(mE(LE))

_ (DF)2.

Thus AC=DFsothat AC liT Now solve Equation (1-1) forc(mE(LPQR)):

c(mE(LPQR)) _
(PQ)2 + (QR)2 - (PR)2

2(PQ)(QR)

Hence as a special case

c(mE(LBAC)) _
(BA)2 + (A C)2 - (BC)2

2(BA)(AC)
(ED)2 + (DF)2 - (EF)2

2(ED)(DF)

= c(mE(LEDF)).

Since the function c(O) is injective (for 0 < 0 < 180)

mE(L BAC) = mE(L EDF) and L A = L D.

Similarly L C ^ L F so that LABC LDEF. E
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To prove that the Poincare Plane satisfies SAS is much harder. Although
a proof can be given with the material developed thus far, we assume that the
next theorem is true for now. We will present a proof in Chapter 11 when
we study isometries.

Proposition 6.1.4. The Plan : , is R.,neutral geometiy.

Definition. A triangle in a protractor geometryis oscel if (at least) two es
are.congruent. Otherw.ise,,the..iriangle.is_scalene. he triangle is.
if all three sides. are. congruent. If-,LABC is isosceles with AB ^- BChen
the. sean of./ABC are LA and LC.

Our first application of SAS is the following theorem on isosceles triangles.
The Latin name (literally "the bridge of asses") refers to the complicated
figure Euclid used in his proof, which looked like a bridge, and to the fact
that only someone as dull as an ass would fail to understand it. (See Heath's
translation of Euclid for a further discussion of the name.) The proof which
follows is due to Pappus (4th Century AD).

Theorem 6.1 .5 (Pans Asinorum). I neutral geometry, the base angles of an
4gsq estriangle,are,congruent.

PROOF. The proof proceeds by showing that LABC is congruent to itself !
Let LABC be isosceles with AB ^- B. The congruence will be given by
f(A) = C. ,A(B' B, f(C) = A. This has the effect of flipping the triangle
over along an axis through B perpendicular to AC. See Figure 6-5.

Figure 6-5

Since AB f-- CB, L ABC -- L CBA, and CB ^ AB, /ABC ^ pCBAby
SAS. But this means that LBAC c LBCA so that the base angles are
congruent.

PROBLEM SET 6.1

Part A.

1. Prove that congruence is an equivalence relation on the set of all triangles in a
protractor geometry.
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2. In .-Y if A = (0,1), B = (0, 2), C = (0, 4), and D = (1, f ), then show that LABD
/CBD without using Proposition 6.1.4.

3. Prove Proposition 6.1.2, assuming only the results of Section 5.4.

4. Let /ABC be an isosceles triangle in a neutral geometry with AB ^- CA. Let M
be the midpoint of BC. Prove that AAA 1 RCS.

5. Prove that in a neutral geometry every equilateral triangle is equiangular; that
is, all its angles are congruent.

6. Use the Euclidean law of cosines (Proposition 6.1.2) to show that if /ABC is a
triangle in the Euclidean Plane which has a right angle at C then (AB)2 = (A C)2 +
(BC)2.

7. Let /ABC be a triangle in the Euclidean Plane with L C a right angle. If mE(L B)
0 prove that c(0) = BC/AB and s(0) = AC/AB. (Hint: Use Proposition 6.1.2 and
Problem A6.)

8. Let ABCD be a quadrilateral in a neutral geometry with CD ^ CB. If CA- is the
bisector of L DCB prove that AB ^- AD.

9. Let ABCD be a quadrilateral in a neutral geometry and assume that there is
a point M c BD n A. If M is the midpoint of both BD and AC prove that AB
CD.

10. Suppose there are points A, B, C, D, E in a neutral geometry with A-D-B and
A-E-C and A, B, C not collinear. If AD n- AE and DB EC prove that L EBC -
LDCB.

Part B. "Prove" may mean "find a counterexample".

11. Show that the Moulton Plane does not satisfy the SAS Axiom.

12. Give an example in the Taxicab Plane of an isosceles triangle whose base angles
are not congruent.

13. Prove the Quadrilateral Asinorum: If ABCD is a quadrilateral in a neutral
geometry and AB _- AD, then LD ^ LB.

Part C. Expository exercises.

14. Write an essay discussing the statement "a neutral geometry is the type of
geometry we dealt with in high school."

15. Now that you have received an introduction to the formal basis of geometry,
read about informal geometry. (Hoffer [1981] is a good reference.) Compare and
contrast these two approaches in an essay. Which of the two is more appro-
priate for middle or high school students? Is there a single correct answer?
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6.2 Basic Triangle Congruence Theorems

The SAS Axiom tells us that if three certain parts of one triangle are congruent
to the three corresponding parts of another triangle then the triangles are
congruent. Of course, each triangle has six measurable parts-three sides
and three angles-so that there are other possible choices for what three
parts to compare. In this section we shall prove congruence theorems which
involve other choices of angles or sides. The first of these results is informally
remembered as: If two angles and the included side of one triangle are con-
gruent to two angles and the included side of another triangle, then the two
triangles are congruent.

Definition. A protractor.geometry satisfies the.iele-Side-Angle Aaxoiiii (ASAP
if.whenever LABC and LDEF are two triangles with LA LD,AB DE,

and. L.B. L E, then,/ABC =,LDEF.

Theorem 6.2.1. A neutral_genmett'y.satisfesASA.

PROOF. Let LABC and LDEF be two triangles with L A ^- L D, AB DE,
and L B ^ L E. See Figure 6-6. By the Segment Construction Theorem there
is a unique point G E DF, with_DG ^ AC. We will show that LABC
LDEG and that G = F so that LABC ^ LDEF.

Figure 6-6

Since AB ^ DE, L A = L BAC -_ L EDG = L D, and AC _- DG, SAS
implies that ABAC ^- /EDG. Hence L ABC ^ LDEG. But L ABC ;
L DEF by hypothesis so that LDEF / DEG. Since G-e, F and G
are on thesame-side. f DE. By the Angle Construction Theorem IT =
E V. Hence

_DT{F) =E7n =E n D F G}

so that F = G. Thus /BAC ^ LEDF; i.e., /ABC _- LDEF.

The next result is left to Problem Al.

Theorem 6.2.2 (Converse.. of P- ons:-Asinorum). In. a neutral geometry, given
LABC. with LA _-..L.C,.then AA ?-. and_the-triangle is isosceles.
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Stated informally, the next axiom tells us: If the_three.sides-of anetriangle
arecongruent to. the three sides of another. triangle, then. the triangles are

congruent.

Definition A_.protractor..geometry.satisfies,.th ide-Side- Axo SSS) if
whenever AABC and.ADEF are two triangles with AB DE, BC.- EF, and
CA TD_ then AABC ADEF.

Theorem 6.2.3. Aneutral_.geomeir,-.y satisfies, SSS.

PROOF. Let AABC and ADEF be two triangles with AB a DE, BC _- _ET,
and CA FD. The key to the proof is to make a copy of ADEF on the
underside of AABC using SAS. See Figure 6-7. By the Angle Construction
Theorem, there is a unique ray AH with H on the opposite side of A C as B
such that L CAH c- j FDE. By the Segment. Cculsiz'ugtiom lhc, there is
a unique point He AH wh Any E

Since CA ^- FD, L CAB' L FDE, and B'A ED, S implies that
ACAB' = AFDE. This is what we meant by copying ADEF on the under-
side of AABC.) To complete the proof we show that AABC f-- AAB'C.

E

Figure 6-7

Since B and B' are on opposite sides of AC, BB' intersects AC in a unique
point G. There are five possibilities: (i) G-A-C, (ii) G = A, (iii) A-G-C,
(iv) G = C, or (v) A-C-G. The first three cases are shown in Figure 6-8.
(asejiLand__v) are really the same as are cases (i) and (iv). We complete the
proof for case (i) and leave the other two as Problem A3.

B'
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Assume A--C so that B, A, and B' are not collinear. [NBAB' is isos-
celes since BA ^ ED a- BA. Thus LABS' = LAB'B. Similarly LBCB' is
isosceles and L CBB', - L CB'B. Since G-A-C, A e int(L CBG)
int(L CBB') by Theorem 4.4.6. Similarly, A E int(L CB'B).

By the Angle Subtraction Theorem, L CBA -- L CB'A. Since BA ^_ ED
B'A and BC EF c B'C, AABC by SAS. Hence LABC
LAB'C ^- LDEF.

In Chapter 4 we showed that PSA and PP are equivalent axioms: if a
metric geometry satisfies one of them then it also satisfies the other. A
similar situation is true for SAS and ASA. We already know that SAS
implies ASA (Theorem 6.2.1). The next result, whose proof is left to Problem
A4, gives the converse. We can ask whether SSS is also equivalent to SAS.
This situation is more complicated, as we'll see in Section 6.6.

Theorem 6.2.4. If _g prQttnetor_geometry satisfiesASA then it also satisfies
$AS and is thus a, neutral geometry.

Recall that Theorem 5.3.5 said that if B E I then there is a unique line
through B perpendicular to 1. Now we would like to study the case where
_B. 01. The proof of Theorem 6.2.3 suggests a method for proving the existence
of.a line through B perpendicular to 1.

Theorem 6.2.5. Irk-,neutrat geometry,..,given.u line 1. and a point. B. 0 1, then
there. exists at.least-one line through B perpendicular to 1.

PRooF. Let A and C be two distinct points on 1. By the Angle Construction
Theorem there is a Anigi ray AH with H on the opposite side of I = AC
as B and L CAH _- L CAB. See Figure 6-9. By the Segment Construction
Theorem there is a uni ue Point B' E AH with AB' r - A. Since B and B' are
on opposite sides of 1, BB' intersects I at a unique points.

Figure 6-9
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If G. A then [BAG - pB'AG by_SAS so that L AGB =AGB'. Thus
L AGB is a right angle by Problem A15 of Section 5.3. Hence BB' 1 1.

If G =A then ' L BAC and L B'AC form a linear pair of congruent angles
so that BB' 1 1.

Note that we..didnot.claim.that.the perpendicularthrough B was.unique.
This is true, but we shall need to prove the Exterior Angle Theorem before
we can show uniqueness. However, it is important to note that no additional
axioms are needed in order to prove uniqueness-it will follow from the
axioms of a neutral geometry. lithe, geometry. is not. a neutral geometry,
then perpendiculars need not exist, and even when they do, they need not be
unique. See Problem B23 of Section 5.3 for an example in the Moulton Plane.

PROBLEM SET 6.2

Part A.
1. Prove Theorem 6.2.2.

2. Prove that in a neutral geometry every equiangular triangle is also equilateral.

3. Complete the proof of Theorem 6.2.3 for cases (ii) and (iii),

4. Prove Theorem 6.2.4.

5.-,,In a neutral geometry, given LABC with AB ^- BC, A-D-E-C, and L ABD
L CBE, prove that DR c EB.

6.)In a neutral geometry, given LABC with A-D-E-C, AD EC, and L CAB
L ACB, prove that L ABE L CBD.

7. in a neutral geometry, given ABCD with AB = CD and ;FD,-- BC, prove that
- - L A ^ - L C and L B ^- L D.

8. In a neutral geometry, given LABC with A-D-B, A-E-C, LABE ^- L ACD,
L BDC ^ L BEC, and BE ^- CD, prove that AABC is isosceles.

9. In a neutral geometry, given ABCD with AB ^- BC and AD = CD, prove that
BD 1 i and that ACS and PD' intersect at the midpoint of AC.

1O/ Prove that if a protractor geometry satisfies SSS then the base angles of any
isosceles triangle are congruent.

11. Use Theorem 6.2.5 to prove that if B E 1 then there is a line through B perpendicular
to 1 without using the Angle Construction Axiom directly.

12. In a neutral geometry, if C and D are on the same side of AB and if AC ^- AD and
BC = BD, prove that C = D.

13. Given LABC in a protractor geometry, the angle bisector of LA intersects BC
at a unique point D. AD is called the internal bisector of LA. Prove that in a neutral
geometry, the internal bisectors of the base angles of an isosceles triangle are
congruent.
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Part B. "Prove" may mean "find a counterexample".

14. State and prove the SSA Congruence Theorem.

15. Prove that the Taxicab Plane does not satisfy SSS. (i-lint: Problem A10, or find
non-congruent equilateral triangles of side 2.)

6.3 The Exterior Angle Theorem and Its Consequences

This section is primarily concerned with theorems in a neutral geometry
whose conclusions involve inequalities which compare the corresponding
parts of two triangles. Of particular interest is the "common sense" result
that if. two sides of a triangle are not congruent then neither are their opposite
angles. In fact, the larger side is opposite the larger angle. In order to prove
this result, the notion of an exterior angle is needed. Our basic tool is then
the Exterior Angle Theorem (Theorem 6.3.3) which is used to prove not only
the result above but also the SAA Congruence Theorem, the Triangle
Inequality (which relates the lengths of the three sides of a triangle) and the
Open Mouth Theorem (which says that the larger the measure of an angle,
the more it "opens").

Definition. In a metric geometry, .the line segment AB, is less than (or smaller
than) the .line. segment CD (written AB < CD) if AB < CD. AB is greater
than (or larger than) _CD if AB > CD. The symbol AB < CD means that
either AB < CD or AB _- CD.

Definition. In a protractor geometry, the angle L ABC is less-than (or smaller
than) the angle L DEF (written L ABC < L DEF) if m(L ABC) < m(L DEF).
LABC is greater than (orlargerthan) LDEF if LDEF < LABC. The
symbol L ABC < LDEF means that either L ABC < L DEF or L ABC
L DEF.

It is possible to give an alternative but equivalent description of less than
without referring to length or angle measure. The theorems below use
congruence and betweenness to do this. Their proofs are left as Problems Al
and A2.

Theorem 6.3.1. In a metric geometry, AB < CD if and only if there. is a_point
G E int(CD) with AB_ ^_ CG.

Theorem 6.3.2. In a protractor geometry, LABC< Lf?EF..if,and, only if
there is a point G. E int(L DEF) with. LABC r .L DEG.

Definition. Given /ABC in a protractor geometry, if A--Cn then L BCD
is an terior.an ofLABC. LA and LB are the emote interior angles of
the exterior angle LBCD. (See Figure 6-10.)
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The introduction of the notion of an exterior angle and the next theorem
are the keys to the results of this section. Note that at each vertex of a triangle
there are two exterior angles. These are congruent by Problem A3.

Theorem 6.3.3 (F.x nor
angle of LABC. is greater. than, either of -its remote interior angles.

PROOF. Let LABC be given and assume that A-C-D. We will prove that
L BCD > L ABC and then argue that L BCD > L BAC also.

Let M be the midpoint of BC and let E be the point on AM with 4-M-E
and ME c- MA. See Figure 6-11. Since LAMB and L EMC are a vertical
pair, they are congruent. Since BM ^ MC, we have AAMB a- /EMC by
SAS. Hence

L A B C = - 4 - - A B M a L ECM = L ECB.

Figure 6-11

However, since A-M-E, we have E E int(j BCD) by Problem A6 of Section
4.4. Thus by Theorem 6.3.2, L ABC ^- L ECB < L BCD or L BCD > L ABC.

To show that L BCD > L BAC, choose D'-so that B- D'. See Figure
6-12. By the first part of the proof, L ACD' > LBAC. By Problem A3,
/ ACD' = / BCD. Hence L BCD > LBAC.
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Figure 6-12

Corollary 6.3.4. lv a neutral geametry,;there i tly. one line through p.. given

poim Lperpendicular_to, a given -line, 1.

PROOF. If_P_e1, then the result follows from Theorem 5.3.5. Thus we con-
sider only the case where j We already know that there is such a line
by Theorem 6.2.5. Now suppose that there are two distinct lines Land-L'
through P both of which are perpendicular to 1. See Figure 6-13.

Let {A} = I' n l and {C} = 1" n 1. Since and 1" are distinct, they
cannot have two points in common so that 4C. Choose D with A C-D.
Then the right angle / DCP is an exterior angle of AAPC and iS t,-h_

greater than /-CAP by the Exterior Angle Theorem. Because L CAP is a
right angle and two right angles are always congruent, this is a contradiction.

P

1' 1 1 1"

A C D

Figure 6-13

Hence there cannot be two distinct lines through P which are perpendicular
to 1.

The Exterior Angle Theorem can be used to prove another triangle
congruence theorem. This new theorem will be useful in our study of right
triangles in the next section. Informally, it says: If two angles and- a side, of
one triangle are congruent to the corresponding two angles and side, of another
triangle, then the triangles are congruent. This result when coupled with the
ASA Theorem shows that it. does not matter which pair of angles and which
side we.choose, as long as weuse -the corresponding angles and side from
the other triangle.
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Theorem 6.3.5 (Qde Antle-ng;-SA ). In..a neutral, geometry, given two
triangles QABC. and, QDEF, if AB L A - L D, . and L C L F,
then QABC - ADEF.

PRooF. If AC * DF, then one of these segments is smaller than the other.
Suppose that AC < DF. Then by Theorem 6.3.1 there is a point G with
D-G-F and AC _- DG. See Figure 6-14.

Now ABAC - AEDG by SAS so that LACB DGE. Since LDGE
is an exterior angle of QGEF, /DGE > L DFE by the Exterior e

Theorem. However, LACB - LDFE by hypothesis, so that

L ACB - L DGE > L DFE - / ACB_

which is impossible. Hence it cannot be that AC < DF. Similarly we cannot
have DF < AC. Thus AC - DF and QBAC - QEDF by SAS.

We should note that the above proof (which is valid in any neutral
geometry) is probably different from any you have seen before. In particular
we did not prove LB L E by looking at the sums of the measures of the
angles of the two triangles. We could not do this because we.do not know
any theorems-about the sum of the measures of the angles of a triangle. In
particular the sum may not be the same for two triangles in an Arbitrary
neutral geometry. This exhibits one of the problems which persists in ele-
mentary geometry. People regularly use the parallel postulate (existence and
uniqueness of parallels) or its consequences (such as the sum of the angle
measures of a triangle is 180) to prove certain theorems which really don't
need that postulate. More succinctly, they are proving theorems which are
valid in an arbitrary neutral geometry in a Euclidean fashion. (Of course, these
authors only claim to have proved these theorems for Euclidean geometry
because their proofs are not valid in a general neutral geometry.)

Theorem 6.3.6. In-aneutral -geometry, if two sides a.ariangle are not con-
gruent, neither are the . opposite angles. Furthermore, the., larger, angle. is
opposite the, longer side,

PROOF. In QABC assume that AB > A. We want to show that L C > LB.
Now there exists a unique point D with A-C-D and AD - AB (Why?).
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See Figure 6-15. Since A-C-D, C E int(L ABD) and L ABC < L ABD.
However, /BAD is isosceles with AB c AD so that L ABD ^- L ADB. By
the Exterior Angle Theorem for /BCD, L ADB < L ACB. Thus

L ABC < L ABD LADB < LACB

so that L B < L C.

Figure 6-15

The converse of Theorem 6.3.6 is also true. Its proof is left to Problem AS.

Theorem 6.3.7. In a neutral geometry, if two angles of a triangle are not
congruent, neither are the opposite sides. Furthermore, the longer side is
opposite the larger angle.

The Triangle Inequality which we present next can be proved in a variety
of manners depending on the context. We have already seen a proof in the
Euclidean plane which used vector concepts (Proposition 3.1.6). Like
Theorem 6.3.6, it is really a theorem in neutral geometry.

Theorem 6.3.8 (Triangle ine QAality). In a neutral geometry. the length of one
side of a- triangle is strictly-less than the sum of the lengths of the other two
sides.

PROOF. We must show that for AABC

AC < AB_+ BC.

This will be done by grafting an "extra section" of length AB onto C. See
Figure 6-16.

Figure 6-16
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Let D e CB so that C-B-D and BD - AB. Then

CD = CB + BD = BC + AB. (3-1)

By Theorem 4.4.6, B e int(L DAC) so that L DAP < L DAC. Since QDBA
is isosceles, L DAB - L ADB so that

L ADB < LDAC.

Thus by Theorem 6.3.6 applied to /ADC

AC < CD

Combining this with Equation (3-1) we have AC < BC + AB as required.

The last theorem of this section is the Open Mouth Theorem, which says
that the wider. you open your mouth the farther apartyouuraips are. (It is
called the Hinge Theorem by some authors.) Whereas the previous theorems
in this section dealt with inequalities in a single triangle, the open Mouth
Theorem gives an inequality relating two triangles.

Theorem 6.3.9 (teen:-=Mouth=Theorem). in. aneutral. geometry, given two
triangles . Dfi :troith AB i Land BC .-,. F, .if ,;L B > L E
then ACb.:>,.DF.

PROOF. We first construct a copy of LDEF along the side BC of LABC.
There is a unique point H on the same side of BC as A with L HBC - L DEF
and RR - ED (Why?). Then LDEF - LHBC by SAS. See Figure 6-17.

Hence
HC - DF. (3-2)

Since L E < L B, Hi/ and $ in rc .s A at a nigae point
K by the Cr ssbar Theorem. Note that either B-H JK H = K, or
B-K-H. Let BL be the bisector of / ABH ABK. Using the Crossbar
Theorem again, we see that -i intersects AK (and ACl at iglt.ojnt..(ld.
See Figure 6-18 for the three cases B-H-K, H = K, and B-K H.



6.3 The Exterior Angle Theorem and Its Consequences

Figure 6-18

Now L ABM n-, QHBM by SAS so that

AM -- HM.
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IfKthen C. H, and M are not collinear, and the Triangle inequality
implies

HC<HM+MC.
This is also true if K = H since C-H-M implies HC < MC < HM + MC.
Since AM ^ HM (Congruence (3-3)) we have

HC<HM+MC=AM+MC=AC
where the last equality comes from the fact that A-1t'I-C. Finally since
HC ^- DF (Congruence (3-2)) we see that

DF<AC or AC>DF.

Although the following result is left as an exercise, it will prove to be
extremely useful.

Theorem 6.3.10. In a neutral geometry, a line segment joining a vertex of
a triangle to a point on the opposite side.is shorter.than.the longer.of the remain-
ing_.two..sides. More precisely, given LABC with AB :s: ?7-B, if A-D-C
then DB < CB.

PROBLEM SET 6.3

Part A.

1. Prove Theorem 6.3.1.

2. Prove Theorem 6.3.2.

3. In a protractor geometry prove the two exterior angles of LABC at the vertex
C are congruent.

4. )n a neutral geometry prove that the base angles of an isosceles triangle are acute.

5. Prove Theorem 6.3.7.

*6. Prove the General Triangle Inequality for a neutral geometry: If A,_B and,C are
disSiRc pctuits.in,a-neutral geometry, then AC < AB + BC. Furthermore, equality
holds. it.and.onlyjf -4 _ B.-C.
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7. In a neutral geometry, if D E int(LABC) prove that

AD + DC < AB + BC and L ADC > L ABC.

(Hint: AD intersects BC at a point E.)

8. Prove Theorem 6.3.10.

*9. Prove the converse of Theorem 6.3.9: In a neutral geometry, given,LABC and
LDEF, if AB ^- DE, BC c EF, and AC > DF, then L B > L E.

10. In a neutral geometry prove that a triangle with an obtuse angle must have two
acute angles.

Part B. "Prove" may mean "find a counterexample".

11. Let m be any angle measure on 682. Prove that {682, YE, dr, m} does not satisfy
SAS. (Thus an angle measure can never be found for the Taxicab Plane so that
the resulting object is a neutral geometry.)

12. In a neutral geometry, given LARC.such that the internal bisectors of LA and
L C are congruent, prove that ABC is. isosceles. (Hint: Assume L A< L C and
consider Figure 6-19 where AQ ^ CP. How are LAQD and L CPE related?)

Figure 6-19

13. Replace the word "neutral" in the hypothesis of Theorem 6.3.6 with the word
"protractor". Is the conclusion still valid?
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In this section we shall prove some basic results about right triangles in a
neutral geometry. Besides the standard congruence theorems, the most
important result will be the often quoted theorem that the_shortestdistance
from a point to a line is given by the perpendicular distance.

A word of caution is needed here. The first thing that many of us think
about when we hear the phrase "right triangle" is the classical Pythagorean
Theorem. This theorem (which states that the square of the length of the
hypotenuse is the sum of the squares of the lengths of the other two sides)
is very much a Euclidean theorem. That is, it is true in the Euclidean Plane
but not in all neutral geometries (see Problem A6). Thus in each proof of this
section which deals with a general neutral geometry we must avoid the
use of the Pythagorean Theorem.

Definition. If an angle of LABC is a right angle, then AABC is a ht
trian . A.side opposite a right angle in a right triangle is called a enu

If AABC has a right angle at C we insert a small box at L C to indicate
the right angle. See Figure 6-20.

Definition. AB is the longest side of LABC if AB > AC and AB > BC.
AB is a longest side of LABC if AB >_ AC and AB > BC.

A triangle will always have "a" longest side, but there may not be "the"
longest side. (Can you think of examples?)

Theorem 6.4.1. In a neutral geometry, there is only one right angle and one
hypotenuse for each right, triangle. The_ remaining angles are acute, and the
hypotenuse-is the longest.side. of the triangle.

PROOF. Let LABC be a right triangle with L C a right angle. Let D be
such that D-C-B (see Figure 6-20). L DCA is a right angle and by the
Exterior Ajle Theorem LB < L DCA and L A < L DCA. Thus both
L A and L B are acute and there is only one right angle (and hence one
hypotenuse). Finally, BC < AB and AC < AB by Theorem 6.3.7. Hence
the hypotenuse AB is the longest side.

Definition. If LABC is, a right triangle With right angle at C then the
of LABC are AC and W.
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D C

Figure 6-20

6 Neutral Geometry

Theorem 6.4.1 says that the hypotenuse is longer than either leg. This
result reahy needs the.strength of the SAS Axiom. We saw in Problem A12
of Section 5.2 that there are triangles in the Moulton Plane with two right
angles. (The situation is even worse on the Riemann Sphere. There it is
possible to have a.reasonable angle measure and a triangle with three right
angles.)

We shall now prove that the shortest. distance. between a point and a line
in a neutral geometry is the perpendicular, distance.
Theorem 6.4.2 (1?ernendicular Ifasta+Y). In a neutralgeometry, if 1
is a line, Qel,andP01then

(i) if k Q- 1I then
PQ < PR for all R e l (4-1)

(ii) if PQ :5 PR for all R e 1 then PQ 11.

PROOF. If PQ 1 1 and R e 1, then either Q = R (so that PQ = PR) or else
Q 0 R and so P, Q, R are not collinear). In the latter case L PQR has a right
an e atQ. (See Figure 6-21.) By Theorem 6.4.1, PQ < PR since PR is the
hypotenuse of QPQR. Hence PQ < PR for all R e I if PQ 1 1.

Figure 6-21 Figure 6-22
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. Conversely, suppose that PQ < PR for all R e 1. We must show that
PQ 1 1. Let 1' be the unique me t- hiougl P whicli is perpendicular to I
(Corollary 6.3.4). See Figure 6-22. Let 1 n 1' We need to show that
Q = Q'. If Q Q', then /PQ'Q is a right triangle and PQ' < PQ. But
PQ < PR for all R e I by hypothesis so that, in particular, PQ S PQ'. This
contradiction of PQ' < PQ shows that 0 = Q' Hence P Q = 1' is perpendicu-
lar to 1.

It is illuminating to recast Theorem 6.4.2 in terms of the concept of the
distance from a point to a line.

Definition. Let 1 be a line and P a point in a neutral eometry. If P 1, let
Q be the unique point of 1 such that P_Q 1 1. The distance rom P to I is

d(P Q) if P & I,
'dIPIl=
V 11'r G 1.I

In terms of this definition, Theorem 6.4.2 reads:

Theorem 6.4.2'. For any line I in a neutral geometry and P 0 1

d(P,1) < d(P, R) for all R e 1.

Furthermore, d(P, l), = d(P, R) if. and only if PP 1 1.

Definition. If I is the unique perpendicular to AB through the vertex C of
/ABC and if 1 n AB = {D}, then CD is the altitud from C. D is the fQ.QL
a the altitude-(or of the -perpendicular) from

Note that in general the foot of the altitude from C need not lie on AB.
However, it seems clear (and we now shall prove) that if AB is a longest
side then the foot will actually belong to AB. See Figure 6-23.

Theorem 6.4.3. In a neutral geometry, if AB, is a longest side of QABC and
if -D.-is... the, foot of the. altitude. from C,, then A-D-B.
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PROOF. Either _D-_A-B, D = A, A-D-B, D = B, or A-B-D. The
first and last cases are essentially the same, as are the second and fourth.
We shall show that neither the first nor the second case can occur. This
will imply that the only possibility is A-D-B.

Now CB is the hypotenuse of the right triangle ACBD so that DB < CB.
If D-A-B then AB < DB so that

AB<DB<CB

which contradicts the fact that AB is a longest side. fI D = A then AB = DB
so that

AB=DB<CB

which is again a contradiction. Hence A-D-B.

For a right triangle in a neutral geometry, any two sides suffice to deter-
mine-the-triangle up to congruence. If the two sides are the legs this follows
from SAS. If one of the sides is the hypotenuse then SAS cannot be used.
Instead we need the next result which says that if the hypotenuse and a leg
of one right triangle are congruent to the hypotenuse and leg of a second
right triangle then the two triangles are congruent.

Theorem 6.4.4 ate enug eg, HL). In a neutral geometry if LABC and
ADEF are right triangles with right angles at C and.F,, and if AB DE and

[A-C ^ DF, then AABC c /DEF.

PROOF. As was the case in other triangle congruence theorems, we shall
construct an intermediate triangle which is congruent to both LABC and
LDEF.

Let G be the uniqu p int,such_ that E =F- Gand FG ^- BC. Since
E, F, G are collinear and L DFE is a right angle, so is L DFG. Hence L ACB ^-
L DF G. AC ^- DF by hypothesis and BC ^- GF by construction. See Figure
6-24. Thus LABC = LDGF by SAS.
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Since pABC ^_ QDGF, AB DG. But AB _- DE by hypothesis so
that DE _- DG and n EDG is isosceles. Thus L DEF = L DEG ^_ L DGE
L DGF and /DEF &DGF by SAA. Hence pABC ADEF. 0

When you saw this theorem in high school the proof may have used the
Pythagorean Theorem to show that BC ^ EF so that SSS could be applied.
The proof given above is valid in any neutral geometry, not just those models
where the Pythagorean Theorem holds. As was stated at the beginning of this
section, to prove something in neutral geometry, the Pythagorean Theorem
cannot be used. Similarly, we should not use the "fact" that the sum of the
angle measures of a triangle is 180 to prove the next theorem.

5AA

Theorem 6.4.5 (hypo en c ±An HA). In a neutral geometry, let AABC
and QDEF be right triangles with right angles at C and F. If AB -_ DE and
L A ^- L D, then QABC.- ADEF.

Definition. The (rpendiculac. hiseeto . of the segment AB in a.neutral geome-
try is the (unique). line.l through the midpoint M of AB and which is per-
pendicular to AB.

The next result contains a useful description of the perpendicular bisector.

Theorem 6.4.6. In a neutral geometry the perpendicular bisector I of the
segment AB is the set

-4 = {PESIAP=BPI,

PROOF. We first show 2(;;_l..Let P e M. We must show that P E I. If P E AB.
then AP = BP implies A-P-B and P = M is the midpoint of AB. (See
Problems All and A12 of Section 3.3.) Hence PEI. If P AB let 1' be the
uniquLperpendicular to AB through P. See Figure 6-25. Let IN}.
Then N is not A or B (otherwise LAPB would be a right triangle with one
of PA and PB the hypotenuse and the other a leg. This contradicts PA =
PB.). Hence we have two triangles QPNA and LPNB which are congruent

Figure 6-25
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by HL. Hence AN - NB and N = M is the midpoint. Thus l' = l and P e 1.
Hence R c 1.

We now show that 1 c .4. We assume P e I and show P e ,4. If P e AB
then P=M and P E .4. If P AB then L PMA ^ L PMB since both are
right angles. Thus /PMA ^ LPMB by SAS and PA - P. Hence P e .4
and I c B. This means that 1= -4.

Theorem 6.4.7. In a neutral geometry, if BD. is., the bisector:.. of. L ABC and
if -E and--F are-the feet of the perpendiculars from D to BA and BC then DE
DF.

PROOF. Problem A 10. See Figure 6-26.

a F1
C F

Figure 6-26
rte....

PROBLEM SET 6.4

Part A.

1. Prove Theorem 6.4.5.

2. In a neutral geometry, if D is the foot of the altitude of AABC from C and A-B-D,
then prove CA > CB.

3. If M is the midpoint of BC then AM is called a median of LABC.
a. Prove that in a neutral geometry if LABC is isosceles with base BC then the

following are collinear:
(i) the median from A;

(ii) the bisector of L A;
(iii) the altitude from A;
(iv) the perpendicular bisector of BC.

b. Conversely, in a neutral geometry prove that if any two of (i)-(iv) are collinear
then the triangle is isosceles (six different cases).

4. Show that the conclusion of Theorem 6.4.2 is not valid in the Taxicab Plane by
taking P=(-1,1), l={(x,y)Iy=x} and Q=(1,1).

5. Show that the conclusion of the Pythagorean Theorem is not valid in the Taxicab
Plane.

6. Show that the conclusion of the Pythagorean Theorem is not valid in the Poincare
Plane by considering /ABC with A = (2,1), B = (0, V5), and C = (0,1). Thus
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the Pythagorean Theorem does not hold in every neutral geometry.

7. Show that the hypotenuse need not be the longest side of a right triangle in a pro-
tractor geometry by examining LABC of Example 6.1.1.

8. In a neutral geometry, if LABC is a right triangle with right angle at C and if
B-D-C, then prove LBDA is obtuse.

9. In a_neutral geometry, if LABC and LDEF are triangles.with LB , LE, BC
EF, CA FD, and. LA-and LDare either both acute or both obtuse, then prove
that AABC.= /DEF.

10. Prove Theorem 6.4.7.

11. In a neutral geometry prove that tl e_bisector of L ABC is -4 = {B} u {X c
int(L ABC) I d(X, BCE) = d(X, BA)}.

12. In a neutral geometry, let BDD and CE be the bisectors of LB and L C of LABC.
Prove that BD n CE contains a single point F. Prove that AT is the bisector of LA.
(Hint: Use Problem All.)

13. In a neutral geometry, let 11, 12, and 13 be the perpendicular bisectors of the three
sides of AABC. If D E 11 n 12, prove that D e 13.

Part B. "Prove" may mean "find a counterexample".
PROBLEM SET 6.4B Prove or give a counterexample.
14. In a neutral geometry, if A-D-B and CD is an altitude of LABC, then prove

that AB is a longest side of LABC.

15. Show that the conclusion of Theorem 6.4.6 is false in the Taxicab Plane by
considering A = (1, 0) and B = (0, 1).

16. Find the error or errors in the following alleged "proof" that in a neutral geometry
any triangle is isosceles.

Let M be the midpoint of AC and let 1 be the perpendicular to AC at M. Let BQ
be the angle bisector of L ABC and let D e 1 n BQ. If E is the foot of the
perpendicular from D to B C and if F is the foot of the perpendicular from D to
BA, then FD = ED by Theorem 6.4.7. AD c CD by Theorem 6.4.6. Hence
LAFD ^ ACED by HL and AF ^- E. Since LBDF ABDE (by HA), BF

E. Hence BA = BF + FA = BE + EC = BC and AA AC. See Figure 6-27.
A
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6.5 Circles and Their Tangent Lines

6 Neutral Geometry

In this section we will define the concepts of a circle and of a tangent to a
circle. We shall see that in a metric geometry some rather strange examples
of circles exist. In the latter part of the section we shall see that the familiar
properties of tangents do indeed hold in a neutral geometry. In particular,
we will show that there is a unique tangent at each point on a circle in a
neutral geometry.

Definition. If C is a point in a metric geometry {°, Y, d} and if r > 0, then

`e_`I.(C)_
is a ircl ith gp

re
C and >C lus r. If A and B are distinct points of le then

A js,a or of W. If the center C is apoint on the chord AT, then AB is a
amete of W. For any Q E W, CQ is called a radius segment, of W.

Example 6.5.1. Find and sketch the circle of radius 1 with center (0, 0) in
the Euclidean Plane and in the Taxicab Plane.

SOLUTION. In the Euclidean Plane we have

V I((0,0))= {(x,Y)Ix2+y2= 1}.

This is sketched in Figure 6-28.
In the Taxicab Plane we have

WI((o,o)) = {(x,y)Ilxl + lyl =1}.

This set consists of four line segments, with slope ± 1. See Figure 6-29.

Figure 6-28 Figure 6-29

Note how strange the taxicab circle looks. This is one more indication
we should be careful with our intuition. In the problems you will find some
examples of circles in other models. In the next example we shall see that a
Poincare circle actually looks like a Euclidean circle, a result which is
unexpected!
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Example 6.5.2. Show that .sat = {(x, y) E IFOIx2 + (y - 5)2 = 161 is the Poincare
circle W with center (0, 3) and radius In 3.

SOLUTION. Let (a, b) E W. If a = 0 then b = 1 or 9. Clearly, d((0,1), (0, 3)) _
In 3 = d((0, 3), (0,9)) so that (a, b) e l in this case.

Now assume that (a, b) E .sad and a 0. We must find c and r so that both
(a, b) E L, and (0, 3) E cL, in order to compute d((a, b), (0, 3)). By Equations
(1-5) and (1-6) of Section 2.1 we have

b2-32+a2
c = 2a and r = c2 + 9. (5-1)

Since (a, b) E .4 we have a2 + b2 - 10b + 25 = 16 so that

a2+b2-9= 16-25+10b-9= 10b- 18.
Substituting this last result into Equations (5-1) we obtain

5b-9
C=

a

r= c2+9= 125b2 -90b+81+9
a2

16b2+9(a2+(b-5)2- 16)
a 2

16b2 _ 4b

a2 IaI

Now d((a, b), (0, 3)) = lln((a - c + r)/b 3/(-c + r)) I and

5b - 9 4b

a - c+r 3
a -

_ a
+

Ial 3

b -c+r b 5b-9 4b-a+ IaI

_(a2-5b+9±4b)3
b(- Sb + 9 ± 4b)

where + denotes the sign of a

(16 - b 2 + 10b - 25 - 5b + 9 + 4b)3
b(-5b+9± 4b)

(-b2 + 5b + 4b)3

b(9 - b)
(-b2+9b)3=3 ifa>0

b(-5b + 9 ± 4b)

(-b2 + b)3 1
if <0a .b(9-9b) 3

Hence d((a, b), (0, 3)) = In 31 = I1nl. Thus (a, b) E ' and 4 c T.
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Finally, if (a, b) a let 1 be the Poincare line through (0, 3) and (a, b).
Then I is part of either a Euclidean line or a Euclidean circle depending on
whether I is of type I or type II. Either way, from our previous knowledge
of Euclidean geometry (which will be carefully demonstrated in the next
section) I n d has exactly two points. Likewise 1 n le has two points (by
Segment Construction). Since d c', I n sad c 1 n W. Since both sets have
two points, I n W= 1 n W and (a, b) e I n le = 1 n d so that (a, b) e si. Thus
IV c d and le = d. See Figure 6-30.

Figure 6-30

Our first result tells us that in a neutral geometry. the center and radius
of a circle are determined by any three .points on the circle. The nice thing
about this theorem is its constructive nature. The proof will proceed by
starting with the three points on the circle and actually constructing the
center of the circle as the intersection of perpendicular bisectors of any two
of the chords as in Figure 6-31. (Note, we do not claim that any three points
determine a circle.)

Figure 6-31

Theorem 6.5.3. In a neutral geometry, let W1 = Wr(C) and ¶ 2 ='s(D). If
'Cl n e2 contains at least three points, . then C = D and r = s. Thus,_ three
points of a circle in a neutral. geometry uniquely determine that circle.
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PROOF. Let R, S and T be three distinct points in let n W2. Let 11 be the
perpendicular bisector of RS and let 1, be the perpendicular bisector of ST.
(See Figure 6-31.) By Theorem 6.4.6, C e I, since RC = SC = r..,$imilarl_y,
C e 1, so that C e 1, r) 12. By using Theorem 6.4.6 again (and the fact that
R, S, T e'2) we see that D e 1, r) 1,. Thus, either C = D or else 1, and 1, have
two distinct oints (C and D) in common and so are equal. We now show
that the last case cannot happen.

Assume for the moment that 1 , = 1,. There are two possibilities for
{R, S, T}. If {R, SZ T} is a collinear set and 1, = 1, then the midpoint of
must a equal-to th-tLnjdpojnt of ST However, the only way this can happen
is if R = T which is a contradiction.

On the other hand, if li = 1, and {R, S, T } is non-collinear, let M and N
be the midpoints of RS and ST. Since 11 = I2 = MI ,LMNS
has a right angle at M and another,at N. However, this contradicts the fact
that a right triangle has exactly one right angle (Theorem 6.4.1). Thus 11 54 1
and so WC _= D.

Sinr = RC = RD = s, the radius of the circle is determined once the
center and any point on the circle are known.

Contained in the proof of the above result is the following fact.

Corollary 6.5.4. For any circle in a neutral geometry, the. perpendicular
bisector of any. chord contains the center.

Definition. Let W be the circle with center C and radius r. The mterior of
is the set

E .9' I CP < r}.

The ateriox of le is the set

ext(W) _ {P e i I CP > r}.

Theorem 6.5.5. If I is a circle in a neutral geometry then is convex.

PROOF. Let' _ Wr(C). Suppose that A and B belong to int(') so that

AC < r and BC < r. (5-2)

Let D e AB with A-DAB. We must show that D e There are two
cases to consider.

First suppose that C-EID. See Figure 6-32. Let f be a ruler for AB with
origin at C. The points of AB n int(f) have coordinates between r and r.
Now the coordinate of D is between that of A and B. By Inequalities (5-2),
the coordinates of A and B are between - r and r. Hence, so is the coordinate
of D and D c-:111 n int(o). Thus D e int(').

For the second case, suppose that C AB so that we have a triangle,
QABC. See Figure 6-33. We must show that D e int('). By Theorem 6.3.10
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Figure 6-32 Figure 6-33

either CD < CA or CD < CB. Since both Cfand CB
r, so does CD. Thus D E int(') and AB c int(W). Hence int(W) is convex.

According to Problem A4, in a neutral geometry the intersection of a.line
and a circle consists of either zero, one, or two points. Since the first case is
less interesting, we only name the latter two.

Definition. In a metric geometry, a line 1 is a an a to the circle W if -1 r W
contains exactly one point (which is called the noip .nf' an n -y).1 is called
a ecan of the circle 16 if l n W has exactly two points.

In a general metric geometry there are strange situations which can occur
with respect to tangents (see Problems A5 and A6). However, in the context
of a neutral geometry the situation is more as expected. In Corollary 6.5.7
we shall show that in a neutral geometry every point of a circle is the point
of tangency of a unique tangent line. In Theorem 6.5.10, we shall see that in
a neutral geometry if P. is in the exterior of W then there are exactly two lines
through P which are tangent to W.

Theorem 6.5.6. In a neutral geometry, let le be a circle with center C and let
Q E W. If. ..t is, aline.. through. Q, then t,,,is tangent to 1 if and only ij.t is
perpendicular to the radius,segment CQ.

PROOF. First assume that -t is n and that P is any point on
t with P Q. QPQC is a right triangle_withpote e -PC. See Figure 6-34.

Figure 6-34 Figure 6-35
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Thus P-- C > means P ain fact P e ext(16)). Hence t cannot
intersect le at a second point and so t is tangent to W.

Coriversely, suppose that t is tangent to r' at et A be the foot_s2L he
p ,pen ul rom Cto_t.. ILA_ Q there existsa unique-point-Be t_-with
Q-A-B _aud_QA a- A$. See Figure 6-35. Then ACAS ^ ACAQ by SAS
so that CB CQ Thus B EW and t intersects W at two distinct points,
which contradicts the hypothesis that t is tangent. Hence A = Q and t is
perpendicular to CA = CQ.

Corollary 6.5.7 (Existence:and Uniqueness ofTangents). In. a neutral geome-
try, if 16 is a circle and Q e I6' then there is a unique line t which is tangent to

and whose point of tangency is Q.

PROOF. Let C be the center of W. Since there is a unique.perpendicularto
at the_.point_Q (Corollary 6.3.4), the result follows from Theorem 6.5.6.

In the more general setting of a metric geometry, a given point Q may
not be the point, oS.tangency for any line. There are also instances in which
there are many lines which are tangent to I' at Q. These pathologies are
explored in the problems at the end of this section.

The next result tells us that under certain circumstances a line must
intersect a circle. This will help us. show that a line which intersects the
interior of a circle is a secant and that from a given external point-there are
two tangent lines.

In order to prove this result we will use a technique, which may be new
to the reader, called a "continuity argument." Recall that

[a,b]={xcRIa<x<b}
and the following ideas from calculus.

Definition. h: Il -* 11 is continuous at to E R if for every e > 0 there is a b > 0
such that

Ih(t) - h(ta)I < e if It - ta < S.

(Thus if t is "near" to then h(t) is "near" h(to))

Intermediate Value Theorem. If h: [a, b] -> I8 is continuous at every to e
[a, b] and if y is a number between h(a) and h(b) then there is a point s e [a, b]
with h(s) = y.

The Intermediate Value Theorem says that a continuous function takes
on all of the values between its values at the two endpoints. To successfully
apply a continuity argument, one must come up with an appropriate func-
tion, prove that it is continuous, and apply the Intermediate Value Theorem.
This technique is used in the next theorem. We used this method to show
that Y satisfies PSA in Chapter 4.
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Theorem 6.5.8. Let. r. be a positive real number and let A, B, C be points in a
,neutral geometry such that.AC < r and A$1 AC. Then there is a point
Dc- TB- with CD = r.

PROOF. Let E be a point on AB with d(A, E) = r as in Figure 6-36. Since the
hypotenuse of LACE is CE and AC < r

d(C, E) > r and d(A, C) < r. (5-3)

= a(O) D = a(s) B E = a(r)

Figure 6-36

An appropriate function would seem to be n: AE R given by

g(P) = d(P, C).

However, in order to apply a continuity argument we need to use the real
numbers as domain. Fortunately we can transfer g back to R by the use of a
ruler.

Let f : A B -77t -R be the ruler with origin at A and with E positive. Let
a : R -+ A B be the inverse of Then a 0 = A and a(r) = E. et t

g(a(t)) = d(a(t), C) forte [0, r].
We shall firsts ow t at t' _ at any point to a [0, r]. Let E > 0

be given. We must find a 6 > 0 such that if It - tol < b then jh(t) - h(to)I < E.
(We will end up with b = e.)

First note that the Triangle Inequality

d(C, a(to)) + d(a(t), a(to)) >_ d(C, a(t))
implies

d(a(t), a(tn)) > d(C, (t)) - d(C, a(t0)). (5-4)

Likewise d(C, a(t)) + d(a(t), a(to)) > d(C, a(to)) implies

d(C,a(t)) - d(C,a(to)) -d(a(t),a(to)). (5-5)

We may combine Inequalities (5-4) and (5-5) to obtain

Id(C, a(t)) - d(C, a(to))I < d(a(t), a(to))

Because f is a ruler, d(a(t), a(to)) = I f(a(t)) - f(a(to))I = It - toI and

Ih(t)-h(to)I <It - tol. (5-6)
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We now let S = E. If It - tol < S then by Inequality (5-6) Ih(t) - h(to)I < e
and h is a continuous function.

From Inequality (5-3) we have

h(0) = d(C, A) < r and h(r) = d(C, E) > r.

Hence by the Intermej&te Value Theorem with y = r we conclude there is
an s e [0, r] with h(s) = r. We may thus let D = a(s) so that D e AB and

CD = d(C, D) = d(C, a(s)) = h(s) = r.

Note that this theorem says that W,(C) intersects AB at a point D if
AC 1 AB and d(A, C) < r. It is possible to show that the point.D found above
is unique by using Theorem 6.3.10. However, this fact also follows from the
next result.

Theorem 6.5:9 { rnl ThPnram). In a neutral geometry,. if a line 1

intersects the interior of a-circle le,. then l is a-secant.

PROOF. Suppose that W _ ',(C). If C_E l then there areexactly _two_points
on I whose distance from C is rby tieSegment_Construction Axiom. Hence
if Cc 1, 1 is a secant.

Now suppose that C
_
1. By hypothesis there is a point E e I n int('),

so that EC < r. LeLA be Xti f_pDLof tbc-per.Readicutzlar f om C to 1. See Figure
6-37. If A = E then CA = CE < r. If A 0 E then A CAE has a right angle at
A so that CA < CE < r. Hence CA < r in either case.

Choose B B' c- l with B-A-B'. By Theorem 6.5.8 lh_ere.. are__.points_
D e AB and D' e ABwith CD = r and CD' = r. Thus D e T and Y e le.
Hence I n ' has at least two points. By Problem A4, 1 n' has exactly two
points and so I is a secant.

A standard proof of the Line-Circle Theorem uses the Pythagorean
Theorem (Chapter 16 of Moise [1990]). Such a proof is only valid for the
Euclidean Plane. The proof given above is valid in any neutral geometry.
Thus the Line-Circle Theorem is really a neutral (rather than Euclidean)
theorem.

The next theorem discusses how many tangent lines can be drawn to a
given circle- 9- from an external point.
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Theorem 6.5.10 (External T;. n Theorem). In a neutral geometry,. if '
is a circle and P e ext('), then there are exactly two lines through P tangent
to W.

PROOF. We shall prove the existence of two tangent lines. In Problem A9
you will show there are no more. Since P E ext(le), CP > r and there exists a
unique point A with C-A-P and CA = r. Let 1 be the perpendicular to
CP at A CA =r < CP so.- that A is interior_ to. e c' ' with center_ C
and radius CP. By Theorem 6.5.9 1 intersects le' at points Q and Q'. Since
CQ = CP > r, there exists a uniqueioint B such that C-B-Q and .R = r_
Note B E W. See Figure 6-38.

Figure 6-38

Now AQCA ^- APCB by SAS_ Hence / CBP is a right angle since
L Q is. Thus BP is perpendicular to the radius segment CB and is thus
tangent to 16 by Theorem 6.5.6. This gives us one tangent through P. A
second is found by using Q' instead of Q.

PROBLEM SET 6.5

Part A.

1. Consider {tB2, .'E} with the max distance ds (Problem B18 of Section 2.2). Sketch
the circle ', ((0, 0)).

2. In the Poincare Plane show that {(x, y)lx2 + (y - 5)2 = 9) is the circle with center
(0, 4) and radius In 2.

3. If AB is a chord of a circle in a neutral geometry but is not a diameter, prove
that the line through the midpoint of Al and the center of the circle is perpendicular
to AB.

4. Prove that a line in a neutral geometry intersects a circle at most twice. (Hint:
Theorem 6.3.10.)

5. In the Taxicab Plane prove that for the circle'' _', ((0, 0)):
a. There are exactly four points at which a tangent to le exists.
b. At each point in part (a) there are infinitely many tangent lines.
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6. For the circle of Problem Al, how many points have tangent lines?

7. Use Theorem 6.3.10 to prove that the point D of Theorem 6.5.8 is unique.

8. Prove that for the max plane (Problem Al) there are two distinct circles with at
least 3 common points. What is the maximum number of common points which
distinct circles may have?

9. Complete the proof of Theorem 6.5.10.

10. In a neutral geometry, if 16 is a circle with A e int(`') and B a ext('), prove that
TB- r-, W :j(= 0.

11. Suppose that the perpendicular bisectors of AB and BC intersect at P in a neutral
geometry. Prove there is a circle '' with A, B, C e l'.

Part B. "Prove" may mean "find a counterexample".

12. In a neutral geometry, prove that the union of a circle and its interior is convex.

13. In a neutral geometry, prove that the union of a circle and its exterior is convex.

14. In a neutral geometry, if AB is a chord in a circle of radius r, prove that AB < 2r.
Furthermore, prove that equality holds if and only if AB is a diameter.

15. Let AB and AE be chords of a circle with center C in a neutral geometry. Prove
that AB ^- DE if and only if d(C, AB) = d(C, DE).

16. Prove that if ' is a cricle in a neutral geometry, I is a line, and if ! n 9? # Q0 while
I n int('') = 0, then I is tangent to W.

17. In the Moulton Plane
a. Show that {(x, y)l x2 + y2 = 1} and {(x, y) I(x - 2)Z + y2 = 11 are circles.
b. Show that {(x, y)I (x + 1)2 + y2 = 4} is not a circle.
c. Carefully sketch the circle 165((-1, 0)).

18. For the model of Problem B20 of Section 4.1, carefully sketch the circles
`61/2((0, 2)) and %B-,n((0, 2)).

19. We say that a line I is a subtangent of the circle le if I n le # 0 but I n int(') _
0. Note that a tangent is a subtangent. Show that for the Taxicab Plane
a. At every point of ' there is a subtangent.
b. Through every point P a ext('B) there are exactly two subtangents.

20. Prove the results of Problem B19 do not generalize to an arbitrary metric
geometry by considering Problem B18.

21. In a neutral geometry, prove that a diameter of a circle le bisects a chord of le if
and only if the diameter is perpendicular to the chord.

22. In the Missing Strip Plane (see Section 4.3) sketch the circle e1((1, 0)).

23. Find an example of a circle'' and a point Q a ext(') such that there are more
than two lines through Q tangent to W.

24. In a neutral geometry, if A, B e le,(C), prove that AB < 2r. If "neutral" is omitted
from the hypothesis, is the result still true?
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25. Find an example of a circle ' and a point P e int(o) and a line I containing P
such that 1 is tangent to W.

26. Find three non-collinear points in at° which do not all lie on the same circle.

6.6 The Two Circle Theorem

By Theorem 6.5.3 we know that two-.distinct. circles. in- a, neutral geometry
intersect in at -most two points. The main point of this section is to give a
condition for when two circles intersect in exactly two points. This result,
called the Two Circle Theorem, will follow directly from a converse of the
Triangle Inequality.

Our first result is called the Sloping Ladder Theorem. It tells us that if a
ladder leans against a wall and the bottom is pulled out from the wall, then
the top slides down.

Theorem 6.6.1 (SiayingLadder TAeg). In a neutral geometry with right
triangles QA.BC and, .DEF whose .right angles are at C and F. if AB = DE
and AC->F,----then BC < EF.

PROOF. Let G E CA so that CG DF. Let H E CB so that CH 2t FE. Then
by SAS and so GH - DE - AB. Since EF - CH, if we

can show that C-B-H, we are finished. We shall do this by showing that
H = B and C-H-B both lead to a contradiction.

Assume H = B. Then nABC - LGHC by HL and AC - GC - DF
which contradicts the hypothesis AC > DF. Hence H 0 B.Ass_ume
C-H-B as in Figure 6-39. Then GH < GB < AB. which contradicts
G H ^ DE ^ A. Hence we must have C - ' -H and EF--- C
since HC = HB +_B.

H

B

E

C G A F D

Figure 6-39

The proof of the next result is left as Problem Al.
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Theorem 6.6.2. Let AB- and DE be two chords of the circle l = 1,(C) in a
neutral geometry. If AB and DE are both perpendicular to a diameter of l
at points P and Q with C-P-Q, then DQ < AP < r.

We shall next prove the_,converse.of_the.. Triangle Inequality. Recall that
theorem stated that in a neutral geometry the sum of the lengths of any two
sides of a triangle is greater than the length of the third.

Theorem 6.6.3 (Triangle .Gonstruction Theorem). Let {.9P, ., d, m} be a
neutral geometry and let a, b, c be three positive, numbers. such that the sum of
any two. is greater than the third. Then there is a triangle in 9 whose sides
have length a, b, and c.

PRooF. We may rename the numbers in such a way that c is largest. Let A
and B be two points with ABA and let f be a coordinate system for AB
witb f( 0 and f(l )oc. Let W, =',,(A) and W, _ 16,(B). We will show
that'1 n '2 0 0. If there is a point C E %1 n ', then since C e le, = ce,,(A),

C = h Sin.. Ca W, ',(B) then BC = a. Thus L ABC will be exactly
what we need. (See Figure 6-40.) We proceed by a continuity argument.

Figure 6-40

Now ', intersects AB at a point E with f(E) = b while VVintersects AB
at a point D with f(pj c.,-a> Q. Thus

0<c-a<b<c.
We shall let a bete _v_erse,_gf.f and choose.a..half pla)ne H determined by
A B. Note that

a(0)-A, a(c-a)=D, a(b)._=E and a(c)=B.

For each t E [0, b] let JIB be defined as Lhe point in H, w ich is on both
and the line th1_ ugh aAD_ which is perpendicular to AB. See Figure 6-40.
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For each t e [c - a, c] let At) be defined as the point in H; which is on bath
V, and the line throueh a(t) which is ne a ic,Wr to AB.

Define

k_ot _,d(y(t), a() - d(f3(t), a(t)).

The key observation is that if there is a number s for which k(s) = 0 then

d(y(s), a(s)) = d(f3(s), a(s)).

Since y(s), a(s), /3(s) are collinear and y(s) and /3(s) are on the same side of AB
then y(s) = f3(s). Thus y(s) = /3(s) e let n lZ and the proof would be finished.

We will prove in Lemma 6.6.4 below that both g: [0, b] --+ l given by

g(t)=d tat
and h : [c - a, c] --> l given by

are continuous. Thus
h(t) = a(t))

k(t)=g(t)-h(t)
is continuous on _ fc_ azblq[0, b n c -_a, c l. However y(c - a) = D =
a(c - a) so that

kc- a= d(y(c-a),a(c-a))-d(f3(c-a),a(c-a))
_ - d(f3(c - a), a(c - a)) < 0.

Similarly k(b) > 0. The Intermediate Value Theorem then implies that k(s) =
0 for some s e [c - a b] and we are done.

Lemma 6.6.4. The functions g: [0, b] --* R and h: [c - a, c] -> R in the proof
of Theorem 6.6.3 are both continuous.

PROOF. The key to the proof is the observation (which we shall prove) that
a function which is both uriective and decreasl'nE1S

Step(]. By Theorem 6.6.2 g:[0,b] - l by g(t) = d(y(t), a(t)) is strictly de-
creasing: if to < t then g(t) < g(to). This implies that if 0 < t < b then 0 =
g(b) < g(t) < g(0) = b so that image(g) c 0, b.

Step,?, We claim image(g) = [0, b]. If 0 < r < b let P be the point in H,
wh' h is on the perpendicular to AB at A so that AP = r. Then by Theorem
6.5! there is a point Q e AB with PQ = b. (See Figure 6-41.) Let R be the
point in H, where 161 intersects the perpendicular to AB at Q. Then QPAQ
AR QA by HL so that RQ = PA = r. Thus) f(.Q)_s,_Ihep_Q .= a(s) mdR=
y(s) so that q(s) = r. Hence r e image(g) and [0, b] c image(g). Thus
image(g) _ [0, b].

Step 3. We show that g is continuous at to if 0 < to < b. Let e > 0. Then
there are numbers rt and r2 in [0, b] with

9(to) - e < rt < 9(to) < rz < 9(to) + e.
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A Q E B

Figure 6-41

By Step 2 there are numbers s, > t and s2 < t in[0 bj with a(s1= r4. If S
is the smaller of the two numbers sl_.-_.t and to sz then whenever It <
b we have

or

S2- to_<t -_to_ s_y_- to

S2<t<S1
and sin ce g_is ecteasing

e < ri = g(si) < g(t) < g(s2) r2 < g(to) +,r
so that

1g(t) - g(to)I < E.

Hence g is continuous at to. A slight modification of the proof shows tha,
is continuous at 0 and b also.

The proof that his continuous is similar except in this case h: [c - a, c]
[0, a] is surjective and strictly increasing,

By this point you probably have noticed that we have used continuity
(and the Intermediate Value Theorem) quite a bit. This should not be too
surprising. We mentioned earlier that the ruler postulate was very powerful.
By parametrizing lines we are quite naturally led to real valued functions.
The Plane Separation Axiom is really a kind of continuity axiom-note that
in two of the examples we gave where PSA did not hold (Missing Strip Plane
and the geometry of Problem B20 in Section 4.1), the rulers look like they
have "holes" in them.

The Two Circle Theorem can now be proven directly from Theorem 6.6.3.
This is left as Problem A2.

Theorem 6.6.5 (T_wo;Circle Theorem). In a., neutral geometry, if K1, Wb(A),,
'92= (B), AB=c, and if each of a, b, c is less than the sum of the other
two, then W1 and '2 intersect inexactly two points, and these points are on
opposite sides of AB.

In Problem A3, you will give another necessary and sufficient condition
for two circles to intersect in two points.
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We saw in Theorem 6.2.4 that the SAS Axiom could be replaced by the
ASA Axiom. We can also replace SAS with SSS. if-we are willing toalso
postulate the Triangle-Inequality and-the-Two, Circle Theorem.

Theorem 6.6.6. If a protractor geometry satisfies SSS and both the Triangle
Inequality and the Two Circle Theorem with the neutral hypothesis omitted,
then it also satisfies SAS and is a neutral geometry.

PRooF. Suppose that for LABC and LDEF we have AB a DE, L B L E,
and BC a EF. We must show that LABC a LDEF. Let a = EF, b = DF,
and c = DE.

The Triangle Inequality guarantees that each of a, b, c is less than the
sum of the other two. Hence 1 (B) intersects c'b(C) in a unique point G
on the same side of BC as A by the Two Circle Theorem. See Figure 6-42.
Then LGBC nt LDEF by SSS.

Hence L GBC 2! L DEF ^- L ABC. Since A and G are on the same side
of BC, BA = BG by the Angle Construction Theorem. Then GB a- DE a AB
implies G = A. Hence LABC = LGBC a LDEF.

Theorem 6.6.6 says that a_protra,_otor geometry, with SSS, the..Triangle
Inequality and. the Two.. Circle, Theorem is a neutral geometry. It may be
that not. both the Triangle Inequality and the Two Circle Theorem are
needed. (Of course, they are needed in our proof.) Wedo...no.t. know of any
protractor geometry wh ch_ satisfies SSS.: for.w.hicheither the Two Circle.
Theorem or the Triangle Inequality fail.

PROBLEM SET 6.6

Part A.

1. Prove Theorem 6.6.2.

2. Prove Theorem 6.6.5.
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3. Prove that-in-a neutral geometry, two circles41 and.%2 intersect in exactly two points
if and only if 16, n int(12) # 0 and 1"1 n ext(C2) 0 0.

4. Prove that in a neutral geometry a circle of radius r has a chord of length c if and
only if0<c<2r.

5. Let a = 2, b = 3 and c = 4 and construct a triangle /ABC in the Euclidean Plane
-/with AB = 4, AC = 3 and BC = 2. (Hint: Imitate the proof of Theorem 6.6.3. Start

with A = (0, 0) and B = (4, 0).)

6. Let a = 2, b = 3, and c = 4 and carry through the steps of Theorem 6.3 to construct
a triangle AABC in the Taxicab Plane with AB = 4, AC = 3 and BC = 2. (Remark:
This is not a neutral geometry so we don't know, a priori, that the construction will
work.)

7. In a neutral geometry prove that for any s > 0 there is an equilateral triangle each
of whose sides has length s.

Part B. "Prove" may mean "find a counterexample".

8. Prove that in a neutral geometry, if two circles '1 and W, have exactly one point
Q in common, them they have a:common tangent line. (That is, there is a line I
which is tangent to both '1 and W.2 at Q.)

9. Let 02 = {(x, y) a R2 Ix and y are both rational}. {02, Y,*, dE} is an incidence
geometry formed by using Euclidean lines with rational slope intersected with 02
and Euclidean distance.
a. Prove that {Q2, 2E, dE} is an incidence geometry. (Hint: Problem B21 of

Problem Set 2.1.) It is not a metric geometry.
b. Show that the conclusions of Theorems 6.6.3 and 6.6.5 are false for this

geometry. (This points out dramatically the need for rulers in these theorems.
There are many, many holes in 02 and so any kind of continuity argument is
out.)

10. Let a = In 2, b = In 3, and c = In 4 and carry out the steps of Theorem 6.6.3 to
construct a triangle in .X' with AB = In 4, AC = In 3, and BC = In 2. Start with
B = (0, 1) and C = (0, 2). Find the exact coordinates of A.

Part C. Expository exercises.

11. We now have at least three ways of defining a neutral geometry by imposing
additional axioms on a protractor geometry: (1) SAS (our selection), (2) ASA, or
(3) SSS, the Triangle Inequality, and the Two Circle Theorem. Discuss the relative
merits of each of these choices. Would you choose (2) or (3)? Why?

6.7 The Synthetic Approach

As we remarked in Section 2.2, there are two main approaches to developing
geometry: the metric approach of Birkhoff which we are using (and which
is also followed in Martin [1975], Moise [1990], and Prenowitz-Jordan
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[1965]) and the axiomatic or synthetic approach first firmly established by
Hilbert (and which may be found in Greenberg [1980] and Borsuk-Szmielew
[1960]). In this section we shall present a brief overview of how the synthetic
approach would be used to obtain the results we have developed so far.
We shall not present any proofs.

In Chapter 1 we said the choice of axioms is guided by three principles:
correspondence to an intuitive picture, richness of the theory (i.e., many
interesting theorems can be proven), and consistency. Consistency means
that the axiom system will not lead to a contradiction. Many authors want
two other properties for their axiom system: minimality and categoricalness.

Minimality really consists of two notions. The first is that the fewest
undefined terms and axioms are used. For example, it is more economical
to assume SAS than it is to assume SSS, the Triangle Inequality and the
Two Circle Theorem. The other notion included in minimality is the in-
dependence of the axiom system. This means that no axiom can be proved
from any of the others. There is no need to assume both SAS and ASA,
for example.

Categoricalness means that there are sufficiently many axioms so that
all models of the axiom system are equivalent under some natural sense of
equivalence. For example, if we add to our current axiom system the
Euclidean parallel postulate then we will have a categorical axiom system for
Euclidean geometry-the Euclidean Plane that we have developed is, up to
an isometry, the only model. We prove this result in Theorem 11.1.20.

Many axiom systems for geometry have been proposed since Euclid. If
you are interested in such foundational questions, see Chapter 15 of Martin
[1975], Chapter 3 of Greenberg [1980], or Borsuk-Szmielew [1960]. The
axioms we give below are essentially those of Hilbert but have been modified
somewhat.

In the synthetic approach, congruence axioms replace distance and
angular measure. The set of axioms for neutral geometry are as follows.

A neutral geometry consists of a set .5" whose elements are called points,
a collection 2' of subsets of .9' called lines, a ternary relation ( )-( )-( )
("between"), and a binary relation _- satisfying the following axioms:

Incidence:
(1) If A, B are distinct points in . then there is a unique line I e 2' with

A, Be!.
(2) Every line has at least two points.
(3) There is a set of three noncollinear points.

Betweenness:
(4) If A-B-C then A, B, C are distinct collinear points and C-B-A.
(5) If A, B, C are distinct collinear points then either A-B-C or B-C-A

or C-A-B.
(6) If A : C then there are points B and D such that A-B-C and

A-C-D.



6.7 The Synthetic Approach 167

Separation:
(7) For each line I there are two subsets H, and H2 of .5" such that

(a) H1nH2=0,9' -1=H1uH2;
(b) Ht and H2 are convex;
(c) If AEH1and BeH2then ABn100.

Congruence:
(8) -- is an equivalence relation on the set of segments.
(9) Given PQ and AB there exists a unique point C E AB such that AC PQ.

(10) If A-B-C, D-E-F, AB ; DE, and BC = EF, then AC z DF.
(11) = is an equivalence relation on the set of angles.
(12) Given L ABC and a ray ED which lies in the edge of the half plane H,

then there is a unique ray EF with F e H and L DEF ^- L ABC.
(13) If AB ^ DE, LABC ^- LDEF, BC ^- EF, then LABC ^ /DEF.

(Triangle congruence as before.)

Note that we never talk about angle measure (only angle congruence) or
the distance between points (only segment congruence). Thus in a synthetic
approach, we cannot talk about an angle whose measure is 35 or 90 or
about points being 2 units apart.

However, with these axioms it is possible to recover all the work we have
done up through Theorem 6.5.7 except those results that explicitly deal with
distance or angle measure. The order that results are derived changes
somewhat. For example, existence of midpoints comes after SAS. Some
definitions and statements of theorems must be changed to avoid mention
of distance or angle measure. For example, in the synthetic approach, L ABC
is called a right angle if there is a point D with A-B-D and
L ABC = L CBD. One shows that if an angle is congruent to a right angle
then it is a right angle, and that all right angles are congruent.

As a second example, inequality of segments and angles can be defined
by congruence as in Theorems 6.3.1 and 6.3.2. The Triangle Inequality is
stated in synthetic language as: For any LABC there is a point D such
that A-B-D, BD AC, and BC < AD.

The remaining theorems in Sections 6.5 and 6.6 relied heavily on the ruler
postulate. Indeed, many of the proofs used a continuity agreement. In the
synthetic approach two axioms are added to take the place of the continuity
part of the ruler axiom. These are axioms (14) and (15) below. (Actually
axiom (14) suffices to derive the results of Sections 6.5 and 6.6.) These two
continuity axioms can be replaced by a single axiom due to Dedekind which
is very topological in nature.

Continuity:
(14) If `'1 and '2 are two circles with W, n int('2) 0 and 1C1 n ext('2) 0

0 then t1 n W2 contains exactly two points.
(15) Given AB and CD there are points Po, P1, ..., P. E AB with Po = A,

P,-tP, - CD for all i and Be P0P,,.
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It can be shown (see Borsuk-Szmielew) that if (14) and (15) are replaced
by Dedekind's axiom and a suitable choice of parallel axioms is made (see
Chapter 7) then the system of axioms is categorical so that there is essentially
only one model of Euclidean geometry and one of Hyperbolic geometry,
namely our models 9° and.*.

We have followed Birkhoff's metric approach because we feel that the
metric axioms of rulers and protractors are more intuitive, natural, and easier
to follow. Of course, as either the metric or the synthetic approach yield the
same body of theorems, chacun a son gout. A synthetic development can be
found in Chapter 8 of Moise [1990] or Chapter 3 of Greenberg [1980].

PROBLEM SET 6.7

Part C. Expository exercises.

1. Starting with the references in this section, write an essay that describes the
various axiom systems that have been proposed for geometry.



CHAPTER 7

The Theory of Parallels

7.1 The Existence of Parallel Lines

The concept of parallel lines has led to both the most fruitful and the most
frustrating developments in plane geometry. Euclid (c. 330-275 B.C.E.) de-
fined two segments to be parallel if no matter how far they are extended in
both directions, they never meet. Note that he was interested in segments rather
than lines. This follows the general preference at that time for finite objects.
The idea of never meeting is, however, infinite in nature. How then does one
determine if two lines are parallel?

By a stroke of genius Euclid adopted as his fts,>,A,

Ifa.line falling on two straight lines makes, the interior angles on one side less
than_,twp. right angles, .then. the two --l ncs,_if ,extended indefinitely,. intersect
on.that side,on_which the interior angles are less than two xight angles.

From. this he deduced the important result that if_l_is.linend-P41 then
thrrP line"thrt ugh E paralleLto 1.

From Euclid's time to the mid-nineteenth century, geometers were dis-
turbed by the Fifth Postulate. During that time the-prevailing-viewpoint
was-that postulates were "self evident-,truths'°_ and-.this postulate;-:because

proof, In the 5th century Proclus argued that it was conceivable that two
lines could approach each other asymptotically the way a hyperbola ap-
proaches an asymptote. It was generally felt (or hoped) that the Fifth
Postulate need not be a separate axiom but instead could be derived from

169
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the other axioms and their consequences. In modern terminology it was
felt that the Fifth Postulate was not "independent" of the remaining axioms.
Of course we_ nowacnow-ShaL_Lhe Fifth C ? l s to..
the Pxamnl of thrPninrarP PJAi1e.

The history of the parallel postulate is fascinating. In fact, many mathe-
maticians attempted to prove the Fifth Postulate, and some thought they
had succeeded. The list of those presenting fallacious proofs includes
Ptolemy (2nd century A.D.), Proclus (410-485), Nasir-Eddin (1201-1274),
John Wallis (1616-1703), Giordano Vitale (1633-1711), Gerolamo Saccheri
(1667-1733), Johann Lambert (1728-1777), John Playfair (1748-1819), and
Charles Dodgson (Lewis Carroll) (1832-1897). All failed, usually because at
some point in their arguments they made assumptions (equidistant lines,
similarity) that were equivalent to the desired result, or else they argued
about infinite area or nonexistent points. For an extended discussion of
these and other "proofs," see the first two chapters of Bonola [1955] or
various sections in Martin [1975] and Greenberg [1980]. See also Heath's
translation of Euclid [1956].

We shall see in this chapter that the arms which we.k1aye, dso far
(and which are a refinement of those of Euclid) are sufficient only for nrovine

of nara11e11inPC h ,t not th nniauenecc. This phenomenon was
probably first noticed by Carl Frederich Gauss (1777-1855) at the beginning
of the 19th century. He never published his work in the subject, but in various
letters he hinted that he had come very close to discovering what we call
hyperbolic geometry. The first published accounts were given independently
by Nicholai Lobachevsky (1792-1856) in 1829 and by Janos Bolyai (1802-
1860) in 1832. They asserted the consistency of a neutral geometry in which
Euclid's Fifth Postulate did not hold and developed much of the resulting
theory of such a geometry. Translations of their work may be found in
Bonola [1955]. The first proofs of the consistency of this new non-Euclidean
geometry were given by Eugenio Beltrami (1835-1900) and Felix Klein
(1849-1925). These proofs involved developing models. Later models were
given by Poincare, including our model. (The Klein and Poincare models
will be discussed briefly in Chapter 11.)

We have seen several instances where we have a choice of equivalent
axioms-PSA or PP, SAS or ASA. As we complete our axiom system in this
chapter, we again have a choice of axioms, but with an important differ-
ence. The two choices for a parallel axiom will not be equivalent. In fact, the.
All or None TLl y=m-(Theorem 7.3.10) will ,t fi $ t 1 onewof the two
choices h i _par, ), ulaX_model of_peu_tra eometry

To begin our discussion of the theory of parallels, we need the concept of
a transversal. Once this has been established, we can define the notions of al-
ternate interior angles and corresponding angles (both of which are quite
familiar from high school geometry) and then obtain a sufficient condition
for two lines to be parallel (Theorem 7.1.2).

Definition. Ga eta Tbze .list c J laa; re say tbat,,J ts,
grsal%

0 R13 iif 1 inntercectc.bpth,Li,.a}ad:(.;,hl .tn iff r nLp.aints.
11
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Figure 7-1

171

P,

12

In Figure 7-1, 1 is a transversal of 1, and 12. I' is not a transversal because
it does not intersect 1, and 12 in distinct points. I" is not a transversal of 11
and 12 because it does not intersect 12 at all.

Definition. Assume that the line C . isxE ex tc r .in. a-m. etaic,

geometry and,Lhatl:.n.G77 = {E}. If the points A, B,
C, D, E, F, G and H are situated in such a way that

(i) A_-B-C,.D... -E. -F, andG--B E-.H,-and
(ii) 4 and D,_arc., on the same side of GH

then LaoBE,,aad<B.;aze a:
a

or -actg s aL .L,,,4, BG
See Figur e 1-2.)

Figure 7-2

Note that in Figure 7-2 DEB and L CBEare also alternate interior
ngles. Furthermore, L.C.8Q.and,L.FE. 4iTe corresponding angles, as. are

FEH.LABS, LR > a 11 as, $B,agd-,L
The following result gives a suffi"icaL diticxn..fok xwo.lines; tohave a

cstx a eaGlid on
then Howeiere,:.e-xamples--can,:be
found tQ. show

t gt,S InQ .li;gW _Milt.g pairfal ernate interior_angles cpn.gr uentthen .

there is -a line I' which is-perpendicular.,to:both 1,,.andl..12.
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Figure 7-3

PROOF. Let 11 = AC, 12 = DF, and 1 = CH where h n 1= {B},12 n I = {E},
A-B-C, D-E-F, G-B-E-H, and A and D are on the same side of
GH as in Figure 7-3. If the alternate interior angles are right angles then GH
gives the desired line V. Otherwise, one of the two pairs of alternate interior
yes consists of a pair of acute angles. We need only investigate that case.

Assume that L ABE c L FEB is acute as in Figure 7-3. Let M be the
midpoint of EB and let P be the foot of the perpendicular from M to W.
Since L ABE = L ABM is acute, A and P lie on the same side of CH. (See
Problem Al.) Likewise if 0 is the foot of the perpendicular from M to DF
then-Q- and F are on the s_ aMe_si e of 0. Hence P and Q are on opposite
sides of GH. (Why?) We must show that P M_ and Q. are collinear. This is
done by the Angle Construction Theorem.

The right triangles LMBP and AMEQ are congruent by HA.-Thus
L BMP ^ L EMQ. Let R e FM with P =M- R. By the Vertical Angle
Theorem LBMP = L M$ MR. O and R are on
the same side_oLG.R. (Why?) By the Angle Construction Theorem EL MQ
L EMR. Hence Q e int(M12) F so that P. M and O are collinear. Hence
PQ = 1' is the desired common perpendicular.

Theorem 7.1.2. IN ^ trnl_nonmatrv _'>r 1 ud 1 hG

thau.Ll..is..parallel,:to-L2. In-particular.,_*there-is-a-trsawexsal_ta..ll..and.lr kuith
ueeat, theca -4 1.2

PROOF. Suppose that 1 is perpendicular to 1, at P and to L,at_Q. If l1 the
first part is trivial. Hence we assume that 11 # 12 and proceed with a proof by
contradiction.

Suppose 1, n 12 contains a Point R. Then P R,Q# R, and P, Q, R are
not collinear. See Figure 7-4. But then pPQR has two right angles, which is
impossile. Thus l1 n 12 = 0 and 111112. The "in particular" statement
follows from Theorem 7.1.1.

By Theorem 7.1.2, if 11 and 12 have a common perpendicular then 111112.
Is the converse true: l haue a..;cpuatnngeudiGUlar?
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Figure 7-4

Many fallacious "proofs" of the Fifth Postulate assume the answer is yes.
The next example shows that the answer is natalmras. Another example
is supplied in Problem A6.

Example 7.1.3. In the Poincare Plane let I = oL and 1' = 1L1. See Figure 7-5.
Show that Ipl' but that there is no line perpendicular to both I and 1'.

Figure 7-5

SOLUTION. First we note that I n 1' = 0. After all, if (x, y) e 1 n 1' then
x = 0 and (x - 1)2 + y2 = 1. But this would imply that y = 0 which is not
true for a point (x, y) e H. Thus 1111'.

By Problem B19 of Section 5.3, the only lines perpendicular to I take the
form 0L, for r > 0. The line 0L, intersects 1L1 only if r < 2, and in that case
the point of intersection is (r2/2, Jr - (r /4)) = B.

A tangent vector to 0L, at B is (- r - (r /4), r2/2) while a tangent
vector to 1L1 at B is (- r2 - (r4/4), (r2/2) - 1). oL, is perpendicular to 1L1
if and only if

24Zr2-4,2-11)=0.
But the left hand side of this equation is

2 r4 r4 r2 r2r -4+2 =200.
Hence no line is perpendicular to both I and 1'.

Theorem 7.1.4. In ci line ,ctnd P.;.r1 _..-then there is,a

li llr rah 1x tCi? fF Fprallg..1,WJ,
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PROOF. We shall perform the Let Q be the moot
.oLthe-perpendicul2r to I through P. f_1'.bLc the unique nerendicular to
P' at P. Then PQ is a common perpendicular to 1 and 1'. By Theorem 7.1.2,

Note that that.l::was:tho only.:line,thllgj. htckl.s
e as the next example shows.

Example 7.1.5. Show that in the Poincare Plane there is more than one line
through P = (3, 4) which is parallel to _5L.

SOLUTION. 3L and 3L, are both parallel to _5L. See Figure 7-6. In fact, there
are an infinite number of lines through (3,4) parallel to - 5L: L,-'is parallel
to _ 5L if 0 < c and r = (c -- 3) + 16. Note also that even oL5 is parallel to
_ L. This is because (- 5, 0) 0 H.

Figure 7-6

We shall see later that 3L and oL5 are somewhat special. In a sense all
other parallels are between these two lines. Furthermore, neither of these
two lines has a common perpendicular with _5L, but each of the other
parallels does. This will be shown in the next chapter when we classify parallel
lines.

Eul& WAA 1-4-A
F t,i1@1e There are many equivalent formulations of Euclid's Fifth
Postulate, some of which will be discussed in Chapter 9. (Martin [1975] lists
26!) The formulation we state below is Euclid's original version. We will
show that his ic_Pa ..v, leml tkt. t iqt ers, : as ltKls-(which is-usually
called -Playfair's.Postulate). The definition which follows is merely a mathe-
matically precise form of the quote from Euclid at the beginning of this
section.

Definition. A .nrotto
whenever QC a transveraul,otDC;:and tB wath.

/(i)
DonJh9j d qty

(II) z!.,y,.[,.d MsFn l YL . 8.0.
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Figure 7-7

then A iRte, sect at a,point E ot; the, a Ai& aS nd.D.
(See Figure 7-7.)

Theorem 7.1.6. If line snd, P CMO y_,wl;ih satisfies
E , t erg iere.e ills: 1ira ,' through t s arallel tom 1.

PROOF. Let l' be the line of the "double_perp" construction of Theorem 7.1.4
so that Q is the foot of the perpendicular from P to 1. Suppose that AB is
another line through P with A-P-B. See Figure 7-8.

P

B

A

Q

Figure 7-8

If :419 : C then one of the angles L APQ or L BPQ is acut. We may
assume that L APQ is acute. allgles_at_Q are r ht angles. we annly
Euclid's Fifth Postulate and see that AB intersects l at a pain . Hence AJ
is not parallel to I if AR : 1'. Thus there is only one parallel to I at P.

Since the 18th century the conclusion of Theorem 7.1.6 has been used as
the primary parallel axiom. Because this choice was first championed by
Playfair, it is often referred to as Playfair's Parallel Postulate. We shall use
the term "Euclidean Parallel Property." After we formulate the idea in a
definition, we shall show that it is equivalent to Euclid's Fifth Postulate.
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Definition. An e
lhrr. _ :11A1nt

Note that EPP is a property of an incidence geometry so that the Taxicab
Plane,-EuclideanPlane, and R' with-the max distance ailsatisfyEPP.becausa.
they.. all.haxe..thesame...underlyingmincidence,.geometry, and-it-satisfies-EPP.
Of course, only the second is a neutral geometry. Note also that if -P = I ;t

t --°g-a a ... FDp not. We now finish showing that

Theorem 7.1.7.

PROOF. Let BC be a transversal of A$ and CT with A and D on the same
side PC Suppose that m(L ABC) + m(L BCD) < 180. We want to show
that BA n CD 0 0. Choose E on the same side of BC as A with L EBC and
L BCD supplementary. Choose F with F-B-E. See Figure 7-9. Then
L FBC and L EBC are supplementary so that L FBC = L DCB.

F

E

D

Figure 7-9

By Theorem 7.1.2, BE I I D Then by the hypothesis of EPP, BA is not
parallel to CD' because BA 0 BE (Why?). Hence BA n CD A 0. We now
must show that actually BA n CD : 0. Since

m(L CBA) + m(L BCD) < 180 = m(L CBE) + mom

we have L CBA < L CBE. Thus A e int(L CBE) because A and E are on
the same side of BC.

This is means that A is on the same side of BE.4s C. Thus all of int(BA) is
on the same side of BE as CD. (CD' lies on one side of BE because CD II BE.)
Since CD n AB 0 0, the point of intersection must belong to BA. Finally,
sias,irtt(B)nd_in0D)_lie on thesame side of BC (Why?), the point of
intersection must belong to CD. Hence BA n CD :
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Because of Theorems 7.1.6 and 7.1.7, Euclid's Fifth Postulate and EPP
are equivalent for neutral geometries.

PROBLEM SET 7.1

Part A.

1. In a neutral geometry if L ABC is acute then the foot of the perpendicular from
A to TC is an element of

2. Given two lines and a transversal in a protractor geometry, prove that-a.g,aipf
on 'f a cDcrscpQnai_o_nngles.

aye sgw nt.

*3. In a neutral geometry, if I is a transversal of 11 and 12 with a pair corresponding
angles congruent, prove that 111112-

4. In a neutral geometry, if DC is a common perpendicular of AD and CD, prove
that if l is a transversal of AD and CD that contains the midpoint of BC then a
pair of alternate interior angles for I are congruent.

5. Give an example of the following in the Poincare Plane: Two lines 11 and 12
which have a common perpendicular and a transversal l for which a pair of
alternate interior angles are not congruent. (Thus the converse of Theorem 7.1.1 is
false.)

66 in the Poincare Plane show that two distinct type I lines are parallel but do not
have a common perpendicular.

7. Using vector notation for the Euclidean Plane prove that LAB 11LCD if and only if
there is a real number with A - B = 2(C - D).

8. Let ABCD be a quadrilateral in a neutral geometry. If AB ^- CD and 1D f--
RC- prove that AD 11 CD and AD 11 DC

9. Let ABCD be the quadrilateral in ." with A = (0,15), B = (12, 9), C = (1215),
D = (0,13). Show that ;M11 CD and ADD 11130. Show that AB is not congruent to
CD. Hence the converse of Problem A8 is false in a neutral geometry.

10. In .1' let 1 = 2L5 and let P = (1,2). Find a line 1' through P parallel to 1.

*11. Let_{.Y,Z,.d m}_.be.a.neutraL,geonletry.that..satisfies-.EPP. Prove that_1
I is a transversal of end l then a Hair f altrrnatP an g MICAngrue"

Part B. "Prove" may mean "find a counterexample".

12. Prove that the Moulton Plane satisfies EPP.

13. Prove that the Missing Strip Plane satisfies EPP.
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14. Given a quadrilateral ABCD in a neutral geometry with ADIIBC and LB
LD, prove that AB IICD.

Part C. Expository exercises.

15. Using Bell [1937], Coolidge [1940] and Struik [1967], compare and contrast the
lives of Bolyai and Lobachevski. What effect did their discovery of non-Euclidean
geometry have on their lives?

16. Look up the list in Martin [1975] of twenty-six equivalent forms of Euclid's Fifth
Postulate and describe them in words. Which are the most "geometric"? Which
are the most dissimilar in content? Which do you find most "obvious"? Note that
all of them are true in the Euclidean Plane. Find examples to show that in the
Poincare Plane these properties do not hold.

17. Write an essay which gives Gauss's view of the parallel controversy. See Hall
[1970]. Do you admire, condone, or condemn his stand?

7.2 Saccheri Quadrilaterals

In the previous section we mentioned a number of attempts to "prove" that
Euclid's Fifth Postulate followed from the other postulates of a neutral
geometry. One of these deserves special mention because it contributed a
direction for research in plane geometry.

In 1733 there appeared the book Euclid Vindicated of All Flaw by the
Jesuit priest Gerolamo Saccheri. In it the author purported to prove Euclid's
Fifth Postulate as a theorem. We now recognize basic flaws in his argument
at certain crucial steps. However, the book was and is important in the
development of the theory of parallels because it was the first to investigate
the consequences of assuming the negation of Euclid's Fifth Postulate. A
translation of the book is given by Halstead [1986].

Despite his failure to actually prove Euclid's Postulate as a theorem,
Saccheri did contribute a substantial body of correct results. Did he know
about the flaws in his proof? Certainly the erroneous proofs were unlike any
of the rest of his carefully reasoned development. It has been suggested that
Saccheri knew what he did was fallacious and that the "proof" was included
so that the Church would approve the publication of his work. Whether he
intended it or not, Saccheri did invent non-Euclidean geometry, although
he gave no models. His contributions are remembered today in the following
definition and a theorem which bears his name.

Definition. A_,quadrilateral.nA$CD_in a protractorgepxi etry,i
auadrilater if L anc) L D are_right angles and; -.In this case we
wn eD e_ lower base of s ABCD is AD, the _sjp.base is BC, the
legs are _AB and CD, the lower base angles are L A and L D, and the you
base angles are LB and L C. (See Figure 7-10).
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1

A D

Figure 7-10

The basic approach of Saccheri (and those who followed him) was to try
to prove something-which turned- out not to,be true:. that every Saccheri
quadrilateral_was actually a rectangle. If that were true it would not be hard
to prove that EPP holds. Saccheri's main contribution comes from a careful
investigation of three cases: (i) LB-is obtuse.(which.he.showed was impossi-
ble), (ii) L B is a right angle -(.which is _equivalenL.to, EPP) and (iii) LB, is
acute_(whichhe_claimed.to have proven_is.impossihle,hut.infactis possible).

Note that the order the vertices are listed for a Saccheri quadrilateral is
important. If ABCD is a Saccheri quadrilateral, so is DCBA, but BCDA
may not be. (In fact, BCDA will also be a Saccheri quadrilateral if and only
if it is a rectangle.) It must always be remembered that -the-first. and last
letters listed in the name of a Saccheri quadrilateral. refer_to .the lower base
angles which are.right.angles.

Before we prove Saccheri's Theorem (i.e., the sum of the measures of the
angles of a triangle in a neutral geometry is less than or equal to 180) we will
require several preliminary results.

Theorem 7.2.1. g tr; .sa S q ill al ®F .i

PROOF. Since AB--_andCD have a common ep
rpeendicularjn ely_

Theorem 7.1.2 shows that A B 11 C D. By theorem 4.5.5, ABCD is a convex
quadrilateral.

Note that we did not use the fact that AB _- CD in the above proof. The
important point was that L A and L D were right angles.

Definition. Two-con=,quadrilaterals in,aprotracta geometryarecongruenti# s pd g i eS d this case we write
ABCD ^ EFGH.

We leave the proof of the next theorem and its corollary to Problems A3
and A4.
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Theorem 7.2.2. In-a- -neutral geometry, if_ AD PS_ and then
ps P, QRS.

Corollary 7.2.3. In a neutral-.geometry, if. IABCDis.a-Saccheri quadrilateral

One of the crucial points in the study of Saccheri quadrilaterals is the fact
that the nnnbase is not sh2rter_than the To prove this we need
a generalization of the Triangle Inequality.

Theorem 7.2.4 (1 ky.goa-4neqaa4Ay). Suppose n > 3. If P1, P2, ... , P. are
points in a neutral geometry then

d(P1, P.) <_ d(P1, P2) + d(P2, P3) + ... +

PROOF. We use the Principle of Induction. If n = 3 then the result is just the
Triangle Inequality (as given in Problem A6 of Section 6.3). Suppose that
the result is true for n = k. Then

d(Pl, Pk) <_ d(P1, P2) + d(P2, P3) + + d(Pk- Pk)

By the Triangle Inequality again

d(P1,Pk+1) _< d(P1,Pk) + d(Pk,Pk+i)

Combining these two inequalities we have

d(Pl, Pk+ 1) _< d(P1, P2) + d(P2, P3) + ... + d(Pk-1, Pk) + d(Pk, Pk+ 1)

so that the result is true for n = k + 1 whenever it is true for n = k. By the
Principle of Induction the result is valid for all n > 3.

Theorem 7.2.5. In a D.

PROOF. We shall construct a chain of congruent Saccheri quadrilaterals as
in Figure 7-11. Let Al = A. A, = D. B, = B and B2 C. For each k >_ 3
let Ak be the unique point on AD such that Ak-2 Ak-I-Ak and Ak-lAk
Al).

S--

Note that d(A1, A- J = n_it(A,-D). For each k > 3 let Bk be the unique
point on the same side of AD as B with BAk 1 AD and B A ^ A.

B = B1 C = B2 B3 B4 B5

t

A = AI D = A2 A3 A4 A5

Figure 7-11

By Theorem 7.2.2, s A;BiB;+1A;+1 c OABCD for all i >_ 1. In particular
B,--B2 ^-, . By the Polygon Inequality

d(A1,B1) + d(B1,B2) + ... + d(B,,,B+1) + d(B+1,A.+1).
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Hence, since d(A, B) = d(A1, B1) = d(B.+1, and d(B;, Bi+1) = d(B, C),

forn-1.
Then

d(A, D) - d(B, C) <
2

d(A, B) for n >- 1. (2-1)
n

Since Inequality (2-1) holds for all n >- 1 and the right hand side can be made
arbitrarily small by choosing large values for n, we must have d A D
d(B, C) < 0. Therefore

AD < BC.

The previous result and the Open Mouth Theorem can be combined to
prove the next result.

Theorem 7.2.6.1, PWOWVPWA alzw=
Theorem 7.2.7. In a aaaggal nnmmatx_vtl_2o.cvm..n w S_Q p e

angle of a right triana t than ore ual to 90.

PROOF. Let ABD have a right angle at A,and I LC the__urlique_point_n
the same side of AD as B with CD 1 AD and AB DC,_See Figure 7-12.
Then we have s ABCD and by Theorem 7.2.6

m L ABD) + m (L ADB < m(L BDC) + m(L ADB).

Since s ABCD is a convex quadrilateral (Theorem 7.2.1), B a int(L ADC)
(Theorem 4.5.3) and so m(LBDC) + m(LADB) = m(LADC) = 90. Thus

m(L ABD) + m(L ADB) < 90.

Figure 7-12

Theorem 7.2.8 (SaGgliga'A_N,aamm). neuu-al:geome :ythe...suni.:of.--the
meastires-of the-angles of a triangle is-less than or equal-to-180.

PROOF. Let AABC be any triangle and assume AC is a longest side. Then
by Theorem 6.4.3, the foot of the perpendicular from B to AC is a point D
with A-D-C. See Figure 7-13. D e intLABC) so that

m(L CAB) + m(L ABC) + m(L BCA) = m(L DABl_+__m( A D)

+ m(LDBC) + m(L BCD)
<90+90= 180.
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It must be remembered that Theorem 7.2.8 is. _thebes4assiblezesult. We
have already seen an example of a triangle in . (Problem Al of Section 5.1)
in which the sum of the measures of the angles is actually strictly less than
180. In your high school geometry course you learned that the sum of the
measures of the angles of a triangle was exactly 180. That result was correct
because you were dealing exclusively with a geometry which satisfied EPP.
In the Moulton Plane we saw an example (Problem AlO of Section 5.2) where
the "angle sum" was greater than 180. This does not contradict Theorem 7.2.8
since the Moulton Plane is not a neutral geometry.

The next result shows that the-assumiptiQA.:a e. I } ltl n xalleI
Property >fEesfi "angle sum"_tczb,e.1.80. We shall see in Chapter 9 that in a

tral-grnmtry ._EP.PJ$- actually, equ',Went, to the assumption that the
"ana ale cnm i 1.R4

Theorem 7.2.9 (Fs skideat-,dug, P c > , aneutral.<geometxy.,which-satisfies
EPP, the sum. of the measures of the,angles of :gn triad is exactly 180.

PROOF. Let /ABC be given and let 1 be the unique line through B parallel
t4 AL. Choose D and E on I with D-B-E and with D and A on the same
fide 4LiC. See Figure 7-14. By Problem All of Section 7.1, L DBA
L BAC and L EBC - L BCA.

Figure 7-14
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We know that e int DBC) so that m(LDBA) + m(LABC) _
m(LDBC). Thus

m(LCAB)+m(LABC)+m(LBCA)=m(LDBA)+m(LABC)+m(LEBC)
=m(LDBC)+m(LEBC)
=180.

Definition. A .quadrilateral ABBCD-is a44 rallel9graui_iLAR.} .and
ADPC.. is;a..Cectangle_iLall fouLangles..Arc.ri.ght

all-sides..are:congruent.

Theorem 7.2.10. Ln -a,- neutrriL geatnelx .ct:.SQCChet t ,qu drilateral ,is a, _ paral-
lelogrsxit.

PROOF. In s ABCD, AB_4CD_-since the two lines have a common perpen-
disi iai namely AD, By Problem A6 the line joining the midpoints of A JI
and BC is perpendicular to both. Hence AD II BC.

As mentioned at the beginning of this chapter, there have been many
attempts to prove that EPP is a theorem in neutral geometry. Some of the
false proofs offered came from a basic misunderstanding of Saccheri quadri-
laterals and in particular Theorem 7.2.10. It was erroneously assumed that
since s ABCD was a parallelogram with two right angles, "it must be a
rectangle" (see Problem A2 for a counterexample), or "it must have opposite
sides congruent" (see Problem Al for a counterexample).

Another misunderstanding in attempts to prove that EPP followed from
the axioms of a neutral geometry came from a misuse of the concept of
equidistant lines. Recall from Section 6.4 that the distance from a point P
to a line 1, d(P, 1), is the perpendicular distance.

Definition. A set ofpoints.sd.ixi..a,neutra-lgeotnekryis,.
lbQjj ALA l le j'g_,All (i.e., d(A, l) = d(A',1) for all.A, A' e sad).JiL

Certainly iflis lam *hR,_

a few incorrect proofs of EPP came about by assuming that parallel lines
are equidistant. In Problem A23 there is a specific example in A' to show that
nary 1 le ?'ni-& , ed no.&bbe . quidistant. In fact, in Chapters 8 and 9 we will
show that the tatenrent"parallel lines if and only. if equidistant" is equivalent,
for. a. neutral,geometry,-to the.statement"satisfies;EP,P "

It would seem to be hard to show that one line is equidistant from another
as there are infinitely many points to check. The last main result of this
section, Giordano's Theorem (Theorem 7.2.13), shows that it is sufficient to
check only three points.

Theorem 7.2.11. be. a quadrilateral in a neutral geometry with
right angles_at_ .,and D,,Ij` AB >. DC then LAB,C_< L,DCB.
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PROOF. Choose E e DC so that D-C-E and DE -- AB. Then ABED is a
Saccheri ug_ adrilateral so that L ABE ^ L DE$ by Corollary 7.2.3. B L.
the Exterior Angle Theorem, L DEB < L DCB. On the other hand C E
in1(LABE) (Why?) so that / AB < /ABE. Thus LABC < LABE
L DEB < L DCB.

Corollary 7.2.12. In a neutral geometry, if ABCD has rightangles at A
en

(i) AB.> CD if cnl( only f ABC < LDCB
(ii) AB., ...I1,.if azul_enLy i, ::L $,6. ,L.DCB

(iii) 1BE.c .CL2 i.and.anly,if.L.ABC >:,.LDCB.

Theorem 7.2.13 ). In a neuua ,geometry,.,i there: are
three-distinct pnints.on-a.line,..l which.are.the.same,distance-ftom.cc.li -t',.thm
1iidistnnt frnm 1',

PROOF. If 1 = 1' then I is equidistant from 1'. Hence we may assume that 1 jA V.
Let A, B, C e I with d(A,1') = d(B,1') = d(C, l'). Two of A, B, C must be on
they same side of 1'. By Problem A22, Lis-pa ra114J to 1' and hence all of 1 lies on
one side '. In particular A,.Ball lie on the same side of 1'. Since one of
the three points must be between the other two, we may assume that AB-
C Let D. E. F be the feet of the perpendiculars from A_ B1 C to 1'. See
Figure 7-15.

A B

X

17 1 rj- I ,
D E F

Figure 7-15

We have three Saccheri quadrilaterals: s DABE, DACF, and s EBCF.
Thus

LABE ^L BAD _ L BCF - L CBE (2-2)

by Corollary 7.2.3. Hence L ABE is a right angle since / ABE and / CBE
falinear..pair. Thus all the angles in Congruence (2-2) are right. Hence
pDACP is_a_rectang1c We must show that if P E 1 and if S is the foot of the
perpendicular from P to 1 then PS ^- AD.

Case©. Suppose that P is between two of the points A, B, C. Then A-
P-. If P is not Perpendicular to I then one of L A PS and / CRS-is-acute.
Assume that LAPS is acute so that L CPS is obtuse. See Figure 7-16. By
Corollary 7.2.12, AD < PS < CF. Since this contradicts AD CF, we must
have PS 1 1. Hence LAPS_- PAD and PS -- AD by Corollary 7.2.12.
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A P C

D
n

13

11
S F
Figure 7-16

r
D T F

Figure 7-17
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Case Now suppose that P e I but P AC. Let Q be the unique point
of 1 with P-A-O and AQ_ PA. Let T be the foot of the perpendicular
from Q to 1'. See Figure 7-17. LPAD ^ by SAS_ PDS ^-, L DT b
HA. Hence PS ^- T. Similarly, let R be the unique point on I with P-C-R
and PC - CR and let U be the foot of the perpendicular from R to 1'. Then
PS RU. Hence P, Q, R are. three lZoints of I eauid's nt romL_j'. Since

because A is between two of the three
points P, Q, R which are equidistant from 1'. Hence for all P, PS ^- AD and I
is equidistant from 1'.

PROBLEM SET 7.2

Part A.
1 . In - : W let A = (0, 2), B = (1, J ), C = (z, 3/2) and D = (0,1). Prove that ABCD. is a Saccheri quadrilateral. Show that BC > A.

2. For the Saccheri quadrilateral of Problem Al show that mf(LB) < 90.

3. Prove Theorem 7.2.2.

4. Prove Corollary 7.2.3.

5. Prove that tb,q, djagonals..of ,a Saccheri.quadrilateral,are congruent. in,a,neutral
.f 4 .etry.

*6. Prove that th313, pr, inininathr mirynintc a, quadrilateral,-
iS_ nerrwndicnl r n hnt hacPC in n .gPOmetsy.

7. Prove Theorem 7.2.6.

8 Given /ABC in a neutral geometry, prove that m(L A) + m(L B) < 180 in two
different ways.

n Rrn that9. Given aconvex il W a
mZLB± mil

10. Prove that the nnru r g }uadr ral n alb rarnplc
are nn

,
(You are proving that Saccheri's "Hypothesis of the obtuse angle"

is false.)

11. Prove Omar Khayam's Theorem: In a neutral geometry, if s ABCD then BC >
AD if and only if m(L B) < 90. (Hint: Prove BC ^ AD if and only if L B is right.)
(Yes, this is the same Omar Khayam who wrote "A loaf of bread, a jug of wine,
and thou... ".)
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12. In a neutral geometry, let A, B, C be three points on a circle with center D. If D a
int(LtABC) prove that m(L ABC) < -m(L ADC).

13. In a neutral geometry, let A and B be points on a circle ' with center D. If CD is
tangent to c' with A and C on the same side of DD, prove that m(L CBA) >
4m(L BDA).

14. In a Pasch geometry prove that any parallelogram is a convex quadrilateral.

kjMn,_ rt , ydrilateral (dented A D i,*15. Awua4gLqwL 4
/ a e ' a raglrt.angles. Prove that [IABCD is a narallelogram and is
a convex quadrilateral.

*16. If EABCD, prove that m(LD) < 90.

17. In a neutral geometry, if LABCD and m(LD) < 90 prove that DB > AC.

18. In a neutral geometry, if r- ABCD and m(LD) = 90 prove that DB ^ AC.

*19. Let AB be perpendicular to both BC and AD in a neutral geometry. If C and D
are on the same side of AB, prove that AB < CD.

20. Prove Corollary 7.2.12.

21. In a neutral geometry, i i is c,'uidistaml frp 'r vme Wye' f*om

*22. In a neutral geometry if A and B are equidistant from I and lie on the same side of
1, prove that 1B1I1.

23. Let A, B, C, D be as in Problem Al. Show that AD 11 BC but that AD is not equidistant
from C.

24. In the Euclidean Plane show that if 1111' then 1 is equidistant from 1'.

Part B. "Prove" may mean "find a counterexample".

25. Prove that the sum of the measures of the angles of any quadrilateral is <360 in
a neutral geometry.

26. Show that it makes sense to talk about the distance from a point to a line in the
Taxicab Plane. (But note Theorem 6.4.2 is false in .%".) Prove that in ,1111' implies
that I is equidistant from 1'.

27. Repeat Problem B26 for R' with the max distance ds.

28. A quadrilateral ABCD is equiangular if L A -- L B ^- L C ^ L D. Prove that an
equiangular quadrilateral is a convex quadrilateral in a neutral geometry.

29. In a neutral geometry prove that the angles of an equiangular quadrilateral are
not obtuse.

30. In a neutral geometry prove that an equiangular quadrilateral is a parallelogram.

31. In a neutral geometry prove that the opposite sides of an equiangular quadrilateral
are congruent.

32. In a neutral geometry, prove that the line joining the midpoints of opposite sides
of an equiangular quadrilateral is perpendicular to both sides.
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33. Prove that in a neutral geometry the diagonals of an equiangular quadrilateral
bisect each other.

34. In a neutral geometry prove that the opposite angles of a parallelogram are
congruent.

35. Prove that in a neutral geometry the diagonals of a Saccheri quadrilateral bisect
each other.

Part C. Expository exercises.

36. Write an essay which describes the contribution of Saccheri to the theory of
parallels. Discuss the suggestion that religious pressure on Saccheri may have
affected his scholarly integrity.

37. Write a long history of the parallel controversy.

7.3 The Critical Function

In Example 7.1.3 we saw a pair of parallel lines that did not have a common
perpendicular. We have also seen many examples of parallel lines which do
have a common perpendicular (e.g., by Problem A6 of Section 7.2 the parallel
lines that are determined by the bases of a Saccheri quadrilateral). Thus it
seems that there two tyres oft,-l tore t
perpendicular and those that do not.

To help understand. the, diffexences..between,these two types of parallel
lines, we develop the idea of the, critical It will help us determine
when one line is `just barely parallel" to another line. We shall see in the
next chapter that this pz:-pPrt44 c if hems `inet harety ++&=a g uiv a to
"there is cammort_perpeacli ila ." The critical function is also the key
to the surprising and very basic All y- No ,Theorem (Theorem 7.3.10). It
will tell us that iu teuSra).geou3etry wp have a uzuque. paralle(_Iol through
P l..for.Q a,ch,oice -of. -aadl,then ve_haze-a unaque.paraUW-far.alLchoices
oPand

Theorem 7.3.1. Let I be A_l n_e in a negt r eometr,X and lfc . Let D be
the aot Q xhe ,from_,P..,to T_.[._:heaa..WWfal 0-wl eenever

DPC 90.

PROOF. If m(LDPCI = 90 then PC I.] by Theorem 7.1.2 and so the theorem
is true in this case. If m(/ DPC) ;-> 9-0 let A be a point on the same side of
jD as C such that mj.L DPA)= 9Q. See Figure 7-18. Then iA*11 l and int PC)

lies ot1 the opposite side of P A as D. Since all of I lies on one side of P A,
PC n1=Q.
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Figure 7-18
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The preceding theorem tells us that if L P .l is lam tlg)1? (for
example, at least 90) then nr dae Inters. ct,1. On the other hand, cer-
tainly for some choices of C (say on 1) P does intersect 1. Hence ifif ntPC').
i small e n gh Pn Z4Qa This dichotomy will lead us to the
definition of the critical number for P and 1. Because the definition uses the
notion of a least upper bound, we first review that idea.

Definition. If 9 is a set of real numbers, then r c- l8 is a least upper bound of
-4 (written r = lub -4) if

(i) b < r for all b c- M; and
(ii) ifs < r then there is an element bs E . with s < bs.

Thus tub -4 is the smallest number which is greater than or equal to
every. numberin .4. In advanced calculus it is shown that if . is non-empty
then 9 has a unique least upper bound if 2 is bounded (i.e., if there is some
number N with b< N for all b e -4).

Example 7.3.2. Let 9 _ { - (1/n) In is a positive integer}. Show that 0 =
lub .4.

SOLUTION. Since - 1/n < 0, part (i) of the definition is satisfied. Suppose
that s < 0. Let k be an integer greater than -1/s. Since s < 0, k is positive
and -1/k e . . Because -1/s < k we see that - s > 1/k, or s < -1/k.
Hence the second condition is satisfied. Thus 0 = lub -4.

Definition. Let l be a line..irt ne_uSral goo el Y,and let _P_.# 1. If D is.the foot
of...tlae_.perpendicular from_P_to._Llet

and r = m(/ DPC1),.

ical number for P and l is

r(P, l) =tub K 11

K(P,1)contains .She.mcrosuro-QUllangles witai,.Yerifa a.t.P-and-such-that
one side of the angle, is perpendicular to 1 and the,o1her,_side..intersects..1.
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r(P,1) is the largest. of these numbers and a priori _may. Qrinay_-nnl..be:in
this .set. We will see in our first theorem that i,- m([ DPC)P 1 then
P isxhe: fist zaxshaLdoes trot rtes i 1 sp that r,(P (P,;l).

In Problem A3 you will show that i)fg ..V

and so r!1? Il = QO fnr all lines and all points P4. We shall postpone the
calculation of r(P, 1) for a nontrivial example in -*' until after Theorem
7.3.3.

Before we can use the critical number, we must show that it exists, i.e.,
that sexists. But this is immediate because Theorem 7.3.1 shows
that each_of-the_numbersinK(P,.1.) is.lessthan 90. K(P,.l). is not empty be
cause if C e 1, C 0 D, then m(LDPC) e K(P, 1). Thus K(P, 1) is a nonempty,
bounded set and so has a unique least upper bound (which is at most 90).

Theorem 7.3.3. In a neutral geometry let P I and let. D be the foot of the
F-perpendicular f r o m P . to 1. if n B CI r(E11 _ on j

in DPCI -r1

PROOF. First suppose that m(L DPC) = r(P,. We will show that PC n
I = 0. Assume to the contrary that PC intersects I at a point R and let S
be any point with D-R-S, as in Figure 7-19. Then R E int(/ DPS) so that

m(LDPS) > m(LDPR= in LDPC=r(P;1).

Figure 7-19 Figure 7-20

But-PS n I =IS} so that m(DPS) && 0, which contradicts the fact that
r(P, 1) is the least upper bound of K(P,1). Hence if m(LDPC) = r(P, 1) we
must have PC n 1= 0. Note also if B-P-C then m(L DPB)- ?9-0- By
Theorem 7.3.1, PB n_ 1_=0; Hencerl! i nPC - r P 1 th >

® Next suppose that / DPC) > r(P, Let E be a point on the same side
of PD as C with m(L DPE) = r(P, l ). See Figure 7-20. As noted at the end of
the previous paragraph, 2F,4 Int(PG) and l lie on _ opposite _ sides of Pk
(Why?) Hence PC n I = 0 if m(LDPC) > r(P, l).

Finally suppose that m(L DPC) < r(P,1). We will show that PG n
10 0. By the definition of a least upper bound there exists A.-n.-umber s..=_

_m(L DPF) E KIP= l with m(L DPC < s. Since s e K(P,1), PF intersects I
at a point A. See Figure 7-21.
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Figure 7-21 Figure 7-22

_hf_A_is on the same side of PD as_C,then C E int(/ DPF) (Why?) so that
by the Crossbar Theorem P intersects DA and hence P n 10 0. If
A is on the opposite side of PD as C let A', be the unique poiatwitii__D-A'
and AD DA'. See Figure 7-22. Then by SAS (DPA' n-, L DPA. C E
int(L DPA') and as before P intersects DA' and hence 1. Thus if m(L DPC) <
r(P,1) then PC n 10 0.

Note that Theorem 7.3.3 says that
if__ m(L DPC) <. r(P l ). In particular

L ,DPC).
The proof of the next corollary is left to Problem A2. This result shows

the connection between the critical numbers and EPP.

Corollary 7.3.4. Let..l.be.,a..line,.in.,c-.neutr_al.geometry and.-P:be..:a,point..not
on 1. ln L' RarlP onl,'.:if
r(P,1) < 90.

Example 7.3.5. Let P = (a, b) E 0-0 with a > 0. If 1= 0L, find r(P, 1).

SOLUTION. First we must find the foot, D, of the perpendicular from D to 1.
By Problem B19 of Section 5.3, the line through P perpendicular to 1= oL is
0L where r = a2 + b2. Thus D = (0, r). Let C = (a, b + 1). We shall
first shown that r(P,1) = rH(LDPC) and then compute mH(LDPC). See
Figure 7-23.

Figure 7-23
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Clearly PC n I = 0 so that r(P, 1) < mH(L DPC). However, if A e
int(L DPC) then PA is a type II line and must intersect 1. Hence r(P, 1) >
mH(L DPC) so that r(P,1) = mH(L DPC).

We now compute mH(L DPC).

TpD _(-b,a) and Tpc_(0,1)
so that

mH(LDPC) = cos'
a2 +

a

b2) =
cos-1 0) = tan l l a 1.

This gives a value for r(P,1). It will be useful to see how this can be ex-
pressed in terms of the distance from P to 1. Recall from Equation (2-10)
of Section 2.2 that we can parametrize 0L, as

x = r tanh(s) y = r sech(s)

where s is the distance from D = (0, r) to B = (x, y). Thus if t = dH(P, D),
we have

brsech(t) 1

a r tanh(t) sinh(t)

so that

1

sinh(t
r(P 1) = tan-

The reason we wanted to express r(P, 1) in terms of dH(P, D) in the previous
example is given by the following theorem which says that r(P.1)defends
iust,yp dj&j th at e from P to 1.

Theorem 7.3.6. Let P and P' be points in a neutral geometry and let 1 and
I' be lines with P 0 1 and P' 0 1'. I d(P 1) = d(P',l' then r(P 1) = r(P' l').

PROOF. We shall show that K(P, l) = K(P',1'). This implies that r(P,1) _
lub K(P,1) = lub K(P', l') = r(P',1'). Let D be the foot of the perpendicular
from P to I ant D' >2g thQ of f the endicular from P'_to, l'. By hypoth
esis DP ^ D'P'.

If S E K(P, 1) then there exists a point C E I with m(L DPC) = s. Choose
C' E I' See Figure 7-24. Then LPDC AP'D'C'
by SAS so that m(LDPC) = m(LD'P'C'). Hence s e _K I') so that
K(P,1) c K(P',1'). Similarly, K(P', I') c K(P,J) so that K(P, 1) = K(P', F).
Thus r(P, 1) = r(P',1').
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1

D

Figure 7-24

As a consequence of Theorem 7.3.6 we may make the following definition.

Definition. The

IIlsL= r(P L)

where I is anv line and P. is anv point whose distance from I is t.

In Example 7.3.5 we saw that thecritical, function fox , ..was 11(t)=
ta,n,-i-(i./sinh(t)). The formula was derived for a particular line and point,
but according to Theorem 7.3.6 the computed result depends only on the
distance. In Problem A4 you will show that in Ye.17(t) is a strictly decreasins
function. This is a special case of the next theorem.

Theorem 7.3.7.
i.e.,

i t' > t then t' <

rO

PROOF. Let I be a line, D e 1, and let P, P' be points so that P'-P-D, P'D 1
1. P'D = t'. and PD = t. Choose C, C' on the same side of PD so that
m(L DPC) = m(L DP'C') = 11(t). See Figure 7-25.

By the proof of Theorem 7.3.3, PC u 1. By Problem A3 of Section 7.1,
PC' PC. and D lie on opposite sides of PC, P C' n 1= OS. Thus

1 so that 11(t') = r(P ,1) < m(L DP'C') Wit).

1

Figure 7-25
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Among other things, Theorem 7.3.7 implies that 444Ce) S fo.r;s.,ome

v However, it. might be possible that
11(t) 90. for .some small valuesof_t. Our next big task is to show that if

This requires a
preliminary result.

Theorem 7.3.8. In,_a__neutral geometry, if 17a) < 90 then II(a/2) < 90.

PROOF. Let l be a line, D e 1, and choose P, P' so that P-P'-D, PD I
1. PP' = P'D = a/2. Choose C with m(L DPC) =11(a) < 90. Finally let
/' h he nio ,,tee 1. ..... xpendicular to PD aJ P'. There are two possibilities:
either PC n 1' 0 0 or PC n 1' = 0. See Figures 7-26 and 7-27.

1'

I

P'

D

Figure 7-26

1'

11(a)

Figure 7-27

First suppose that PC n 1' = A . Choose B with P-A-B. Since
L DP'A is a right angle and B e int(L DP'A) (Why?), m(L DP'B) < 90.
We will show that H(a/2) < m(L DP'B). We do this by showing that P n
1= 0. Since m(L DPA) =11(a), TA -.n l = QS. Hence P and B are on the
same side of 1. Since P-P'-D, P and P' are on the same side of 1. Hence
P ,pd_B_AreQnthesamesideoflandPB_nl=0.

If P'-B-E then P' apt. . are on opposite sides Qf_P `Thu .ansl
are _on nnnoe sides of _ (Why?). Hence 1 n 1= so that P' n
1 = OS. This means that 7(a/2) = r(P', 1) < m(LDP'B) < 90.

POn the other hand, if EE c) -- then II a Z) = r(P,1' m 4P
_IItj < 90. In either case, 1I(a/2) < 90.
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Theorem 7.3.9. Vin. a_ neutral geometry, 'f H(a) ;9 2U.faC
tinI4D<90orally
PROOF. For each positive integer n, let a,, = a/2". Then by Theorem. 7.3.8,
I7(a,) < 90 since 17(a) < 90. By induction 90 for each n. Now suppose
that t has been given. Choose n large enough so that

a
a. < t.

Then by Theorem 7.3.8,11(t) < 90.

The Euclidean Parallel Property (EPP) assumes that for each line I

and each point P 0 1 there is only one line through P parallel to 1. The next
theorem is one of the most beautiful and surprising theorems in elementary
mathematics. It says thatin-ordPr tD Y=d the a, rtic lar-ucutral.geometr-y,_
satisfies EPP it is sufficient t.check Qn,1.y..czne..liaee..andsne:,.point_ncat-.on
th j e. The result is essentially due to Saccheri.

Theorem 7.3.10 (____ . _ a. ina neutral- geometry, w-i,&

parallel to 1', then EPP holds.
A.

PROOF. Since there is a unique parallel to 1' through P', r(P', I'1 = 90 by
Corollary 7.3.4. Thus 17(a) = 90 for a = d(P',1'). By Theorem 7.3.9, I7(t)=
90 for all t > 0. Hence r(P_1) = 90 for eve line I and every point P 1.

Thus by Corollary 7.3.4 again there is only one line through P parallel to
1. 1"]

We should note that the All or None Theorem implies that if there.is
one,-point-where,,.para1iels..arenctt_. unique,then.they are not unique any-
where. This is formalized in a second parallel axiom.

Epara),1,O .

eometry. Furthermore, to see whether HPP or EPP holds
it suffices to check exactly one line and one point not on the line.

eomesry a,ats :P?.
eometrv is aLne etr t t

We shall investigate some of the properties of hyperbolic and Euclidean
geometries in the next two chapters. We will see that * R .li an o-
mtry and X_s is a hvperbolic eeome, Yin Problems A5 and A6 below.



7.3 The Critical Function 195

PROBLEM SET 7.3

Part A.

1. Find the least upper bound for each of the sets:
i..4, = {sin(x)Ix a 68}
ii..42 = {(-1)"In is an integer}

iii. -43 = {rIr is a rational number and r2 < 2}

2. Prove Corollary 7.3.4.

3. Prove that in the Euclidean Plane r(P, 1) = 90 for every line I and every point

P 0 1. Hence 17(t) = 90 for all t.

4. Prove that in the Poincare Plane 17(t) = tan-1(1/sinh(t)) is strictly decreasing:
if t < t' then 17(t) > 17(t'). (Use calculus.)

5., Prove that { RZ, 'E, dE, mE} is a Euclidean geometry.

6. Prove that { H, Y,,, dH, PH} is a hyperbolic geometry.

7. In . let I = 0L. Let si be the intersection of H with the Euclidean line through
0 = (0, 0) and P = (a, b) where a > 0, b > 0. See Figure 7-28. Prove that .4 is
equidistant from 1 in .*. (Note .4 is not a line in .'.)

Q

0
Figure 7-28

8. In Problem A7 let Q = (0,1). Prove that mE(L POQ) = 90 - 77(to) where to is the
hyperbolic distance from d to 1.

9. In Problems A7 and A8 prove that s d'= {R = (r, s) a H Ir > 0 and d(R,1) = to}.

10. If l is a line and P 0 1 is a point in a neutral geometry which satisfies HPP, prove
that there are infinitely many lines through P parallel to 1.

11. Prove that in a Euclidean geometry every Saccheri quadrilateral is a rectangle.

Part C. Expository exercises.

12. Why is the All or None Theorem so surprising? What other names might be
given to this important result, and why?



CHAPTER 8

Hyperbolic Geometry

8.1 Asymptotic Rays and Triangles

In this chapter we continue the study of the theory of parallels with an inves-
tigation of some basic consequences of the hyperbolic parallel property.
We shall be interested in, among other things, the sum of the measures of
the angles of a triangle, in the behavior of the critical function, in classifying
types of parallel lines, and in the determination of an absolute unit of length.

The key stet in this study is the development of the concept of asymptotic
rays. Although this material belongs to the realm of neutral geometry, it is
studied in this chapter because its purpose is to aid in the discussion of
hyperbolic geometry. Furthermore, in a Euclidean geometry, the concept
of asymptotic rays is superfluous-it adds nothing to the concept of paral-
lelism. (See Problem A3.)

Definition. Let A, B, C, D be four points in a neutral geometry such that no
three are collinear, with C and D on the same side of AB, and AD BC. Then
the set

is an open triangle (o

LDABC = AD u AB u BC

We have sketched some open triangles in Figure 8-1. The open triangle
in part (a) is in X82 while those in (b) and (c) are in H. Part (d) illustrates the
standard "pictorial" representation of an open triangle which we shall use.

Definition. Let LDABC be an open triangle. BC is asymL-to-110 to
AD if for every E e int(L ABC), BE intersects A.

196
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B C
D 8C

---- B
A D

(a) (b)

D A B C

Figure 8-1

197

In Figures 8-1(a) and 8-1(b), BC is strictly asymptotic to AD. In Figure
8-1(c), BC is not strictly asymptotic to AD. Because of the way the definition
is worded, a ray is never strictly asymptotic to itself. The idea is that BC is
strictly asymptotic to AD if there are no rays interior to L ABC which are
parallel to AD. Two rays will be asymptotic if they are either strictly asymp-
totic or one is a subset of the other. More formally,

Definition. Two rays PQ and RS are uivalen (written PQ - RS) if either
PQcRS..orRS,c P

tPtotl)or
Theray BC is symto the ray AD (written BC I AD) if either BC is

strictly asymptotic to BC - AD.

Our first goal is to show that "asymptotic to" is an equivalence relation.
Except for the reflexive condition, this result is quite technical. On first read-
ing you may wish to skip the proofs of Theorems 8.1.1, 8.1.5, 8.1.6 and 8.1.7.

The first step is to show that the notion of asymptotic rays depends only
on the directions of the rays and not their endpoints. This idea is made
precise by the definition of equivalent rays and the next two results.

Theorem 8.1.1. In a neutral geometryif BC BC', and.BCI AD, then B'C' I AD.

PRooF. By Problem Al, - is an equivalence relation. Hence if BC - AD,
then B'C' - AD also and B'C'jAD. Thus we may assume that BC AD; that
is, BC is strictly asymptotic to AD.

Case 1. Assume that BC (-_,970'. If B = B' then BC = B'C' and so we
are done. We therefore may consider the case B B'. In this case B'-B-C
so that B;C' = By hypothesis BC is strictly asymptotic to AD.

Let E E int(/ AB'C). We must show that B'E n AD A 0. Suppose to
the contras that n_AD = QS. We claim that then BII AD. See Figure
8-2. First note that if G-B'-E then B'G n AD =0 because B'CII AD and
G lies on the opposite side of B7 as A and D. Next if H-A-D, then B'E n

since E and H are on opposite sides of AB'. Thus B -T n AD'
(B-'E n AD) v (B -T n AH) (B-`G n AD) _ and B'E AD.

B the Exterior Angle Theorem a lpp ied to pB'BA, L CBA > L CB'A >
L CB'E so that there exists a point F e_int(.L.CBA) with L CBF ^- L CB'E.
Then BF B'E (Why?). Thus BF lies all on one side of_B'E as does AD. Since
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Figure 8-2

8 Hyperbolic Geometry

B and A are on opposite sides of HE (Why?), BF n AD = 0. However,
this contradicts BC I AD, so that RTE n AD # 0. Hence BYIAD.

Case 2. Now S B C' c j C and B B'. Then B'-C and BC
BC'. Let E e int(LAB'C). See Figure 8-3. We must show that BE n AD 0.
Assume to the contrary that B'E n AD = 0. By an argument similar to the
one used in Case 1, B'E A. We first shall show that E e int(L ABC').

Figure 8-3

Since E e int(L AB'C'), E_and A re___n the s mie side _-BC'..E
and_aze on the_same_sideof.Al'. Since _and Bare on opposite

es of AB' Thus..8 _L by the Z_Thgorenn. B'F lies on one side
of AD since B'EII AD. B and B' are on the same side of E. Thus B'E lies on
the oppo to side of AD asQif_B=A=Q. Hence B'E n ;0Q = 0. This means
that B nAB.=_Qi so that B'an E_lis o ,the sami side of AB. Thus.Eand

lje p tYJe_same_s de of AB and so E e int(L,ABC').
Now choose F with B-E-F. ILBE_rnAD then 9Iz_in rser c

eiiher_BB'-Qr_ E1zy__,Pasch's_TheQrgr. But this is impossible since ` DI B
and_D 1_ U. Hence BE n AD

Since E e int(L ABB'), intersects ATE' at a point R. Since E e
int(L AB'C'), E and B are on opposite sides of AB' so that &:--- -F.
A and R are on the same side of BE while R and F are on opposite sides of
B Hence F and A are on-onT B'E. Since D
have
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Thus since BE n AD = 0 and EF n AD = 0, and B-E-F, we have
BE n AD = QS. However, this contradicts BC' I AD. What caused the con-
tradiction? It was the assumption that B'E n AD = 0. Hence it must be
that B'E n AD : 0 when E a int(L AB'C'), so that B'C' I AD.

The proof of Theorem 8.1.1 became quite involved as we carefully verified
different cases and kept track of which side of a given line a certain pair of
points were on. The next result is much simpler to prove and is left as Problem
A2.

Theorem 8.1.2. In a neutral geometry, if AD - A'D' and BC I AD, then BC I A'D'.
C.a2 _

Theorem 8.1.3. In a neutral geometry, if AD - AT T, BC - BY', and BC I AD,
then B'CI A'D'.

PROOF. By Theorem 8.1.1, B'C' I AD. By Theorem 8.1.2, B'CI A'D'.

As we have mentioned before, if we are given a line l and a point P there
may not be a unique line through P which is parallel to 1. However, the next
result shows that there is a uniqueness result in the case of asymptotic rays.

Theorem 8.1.4. In a neutral geometry, given a ray AD and a point B 0 AD,
there is a unique ray BC with BC I AD.

PROOF. Let A' be the foot of the perpendicular from B to AD and choose
Y e AD so that AD. Note that $C can be asymptotic to AD A'D'
orb if C and D' lie on the same side of A'B. See Figure 8-4.

A D A' D'
Figure 8-4

If C is an the sj. si e of A'B as D' then by_the definition of the_cri tical,._
function, BC I AD' if and_ only. if mgt, A'BC,)_ = 77 BA')_ AD). Since
there is a unique ray BC with C on the same side of A'B as D' and
m(L A'BC) = 17(BA'), the result is immediate.

The proof of Theorem 8.1.4 is important on a philosophical level because
it shows that there is a relationship between the critical function 17 and the
existence of asymptotic rays. This relationship will be exploited in the next
two sections.
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We now show that the relation "is asymptotic to" is symmetric. Note
that the only case to prove is when BC is strictly asymptotic to AD, because
if BC I AD with BC - AD then AD - BC and AD I BC.

Theorem 8.1.5. In a neutral geometry, if BCI AD then ADI BC also. -
yUPROOF. We may assume that BC is strictly asymptotic to AD. If 6L==

for the Euclidean_Para11e1,Property_hold0y the ll_or None
Theorem. By Problem A3 the concept of asymptotic is the same as parallel

forso that the result follows immediately. Hence we assume that t) < 9®
all t > 0.

Let- A'-he thefoot_of the_perpendicula from__B_ to _A. Choose D' e AD so
that AD. Let. F. be _the foot of the perpendicular.from.-A to NC. See
Figure 8-5. Now m(L A'BC) = H(A'B) < 90 so that by Problem Al of
Section 7.1, F e int(BC).

Figure 8-5

Let E e int(LD'A'B). We must show that AT n BC 0 0 in order for
AD to be strictly asymptotic to BC. There are three cases depending on where

aE lies. If E e int(/ BA'F) then ;FE intersects BF by the Crossbar Theorem
ap ied toAA'BF_Since BF c BF = C. this says

Z) The second case is E e int(A'P). However, in this situation
The last, case occurs-when d e int D'A'F). This is the one illustrated

in Figure 8-5.
Let G be the foot of the perpendicular from B to ;FE. Since L BA 'G is

acute (Why?), Ge A'E. If G nt.._LA'_BC then either G C BC or G is on the
opposite side of BC as A. Either way A'E intersects BC and A'D_JBC. Hence
AD=.

On the other hand, if G e Int L A'BC then since BG < BA' there is a
unique point H with B-Ii=A' choosey on
of B A' as D'sQthat. H K 1BA'. Choose L on the same side of B A as C with
/ HBLc L GBC < Z A'B. Because BCJA'D', it must be that BL intersects
AD' at some point
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Since HK A'DLPasch's Theorem applied to ABA'M implies that HK n
BM = {N} for some N. Let ,C_ that RP DIV. Then NBH f-- APBG
by SAS. But this means that LBGP is a right angle since tBHN is a right
an le. Hence P E A'E. Since P and E are on the same side of AB (namely the
side that contains D'), P E A'E. Thus A'E n BC : 0 and AD' I BC. Since
ADhA'D',wehave ADIBC.

In order to prove the transitivity of the asymptotic relation we need the
next result. It tells us that if three rays are asymptotic, then there is a common
transversal to the lines that contain them.

Theorem 8.1.6. Let AB', CD and EF be distinct lines in a neutral geometry.
If AB I CD and CD I EF then there is a line I which intersects all three lines AB,
CD and U.

PROOF. Since the lines are distinct, the rays cannot be equivalent. Thus AB
is strictly asymptotic to CD, and GD1s s rictlSymn ot, to EF.

If A and E are on opposite sides of ?-0) then AE intersects CD (as well as
AB and EF). Hence in this case we may let l = AE. See Figure 8-6.

F

D
a

I

Figure 8-6 Figure 8-7

Now assume A and E are on the same side of C. If A E. CE.e may gx
l = CE and be done. See Figure 8-7. Hence we assume 1, CE. Now D CE'
Q L S J S C EF n CD , which. A .And eiSher
on the same side of C r4 op,.p .site..si_des oi_GE. If they are on the same
side then A E int(L DCJ, Since CD EF, CA n EF 0 0, and we may let
1= C. See Figure 8-8.

Thus we are left with the case and E are_on the same side of CD while A
and..IL.amoal opposite sides of CE. We will show that j = ( F, is a common
transversal. See Figure 8-9.

E

B

F

Figure 8-8

D
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A75 intersects CE at a point G. Choose H with C-D-H so that DPI- - CD
and thus DH (AB. L HDG > L DCG by the Exterior Angle Theorem. Hence
we may find J E int(L HDG) with L HDJ,-- L DCG. Then bill CE. DJ
intersects AB at a point K since EH I A.

We now apply Pasch's Theorem to LADK. Since CE intersects AD, it
must intersect AK (because CEIIDK). Thus CE intersects AB and we may
let l = U.

Now we can prove that I is transitive.

Theorem 8.1.7. In a neutral geometry if AB I CD and CD I EF then AB I EF.

PROOF. If any two of the three rays are equivalent the result is immediate.
Hence we may ame that the three lines AB U), and EF are distinct. By
Theorem 8.1.6 there is a line l that intersect j) three lines. We may
replace the original ray with equivalent_r-ays whose endpoints lie on 1. That
is, we may as well assume that A, C, and E lie on a single line 1. Thus either
A-C-E, C-A-E, or A-E-C.

Snpposethat A-C- j and let G e int(LEAB-). Since ABI CD, AG
inte sweets CD_a some point__I7. See Figure 8-10. Choose I with Cj HjJ
and J with A-H-J. H1.I EE by Theorem 8.1.1. Since J e int(L EHI) (Why?)
HJ intersects P. But HJ c AG so that j-6 inters c tc FF. Thus ABI EF if
A-C-E.

Figure 8-10 Figure 8-11

Now sunnoe=.A=E. Through the point E.there is a unique ray EG
such that E I AB by Theorem 8.1.4. Thus we have CD 1 AB and AB I EG and
C-A-E. See Figure 8-11. By the first case in our proof, CD I EG. By Theo-
rem 8.1.5, ED. But -thereis a_ pique ray through E asymptotic tc CD,
namelv EFI CD. Hence E _ansi FFTI AA . Thus ABIET by Theorem
8.1.5.

Finally, suppose th4t_A-E-C. This ,is.the_same_as.the case_C-A-E_
in the above paragraph bnt ith..A$_.and..,EEintexehanged. Hence EK AB
so that AB EE by Theorem 8.1.5.
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Since by definition ;FBI AB, Theorems 8.1.5 and 8.1.7 prove that "asymp-
totic to" is an equivalence relation on the set of rays.

Definition. The open triangle ADABC is called an asymptotic (or closed)
trian e if AD I BC.

Suppose that ADABC is an asymptotic triangle. If 0 denotes the equiva-
lence class (under I) of AD (and of BC), then some authors would write the
triangle as AABSQ. 0 is a "point at infinity" or an "ideal point." We shall not
use this terminology except in Problem B 13.

Theorem 8.1.8 (Congruence Theorem for Asymptotic Triangles). In a neutral
geometry, if pDABC and ASPQR are two asymptotic triangles with AB ^t
PQ and LABC ^- LPQR, then LBAD ^- LQPS.

PROOF. If the angles are not congruent, then one is larger than the other.
We may assume that L BAD > L QPS. Choose E E int(L BAD) with
L BAE ^- L QPS. Since AD I BC, AE intersects BC at a point F. See Figure
8-12.

B

D P

Figure 8-12

Let T E QR, with QT ^ BF. Then QABF ^ pP T by SAS so that
L BAF ^- L QPT. But L QPT < L PS Why?) which means that L QPS
L BAE a, L QPT < L QPS a gontradjctk n. Thus we must have L BAD
L QPS.

Definition. Two lines l and 1' are s m ioti. or asymptotically parallel
(written II 1'), if there are rays AD c l and BC czz l' with AD I BC.

If AB I CD then it certainly must be true that AB II CD. Hence asymptotic
lines are parallel. If a geometry satisfies EPP then the converse is also true
(Problem A3). However, the situation is quite different in a geometry which
satisfies HPP.

Theorem 8.1.9. In a neutral geometry which satisfies HPP, if two distinct lines
l and 1' have a common perpendicular, then the lines are parallel but not
asymptotic.
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PROOF. Suppose that AB is per ep ndicular to 1 at A and L'.a B. By Theorem
7.1.2,. Since we assume HPP, H(AB) < 90. Thus I cannot contain a ray
that is asymptotic to a ray in 1'. Hence I is not asymptotic to 1'.

In Section 8.3 we shall show that the converse of Theorem 8.1.9 is true:
In a hyperbolic geometry if I I I I' but 1,f' 1' then I and 1' have a common per-
pendicular. We shall also see that if Il1' then there are points on I and 1'
arbitrarily close together so that 1 approaches I' if 1 is asymptotic to 1. On the
other hand if 1 is parallel to I' but not asymptotic then the lines 1 and l' actually
pull apart. Note how this contrasts with the situation in 9 where two lines
are parallel if and only if they are equidistant.

PROBLEM SET 8.1

Part A.

1. Prove that - is an equivalence relation on the set of rays in a metric geometry.

2. Prove Theorem 8.1.2.

3. Prove that in a neutral geometry which satisfies EPP, ill' if and only if 111'.

4. Let {., 2 d, m} be a neutral geometry such that whenever 111112 then there is a
line I' perpendicular to both 11 and 12. Prove that EPP is satisfied.

5. Let LDABC be an open triangle. What should be the definition of the interior of
LDABC? Show that int(/DABC) is convex.

6. In a neutral geometry, suppose that QDABC is an asymptotic triangle. If l n
int(LDABC) 0, prove that I n LDABC 0 0.

7. In a neutral geometry, if AB IJ CD, CD l1EF and A-C-E prove that A B IIEF.

8. Let A = (0, 1) and D = (0, 2). Sketch two different asymptotic triangles QDABC
in Y for some choices of B and C. How many are there? If E = (1, 1) find the
unique ray EF with EFIAD. (See Theorem 8.1.4.)

9. Let A = (0, 1), D = (l/,,/, 1/J) and E = (0, -) and repeat Problem A8.

10. In the Poincare Plane let A = (1, 1) and B = (1, 5).
(a) Sketch five rays asymptotic to AB;
(b) Sketch five rays asymptotic to BA.

Part B. "Prove" may mean "find a counterexample".

11. In a neutral geometry prove that "asymptotic to" is an equivalence relation on
the set of lines.

12. In a neutral geometry suppose that QDABC is an open triangle. If I r)
int(LDABC) : 0 prove that 1 n ADABC : O. See Problem A6.

13. Show that there is a bijection between the set of ideal points in . (that is, the set
of equivalence classes of asymptotic rays) and the set H u {*}, where * denotes an
extra point not in R. (Hint: * will correspond to the class of an upward pointing
type I ray.)
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Throughout the history of geometry, the Euclidean parallel postulate sparked
an enormous amount of interest. It gradually became apparent that this
postulate was intimately tied to a concept called the angle defect which we
define and investigate in this section.

Definition. Let- LABC be a triangle in a protractor geometry. The
of LABC is

b(LABC) = 180 - (m(LA) + m(LB) + m(LC)).

We already know that for a Euclidean geometry b(LABC) = 0 for all
triangles (Theorem 7.2.9). We have seen examples in which b(LABC) < 0
(the Moulton Plane) and in which 8(LABC) > 0 (the Poincare Plane). We
also know that for a neutral geometry b(LABC) >_ 0 (Theorem 7.2.8). Gauss
recognized that in order to prove EPP is satisfied itwas sufficient to prove
that b(LABC) = 0 for one triangle. In fact, he actually tried to compute the
defect of a large triangle on earth but could not be sure of the exact value due
to experimental error.

In this section we will investigate the properties of the defect of a triangle
under the assumptions of HPP. We will show that for any LABC in a hyper-
bolic geometry, b(LABC) > 0. In fact we will show that if t is any number
between 0 and 180 then we can find a triangle whose defect is exactly t! To
do this requires a detailed study of the critical function 17. The first step in
this program is to generalize the Exterior Angle Theorem to asymptotic
triangles.

Definition. Let LDABC be an open triangle and let P and Q be points in
the neutral geometry with P-A-D and Q-A-B. Then both LPAB and

Ego f LDABC whose remote interior angle is LABC.LQAD are xterior an
(See Figure 8-13 Of course, L PAB ^ L QAD.)

Figure 8-13

N

One word about our terminology. We will now speak of "a hyperbolic
geometry." Remember that this is any neutral geometry which satisfies HPP.
It need not refer specifically to the model which we call the Poincare Plane.
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Theorem 8.2.1. In a hyperbolic geometry, an exterior angle of an asymptotic
triangle is greater than its remote interior angle.

PROOF. Let QDABC be an asymptotic triangle and choose P so that P-
AD. We must show that L PAB > L ABC. Choose. E on the same side
of AB as C with ,AB=PAB. See Figure 8-14. By Theorem 7.1.1 there
is a line perpendicular to both AD and BE. By Theorem 8.1.9, BE AD but
BE X AD. Hence BE n AD = 0 so that E 0 int(L ABC). Because BC AD,

A ABE),E int(BC). Sin a> _ the E -in

so that L ABC < L ABE ^ L PAB.

B E

C

P A D
Figure 8-14

Theorem 8.2.2. In a hyperbolic geometry the critical function H is strictly
decreasing.

PROOF. We must show that H(a) > II(b) if 0 < a < b. I t_B= rl _-G th
AC =a and BC = h. Choose P, Q, R all on the same side of BC' with
m(L CBP) = 17(b), m(L CAQ) = 11(a) and m(LACR 20 See Figure
8-15. Then RP_I CR and R. In the last section we showed that I is
an equivalence relation, so that MJ AQ. AQABP is therefore an asymptotic
triangle. By Theorem 8.2.1 L CAQ > L CBP_ so that II(a) = m(L CAQ) >
m(LCBP) =17(b).

A

[1 (a)
ri

C R

Figure 8-15

Theorem 8.2.3. In a hyperbolic geometry the upper base angles of any Saccheri
quadrilateral are acute.

PROOF. Let ABCD be given and choose E and F with A-D _E and
B-C-F. Choose P on the same side of AB as E, and Q on the same side
of CD as E with API_AE and.. CQI AE as in Figure 8 16. Note AFC so
that /\PBCQ is an asymptotic triangle. Furthermore, Q e int(LDCF).
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Since AB f-- DC, we have

m(LABP) = II( AB) = H C) = m(j

By Theorem 8.2.1, L QCF > LPBC so that

m(LABC) = m(LBCD) = 180 - m(LDCF)
= 180 - (m(LDCQ) + m(LQCF))
= 180 - (17(CD) + m(LQCF))
< 180 - (17(AB) + m(L PBC) )

= 180 - (m(LABP) + m(LPBC))
= 180 - m(L ABC).

Hence 2m(L ABC) < 180 or m (Z_ ABC) < 90.

We leave the proof of the next theorem as Problem Al. You might want
to recall the proof of Saccheri's Theorem (Theorem 7.2.8) before attacking it.

Theorem 8.2.4. In a hyperbolic geometry, the sum of the. measures of the
angles of any triangle is strictly less than 180.

Note that the defect of any triangle in a hyperbolic geometry is strictly
positive. This contrasts with our earlier result that in a neutral geometry
S(LABC) >- 0 for all triangles (Theorem 7.2.8). Before proceeding further
we state the Defect Addition Theorem whose proof is left as Problem A2.

Theorem 8.2.5 (Defect Addition). In a protractor geometry, if LABC and
A-D-C then

8(LABC) = S(LABD) + S(LDBC).

The next result is surprising because it runs contrary to our intuition.
We already know from the SSS Congruence Theorem that the lengths of
the three sides of a triangle determine the triangle up to a congruence. In
a hyperbolic geometry, the measures of the three angles completely deter-
mine the triangle up to a congruence!
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Theorem 8.2.6 (AAA. Congruence.-Theorem). In a hyperbolic geometry,
given /ABC and pDEF, if L A ^ L D, LB ^ L E, and LC -- L F, then
AABC pDEF.

PROOF. If the triangles are not congruent, one side of one trianek is shorter
than the corresponding side of the other triane. We may assume that
DE < AB. Choose G c- AB so at GB - See Figure 8-17. Choose H
on the same side of AB as C so that L BGH L EDF. Then GH I IAC (Why?) "
By Pasch's Theorem. sH njjs1 int_exsest_BCan_a.pnint_,K since GIG n AC =
0. Then LGBK QDEB,,..by-.ASA. Hence b(AGBK) = b(ADEF).

On the other hand, by Theorem 8.2.5 we have

b(AABC,_ = b(AABK) + b(AAKC)
= b(AAGK) + b(AGBK) + b(AAKC)
= b(AAGK),+ b(ADEF) + b(AAKC?
> b(ADEF) °

where the last inequality follows from Theorem 8.2.4. But by hypothesis
we have b(AABC) = b(ADEF). Hence if AABC ADEF we have a
contradiction. Thus AABC ^- ADEF.

Our next goal is to show that, for a hyperbolic geometry, the critical
function takes on all values between 0 and 90. The first step is to show that
limX- H(x) = 0.

Theorem 8.2.7. In a hyperbolic geometry, lims-. H(x) = 0.

PROOF. Since 17(x) is a decreasing, positive function the only way in which
the conclusion could be false is if there is a positive number r with H(x) >
r for all x. We will show that this assumption leads to the existence of a
triangle of defect larger than 180, which is impossible. This triangle is found
as a large triangle whose interior contains a large number of congruent
triangles (which will each have the same defect).
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Let I be a line. For each integer n 0 choose a point A on 1 so that
and d(An, An+1) = 1. (This could be done by choosing

a ruler f for l and letting A. be the point whose coordinate is n.) Let 1' =
be the unique perpendicular to I at A0. For each n > 0 let B. be a point

on the same side of I as B with r. See Figure 8-18.

II

If 17 n) > r for all n. A_.8 intersects AFB at a point C. by the definition
of r(Azl') =17(n). For each n > 0 let D, be the foot of the perpendicular
from to Note AO-Cl-C2-C3

By_ HA, QAQA1D1 - AA,A2D2 ^a AA2A3D3, and so on. Thus for
eachn>_ 0, each of the right triangles has the same defect
Let this defect be a > 0. We now compare the defects of

and LAOAn+1Cn+1 By the Defect Addition Theorem,

S(DAOAn+1Cn+1)= 5(AAOAnCn+1)+S(AAnCn+lAn+1)

= S(/ AOAnCn) +
(5(QAnCn+1Dn+1/+ 6(AAnAn+1Dn+1)

> b(LAOAnCn) + S(AAnAn+1Dn+1)

5(/AOAnCn) + a.

Let do = S(L A0An+1Cn+1) for n _> 0. Then the previous inequality is

dn> dn_1 +a for all n _ 1.

Using this repeatedly we get

d1>d0+a
d2>d1+a>d0+2a
d3>d2+a>d0+3a



210 8 Hyperbolic Geometry

and so on. In general,

If n is large enough then na > 180 so that b 1 1) = d > 180,
which is i jpos_sible. Hence the assumption H(x) > r for all x must be false
and lima + 11(x) = 0.

Now we can show that the critical function H: (0, oo) - (0, 90) is bijective
in a hyperbolic geometry.

Theorem 8.2.8. In a hyperbolic geometry, if 0 < r < 90 then there is a unique
number t with H(t) = r.

PROOF. Let m(LABC) = r. By Theorem 8.2.7, limx-. H(x) = 0 so that
there is a number s> 0 (possibly quite large) with H(s) < r. Choose D e
BC with BD = s. If 1 is perpendicular to BC at D, then BA n I = Q1 since
m(LABC) = r > H(s) = r(B,1). See Figure 8-19.

S

Figure 8-19

For each point X _g int BA) let X' be the foot of the perpendicular from
£IQ C. X X'jl (Why?) and must lie on the same side of I as B. Thus if X e
int(BA), X' e BD. Let " `A' P, .¢

.F = {u = d(B,X') = BX'IX e int(BA) .

f is non-empty and is b lay s = BD. Thus
t. We claim that for this t, 17(t) _ i.

M ,toner oounc

Choose E e BC with BE.. t. Let 1' he the endicular to `R[' at E.
We now show that l' n BA = 0. Sup os . o the con

B Since G e int(BA) we have
a corresponding point G' on BD. GG' I I I' and GG' lies on the opposite side
of 1' as B does. Hence BG' > HF = t, which contradicts-thelacj.that t is.

Thus I' n BA = P5.
If A-B-Hthen H andE lie on opposite sides of theereatdicttlac_.to

BC through B. Since this perpendicular line is parallel to 1', BH n I' = 0 and
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A1'. Hence AKEBA is an open triangle, where K is a point on 1' on the
same side of BE as A. If we show that LKEBA is an asymptotic triangle then
r = m(L ABE) = 17(BE) = 17(t). This is done in the next paragraphs.
.Let M e int(L BEK . We need to prove that EM n BA : 0. If EM n
BA = 0 let N be the footaf j icLlar from M xo B( and let E b"_
psairl with M-P. We now show that M and N are on the same side of

A. EM n BH = 0 (Why?) and EM n BA = 0 so that EM n BA__
Thus E and M are on the_same side_oLBA. Since E and N are on the same
side of BA (because both are in int(BD)),.M_and N are on the same side of BA.
Therefore, BA n MN_=

Since EM n BA is assumed to be empty, ini(HP),tndBAlie-on-apposite--
sidesof EMandsoint(MP) n BAThus NM n BA = 0 which means
that lub .F < BN. But since M a int(L BEK) we have B N =E so that
BN < BE. This contradicts the fact that lub_,F BE. Hence it must be
that EM L)BA Ql. Thus EK I BA, so .that n IC BALtvca is aD-aspnpiatic
'i n e tLcLI?(

Since 17(x)_is strictly decreasing._tl_iexg.,_can_beonly_one.value_of_xsuch.
thaU(x.1_. ,.r, Hence there is a unique value t such that 17(t) = r.

Corollary 8.2.9. In a hyperbolic geometry limx-o. II(x) = 90.

As our final result we would like to show that if 0 < r < 180 then there is
a triangle whose defect is exactly r. It should not surprise you that the proof
will be based on a continuity argument.

Theorem 8.2.10. In a hyperbolic geometry, if 0 < r < 180, then there is a
triangle whosedefect is exactly r.

PROOF. First we construct a triangle /ABC whose defect is eatethal0.r
Let t be the (unique) number such that II(t) = 2(180 - r. Choose points
A B C and D with A-D-C BD' 1 AC and AD = BD = CD = t. See
Figure 8-20. Then L DAB L DBA -- L DBC L DCB. Since AB n DB 0
0, m(LDAB) < 17(AD) = II(t) = 4(180 - r). Hence

b(AABC) = 180 - (m(LDAB) + m(LDBA) + m(LDBC) + m(LDCB))
= 180 - 4(m(LDAB))
> 180-4.4(180-r)=r.

Lets = m(L BAC). For each number x with 0 < x < s.theze.is_a..point_
P x. By the Crossbar Theorem__APx
intersects BC at a_point O. See Figure 8-21. We define a function g: [0, s] -->
Il by the rule

0 ifx=0
g(x) = S(L ABQx) if O < x < s

S(AABC) if x = s.
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Figure 8-21

Suppose that we are able to show that g is a continuous fi,n .ion. Then
since

g(0) = 0 < r < 6(LABC) = g(s)

the Intermediate Value Theorem says that there is a number x with 0 < x < s
and a(x) = x. Then b(AABQ) = r and we would be done_

To show that q is continuous at 7 .we must show that ifs > 0 then there
is a number a > 0 such that whenever x e [0, s] and Ix - zI < 8 then
Ig(x) - g(z)I < e. (This S is not a defect!) For the sake of notation we write
B = Q and C = Q. Then if x z, Ig(x) - g(z)I = IS(,LABQx) - 6(AABQj _

Q,AQ2) and Ix - zl= m(L QxAQs). See Figure 8-21.
Let &,>_O0 be given. Let be a coordinate system for BC with org n at, C

= n.and B < 0. For each integer n let E. be the point with coordinate f (E.)
(Note Eo = C.) We claim that for some positive n, S(LE e.

Assume to the contrary that for all n > 0, e. Then by
the Defect Addition Theorem, ne. For n lame enough, ne >
180. Thus for large values of n, 6 180, which is impossible. Hence
for some value of n, E. Fix this value of n.

Let a = Suppose that x e [0,s] with Lx.- zj < S, so
that _ m.(4 QxAQ < S m( ERAE.., Then there exists a point F e
int(L E.AE,+,) with .L Q AQ ^' LEAF. Let AF n See Fig-
ure 8-22. Now AB < AD + DB by the Triangle Inequality. Since DB ^ -C,
AB < AD + DC = AC. See Figure 8-20. By Problem A8 of Section 6.3, if
P e BC then AP < AC. By the same problem (applied to AC < AE

Figure 8-22
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and (applied to QABG) AC < AG. Thus for any P E BC, AP < AE,, and
AP < In particular this is true for P =Qs and for P _Q=.

Choose H E AT,, and J E A with AQ, ^- AH and AQ,. ^ AJ. Then
pQZAQ2 ^ LHAJ. By Problem All, S(QHAJ) < S(LE 1)< Hence
S(LQZAQX) < E so that (g x) - g(z) < e. Thus we have
shown that if e> 0 is given, there is a number S > 0 such that Ig(x) - g(z)I < E
whenever ix - zj < b. Hence g is continuous at z, for each z e [0, s].

PROBLEM SET 8.2

Part A.
1. Prove Theorem 8.2.4.

2. Prove the Defect Addition Theorem (Theorem 8.2.5).

3. Without using the results of this section prove that in .J' the critical function takes
on all values between 0 and 90. (Hint: See Example 7.3.5.)

4. Prove that congruent triangles have the same defect.

5. Prove Corollary 8.2.9.

*6. Let LABC be given in a hyperbolic geometry. Prove that there is a unique line
1= DE with DE I BC and ED I BA. (Hint: Let BF be the bisector of L ABC. Choose
G on BFI so that 11(BG) = m(LABF). Let 1 be perpendicular to BF at G.)1 is called
the line of enclosure for LABC. The set Z- ABC u 1 is called a doubly asymptotic
triangle.

7. Illustrate the line of enclosure for various angles in . r using both type I and type
II rays.

8. Consider LABC in .* where AB = oL and BC = cL, as in Figure 8-23. Prove
that the bisector of L ABC is part of A where d = c + r.

A

9. Prove that in a hyperbolic geometry there are no rectangles.

*10. Prove that in a hyperbolic geometry if DABCD is a Lambert quadrilateral then
L D is acute.

11. In a protractor geometry, suppose that LABC c (LDEF u int(LDEF)). Prove
that S(LABC) < S(LDEF).
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Part B. "Prove" may mean "find a counterexample".

8 Hyperbolic Geometry

121'Prove the AAA Congruence Theorem for a Euclidean geometry.

13. In a hyperbolic geometry, if 0 < t < 180 prove there is a number d > 0, which
depends on t, such that b(APQR) < t for all triangles whose sides have length less
than d.

14. Prove that in any hyperbolic geometry, the critical function II(x) is continuous.

15. In a hyperbolic geometry, prove that an exterior angle of an open triangle is
greater than its remote interior angle.

8.3 The Distance Between Parallel Lines

We have seen that there are two types of parallel lines in a hyperbolic geome-
try: those that have a common perpendicular and those that don't. After
proving that the property of two lines having a common perpendicular is
equivalent to the lines not being asymptotic, we will investigate properties
which deal with the distance between parallel lines. In the Euclidean plane
two lines are parallel if and only if they are equidistant (Problem A4). This
contrasts considerably to the hyperbolic situation. We will see that either
two parallel lines are asymptotic or the perpendicular distance from a point
on one to the other can be made arbitrarily large! This is the reason for the
terminology in the next definition.

Definition. Two lines in a hyperbolic geometry are(divergently parall if
they are parallel but not asymptotic,

Theorem 8.3.1. In a hyperbolic geometry, two lines I and l' are divergently
parallel if and only if they have a common perpendicular.

PROOF. In Theorem 8.1.9 we saw that if two lines have a common perpen-
dicular then they are not asymptotic and thus are divergently parallel. Thus
we assume_that 1_and_I_arg , iveeently parallel and show that they have a
common perpendicular.

The basic idea of the proof (which is due to Hilbert) is tend a Saccheri
quadrilateral whose ,bases, are. contained in 1 and l'. This is done in steps 1
and 2 of the proof. Let A and B be oints on 1 and-Let-A' au B'_be Llhe.fect
of theerpendiculars from A to B to 1'. If AA' ^ BB' then A'ABB' is the--_R
desired Saccheri quadrilateral so that we may proceed directly to std,,
Otherwise we may assume that A' > BB'.

(Step j. Choose C with ABC-A' and CA' BB', choose D with A-B-
D, an choose D' with -,_ $'-.. Finally let CE be the unique ray with
/SCE - B'BD anti, E on_the same side of AA' as...B.. See Figure 8-24. In
this first step we will show that CE n AD 2LO. This_will_involye finding. a
r_ayA...which.is_.asymptotic to C and_which does,inters,ect.AD.
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C

II

Figure 8-24
D'

215

L e t- .A P . .b e t h e . - n ni q u e ray_through A' .a§ymptotic to CE, let ABC he-the
ray through A' asymptotic_toADrand ray_through B' asy_mp-
totic 1D-AD. Now /PA'CE and , .ARB'BD are asymptotic triangles
with CA' - BB' and L A CE - L B'BD. Mine CA'P..,= _B'I by
Theorem 8.1.8.

P A'D' and R A'D' (Why?). Thus ,PAR and RB'D' exist and-are
c n n -the Angle_ Subtraction Theorem, Since AQ I AD and B'R I TD-,
we have A' B'R. By Theorem 8.2.1, L QA'D' < L RB'D'. Since L PA'D'
L RB'D', L,QA'D' < L PA'D'. Looking at the complements we see thatLAA-and P int L.AA'Q), Because A AD, ;!'P intersects
AD at a point F.

Now A' and F are on the same side of CE, while A' and A are on opposite
sides of U. Thus A aztd-E-are-on nnosite sides of CE and AF _intersects CE
at a&noint__G. G is on CE since G is on the same side of AA' as F is. Thus
C intersects AB at a point G as claimed.

tepD2 We now construct the Saccheri quadrilateral using the point G.
Let H be the unique ppinton BD with CG zt as in Figure 8-25. Let G'
and H' be ti>'e feet fo the pB'BH
by SAS so that A'G - B' lit andL LAff Ll. Thus GA'G' Z -_j HHH'
and AGA'G' - AHB'H' by HA. Hence GG' - HH' and FlG'GHH' is a
Saccheri quadrilateral.

Step We now have a Saccheri quadrilateral with its lower base in 1' and
its upper base in 1. By Problem A6 of Section 7.2, the . line.thrcugh..the-mid

A D
B G H

C

777

A' B' G' H' D' !

Figure 8-25
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points o the bases_.of a Saccheri__.quadrilateral is vervendicular to both
bases. Hence there is a line perpendicular to both 1 and 1'. E1

Thus, divergent parallels have a common perpendicular while asymptotic
parallels do not. Another property that distinguishes between the two types
of parallels is the distance between them, which we define after the notion of
the greatest lower bound (glb). The glb of a set of numbers is the largest
number which is less than or equal to each number in the set.

Definition. If -4 is a set of real numbers, then s e 18 is a greatest lower bound
of Pd (written s = glb -4) if

(i) s <b for all b c R; and
(ii) if r > s then there is an element b, e .4 with b, < r.

The concept of the greatest lower bound is analogous to the least upper
bound as defined in Section 7.3. If -4 is non-empty and if there is a number
M with M < b for all b E . then . has a unique greatest lower bound.

Definition. In a metric geometry, the distance from a point P to a line 1 is

d(P, l) = glb{d(P, Q) I Q E l}.

The distance between the lines 1' and 1 is

d(l', 1) = glb {d(P, Q) I P E 1' and Q e l }.

Both of the numbers defined above exist because the sets are non-empty
and consist just of positive numbers. We know from Section 6.4 that in a
neutral geometry d(P, 1) = PQ where Q is the (unique) foot of the perpen-
dicular from P to 1. It is not hard to show that in a metric geometry

d(l', 1) = g1b{d(P, l)1 P E l'} = glb{d(Q, l')I Q E l}. (3-1)

The distance between two lines 1 and 1' may be thought of as the distance
between two "closest" points. Care must be exercised, however, with this
interpretation because there may not be points P E 1 and Q E 1' with d(l', 1) =
d(P, Q). For example, if 1= _ 1L1 and l' = oL then d(l,1') = 0 but 1 n I' = 0.

As we discussed above, one difference between divergent and asymptotic
parallels is that divergent parallels have a common perpendicular. We shall
now show that the distance between asymptoticparallels is zero while the
distance between divergent parallels is not zero. Whereas the proof involving
the first difference utilized Saccheri quadrilaterals, our next results require
the use of Lambert quadrilaterals. The reader is referred to Problems A15-
A19 of Problem Set 7.2 for the definition and a discussion of Lambert
quadrilaterals.

Theorem 8.3.2. Let 1 and 1' be divergently parallel lines in a hyperbolic geome-
try. If A E I and A' E I' are points such that AA' is perpendicular to both 1 and
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1', then
d(l, l') = d(A, A').

Furthermore, if A-B-C then d(B, I') < d(C, I').

PROOF. By Theorem 6.4.2, d(A,1') = d(A, A'). Let B be another point of 1 and
let B' be the foot of the perpendicular from B to 1'. Thus B'A'AB has right
angles at B', A', and A and so is a Lambert_aadulaieral. By Problem A19
of Problem Set 7.2, AA' S BB'. Thus d(_A 1' = AA' < BB' = d(B 1'). Hence
by Equation (3-1),

d(1,1')=glbMP,l')1.Pe6=d(A,1')=d(A,A').

Now suppose that A-B-C and let C' be the foot of the _perpe i icular
from C to 11 . By Problem A10 of Problem Set 8.2, LAB_B' is acute so that
LCBB' is obtuse. We must show that BB' < CC'. See Figure 8 26. L BCC'
1,ACC' is acute by Problem A10 of Problem Set 8.2. Hence LCBB' >

BY < CC' by Corollary 7.2.12.

A B
C I

4L 1-1 1 1

A' B' C'

Figure 8-26

Let 1 and I' be divergently parallel lines in a hyperbolic geometry. We
will write AA' for their common perpendicular which is guaranteed by
Theorem 8.3.1 and assume A E I and A' e 1'. Theorem 8.3.2 tells us that the
distance between 1 and 1' is the length of the common perpendicular A.
Furthermore, the farther the point C e 1 is from A, the greater the distance
from C to 1'. Thus the lines 1 and l' get farther and farther apart at their "ends."
How far apart can they get? We shall see in Theorem 8.3.5 that the answer
is arbitrarily far, but first two preliminary results are necessary.

Theorem 8.3.3. In a neutral geometry let AABC have a right angle at B. Let
C' be the point such that A-C-C' and AC -- CC'. Let B' be the foot of the
perpendicular from C' to AB. Then B'C' >_ 2BC and AB' !!g 2AB.

PROOF. The situation is sketched in Figure 8-27. Let D be the foot of the
perpendicular from C' to BC. Then LACB ^-LC'CD and so AACB ^
AC'CD by HA. Hence CB CD and AB- CD.

j B'BDC' is a Lambert auadrilatgr l By Corollary 7.2.12, B'C' >_ BD
and DC' > BB'. Thus B'C' >_ BD=BC + CD = 2BC and AB'=AB+
BB' 5 AB + DC' = 2AB.
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B

B'

8 Hyperbolic Geometry

D

Figure 8-27

Theorem 8.3.4 (Aristotle's Theorem). If LABC is an angle in a neutral
geometry and if r > 0 then there is a point E e BC such that d(E, AB) > r.

PROOF. If LABC is a right an 1Q e t e is trivial since d(E. d E B
in that case. If L ABC is obtuse let A'-B-A. Then LA'BC is acute and
AT = A. Hence it suffices to consider the case where L ABC is acute as in
Figure 8-28.

iL p
A D3 D4

Figure 8-28

Choose points C, = C, C C, so that B-C,-C,-C,:: -:_And
BC, c C1C,, BC, CjC ,_... Let D; be the foot of the perpendicular
from C; to AB.

By the first part of Theorem 8.3.3, C"+1D"+1 >_ 2C"D". By induction
C"+1D"+1 ? 2"C,D1 if n > 1. If n is large enough (n > 1og1(1CDj)) then
2"C,D > L so that C"+1D"+1 > r. We may let E =,C"+1 to obtain

d(E,AB) = d(C"+1,D"+1) = C"+1D"+1 > r. El

We now prove that divergently parallel lines in a hyperbolic geometry
get arbitrarily far apart.

Theorem 8.3.5. In a hyperbolic geometry if l is_ divergently parallel to 1' and
r > 0, then there is a point P e 1 such that d(P, I') > r.

PROOF. Let AA' be a common perpendicular to l j' 1 A' e 1'.
Let B be anothe point of 1 and l OL.be the foot of the_perpendicular from
B to l'. Let AE be the unique ray through A with AEI A'B'. E e int(LA'A
(Why?) so that LBAE is acute. By Theorem 8.3.4 there is a point P e AB
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Figure 8-29

with d(P AE) > r. See Figure 8-29. Let G be the fQQS of the-perpendirular
from P to AE and let P' be the-)root thie_pe-rpcAi.Qular from P to l'.

Applying_ the Crossbar. Theorem to L A'AP we see that AE n A'P_. 0.
By Pasch's Theorem applied to QA'PP'LAE n PP' (Note AE n A'P' _
0 because AE 1,17R.) In fact, AE n PP' 0 since PP is on the same side
of AA' as E. Hence AE An PP'F} for some F with P-F= P'. Thus

d(P, l') = d (P, P') > d(P, F) d(P, G) = d(P, AE) > r.

Hence divergently parallel lines actually diverge!

Since divergently parallel lines diverge, we might expect that asymptotic
lines converge in the sense that the distance between them is zero. This is
true as Corollary 8.3.8 will show.

Theorem 8.3.6. If AB is strictly asymptotic to CD in a hyperbolic geometry
then d(A, CD) > d(B, CD).

PROOF. Let A' and B' be the feet of the perpendiculars from A and B to U.
Choose E e B'-B- with AA' c-- EB' so that A'AEB' is a Saccheri quadrilateral.
AE is diverQently.parallel to AB' = CD by Theorem 8.3.1. Since ABA_B'z
L A'AB < L A'AE. Hence B'-B-E and AA' = EB' > BB'. Thus

d(A, CD) = AA' > BY = d(B, CD).

Thus the distance between asymptotic rays gets smaller and smaller the
farther out on the rays you go. Does it actually approach zero? This is
the essence of the next result (which we restate in terms of distance in
Corollary 8.3.8).

Theorem 8.3.7. In a hyperbolic geometry, if ;FBI CD and if t > 0 then there is
a point P e AB such that d(P, CD) < t.

PROOF. Let A' and B' be the feet of the perpendiculars from A and B to CD.
We may assume that t < AA'. (If not, let 0 < t* < AA' and find P e AB with
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d(P, CD) < t* < t.) Choose E on AA' so that A'E = t and choose F on the
opposite side of AA' as B' with m(L A'EF) = II(t). If F-E-G, we claim
that EG intersects A. See Figure 8-30.

Let H be on the same side of AA' as B' with L A'EH ^ L A'EF. Then
ER MAW and ABIA'B' so that AB EH. Since G e int AEH) (Why?),
EG n AB = {K} for some K. Let K' be the foot of the perpendicular from
K to A'B'. Note KE k'A'. Let P be the point on AB such that A-K-P
and KE ^ , KP. K4_A'B' so that K'KE La Hence pKE
QK'KP by SAS. Let P' be the foot of the perpendicular from P to A'B'.
EK' PK' and LEK'A L,PK'P' (Why?). Hence QEK'A' a APK'P' by
HA and EA' - PP'. Hence

d(P, CD) = d(P, P') = d(E, A') _

Corollary 8.3.8. In a hyperbolic geometry, the distance between asymptotic
rays- is zero.

Thus asymptotic rays actually do converge, and hence so do asymptotic
lines at the end at which they are asymptotic. In Problem A5 you will show
that asymptotic lines diverge at the end at which they are not asymptotic.
The situation in hyperbolic geometry is quite different from that in Euclidean
geometry. In hyperbolic geometry, two parallel lines either diverge or
converge. In Euclidean geometry, parallel lines are equidistant.

We end this chapter with a brief discussion of the distance scale for a
hyperbolic geometry and the idea of an isometry. The distance scale may be
omitted since it is not used elsewhere. Isometries will be studied in detail in
Chapter 11.

We know from Problem B16 of Section 2.2 that if t > 0 and if {Y, 2', d} is
a metric geometry so is {.9 2, d'} where d'(A, B) = td(A, B). The metric
geometries {2',2,d} and {91, 2, d'} have the same segments and rays
(Proof?). If one satisfies PSAso does the other. If { 9', 2', d, m} is a protractor
geometry, so is {.9', 2', d', m}. Finally, if {99, 2', d, m} satisfies SAS so does
{99, 2', d', m}. Switching from d to d' is called a change of scale and is like
changing from inches to meters. In a Euclidean geometry, there isn't much
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to be gained by making such a change as we will see when we discuss the
theory of similar triangles in Chapter 9. In particular, there is no "best"
choice of a scale factor t for a Euclidean geometry.

Consider, for example, what happens to the formulas of trigonometry if a
change of scale is introduced. The sine of an angle is the ratio of two lengths.
Thus if the scale is changed by a factor oft each of the lengths is multiplied
by a factor oft, but their ratio is unchanged. This does not happen in a hyper-
bolic geometry. Indeed there is a constant (depending on the scale) which
appears throughout hyperbolic trigonometry. One way to fix the scale
factor t is to insist that a certain distance have 45 as its angle of parallelism.

Definition. The distance scale of a hyperbolic geometry is the unique number
s such that II(s) = 45.

The distance scale is sometimes referred to as the absolute unit of length.
The existence of such an object caused problems in the early development
of hyperbolic geometry because it was so unlike the Euclidean situation
where the choice of unit was totally a matter of taste and one choice was
as good as another. Since Bolyai and Lobachevsky were developing their
new geometry from what we would call the synthetic viewpoint, the distance
scale entered into their work as an arbitrary constant whose value could
not be determined. In particular, it meant that the theory of hyperbolic
trigonometry was continually clouded with this constant whose value could
not be determined. You can make the distance scale seem to disappear
in the hyperbolic case by choosing s = ln(1 + f2-). This has the net result
of making the constant in the hyperbolic trigonometric formulas become a
factor of 1. For a detailed development of the theory of hyperbolic trigo-
nometry and other aspects of hyperbolic geometry, see Martin [1975].

If s is the distance scale for the hyperbolic geometry {9, .°, d, m}, then
the distance scale for {.92, _T, d/s, m} is 1. That means that for {.9', 5, d/s, m}
we have as our "standard" unit of distance, the length whose associated
critical angle is 45. This would seem to be the most natural choice of scale
for 17(1) = 45 here. However, for reasons in the field of differential geometry
and hyperbolic trigonometry, it is better to choose the scale so that 11(ln(1 +
V/1"j) = 45. That is, the distance scale of ln(1 + j) is the best choice. Note
that ln(1 + .) = sinh-1(1).

Definition. Let {.9',., d, m} and .9",.', d', m'} be two protractor geometries.
A function P Y -+ .9" is an' some if

(i) f is a bijection;
(ii) f(l) e It' if! E 2';
(iii) d'(f (A), f (B)) = d(A, B) for all A, Be 9;
(iv) m'(L f(A)f(B)f(C)) = m(LABC) for every angle LABC in .9.

If there is an isometry between two geometries, we say that the two geometries
are isometric.
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If f : 9 -+ 91' is an isometry of protractor geometries then there are no
essential differences between the two geometries. Any theorem in one geom-
etry is true in the other. In some sense all f does is change the names of the
parts.

Example 8.3.9. Let f : l8Z -> l by fl a, b) = (a + 1, b - 3). Then f is an isom-
etry between {lBZ, 2, dE, mE} and itself.

We will show in Chapter 11 that there is an isometry between any two
models of a Euclidean geometry. Hence there is essentially only one Euclidean
geometry. A similar statement is not true in hyperbolic geometry. There is
an isometry between two given models of a hyperbolic geometry if and only
if they have the same distance scale. Hyperbolic geometries with different
distance scales have a definite metric difference. However, from the synthetic
view there is no essential difference. It is possible to find a bijection between
hyperbolic geometries that preserves lines, betweenness and congruence.

PROBLEM SET 8.3

Part A.

1. Let I = oL and 1' = 1L be lines in the Poincare Plane. Show that d(1, 1') = 0 from
the definition of distance. (Hint: Consider d(P, Q) where the y coordinate of both
P and Q is large.)

2. If 1 and 1' are lines in a metric geometry which are not parallel prove that d(l,1') = 0.

3. Prove Equation (3-1).

4. Prove that two distinct lines I and I' are parallel in a Euclidean geometry if and
only if I and 1' are equidistant (i.e., d(P, I') is constant, independent of P E 1.)

*5. Suppose that A-A is strictly asymptotic to CD in a hyperbolic geometry. Prove
that BA and DC diverge; that is, if r > 0 there is a point P E BA such that
d(P, CDD) > r. (Thus asymptotic lines diverge at the ends at which they are not
asymptotic.)

6. Prove that two distinct lines in a hyperbolic geometry cannot be equidistant.

7. Prove that equality holds in Theorem 8.3.3 if and only if the geometry is Euclidean.

8. Find the distance scale for the Poincare Plane.

9. Prove that f as given in Example 8.3.9 really is an isometry.

10. Let f : Iii -* I-fl by fl a, b) = (a + 2, b). Prove that f is an isometry.

11. Prove that the relation "is isometric to" is an equivalence relation on the set of
protractor geometries.
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12. Let {.9', 2', d, m} and be isometric protractor geometries. Prove
that if one is a neutral geometry so is the other and if one is a hyperbolic geometry
so is the other.

13. If f: Y --p 9' and g : 9' --o Y" are isometrics, prove that g o f: Y -..9" is also an
isometry.

Part B. "Prove" may mean "find a counterexample".

14. Let AB be a segment in the Poincare Plane and let it be parametrized by x = f(t),
y = g(t) for a < t < b. In differential geometry the hyperbolic length of AB is
defined by the integral

f.b //x2

Y+

Y2

dt

where z = dx/dt and dy/dt. Use this formula to derive the distance function
for

15. Let {.5" P d, m} be a Euclidean geometry and V' _ {So . d', m} a change of
scale. Prove that .' is a Euclidean geometry.

16. Repeat Problem B15 for a hyperbolic geometry.



CHAPTER 9

Euclidean Geometry

9.1 Equivalent Forms of EPP

In the previous chapter we discussed properties possessed by hyperbolic
geometries. Now we turn our attention to Euclidean geometries. In this.
first section we will present several equivalent formulations of the Euclidean
Parallel Property. The proofs that a Euclidean geometry has certain proper-
ties are generally straightforward. However, the converse results that a neu-
tral geometry with a certain property must be Euclidean strongly depend on
the All or None Theorem and Chapter 8. If these converses are omitted, this
chapter may be read right after Section 7.1.

In the second section we will be concerned with the theory of similar
triangles and proportion. The third section will cover certain classical results
of Euclidean geometry, including the Euler Line, the Nine Point Circle, and
Morley's Theorem.

As we have noted before, considerable effort was spent trying to prove
that EPP was a theorem in neutral geometry. This is really not so surprising
when you consider the various equivalent formulations of EPP, some of
which we give in this section and in the problems. Just the sheer weight of
numbers was enough to "convince" many people that one of these forms
must follow from the axioms of a neutral geometry, and hence so must EPP.
Of course, we now know that this is incorrect. In fact, the All or None
Theorem tells us that in a neutral geometry exactly one of EPP and HPP
is satisfied. This will be the basis for many of the results in this section.

Recall that the defect of a triangle is 180 minus the sum of the measures
of its three angles.

Theorem 9.1.1. In a neutral geometry, EPP is satisfied if and only if there is
a triangle with defect zero. Furthermore, if one triangle has defect zero then so
does every triangle.

224
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PROOF. First suppose that EPP is satisfied. By Theorem 7.2.9 we know that
the defect of any triangle is zero.

On the other hand, suppose that the defect of one triangle is zero. Then
HPP cannot be satisfied because Theorem 8.2.4 says that the defect of any
triangle is positive in a hyperbolic geometry. Since HPP is not satisfied,
the All or None Theorem (Theorem 7.3.10) says that EPP must be satisfied.

Theorem 9.1.2. In a neutral geometry, EPP is satisfied if and only if whenever
a pair of parallel lines l and 1' have a transversal t, then each pair of alternate
interior angles are congruent.

PROOF. First suppose that EPP is satisfied. Then by Problem All of Section
7.1 we know that a pair of alternate angles must be congruent.

On the other hand suppose that for every pair of parallel lines l 1' and
transversal t, a pair of alternate interior angles are congruent. If HPP is
satisfied, then by Theorem 8.1.4 there are lines I and 1' which are strictly
asymptotic (and hence parallel). Let Q e l and let t be the perpendicular
from Q to 1'. By Theorem 8.1.9, t is not perpendicular to 1. Hence alternate
interior angles are not congruent. Since this contradicts the assumption of
HPP, it must be that EPP is satisfied.

Recall that a rectangle is a quadrilateral with four right angles.

Theorem 9.1.3. In a neutral geometry, EPP is satisfied if and only if there
exists a rectangle.

PROOF. First suppose that EPP is satisfied. Let ABCD be a Saccheri
quadrilateral. (We shall show that s ABCD is actually a rectangle.) Then
BC11:0). Since AB 1 AD and AB is transversal to AD and BC, a pair of
alternate interior angles must be congruent and so A0 1 BC. Thus L A a, L B.
Since L B ^- L C, we have L A, L B, L C and L D right angles. Hence
ABCD is a rectangle.

Now suppose that ABCD is a rectangle. By Corollary 7.2.12 AB ^- DC
so that ABCD is also a Saccheri quadrilateral. If HPP is satisfied, then
L B is acute by Theorem 8.2.3. Since this is false, the All or None Theorem
implies that EPP is satisfied.

Corollary 9.1.4. A neutral geometry satisfies EPP if and only if every Saccheri
quadrilateral is a rectangle.

The next difference between EPP and HPP involves the perpendicular
bisectors of the sides of a triangle. Theorems 9.1.5 and 9.1.6 will show that
EPP is satisfied if and only if for every triangle, the perpendicular bisectors
of the sides intersect at a common point.
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Definition. A set of lines is concurrent if there is a point P that belongs to
each of the lines. In this case we say that the lines concur at P.

Theorem 9.1.5. In a Euclidean geometry, the perpendicular bisectors of the
sides of AABC are concurrent.

PROOF. Let I be the perpendicular bisector of AB and let l' be the perpen-
dicular bisector of B. See Figure 9-1. If III I', then by Problem A5, AB II W.
But this is impossible because AB n BC = {B}. Hence l intersects I' at some
point 0. By Theorem 6.4.6, AA ^- BO and BO a CO. Hence AO _- CO and
so, by the same theorem, 0 lies on the perpendicular bisector of A. Hence
the perpendicular bisectors of the sides of LABC concur at 0.

Figure 9-1

In the next theorem we will show that the result analogous to Theorem
9.1.5 is false in a hyperbolic geometry. We will actually construct a triangle
such that two of the perpendicular bisectors are parallel. This will be done
by exploiting the critical function to create asymptotic rays. The asymptotic
rays then yield parallel lines. The trick involved here will also be used in
Theorem 9.1.8. You are asked to construct a specific example in ° in
Problem A19.

Theorem 9.1.6. In any hyperbolic geometry, there is a triangle such that the
perpendicular bisectors of two of the sides are parallel.

PROOF. We shall actually show that such a triangle can always be constructed
in such a manner that it is an isosceles triangle with one angle prescribed.
To this end, let L ABC be any given angle and let BD be its angle bisector
(so that LABD is acute). Since 0 < m(LABD) < 90 and the image of the
critical function 17 is the interval (0, 90) (Theorem 8.2.8) there is a number t
with H(t) = m(L ABD). We will construct an isosceles triangle LJBK whose
congruent sides have length 2t and L JBK = L ABC.

Choose E E BA and F E BC with BE = BF = t as in Figure 9-2. Let G
and H be in the interior of L ABC with Ed 1 AB and FR 1 BC. (EG and
FH will be the perpendicular bisectors of the two of the sides of LJBK.)
Since m(LEBD) = I7(EB) = 11(t) and EB 1 Ed, the definition of the critical
function 17 shows that BD I Ed. Similarly BD I FR. Thus E(V I FIR and in



9.1 Equivalent Forms of EPP 227

particular Ed 11 FR. Finally, let J and K be such that J-E-B, B-F-K,
and JE ^ EB r_- BF _- FK. Then EU and FR are perpendicular bisectors
of two of the sides of LJBK and are parallel.

Figure 9-2

Corollary 9.1.7. A neutral geometry satisfies EPP if and only if for every
triangle, the perpendicular bisectors of the sides are concurrent.

The next difference between hyperbolic and Euclidean geometries which
we explore concerns lines through a point in the interior of an acute angle.
Consider, for example, L ABC in the Poincare Plane .*' as pictured in
Figure 9-3. For the point P e int(L ABC) there is no line (except PB) which
passes through both sides of L ABC. This situation cannot happen in a
Euclidean geometry as the next result shows.

B

Theorem 9.1.8. A neutral geometry satisfies EPP if and only if for every acute
angle L ABC and every point P e int(L ABC) there is a line I through P that
intersects both int(BA) and int(BC).

PROOF. First assume that EPP is satisfied. We shall show that the perpen-
dicular from P to ABB satisfies the theorem. Since L ABC is acute so is L ABP
so that by Problem Al of Section 7.1, the foot of the perpendicular from P
to AB is in int(BA). Let I be this perpendicular. Clearly B 0 I. By Euclid's
Fifth Postulate I intersects BC. Hence I is the desired line.

Now suppose that for every P e int(L ABC) there is a line l through P
that intersects both int(BA) and int(BC). If EPP is not satisfied, then HPP
is. We shall assume HPP and search for a contradiction.
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Choose D so that BD bisects LABC. As before we know that there is a
positive number, t, with 17(t) = m(L ABD). Choose P e TO so that BP = t.
Then the line 1' through P perpendicular to BP' is asymptotic to both BA
and BC by the definition of 17. See Figure 9-4. (1' is called the line of enclosure
of LABC. See Problem A6 of Section 8.2.) Note that BA and BC lie on the
same side of 1'. We shall show that the assumption that there is a line I
through P which intersects both int(BA) and int(BC) leads to a contradiction.

Figure 9-4

A

Since 1' does not intersect Bf and I does, 1' 0 1. Hence there is a point
R e I which is on the same side of 1' as A. Choose S on I with R-P-S.
Then S is on the opposite side of l' as BBi (and B). Hence PS does not
intersect either BA or BC On the other hand, int(PR) lies on one side of
BD so that by Theorem 4.4.3, it cannot intersect both BA and H. Thus
1= PR = PS' does not intersect both BA and BL, which is a contradiction.
Hence EPP is satisfied.

Theorem 9.1.9. A neutral geometry satisfies EPP if and only if there are a
pair of non-congruent triangles LABC and LDEF with L A L D, L B
LE,and LC- LF.
PROOF. First suppose that EPP is satisfied and let LABC be any triangle.
Let E be the midpoint of AB and let 1 be the unique line through E parallel
to BC. See Figure 9-5. By Pasch's Theorem, I intersects AC at a point F.
L AEF L ABC by Theorem 9.1.2 and Problem A2 of Section 7.1. Similarly,
LAFE LACB. Then LABC and LAEF are the desired noncongruent
triangles.

Figure 9-5
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Now suppose there is a pair of noncongruent triangles AABC and ADEF
with corresponding angles congruent. If HPP is satisfied, then Theorem 8.2.6
implies that AABC a ADEF, which is false in our case. Hence EPP must
be satisfied.

In several of the above proofs we used some powerful results, especially
the fact that if HPP holds then the image of the critical function is (0, 90).
You may need similar methods for some of the exercises. However, it is
possible to show all of these equivalences of EPP without the use of the
critical function. For example Martin [1975] does this based on the following
equivalent form of the All or None Theorem: In a neutral geometry the
upper base angles of a Saccheri quadrilateral are either always right angles
(EPP) or always acute angles (HPP).

PROBLEM SET 9.1

Part A.

1. In a neutral geometry, prove that EPP is satisfied if and only if 11 is a transitive
relation.

2. In a neutral geometry, let 1111'. Prove that EPP is satisfied if and only if any line
perpendicular to I is also perpendicular to 1'.

*3. In a neutral geometry let 1111'. Prove that EPP is satisfied if and only if whenever
a line (other than 1) intersects 1, it also intersects 1'.

4. In a neutral geometry, prove that EPP is satisfied if and only if 11 is an equivalence
relation.

5. In a Euclidean geometry prove that if 1111', r 11, r' 1 1', then r11 r'.

6. In a neutral geometry prove that EPP is satisfied if and only if for each LABC
there is a circle 'f (called the circmncircle or circumscribed circle) with A, B, C e
le.

7. In a neutral geometry prove that EPP is satisfied if and only if for any three non-
collinear points A, B, C there is a unique point 0 equidistant from A, B, and C.

8. In a neutral geometry prove that EPP is satisfied if and only if the two angles of
any open triangle are supplementary.

9. In a neutral geometry, prove that EPP is satisfied if and only if the measure of an
exterior angle of any triangle equals the sum of the measures of the remote interior
angles.

10. In a neutral geometry, prove that EPP is satisfied if and only if for every acute
angle LABC the perpendicular to BA at D e int(BA) intersects BC.

11. Let LABC be given in a neutral geometry with B a point on the circle with di-
ameter C. Prove that EPP is satisfied if and only if LB is a right angle.

12. Let LABC be given in a neutral geometry with L B a right angle. Prove that EPP
is satisfied if and only if B lies on the circle with diameter A.
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13. In a neutral geometry, prove that EPP is satisfied if and only if whenever I 1 r,
rIs,andslm,then Inmj40.

14. In a neutral geometry, prove that EPP is satisfied if and only if there exists a pair
of distinct equidistant lines.

* 15. In a neutral geometry, prove that EPP is satisfied if and only if parallel lines are
equidistant.

16. In a neutral geometry, prove that EPP is satisfied if and only if every Lambert
quadrilateral is a rectangle.

17. Prove Corollary 9.1.7.

18. Modify the proof of Theorem 9.1.8 so that it works for any angle LABC, not
just an acute angle.

19. Give an example in .-l° of a triangle such that the perpendicular bisectors of its
sides are not concurrent.

Part B. "Prove" may mean "find a counterexample".

20. Prove that a neutral geometry satisfies HPP if and only if for every acute angle
L ABC and point P e int(L ABC) there is no line through P which intersects both
int(BA) and int(BC). (Compare with Theorem 9.1.8.)

21. Let ' be a circle with center 0 in a neutral geometry. Prove that EPP is satisfied if
and only if for every acute angle L ABC with A, B, C e W, m(L ABC) =z m(L AOC).

22. Let ' be a circle with center 0 in a neutral geometry. Let AB be a chord of c'
which is not a diameter, let I be tangent to le at A, and let C be a point on I on
the same side of AO as B. Prove that EPP is satisfied if and only if m(LCAB) _
zm(LAOB).

23. State at least 12 equivalent forms of HPP.

9.2 Similarity Theory

This section deals with the idea of similarity. We shall define similar triangles
to be triangles with corresponding angles congruent. Note that in a hyper-
bolic geometry this would mean that the triangles are congruent by Theorem
8.2.6. Thus in a hyperbolic geometry, the concept of similarity is identical
to the concept of congruence.

The basic similarity result for a Euclidean geometry relates similarity to
the equality of the ratio of corresponding sides of two triangles. This key
result is Theorem 9.2.5 and, like many truly important results, it requires
a great deal of work to prove. This work is contained in Theorems 9.2.1
through 9.2.5, especially Theorem 9.2.3. The basic similarity result will then
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be used to prove the Pythagorean Theorem and a proposition which will
be crucial to the Euclidean area theory of the next chapter.

Theorem 9.2.1. In a Euclidean geometry, let 11, 12, and 13 be distinct parallel
lines. Let t1 intersect I1, 12, and 13 at A, B, and C (respectively) and let t2 intersect
11, 12, and 13 at D, E, and F (respectively). If AB - BC then DE - EF.

PROOF. We shall assume that neither t1 nor t2 is a common perpendicular
of I1, 12, 13. (The case where either is a common perpendicular is left to
Problem Al.)

Since AB = BC and 11 0 13, then A :A C and A-B-C as in Figure 9-6.
Let P be the foot of the perpendicular from A to 12, Q be the foot of the
perpendicular from B to 13, R the foot of the perpendicular from D to 12,
and S the foot of the perpendicular from E to 13.

Figure 9-6

Since L ABP - L BCQ, LABP LBCQ by HA. Thus AP - BQ. By
Problem A15 of Section 9.1, AP DR and BQ - ES. Hence DR ^ ES.
Since LDER - LEFS, LDRE - LESF by SAA. Thus DE U.

The proof of the next result is left as Problem A2.

Theorem 9.2.2. Let 11, 12, 13 be distinct parallel lines in a Pasch geometry.
Let t1 intersect 11, 12, and 13 at A, B, and C (respectively) and let t2 intersect
11, 12, and 13 at D, E, and F (respectively). If A-B-C then D-E-F.

The next result is the key theorem from which we will derive the relation-
ship between the corresponding sides of similar triangles.

Theorem 9.2.3. Let 11, 12, 13 be distinct parallel lines in a Euclidean geometry.
Let t1 and t2 be two transversals which intersect 11,12,13 at A, B, C and D, E,
F, with A-B-C, as in Figure 9-7. Then

BC EF
(2-1)

DE'
1)



232 9 Euclidean Geometry

C

PRooF. Let q be any positive integer. We will show that

BC _
B DE I < q '

(2-2)
A

If Inequality (2-2) holds for all q > 0, especially for q very large,
IBC/AB - EF/DEI must be zero, which proves Equation (2-1). To prove
Inequality (2-2), let p be the largest nonnegative integer such that p:5,
q(BC/AB). Thus p :!g q(BC/AB) < p + 1 or

<<p (2-3)q AB q

We shall break the segment AB into q segments each of length AB/q
and then lay off p + 1 segments of this same length along BC. Theorem 9.2.1
will then be applied to the resulting configuration which is illustrated in
Figure 9-8 with p = 7 and q = 5.

Figure 9-7

t2

t1

13

!'1 12

D IAi IA2 E
- t2
Be

A2

Bi

Figure 9-8

F

Let A1, A2, ... , Aq _ 1 be points of AB with

A-Al-A2- -Aq_1-B and AA1 T,-A-2 ^ Aq_1B (2-4)
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Note that this means each segment A;A;+1 has length AB/q. Similarly choose
points B1, B21 ... , Bp+1 on BC so that the distance between neighboring
points is AB/q. That is,

B-B1-B2 ...-B,+1 and BB1 = B1B2 = ... = BpBp+1 =q . (2-5)

We shall now show that C E BpBp+1. By Inequality (2-3) we have

Bp

so that Bp+1 B. Thus B-C-Bp+1. This means either C = Bp or
Bp C-Bp+1. Hence C e B1,Bp+1 and C 0 Bp+1.

Let l; be the line through A; parallel to 11 = AD. This line intersects t2
at a point A;. Similarly let 1j be the line through Bj parallel to 11 = AD.
This line intersects t2 at a point Bj. See Figure 9-8. By Theorem 9.2.2 we have

D-Ai-A'2...-A9-1-E

E-B',-BZ ...-BP Bp+1
E-F-Bp' +1 and Bp a EF.

We may now apply Theorem 9.2.1 to compare the distances between the
A and between the B. Together with Condition (2-4), this theorem implies

DA',
Hence

DE = q DAi. (2-6)

Similarly from Condition (2-5) we have
-TEB1 ... B1B2 ^, -- BpBp+1

Thus since Bp e EF, E-F-BP+1, and EB' = j EBi, we have

p EB'1=EB;<EF<EB;±1=(p+ 1) - EBi. (2-7)

Since EBi ^ A- ^ D lA , Inequality (2-7) becomes

p DA, < EF < (p + 1)DAi.

We may divide this inequality by DE to obtain

DA, EF DAi

DE - DE (p + 1) DE
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or, since DE = q DA, by Equation (2-6),

pEFp+
q DE q

We may subtract this from Inequality (2-3) to get

1 p p+1 BC EF-p+1 p 1

q q q AB DE q q q

Hence IBCIAB - EF/DEI < 1/q and Inequality (2-2) is proved. 1-1

Corollary 9.2.4. Let ADEF be a triangle in a Euclidean geometry. If D-
G-E, D-H-F and GH I I EF, then

DG _ DH
DE DF

(28)

PROOF. Let 1l = EF, 12 = GH, and 13 be the unique line through D parallel
to 12. See Figure 9-9. By Theorem 9.2.3 with tl = DE and t2 = DF, we have

GE_HF
DG DH

13

12

11

Figure 9-9

Since DE = DG + GE and DF = DH + HF,

DE DG + GE GE _ HF DH + HF _ DF
DG DG + DG +

_
DH DH DH

so that
DE DF DG _ DH
DG DH or DE DF

Definition. Two triangles LABC and ADEF in a protractor geometry are
similar (written LABC - LDEF) if L A _ L D, L B - L E, L C -- L F.

Three remarks are in order. First, to show that two triangles in a
Euclidean geometry are similar it is sufficient to show that two of the pairs
of corresponding angles are congruent. This is because the angle sum
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theorem guarantees that the remaining pair of angles are then also con-
gruent. Second, as mentioned earlier, in a hyperbolic geometry LABC -
LDEF if and only if LABC ^_, LDEF by Theorem 9.1.9. Third, as in the
case of congruence, the notation for similarity includes the correspondence:
LABC - LDEF means that A and D correspond, as do B and E, and also
C and F.

The basic results of similarity theory follow from Corollary 9.2.4. The
proofs generally involve constructing a line parallel to one side of a triangle
and then invoking the corollary. Our first result gives the relationship be-
tween corresponding sides of,similar triangles.

Theorem 9.2.5. In a Euclidean geometry, the ratio of the lengths of corre-
sponding sides of similar triangles is constant; that is, if AABC - LDEF
then

AB BC AC
DE EF DF

PROOF. If AB DE then LABC ^ LDEF by ASA and each quotient in
Equation (2-9) is 1. Thus we may assume that AB 0 DE. Suppose that AB <
DE. (The case AB > DE is similar.) Let G be the point on DE with AB ^ DO.
See Figure 9-10.

Let I be the unique line through G parallel to P. By Pasch's Theorem, I
intersects DF at a point H. LDGH ^- LDEF ^_- LABC (Why?). Thus
LABC,-- LDGH by ASA. By Corollary 9.2.4

DG DH
DE DF

Since DG ^ AB and DH ^ AC, this last equation becomes

AB AC
DE DF

Similarly ABIDE = BC/EF.

Theorem 9.2.5 says that Equation (2-9) is a necessary condition for simi-
larity. We now show that it is also sufficient.
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Theorem 9.2.6 (SSS Similarity Theorem). In a Euclidean geometry, LABC -
ADEF if and only if

AB BC AC
(2-10)

DE EF DF
PROOF. Because of Theorem 9.2.5 we need only show that Equation (2-10)
implies that LABC - ADEF. If AB DE, then AABC LDEF by the
SSS Congruence Theorem. Thus LABC - LDEF in this case.

Assume that AB < DE. (The case AB > DE is similar.) Let G be the point
on DE with AB -- DG. By Pasch's Theorem, the line through G parallel to
EP intersects DF at a point H. See Figure 9-10. By Theorem 9.2.4

DG DH
DE DF

Thus
AC - AB - DG - DH
DF DE DE DF

so that AC - DH.
Note that LDGH - L E and L DHG - L F since GH' I I EF and the

geometry is a Euclidean geometry. Thus ADGH - ADEF so that

GHDG_AB_BC
EF DE DE EF

Hence B GPI and LABC - LDGH by SSS. Thus LABC - ADGH -
ADEF. Since - is an equivalence relation (Problem A3), we are done.

We are now ready to prove the Pythagorean Theorem. In fact, we shall
show in Theorem 9.2.8 that the Pythagorean property is equivalent to EPP.

Theorem 9.2.7 (Pythagoras). In a Euclidean geometry, AABC has a right
angle at B if and only if

(AB)2 + (BC)2 = (AC)2. (2-11)

PROOF. First suppose that LB is a right angle of LABC and that D is the
foot of the altitude from B. By Problem A4, AADB - AABC - LBDC.
Thus by Theorem 9.2.5

AB_AC BC_AC
AD AB and DC BC

Hence (AB)2 = (AC)(AD) and (BC)2 = (AC)(DC). Now AC = AD + DC
so that

(AC)2 = (AC)(AD + DC)

= (AC)(AD) + (AC)(DC)

= (AB)2 + (BC)2.

Thus Equation (2-11) is valid if LB is a right angle.
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Now suppose that LABC satifies Equation (2-11). We must show that
LB is a right angle. Let LPQR be a right triangle with right angle at Q and
PQ _- AB, QR _- C. Since L Q is right we may apply Equation (2-11) to
LPQR to obtain

(PR)2 = (PQ)2 + (QR)2 = (AB)2 + (BC)2 = (AC)2.

Hence PR AC and LPQR _- LABC by SSS. But this means that L B
L Q is a right angle.

The next result says that EPP and the Pythagorean property are equiva-
lent. Although Problem A5 of Section 5.3 shows that Pythagoras is false in
..Y, the proof given below (from Reyes [1897]) is interesting because it is a
direct proof which does not rely on a model for a counterexample.

Theorem 9.2.8. A neutral geometry satisfies EPP if and only if for every right
triangle LABC with right angle at B the equation

(AC)2 = (AB)2 + (BC)2 (2-12)
is true.

PROOF. We need only show that Equation (2-12) for right triangles implies
EPP. Let LABC be a right triangle with right angle at B and AB BC. We
shall show that the defect of LABC is zero. (In fact, we will show that
m(LA) = m(LC) = 45.) By Theorem 9.1.1 this will imply that EPP is
satisfied.

Let D be the midpoint of A. Then ABAD _- ABCD by SAS so that
L BDA ^ L BDC, as in Figure 9-11. Hence L BDA is a right angle. We apply
Equation (2-12) to AABC to obtain

2(AB)2 = (AB)2 + (BC)2 = (AC)2 = (2 AD)2 = 4(AD)2

so that (AB)2 = 2(AD)2. We may also apply Equation (2-12) to AADB to
obtain

so that

(AB)2 = (AD)2 + (DB)2

2(AD)2 = (AB)2 = (AD)2 + (DB)2

Figure 9-11
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or

AD = BD.

Thus LADB is isosceles as is ACDB and

L DBA - L DAB L DCB ^-, L DBC.

Since m(LABC) = 90, m(LDBA) = 45. Thus S(LABC) = 180 - (45 +
90 + 45) = 0 and EPP holds by Theorem 9.1.1.

The last result of this section will be useful in the study of area in the next
chapter.

Theorem 9.2.9. Let LABC be a triangle in a Euclidean geometry. Let D be
the foot of the altitude from A and let E be the foot of the altitude from B. Then

(AD)(BC) = (BE)(AC).

PROOF. If L C is a right angle then E = C = D and the result is trivial. If L C
is not a right angle then E 0 C and D # C. Since LBEC - LADC (Why?)
we have

BC BE
AC AD

so that (AD)(BC) = (BE)(AC).

PROBLEM SET 9.2

Part A.

1. Complete the proof of Theorem 9.2.1 in the cases where one or both of tt and t2
are perpendicular to 1,12,13.

2. Prove Theorem 9.2.2.

3. Prove that - is an equivalence relation.

4. Let /ABC be a right triangle in a Euclidean geometry with right angle at B. If
D is the foot of the altitude from B to AC prove that LADB - LABC - LBDC.

5. Let /ABC - LPQR in a neutral geometry. If AB PQ, prove that /ABC
APQR.

6. Let /ABC be a triangle in a Euclidean geometry. Suppose that A-D-B and
A-E-C with AD/AB = AE/AC. Prove that DE' II BC'.

*7. Prove the SAS Similarity Theorem: In a Euclidean geometry if LB ^ LQ and
AB/PQ = BC/QR then /ABC is similar to LPQR.

8. Let LABC - ADEF in a Euclidean geometry. If G is the foot of the altitude from
A and H is the foot of the altitude from D, prove that AG/DH = ABIDE.

9. In a Euclidean geometry 1Ct AB and CD be two chords of a circle le such that
AB and CD intersect at a point E between A and B. Prove that (AE)(EB) = (CE)(ED).
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10. In a Euclidean geometry let ' be a circle and let B e ext(e). If A, C, D e '1 with
AB tangent to W and B-D-C, prove that (AB)2 = (BD)(BC).

11. In a Euclidean geometry let 'It' be a circle with C e ext(?). If A, B, D, E e with
A-B-C and E-D-C, prove that (CA)(CB) = (CE)(CD).

12. In a Euclidean geometry let ' be a circle with diameter AB. Let 1 be the tangent
to le at B and let C be any point on 1. Prove that AC intersects' at a point D 0 A
and that (AD)(AC) is a constant that does not depend on the choice of C e 1.

13. In a Euclidean geometry let le be. a circle with diameter AB. Let P be any point in
int(AB) and let C, D, E be distinct points of ' all on the same side of flB such that
DP 1 AB and L CPD _- L DPE. Prove that (PD)' = (PC)(PE).

Part B. "Prove" may mean "find a counterexample".

14. Let AABC be a triangle in a Euclidean geometry. If AD is the bisector of L A
with B-D-C prove that DB/DC = AB/AC.

15. Let AABC be a triangle in a Euclidean geometry. If D-C-B and if the bisector
of LDCA intersects BA at E, prove that EA/EB = CA/CB.

9.3 Some Classical Theorems of Euclidean Geometry

One of the most fascinating aspects of mathematics is the discovery that
concepts which we would not expect to be related are in fact related. In
this section we will prove some of the more beautiful results of classical
Euclidean geometry. We find these theorems so attractive because they con-
tain unanticipated relationships.

For example, we will show that the three angle bisectors of a triangle all
meet at one point (the incenter), as do the medians (at the centroid), the
perpendicular bisectors of the sides (at the circumcenter), and the lines
containing the altitudes (at the orthocenter). In addition, we shall prove the
astounding result that the centroid, circumcenter, and orthocenter are col-
linear! The final result will be an equally surprising result regarding the
trisectors of the angles of a triangle.

The first result of this section was given in Problem A12 of Section 6.4.
We include it here for completeness. Recall that a collection of lines is
called concurrent if there is a point, Q, which is on all of the lines. The point
Q is called the point of concurrence.

Theorem 9.3.1. In a neutral geometry, the angle bisectors of any triangle
LABC are concurrent. The point of concurrence, 1, is called the incenter
of LABC.

PROOF. By the Crossbar Theorem, the bisector of LA intersects BC at a
point D. Likewise, the bisector of L B intersects AD at a point I. See Figure
9-12. We will show that I belongs to each angle bisector. I is in the interior
of L A and the interior of L B. Hence it is in the interior of L C. (Why?)



240 9 Euclidean Geometry

Let P, Q, and R be the feet of the perpendiculars from I to BC, AC, and
AB. LIQA ^ LIRA by HA so that TO IR. Likewise LIRB ^ AIPB
by HA so that IR f-- IF. Hence IQ ^- IP so that LIQC -- AIPC by HL.
Thus LICQ ^ LICP and I lies on the bisector of LC. That is, the three
angle bisectors concur at I.

Definition. A median of a triangle is a line segment joining a vertex to the
midpoint of the opposite side.

Theorem 9.3.2. In a Euclidean geometry, the medians of any triangle ABC
are concurrent. The point of concurrence, G, is called the centroid of LABC.

PROOF. Let AP, BQ, and CR be the medians of LABC, as in Figure 9-13.
The Crossbar Theorem implies that AP n BQ 0 0 and BQ n AP 54 0 so
that AP intersects BQ at a point G. We must show that G e CR.

Now LQCP - LACB by the SAS Similarity Theorem (Problem A7
of Section 9.2). Hence L CQP a L CAB so that QP I JABB. Furthermore,

QP CQ 1

AB CA 2'

Similarly, if S and T are the midpoints of AG and BUG then

ST 1

AB 2

so that Equation (3-1) implies that QP ST.
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Since QP 11:4F3 I I YT, L PQG ^- L STG. Furthermore, L QGP ^ L TGS.
Since QP _- ST, /QGP ^- L TGS by SAA. Hence the point G has the
property that it belongs to AP and

PG = GS = 2AG. (3-2)

A similar proof shows that AP and CR intersect at a point G' e AP
with PG' = ZAG'. But there is only one point X e AP with PX = ZAX so
that G = G'. Hence the medians are concurrent at G.

Two things should be noted about this theorem. First, implicit in the
proof is the fact that the medians intersect at a point G which is two-thirds
of the way from a vertex to the opposite midpoint (Problem A3). Second,
the theorem was proved only for a Euclidean geometry (unlike Theorem
9.3.1). This does not mean that it is false in hyperbolic geometry, only that
the proof given does not work. In fact, it is true in hyperbolic geometry,
but is more difficult to prove. See Greenberg [1980], Chapter 7, especially
Problem K-19.

The following result is Theorem 9.1.5, and is mentioned here for
completeness.

Theorem 9.3.3. In a Euclidean geometry, the perpendicular bisectors of the
sides of /ABC are concurrent. The point of concurrence, 0, is called the
circumcenter of /ABC.

Theorem 9.3.3 also holds in a hyperbolic geometry, provided at least
two of the perpendicular bisectors intersect (Problem A13 of Section 6.4).

Theorem 9.3.4. In a Euclidean geometry, the lines containing the altitudes of
/ABC are concurrent. The point of concurrence, H, is called the orthocenter
of /ABC.

PRooF. This proof will use a different technique than that of Theorems 9.3.1,
9.3.2, and 9.3.3. We will construct another triangle APQR such that a line
containing a perpendicular bisector of a side of /PQR also contains an
altitude of /ABC. Since the perpendicular bisectors of the new triangle
are concurrent by Theorem 9.3.3 so are the lines containing the altitudes
of /ABC. We shall now proceed with the construction of LPQR.

Let 11 be the unique line through A parallel to BC, 12 the line through
B parallel to AC, and 13 the line through C parallel to AB as in Figure 9-14.
Since 1t 11 F30 and 12 n BC 0 0, 1t n 12 0 by Problem A3 of Section 9.1.
Likewise 12 n 13 j4 0 and 11 n 13 0 0. Let the points of intersection be
P, Q, and R as in Figure 9-14.

By using the fact that alternate interior angles are congruent a number
of times, we see that

/CAR ^ /ACB /QBC
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by ASA. Hence CR ^ QC and C is the midpoint of RQ. Since RQ I JAB, the
altitude from C to AB is perpendicular to RQ. Hence the line containing
this altitude is the perpendicular bisector of RQ. Likewise the lines containing
the other altitudes of AABC are the perpendicular bisectors of the remaining
sides of APQR. By Theorem 9.3.3 these lines are concurrent at a point H.
Hence the lines containing the altitudes of AABC are concurrent.

Theorem 9.3.4 is also true in a hyperbolic geometry, provided at least two
of the lines containing the altitudes intersect. See Greenberg [1980], Chapter 7.

The results on the concurrence of the perpendicular bisectors, altitudes,
medians, and angle bisectors are surprising. The next result is truly as-
tounding. The orthocenter, centroid, and circumcenter of a triangle would
not seem to be related. However, the next theorem says that they are.

Theorem 9.3.5. In a Euclidean geometry, the orthocenter, centroid, and
circumcenter of AABC are collinear.

PROOF. Let H be the orthocenter, G be the centroid, and 0 the circumcenter
of LABC. The proof will break into three cases depending on the shape of
LABC.

If LABC is equilateral, H = G = 0 = I (the incenter) and the result is
trivial. The case where LABC is isosceles but not equilateral is left to
Problem A6.

We assume, therefore, that the triangle is scalene. We first show that
O 0 G in this case. By Problem A3 of Section 6.4 the median from A to
BC is not perpendicular to C. Hence G cannot lie on the perpendicular
bisector of BC since G is not the midpoint of BC. (Why?) Thus G = O.

Let 1 = O. Let H' be the unique point on l with O-G-H' and GH' _
2 GO. We shall prove H' is the orthocenter, H. See Figure 9-15.

Let P be the midpoint of BC so that G e AP. We will first show that
AH' I I W. Now GA = 2 GP by Equation (3-2) and GH' = 2 GO by con-
struction. Since the vertical angles LAGH' and LPGO of Figure 9-15 are
congruent, AAGH' ' LPGO by the SAS Similarity Theorem (Problem A7
of Section 9.2). Hence the alternate interior angles L GAH' and L GPO are
congruent so that AH' I I OP.
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A

Figure 9-15

Since OP 1 BC, AR' IBC also. Thus AR' contains the altitude from
A to BC. Thus the line containing the altitude from A goes through H'.
Similarly the lines containing the other two altitudes also pass through H'.
Hence H' is the orthocenter and 0, G, H = H' are collinear.

Note that this proof gives an alternative proof that the altitudes of a
triangle are concurrent (at the point H').

Definition. The line containing the centroid, orthocenter, and circumcenter
of a given nonequilateral triangle in a Euclidean geometry is called the Euler
line of the triangle. The three points which are the midpoints of the segments
joining the orthocenter of /ABC to its vertices are called the Euler points
of LABC.

The Euler points appear in the next result whose proof is left to
Problem B13.

Theorem 9.3.6 (Nine Point Circle). Let /ABC be a triangle in a Euclidean
geometry. Then the midpoints of the sides of /ABC, the feet of the altitudes,
and the Euler points all lie on the same circle. (See Figure 9-16.)
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As our final and probably most beautiful result we present the following
theorem due to F. Morley. It is a relatively recent theorem, having been
discovered in 1899. For more discussion on the theorem and a converse see
Kleven [1978].

Theorem 9.3.7 (Morley's Theorem). Let LABC be a triangle in a Euclidean
geometry. Then the three points of intersection P, Q, R of adjacent trisectors
of the angles of LABC are the vertices of an equilateral triangle. (See Figure
9-17.)

Figure 9-17

PROOF. The proof we give may be found in Coxeter [1961] along with
references to other proofs. Rather than attacking the problem head on (which
can be done) we instead start with an equilateral triangle LX YZ and around
it construct a triangle which is similar to LABC. This construction will be
carried out in such a manner that X, Y, Z will be the points of intersection
of the angle trisectors of the new triangle.

First we define three numbers a, /3, y by

a=60-3m(LA)
=60-3m(LB)

y = 60 - 3m(L C).

Then a, /3, y are positive and

a+/3+y = 180- 3(m(LA)+m(LB)+m(LC)) = 120. (3-3)

Now let AXYZ be any equilateral triangle. In Figure 9-18, we let X' be
the point on the opposite side of YZ as X with m(L YZX') = m(LZYX') = a.
(X' is found by constructing two rays.) We choose Y' and Z' in a similar
fashion.

Since m(L Z'YZ) + m(Y'ZY) = y +60 + 60 + /3 > 180, Euclid's Fifth Pos-
tulate implies that the lines Z'Y and Y'Z intersect at a point D which is on
the same side of YZ as X'. Likewise YT and XX intersect at E while
Y'X and X'Y intersect at F. We will next show that ADEF - LABC.

Now m(LDZX') = 180 - a - 60 - /3 = 120 - a - /3 = y by Equation
(3-3). Likewise we may determine the other angles whose measures are
marked in Figure 9-18. Furthermore,
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m(LYDZ)=180-2a-/3-y=60-a
m(LZEX)=60-fl
m(LXFY)=60-y.

Figure 9-18

245

Now X'Z f-- X'Y by the converse of Pons asinorum (Theorem 6.2.2) and
ZX -- YX by construction. Hence LXZX' ^- AXYX' by SSS so that X'7
bisects L ZX' Y = L EX'F. Furthermore

m(LEXF)=180-a
=90+(90-a)
= 90 + 2 (180 - 2a)

= 90 + Zm(LEX'F).

By Problem AlO, X is the incenter of LEX'F so that LX'EX LFEX.
Likewise Z is the incenter of LDZ'E so that L DEX' ^ L X'EX. Hence
EZ = EX' and EX are trisectors of L DEF. Thus

In a similar manner, m(LEFD) = m(LC) and m(LFDE) = m(LA).
Hence ADEF - LABC. Furthermore LDEZ - LABR, LEFX - LBCP,
and AFDY - ACAQ. Thus by Theorem 9.2.5

PB _ CB AB RB
XE FE DE ZE

so that LXEZ ' APBR by the SAS Similarity Theorem. Similarly,
LZDY - LRAQ and AYFX - LQCP. Finally
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PQ PC PB RB RP RP
XY XF XE ZE ZX XY

so that PQ = RP. Similarly RP = QR so that LPQR is equilateral.

PROBLEM SET 9.3

Part A.

1. In a neutral geometry, prove that the incenter of a triangle is equidistant from
each of the three sides.

2. Given LABC in a neutral geometry, prove that there is a circle ' tangent to the
lines AB, BC and A. Such a circle is called an inscribed circle of AABC.

3. In a Euclidean geometry, prove that the centroid G of ABC is two-thirds of the
way from a vertex to the opposite side (i.e., AG = 3 AP, where P is the midpoint
of Be).

4. Given three noncollinear points A, B, C in a Euclidean geometry, prove that there
is a circle' with A, B, C e W. Such a circle is called a circumscribed circle.

5. In the Poincare Plane Y show that there are three noncollinear points which do
not all lie on the same circle.

6. Complete the proof of Theorem 9.3.5 in the case of an isosceles triangle.

7. In a Euclidean geometry, prove that the incenter of an isosceles triangle which is
not equilateral lies on the Euler line.

8. In a Euclidean geometry, prove that the circumcenter of a right triangle is the mid-
point of the hypotenuse.

9. In a Euclidean geometry, prove that the Euler line of a right triangle is the line
containing the median to the hypotenuse.

10. In a Euclidean geometry suppose that I is a point on the bisector of L UVW.
Prove that I is the incenter of L UVW if and only if m(L UIW) = 90 + Zm(L UVW)
and I e int(L U V W).

11. In the proof of Morley's Theorem show that and 22' are concurrent.

Part B. "Prove" may mean "find a counterexample".

12. In a Euclidean geometry prove that the circumcenter 0 of LABC lies in the
interior of LABC.

13. Prove Theorem 9.3.6. Hint: Look at Figure 9-16 carefully.

14. In a Euclidean geometry let P be a point on the circumcircle of LABC and let X,
Y, Z be the feet of the perpendiculars from P to the sides of LABC. Prove that
X, Y, Z are collinear. The line Y Y is called the Simson line of P.
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15. In a Euclidean geometry let P be a point such that the feet of the perpendiculars
from P to the sides of /ABC are collinear. Prove that P lies on the circumcircle
of /ABC.

16. Prove that the center of the nine point circle of a nonequilateral triangle lies on
the Euler line.

17. Let H be the orthocenter of /ABC. Prove that the nine point circle of /ABH is
the same as that of /ABC.

Part C. Expository exercises.

18. Prepare a lecture for a high school class which describes your favorite of these
classical theorems of Euclidean geometry. You should pay attention to whether
the students would understand the content or both the content and the proof. In
your description of the lecture explain why the theorem that you are quoting has
a strong appeal to you.

19. Write an essay on Euler and his contributions to mathematics.



CHAPTER 10

Area

10.1 The Area Function

In this chapter we shall be interested in the concept of area in a neutral
geometry. We shall start off with the definition of an area function and an
investigation of the properties of a Euclidean area function. In Sections 10.2
and 10.3 we will prove the existence of area functions for Euclidean and
hyperbolic geometries respectively. In the last section we will consider a
beautiful theorem due to J. Bolyai which says that if two polygonal regions
have the same area then one may be cut into a finite number of pieces and
rearranged to form the other.

Informally, we are accustomed to making statements such as "the area
of a triangle is bh/2" or "the area of a circle is Tlr2." Such language is imprecise,
of course. What we really mean is that "the area of the region bounded by
the triangle is bh/2." Thus we must first define what we mean by a region in
a neutral geometry. We shall adopt the view here that a region is a polygon
together with its interior. After first defining polygons and polygonal regions,
we will define area as a certain real valued function whose domain is the
set of regions.

Definition. A subset P of a metric geometry is a polygon of degree n > 3 (or
n-gon) if there are n distinct points P1, P21 ... , P. (called the vertices of P)
such that

(i) P = P1PZ u F2 ZP3 u . u Pi_1P u PP1 and (1-1)
(ii) the interiors of the segments in Equation (1-1) are pairwise disjoint.

In this case we write P = OP1P2 P,,. The segments in Equation (1-1) are
called the sides (or edges) of P. Two vertices Pi and P, are consecutive if
PiPP is a side of P.

248
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It should be noted that this definition is just the generalization of the
idea of a quadrilateral (4-gon). The notion of convexity also extends to the
concept of n-gons.

Definition. A polygon P in a Pasch geometry is a convex polygon if for every
pair of consecutive vertices P and Q, all other vertices of P lie in single
halfplane HPQ of the line P. HPQ is called the half plane determined by
the vertices P and Q.

The interior of a convex polygon P = QP1P2 P. is the intersection of
the half planes determined by consecutive vertices:

int(P) = HP1P2 n HP2P3 n n HPnP,.

Example 10.1.1. In Figure 10-1, (a) represents a convex polygon while (b)
represents a nonconvex polygon. (c) and (d) are not polygons at all.

(a) (b)

Figure 10-1
(c) (d)

Definition. A triangular region T in a Pasch geometry is a set which is the
union of a triangle and its interior. The triangular region determined by
/ABC will be denoted AABC so that AABC = QABC u int(/ABC).

A polygonal region R in a Pasch geometry is a set such that there are
triangular regions T1, T2, .... T, which satisfy

(i) R=T1uT2u...uT,
(ii) If i 56 j, T, n T; is either empty, consists of a common vertex, or consists

of a common edge of Ti and T3.

The set of all polygonal regions of a Pasch geometry, 19, £, d}, is denoted
.SP(Y) or £ .

Example 10.1.2. In Figure 10-2 we have a polygonal region made up of
5 triangular regions T1, T2, T3, T4, T5. As Figure 10-3 indicates, the triangular
regions that make up a polygonal region are not unique. Note also that
Figure 10-4 also illustrates a polygonal region.

You should note that we did not define a polygonal region as the union
of a polygon and its interior. This is because the interior of a polygon has
only been defined for a convex polygon.
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D

Figure 10-2

Figure 10-4

D

Figure 10-3

10 Area

Definition. A point P is inside a polygonal region R if there is a triangle
LABC such that AABC c R and P E int(QABC). If P E R but P is not
inside R, then P is a boundary point of R. The inside of R, ins(R), is the set
of all points inside R. The boundary of R, bd(R) is the set of all boundary
points.

Thus a point P is inside R if we can find some (small) triangle LABC
with P E int(LABC) such that the triangle fits inside the region. As we might
expect, if P = QP1PZ P. is a convex polygon then P = P u int(P) is a
polygonal region and int(P) = ins(P).

Theorem 10.1.3. Let P = Q P1 P. be a convex polygon and let

P= ,p, ... pn = Qp1 ... Pn U int(QP, ... P.)

Then

(i) P is a polygonal region
(ii) ins(P) = int(P)

(iii) bd(P) = P.

PROOF. The actual details of the proof are left to Problem A4. The basic
idea in part (i) is to use induction on n to show that

, '... pn=Aplp2p3UAp1p3p4U.UAp1pn-1P,.

See Figure 10-5.



10.1 The Area Function 251

P3

Figure 10-5

Definition. If P = (P1 P. is a convex polygon, then P ='Pl P. as
defined in Theorem 10.1.3 is called the convex polygonal region determined
by P.

Because of Theorem 10.1.3 we abuse our notation and refer to the interior
of a convex polygonal region R, int(R), instead of the inside of R, ins(R).

We are now in a position to define area. Certainly "area" must assign to
each polygonal region a positive number such that if two regions intersect
only along an edge or at a vertex (or, equivalently, along their boundary),
then the area of their union is the sum of their areas. This last statement is
the same as saying that the whole area is the sum of its parts and that edges
have "zero area." We would also want two triangular regions determined
by "identical" (i.e., congruent) triangles to have the same area. In addition,
we prefer that the area function be normalized so that a square of side a has
area a2. More precisely, the definition is as follows.

Definition. In a neutral geometry an area function is a function a: A--+ 18
such that

(i) a(R) > 0 for every region R e . .

(ii) If LABC -- LDEF then a(AABC) = a(ADEF).
(iii) If Rl and R2 are two polygonal regions whose intersection contains

only boundary points of Rl and R2 then

a(R, u R2) = a(R1) + a(R2)

(iv) If R is the convex polygonal region determined by a square whose sides
have length a, then

a(R) = a2.

It would be natural at this point to prove that every neutral geometry
has an area function. We shall assert this fact now, but not prove it until
Section 10.2 (for a Euclidean geometry) and Section 10.3 (for a hyperbolic
geometry). This is because both theorems are technically quite involved.

Theorem 10.1.4. For any neutral geometry there is an area function a.
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For the rest of this section we shall investigate the consequences of
Theorem 10.1.4 in a Euclidean geometry. Our first result can be proved by
breaking a square up into rectangles. See Problem A5.

Definition. If ABCD is a rectangle in a Euclidean geometry then the
lengths of two consecutive sides of AB and BC of ABCD are called the
length and width of ABCD.

Theorem 10.1.5. Let a bean area function in a Euclidean geometry. If ABCD
is a rectangle of length a and width b then

ab.

We might note that Theorem 10.1.5 is also true in a hyperbolic geometry,
precisely because there are no rectangles ! The remaining results of the
section are false in hyperbolic geometry. Our proofs depend upon the
existence of rectangles which, of course, invalidates them in a hyperbolic
geometry.

Theorem 10.1.6. In a Euclidean geometry, if /ABC has a right angle at B then

a(AABC) = i (AB)(BC).

PROOF. Let D be the point on the same side of BC as A such that CD a- ;!B-
and CD 1 BC, as in Figure 10-6. Since the geometry is Euclidean, ABCD
is a rectangle with length AB and width BC. Since LABC -- QCDA, the
result follows from Theorem 10.1.5.

A D

B C

Figure 10-6

The proofs of the next three results are left as exercises.

Corollary 10.1.7. In a Euclidean geometry if QABC has base BC of length b
and altitude AD of length h, then a(AABC) = -'bh.

Definition. ABCD is a trapezoid if AD I IRE. In this case we say that AD is
the lower base and BC is the upper base.

Theorem 10.1.8. A trapezoid is a convex polygon.
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Theorem 10.1.9. In a Euclidean geometry, if ABCD is a trapezoid then

i(AD + BC) h

where h is the distance from AD to BC. In particular, if ABCD is a parallelo-
gram then (AD) h.

The area function can be used to prove the basic theorem of similarity
theory (Theorem 9.2.3). In fact, this is what Euclid did. (See Problem A12
for the proof.) Although such an approach appears to be simpler, it depends
on knowing the existence of an area function. As we shall see in the next
section, the existence of an area function in Euclidean geometry can be proved
using similarity theory and in particular Theorem 9.2.3. Thus if you wish to
avoid circular reasoning, the simpler proof of Theorem 9.2.3 can be obtained
only at the expense of assuming, as an axiom, that an area function exists.

As the last result in this section, we present Euclid's proof of the Pythag-
orean Theorem. Although this proof is more complicated than the one we
presented earlier (Theorem 9.2.7), it is important because it shows a basic
difference between the view of Euclid and our own view. We have taken a
metric view of geometry and so may use the full power of the ruler postulate
and our knowledge of the real numbers. However, real numbers were not
available to Euclid. In fact, Euclid was unable to measure the length of the
hypotenuse of an isosceles right triangle with each leg of unit length because
the length of the hypotenuse is irrational: -,/2-.

Note that in the following restatement of the Pythagorean Theorem there
is no mention of the lengths of the sides of the triangle. Also, the term "equal"
means "equal in area." We cannot resist quoting the theorem as Euclid did.

Theorem 10.1.10 (Pythagoras). In a Euclidean geometry, if QABC is a right
triangle then the square on the hypotenuse is equal to the sum of the squares
on the legs.

PROOF. Let QABC have a right angle at B. Let ABDE be a square with
DE on the opposite side of AB as C. Similarly, let BCFG and ACIH be
squares constructed as in Figure 10-7. Euclid's statement of the theorem is
equivalent to

(1-2)

Let J be the foot of the altitude from B to AC. Since ACII HI, BJ is per-
pendicular to DI at a point K. Furthermore, A-J-C and H-K-I
(Why?). We shall verify Equation (1-2) by showing that o(MABDE) =
Q(MAJKH) and a(EBCFG) = o(UJCIK) and then using the addition
law for area:

o(UACIH) = o(MAJKH) + a(UJCIK). (1-3)
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Note that the right angles L EAB and L HAC are congruent and that
L BAC = L CAB. Now Be int(L EAC) and C E int(L HAB) so that by
Angle Addition LEAC ^ LHAB -- LBAH. By construction AE AB
and AC f-- AR so that LEAC a- LBAH by SAS. Hence

Q(AEAC) = a(ABAH).

If we view EA as the base of LEAC, then the height of LEAC is BA. This
is because the desired height is the distance between the parallel lines EC
and EA. Thus

Likewise,

so that

a(AEAC) = Z(EA)(BA) =

a(ABAH) = 1(AH)(AJ) = -a(UAJKH)

a(MAJKH). 1-4)

Similarly,
u(MBCFG) = u(UJCIK). (1-5)

Combining Equations (1-3), (1-4), and (1-5) we obtain Equation (1-2) as
desired.

Other area proofs of the Pythagorean Theorem (including one due to
a former President of the United States!) are sketched in Problems A10
and All.

PROBLEM SET 10.1

Part A.
1. Prove that the interior of a convex polygon is non-empty.

2. Prove that every 3-gon is a convex polygon.

3. Prove that a convex polygonal region is a convex set.
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4. Prove Theorem 10.1.3.

5. Prove Theorem 10.1.5. Hint: See Figure 10-8.

ba

a b
b

Figure 10-8

6. Prove Corollary 10.1.7.

7. Prove Theorem 10.1.8.

8. Prove Theorem 10.1.9

*9. Prove that in a Euclidean geometry if two triangles have the same height, then
the ratio of their areas equals the ratio of their bases.

10. Use Figure 10-9 to give a proof of the Pythagorean Theorem using area.

a

b

a

b

a

b

b a

Figure 10-9

11. Use Figure 10-10 to give a proof of the Pythagorean Theorem due to James Gar-
field, the twentieth President of the United States.

b

Figure 10-10

12. Use the following outline to prove the basic similarlity theorem (Theorem 9.2.3):
In a Euclidean geometry, if parallel lines 11, 12, 13 are cut by transversals t1, to at
points A, B, C and D, E, F respectively with A-B-C and D-E-F then AB/BC =
DE/EF.
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a. Prove v(ACBE) = a(AFEB) and v(AABE) = Q(ADEB).
b. Prove AB/BC = u(AABE)/Q(ACBE).
c. Prove DE/EF = AB/BC.

Part B. "Prove" may mean "find a counterexample".

13. Prove that the boundary of a polygonal region is a polygon.

14. Let R1 and R2 be polygonal regions in a Euclidean geometry. If there is a point
P e ins(R1) n ins(R2), then prove R1 n R2 is also a polygonal region.

15. Let r : R -+ R be a function defined on the set of polygonal regions in a Euclidean
geometry such that it satisfies axioms (i), (ii), and (iii) of an area function. Suppose
further that if ABCD is a square whose side has length I then 1.
Prove that z actually is an area function by the following outline.
a. If q is a positive integer and ABCD is a square whose side has length 1/q,

prove r(SABCD) = 1/q2.

b. If p and q are positive integers and ABCD is a square whose side has length
p/q, then prove that pz/qz.

c. If ABCD is a square whose side has length a, prove that az
by considering positive integers p, q with p/q < a < (p + 1)/q.

16. A regular polygon is a polygon all of whose edges are congruent and all of whose
angles are congruent. Prove that a regular polygon is convex. (Note that for
polygons, the terms equiangular, equilateral, and regular are different, which is
not the case for triangles.)

10.2 The Existence of Euclidean Area

In the previous section we defined what is meant by an area function and
discovered some of the basic properties that a Euclidean area function must
possess. Now we want to prove that there really is an area function in a
Euclidean geometry and that it is unique. The proof will involve some
technicalities.

The basic idea is to define the area of a triangular region first. From that
the area of a polygonal region R may be defined as the sum of the areas of the
triangular regions that make up R. However, there is a technical problem
with this approach because a given polygonal region can be subdivided into
a union of triangular regions (a triangulation) in many ways. We must show
that the sum of the areas of the triangular regions does not depend upon
the actual choice of subdivision. This is where the technical difficulties
become severe.

Because we do not know at the beginning of this section that the function
we define actually is an area function, we should not use the word "area" in
the definition. Thus we will define the "size" of a polygonal region in a
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Euclidean geometry (and will hope that "size" is an area function, a fact
that we will eventually prove).

In keeping with the approach outlined above we will first define the size
of a triangular region and then the size of a polygonal region with respect
to a particular triangulation. The primary theorem will be that the size of a
region does not depend upon the particular triangulation used.

Definition. The size of a triangular region in a Euclidean geometry is one-
half the length of one side multiplied by the length of the altitude to that
side:

s(AABC) = Z(BC)(AD)

where D is the foot of the altitude from A.

By Theorem 9.2.9, it doesn't matter which side we choose in the definition
of size of a triangular region: the product (base)(height) is independent of the
choice of the base. Recall that this result was a consequence of similarity
theory so that our development of the existence of a Euclidean area function
depends on similarity theory.

Definition. A triangulation -c of a polygonal regional R is a set r =
{T1, T2, ... , of triangular regions whose union is R such that any two
elements of r are either disjoint or intersect only along a common edge or
at a common vertex. P E R is a vertex of r if P is a vertex of one (or more) of
the members of T. An edge of r is an edge of a member of r.

From the very definition of a region, every polygonal region has a trian-
gulation. However, as Figures 10-2 and 10-3 showed, a region may have
more than one triangulation.

Definition. Let r = {T1, T2, ... , be a triangulation of a polygonal region
R in a Euclidean geometry. The size of R with respect to r is the sum of the
sizes of the members of r:

s,(R) = s(T1) + ... +

As stated above, the key technical result of this section will be that s,(R) =
s,,(R) for any two triangulations r and i of R. Our basic method for proving
this result is to find a third triangulation i which is in a sense "smaller" than
r and r' such that st(R) = sr(R) = st,(R). This "smaller" triangulation will be
formed by cutting the given triangular regions into triangles and trapezoids,
and then further cutting up these regions into triangles in a special way.

Definition. A base triangulation of a triangular region R = AABC is a trian-
gulation all of whose vertices except for one lie on a single side of /ABC.
(See Figure 10-11.)
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Figure 10- 11

The proof of the following result is not difficult and is left to Problem Al.

Lemma 10.2.1. In a Euclidean geometry, the size of triangular region AABC
with respect to any base triangulation i of AABC equals the size of A ABC:

s,(AABC) = s(AABC) = i (base)(height).

Definition. A base triangulation of a trapezoidal region ABCD is a trian-
gulation z such that each vertex of r lies either on AC or on AD. (See
Figure 10-12.)

Lemma 10.2.2. In a Euclidean geometry, the size of a trapezoidal region
ABCD with respect to a base triangulation i is the product of the height of

ABCD with the average of the lengths of its bases:

Zh(b1 + b2)

where b1 = BC and b2 = AD. In particular, the size is independent of the
specific base triangulation used.

PROOF. For each triangular region in i choose as its base the edge parallel
to AD. Then each triangular region has height h = height of ABCD. Let
the lengths of the bases of the triangular regions be denoted c1, c2, ... , ck
and d1, d2, ... , d, as in Figure 10-12. Then since each of the triangular
regions has height h

+Zhd,
= Zhb1 + Zhb2 = Zh(b1 + b2).
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Notation. If ABCD is a trapezoid then s(MABCD) is the size of
ABCD with respect to any base triangulation. Similarly,

s(AABC) is the size of QABC with respect to any base trian-
gulation of AABC. This notation is well defined by Lemmas 10.2.1
and 10.2.2.
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Next we must investigate what happens when we decompose a triangle
into a triangle and a trapezoid.

Lemma 10.2.3. Let QABC be given in a Euclidean geometry with A-D-B
and A-E-C where M11 BC. Then

s(AABC) = s(AADE) + s(MBDEC)

PROOF. Consider DE as the base of LADE and BC as the base of QABC.
See Figure 10-13. The height h of LABC, the height h1 of LADE, and the
height h2 of the trapezoid BDEC are related by

h=hl+h2.

Figure 10-13

If b1 = DE and b2 = BC, then by Theorem 9.2.3

hl bl

h b2

so that b2h1 = b1h = blh1 + b1h2 or bth1 = b2h1 - b1h2. Thus

s(AADE) + zb1h1 + Zh2(b1 + b2)

= i(bzh1 + b2h2)

= Zb2(h1 + h2) = s(AABC).

Definition. A finite set of lines, .F, is a family of parallel lines in a Euclidean
geometry if for any 1, l' e 11111.



260 10 Area

Suppose that R is a polygonal region in a Euclidean geometry and that
IF is a family of parallel lines such that each vertex of R lies on a line of -.
The lines of F can be named 11, 12, ... , 1k so that if I is a common transversal
of the lines in F and I n 1, = A;, then

A,-A2-A3-'. .-Ak.
We may then say that l; and 1;+1 are consecutive lines in the family. For
each i let H; be the half plane of l; that contains 1;+1 and let H; be the half
plane of l; that contains Ii_ 1. (H1 and Hk are not defined but could be.) For
each i with 1 < i < k - 1, we define the strip between 1; and 1;+1 to be:

B`=1,u1,+1u(H,+n Hi+1).

See Figure 10-14.

Figure 10-14

Since we assumed that each vertex of R lies on a line of then for each
i, R n B; is either a triangular region or a trapezoidal region (or empty).
Thus the family F decomposes R into a collection of triangular and trape-
zoidal regions. See Figure 10-15.

0
Figure 10-15

Definition. If .F is a family of parallel lines in a Euclidean geometry such
that every vertex of a polygonal region R lies on a line of F, then the collec-
tion of triangular and trapezoidal regions described above is called the
parallel decomposition of R induced by F.
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The proof of the next result is left to Problem A2. Be sure to consider
two cases depending on whether or not the family F is parallel to a side
of the triangular region.

Lemma 10.2.4. Let R = AABC be a triangular region and let F be a finite
family of parallel lines in a Euclidean geometry such that A, B, and C lie on
lines of _5F. Then the size of R is the sum of the sizes of the triangular and
trapezoidal regions which are the members of the parallel decomposition of R
induced by F.

We are now ready for the major technical result that the size of a polygonal
region does not depend upon the choice of triangulation.

Theorem 10.2.5. In a Euclidean geometry if z and z' are triangulations of the
polygonal region R then s,(R) = s,,(R).

PROOF. The method of proof is to subdivide the regions in z and z' to get a
new triangulation f with st(R) = s,(R) = s;,(R). We start this procedure by
choosing a family of parallel lines .F and inducing from that family a parallel
decomposition of the triangular regions of z and T'.

Two edges of a triangulation are either disjoint, identical (and intersect in
a segment), or intersect at a single point (a vertex). Similarly, if e is an edge
of one triangulation of R and f is an edge of another triangulation of R,
then e and f are either disjoint, intersect in a segment (which may be only
part of e or f), or intersect in a single point (which may not be a vertex of
either triangulation). We let *- be the set of all points which are intersec-
tions of two edges:

'V = {PJ {P} = e n f, where e is an edge of either
z or z' and f is an edge of either z or T 'l.

Note that contains all the vertices of z and all the vertices of i as well as
some additional points. Let 1' be any line and define

.F =.F(z,t',I')= {l lI11'andVeIforsome VEY'}.
See Figure 10-16 where the points of Y- are marked on both triangulations
and F is marked on r. In this example -V contains exactly one point which
is not a vertex of either z or T'.

Figure 10-16
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.F induces a parallel decomposition of each triangular region in T. This
gives a decomposition p of R into triangles and trapezoids. By definition,
the size of R with respect to T is the sum of the sizes of the triangular regions
in T. By Lemma 10.2.4 the size of each of these regions is the sum of the sizes
of the regions in the induced parallel decomposition. Thus we may write
s, (R) = sp(R).

Figure 10-17 Figure 10-18

Finally each edge of T' creates base decompositions of the regions in p
into triangles and trapezoids. See Figure 10-17. Choose a diagonal of any
remaining trapezoid to give a base decomposition. See Figure 10-18. The net
result is we have a new triangulation i of R.

By Lemmas 10.2.1 and 10.2.2 we have

st(R) = so(R) = sL(R).

We may carry out the same procedure starting with T' and using the same
family F. The crucial point is that the decomposition p' so obtained is the
same as p. This is because each is determined by the lines of F, the edges
of T and the edges of r'. See Figure 10-19. In particular 'r' = 'c if we choose
the same diagonals of the remaining trapezoids so that

s,.(R) = s,.(R) = s,.(R) = st(R).

Figure 10-19

The triangulation i found in the above proof is an example of a common
refinement of r and T' which is defined formally as follows.
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Definition. Let r and i be two triangulations of a polygonal region R. If
every triangular region of f is contained in a triangular region of -r, then i
is a refinement of T.

Theorem 10.2.6. In a Euclidean geometry let a: M -- ff be defined by

a(R) = s,(R)

where r is any triangulation of the polygonal region R. Then a is an area
function.

PROOF. Because of Theorem 10.2.5, a is well defined; that is, it does not
depend on the choice of triangulation T. Thus all that is necessary is to
verify the four axioms of area are satisfied. This is left to Problem AS. Be
careful with the third axiom: If R is the union of R1 and R2 and Ti is a tri-
angulation of Ri, then r1 u i2 need not be a triangulation of R. See
Figure 10-20 and Problem A6.

Figure 10-20

Theorem 10.2.7. In a Euclidean geometry there is exactly one area function.

PROOF. By Theorem 10.2.6 we know that a is an area function, so there is
at least one. We must therefore show that if a is an area function then a = a.

Let a be any area function for a Euclidean geometry. By the third axiom
of area, the area of a polygonal region is the sum of the areas of the triangular
regions in any triangulation. Hence if a agrees with v on triangular regions
we must have a = a. But this follows from Corollary 10.1.7 because there we
showed that a(AABC) = Z(base)(height) and this latter expression is the
definition of a. Thus there is only one area function in a Euclidean geometry.

PROBLEM SET 10.2

Part A.

1. Prove Lemma 10.2.1.

2. Prove Lemma 10.2.4.
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3. Give an example of a point of a polygonal region R which is a vertex in one triangula-
tion but not in another.

4. Carry out the details of the proof of Theorem 10.2.5 for the triangulation Tl and
T2 of /ABC and the line l' pictured in Figure 10-21.

5. Prove Theorem 10.2.6.

6. Explain why Tl U T2 does not give a triangulation of Rl u R2 in Figure 10-20.

Figure 10-21

10.3 The Existence of Hyperbolic Area

In the previous section we built an area function for a Euclidean geometry
by starting with the area of a triangular region and then defining the area
of a polygonal region as the sum of the areas of the constituent triangular
regions. There were two key steps. First we had to have a well defined quantity
(which we called size) for the area of a triangular region. The similarity
theorem which said that (base)(height) was independent of the choice of
base was crucial for this step. Second, we had to show that if we had two
different triangulations -r and r' of a region R then each gave the same size
for R so that we had a well defined area for any polygonal region. We did
this by finding a common refinement i by means of a parallel decomposition.

For hyperbolic geometry we will follow a similar course, but with different
proofs because of two difficulties. The first difficulty is that since (base)(height)
is not independent of the choice of base in a hyperbolic geometry we will
need a different definition for the area of a triangular region. See Problem Al.
Since parallel lines are neither unique nor equidistant in the hyperbolic case
we will also need a replacement for the idea of a parallel decomposition.

This section may be omitted if the reader is willing to accept the existence
of a hyperbolic area function. The area function constructed here is based on
the concept of the defect of a triangle. The area of a polygonal region will be
defined to be the sum of the defects of the triangles of any triangulation of
the region. In Section 10.4 we will show that this is the only choice for an
area function, up to a constant multiple.

To start, we need a function which assigns to each triangular region a
positive number in such a way that congruent triangles are assigned the
same number. We already have such a function: the defect.
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Definition. The defect of a triangular region R is the defect of the triangle
that determines R:

b(AABC) = b(LABC).

Our initial goal is to show that if T and T' are two triangulations of a
polygonal region R, then the sum of the defects of the triangular regions in
T and T' are the same.

Definition. Let R be the convex polygonal region determined by P =
0 P1 P and let P E int(P). The triangulation of R by triangular regions
whose vertices are P together with a pair of consecutive vertices of P is called
a star triangulation of R with respect to P. (See Figure 10-22.) Thus

T*(R,P) = {APP1P2, (3-1)

is the star triangulation of R with respect to P.

The proof that T*(R, P) as defined by Equation (3-1) actually is a triangu-
lation is left to Problem A2. The next piece of notation is useful because it
avoids breaking statements into special cases like LPP P1, LPP1_ 1Pi, etc.

Notation. If P = QP1P2 P. is a polygon of degree n then Po
and P,,, are defined by

Po=P and P,+1=P1.

The angle at vertex Pi is

LPi = LPi _ 1 PiPi + 1 for 1 < i < n.

Lemma 10.3.1. Let R = ,P1 .. P. be a convex polygonal region in a neutral
geometry and let P E int(R). Then the sum of the defects of the triangular
regions in r*(R, P) is

n

b(R, P) = 180(n - 2) - Y m(L Pi). (3-2)
i=1
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In particular 6(R, P) does not depend on the choice of P E int(R).

PROOF. For 1 < i < n define ai, f i, yi by

ai = m(LP;PP1+1)

Ni = m(LPP1Pi+1)
Yi = m(LPPi+1Pi)

as marked in Figure 10-23.
We have the following relations

6(APPiPi+1) = 180 - (ai + Ni + yi)
n

Y a; = 360
i=1

m(LPi)=Yi-1+Yi since P E int(LPi)

Figure 10-23

where yo = yn. Thus we have

6(R,P)_ (180-(ai+fi+yi))
i=1

10 Area

=18On-I i Of )-(Yn+#1+Y1+#2+...+Yn-1+Pn)\

= 180n - 360 - m(L Pi)
i=1

n

= 180(n - 2) - I m(LPi).
i=1

Because of this lemma we can make the following definition.

11

Definition. The defect of a convex polygonal region R, denoted S(R), is the
sum of the defects of a star triangulation of R with respect to any point
P E int(R).
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Following the notation of the previous proof, if R = A Pt P. then

S(R) = 180(n - 2) - m(L Pi).
i=1

Lemma 10.3.2. Let R be a convex polygonal region in a neutral geometry and
let I be a line which intersects the interior of R. Then I decomposes R into
two convex polygonal regions R1 and R2.

PROOF. The details are left to Problem A5. Note that R1 and R2 can be
defined in terms of the half planes determined by 1. The important assertion
is that R1 and R2 are convex polygonal regions. See Figure 10-24.

Figure 10-24

Lemma 10.3.3. Let R = IfiPt P. be a convex polygonal region and let I be
a line that intersects the interior of R. Let R1 and R2 be the two convex poly-
gonal regions of Lemma 10.3.2. Then

b(R) = S(R1) + 6(R2)-

PROOF. There are three cases depending on whether I contains 0, 1, or 2
vertices of R. (Why can't I contain more than two vertices?) We shall con-
sider the case where I contains one vertex and leave the other cases to
Problem A6. See Figure 10-25.

P6

Figure 10-25

We may label our vertices so that P1 E 1. 1 must also intersect a side
PkPk+1 (Why?) at a point Q with 2 < k:< n - 1 and Pk Q-P,, t. Then
R 1 = ,P1 P2 PkQ has k + 1 vertices and R2 = A QPk+ 1 P P1 has
n - k + 2 vertices. By Lemma 10.3.1 and Equation (3-2)
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k

6(R1) = 180(k + 1 - 2) - m(LQP1P2) - CI m(LP1)) - m(LPkQP1)
=2

S(R2) = 180(n - k + 2 - 2) - m(LP1QPk+1)
n- m(LPi)) - m(LPnP1Q)

i=k+1

Since Q e int(LP1) we have

m(LQP1P2) + m(LP1).

Since Pk Q-Pk+1

m(LPkQP1) + m(LP1QPk+1) = 180.

Hence
k n

6(R1)+S(R2)=180(n-1)- Y_ m(LPi) - Y_ m(LP1)-m(LP1)-180
i=2 i=k+1

180(n-2)- m(LP)
i=1

= S (R).

Theorem 10.3.4. Let T and T' be triangulation of the same polygonal region
R. Then the sum of the defects of the triangular regions of i equals the sum
of the defects of the triangular regions of r'.

PROOF. Each edge of a triangular region in either r or z' determines a line.
Let F be the set of all such lines. contains a finite number of lines which
can be named 11, 12, ..., lk. Note that unlike the set of lines used in the
previous section, this set F is not made up of parallel lines.

Consider the triangular regions of t.11 either does not intersect the interior
of a particular triangular region T or decomposes it into two convex poly-
gonal regions. In the latter case the sum of defects of these two convex
polygonal regions equals the defect of the original triangular region T by
Lemma 10.3.3. Hence 11 induces a decomposition it of R into convex poly-
gonal regions such that the sum of the defects of these regions equals the
sum of the defects of the triangular regions in T.

We continue the process with T1 and 12 to get a decomposition 'r2, and
then 13 and so on. Eventually after using all k lines of . we receive a decom-
position T. See Figure 10-26c. The sum of the defects associated with T
is equal to that of T. Finally, we note that if we start with i' instead of i,
we get the same decomposition Y. See Figure 10-26d. Hence, the sum of the
defects associated with r' equals the sum of the defects associated with
f and hence with T. (If we take star triangulation of the convex polynomial
regions of T then we will have a common refinement of i and T'.)
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(a) (b)

Figure 10-26

(c) (d)
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Definition. The total defect of a polygonal region R, S(R), is the sum of the
defects of the triangular regions of any triangulation i of R.

This definition makes sense precisely because of Theorem 10.3.4.

Theorem 10.3.5. In a hyperbolic geometry the total defect function S:. l -+ R
is an area function.

PROOF. We leave most of the details to Problem A8 and consider only the
fourth axiom. We must show that if ABCD is a square whose side has
length a then a2. This is true precisely because there are no
squares in a hyperbolic geometry, and so every square has defect a2. In other
words, the statement is true vacuously. (Of course, every square also has
defect 1 or 7 or 22/7. In fact, every square has any defect we desire.)

We end this section with an alternative and optional description of the
area function in the Poincare Plane .°. This description is motivated by
differential geometry and is defined in terms of an integral. See Millman and
Parker [1977] for more details. It is included so that the reader can see an
alternative tool for computing a hyperbolic area. Since Euclidean areas can
be given by integrals, you might expect that the (hyperbolic) area of a region
in the Poincare Plane can also be given as an integral. This is actually the
case.

Definition. The hyperbolic area of a polygonal region R in -*' is

a(R) =
180

JJe
1 dy dx. (3-3)

We shall verify that this formula actually gives the defect in the case of
one specific triangle. Of course, this does not prove that it always gives the
defect.

Example 10.3.6. Let R be the triangular region in , with vertices at A =
(0,1), B = (0, 5) and C = (3, 4). Show that a(R) = S(R). See Figure 10-27.
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B

A

Figure 10-27

SOLUTION. The sides of R are given by

AB = 0L, BC = 0L,, AC = aL

\
m(L A) = cos -1(<(0,1), (1, 4)> _ cos 1 4

1- 17 ) 17)

m(LB)=90

4,3),(-4,-1)>)=cos-1( 13 )
5 175-,/17

Hence

S(R) = 90 - cos
-1 \

I - cos -1(51 137) _ 25.0576
1 7

On the other hand

a(R) =
180 I('3 I(' 2s-s 1

it J0 J 17-x- 4) (-)dYdx

_ 180 3 1 + 1 dx
n 0 ( 25-x2 17-(x- 4)2

= 170 \
-Sin-1

5)

+ Sin-'
(,,/-17))

3

0

10 Area

(where Sin-1(t) means measure in radians and sin-1(t) means in degrees)

_ -sin-1
(3)+sin-1/-11+sin-1(0)-sin-1(4)

`5
17 17

25.0576.

Hence a(R) = S(R).
We see in this computation why there is the factor of 180/n in the definition

a: it is to change from radian measure to degree measure.
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PROBLEM SET 10.3

Part A.

1. Give an example of a triangle LABC in the Poincar6 Plane ar such that

(BC)(length of altitude from A) 7A (AB)(length of altitude from Q.

Thus (base)(height) is not well defined for a triangle in a hyperbolic geometry.

2. If R is a convex polygonal region and P E int(R) in a neutral geometry, prove that
t*(R, P) is a triangulation of R.

3. Show by example that t*(R, P) as defined by Equation (3-1) need not be a triangu-
lation if R is not convex.

4. In the proof of Lemma 10.3.1, prove the assertion that Y_ a; = 360.

5. Prove Lemma 10.3.2.

6. Prove Lemma 10.3.3 for the two remaining cases.

7. Carry out the construction of Theorem 10.3.4 for the case which is pictured in
Figure 10-28.

Figure 10-28

8. Prove Theorem 10.3.5.

9. Prove that the area of a Saccheri quadrilateral in a hyperbolic geometry is always
less than 360.

10. Verify that Equation (3-3) gives the area of the Poincare triangle with vertices at
(0, 5), (0, 3) and (2, 21). (See Problem A2 of Section 5.1.)

11. Repeat Problem 10 for the Poincarb triangle with vertices at (5, 1), (8, 4), and (1, 3).

Part B. "Prove" may mean "find a counterexample".

12. Prove that Equation (3-3) gives the area of any polygonal region in Y. (Hint: you
need only consider triangles. Since integrals and the defect are both additive, you
can assume that one side of the triangle is part of a type I line.)

13. Let S : gP - H be the defect function for a Euclidean geometry. Prove that S is not
an area function. Which area axioms are not satisfied by S?

14. In Example 10.3.6 we showed that the integral and the defect were both approxi-
mately equal to 25.0576. Use trigonometric identities to show that the integral is
exactly equal to the defect.
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10.4 Bolyai's Theorem

The two area functions we developed in Sections 10.2 and 10.3 seem to be
quite different. The Euclidean area function was built using distance, and
in particular the lengths of the base and altitude of a triangle. The hyperbolic
area depended upon angle measurement, not distance. As we shall see in
this chapter both of these area functions lead to a very beautiful and sur-
prising theorem due to J. Bolyai, one of the founders of hyperbolic geometry.
Roughly, Bolyai's Theorem states that if two polygonal regions have the
same area, then one can be cut up into a finite number of pieces and reassem-
bled to form the other. (This is the basis of many interesting puzzles and
games for children.) The most difficult part of this proof will be showing it
is true for triangular regions (Theorem 10.4.6). Before we attack that problem,
we will define "equivalent by finite decomposition," which formalizes the
concept of "cut up and reassemble."

Definition. Two polygonal regions R and R' of a neutral geometry are
equivalent by finite decomposition (R - R') if there exist triangulations z =
{T1, T2 ,-.. , Tk} of R and i = {T, T Z, ... , Tk} of R' such that T; - T for
1 < i < k. (See Figure 10-29.)

Figure 10-29

The proof of the following theorem is left to Problem A2.

Theorem 10.4.1. If a is an area function in a neutral geometry and R and R'
are polygonal regions with R - R' then r(R) = a(R').

The goal of this chapter is to prove the converse of Theorem 10.4.1, namely

Bolyai's Theorem. If R and R' are polygonal regions in a neutral geometry and
a is an area function with a(R) = a(R') then R is equivalent by finite decom-
position to R'.

We will prove Bolyai's Theorem by first verifying it for triangular regions.
It will be shown that to each triangular region AABC we may associate
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a Saccheri quadrilateral GBCH (Theorem 10.4.2) so that AABC
GBCH (Theorem 10.4.3). By showing that under certain conditions two

Saccheri quadrilaterals are equivalent (Theorem 10.4.5) we shall eventually
be able to verify Bolyai's Theorem for triangular regions (Theorem 10.4.6).
The proof of Bolyai's Theorem for polygonal regions follows from the
triangular case by essentially a proof by induction. Most of the hard work is
contained in the triangular case.

Theorem 10.4.2. Let pABC be a triangle in a neutral geometry with D the
midpoint of AB and E the midpoint of AC. Let F, G, and H be the feet of the
perpendiculars from A, B, and C to DE as in Figure 10-30. Then GBCH is
a Saccheri quadrilateral, called the Saccheri quadrilateral associated with side
BC of pABC.

PROOF. We first suppose that neither AB nor AC is perpendicular to DE.
Let 1 be the line perpendicular to BE at D as in Figure 10-30. 1:0 AB and
A-D-B so that A and B lie on opposite sides of 1. Since G`B II 111 AF (Why?),
G and F lie on opposite sides of 1. Likewise, F and H are on opposite sides
of the line 1' perpendicular to DE at E. Hence

G-D-F and F-E-H. (4-1)

Since the vertical angles LBDG and LADF are congruent, HA implies
that

LBDG ^ AADF so that BG AF. (4-2)
Likewise

LCEH AAEF so that CH AF. (4-3)

Thus RUG -- AF CH and GBCH is a Saccheri quadrilateral.
The case where one of AB or AC is perpendicular to BC is left to Problem

A3. See Figure 10-31 for the case AB I hE.
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G=F=D

Figure 10-31

Theorem 10.4.3. If GBCH is the Saccheri quadrilateral associated with
side BC of AABC then AABC =_ GBCH.

PROOF. We must consider several cases depending on the relative positions
of D, E, F, G, and H. If AB 1 DE as in Figure 10-31 then it is easy to show
that AADE ^ ACHE so that the triangulations

T = {AADE, ADEB, ABEC} and T'= { ACHE, ADEB, ABEC}

give the equivalence AABC =_ GBCH. The case AC 1 DE is similar.
If neither AB nor AC is perpendicular to DE then F, G, and H are distinct

points so that either G-F-H, F-G-H or G-H-F. The latter two
cases are essentially the same with the roles of G and H (and also B and C)
reversed. Hence we need only consider two cases.

Case 1. G-F-H. This situation was illustrated in Figure 10-30. AABC
and AGBCH have triangulations

T = {AADF, AAEF, ABDF, ABFE, ABEC}
T' = {ABDG, ACEH, ABDF, ABFE, ABEC}.

Because of Congruences (4-2) and (4-3), r and T' show that AABC =
GBCH.

Case 2. F-G-H. This situation is illustrated in Figure 10-32. We shall
first construct a quadrilateral UEOBCE which is equivalent by finite decom-
position to AABC. Let Eo be the point with Eo E-E and EoD ^ DE.
Since D is the midpoint of AB, DB _- DA. The vertical angles L EODB and
L EDA are congruent so that by SAS we have

AEODB ^f AEDA. (4-4)

The triangulations T = {AADE, ADBE, ABEC} and T'
ABEC} then show that

{ABDE0, ADBE,

AABC EOBCE. (4-5)
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All that remains is to show that EOBCE GBCH. Suppose that
D-G-E as in Figure 10-32. Now GB -- HC by Theorem 10.4.2. Since E is
the midpoint of AC, T E- EC. Because QEODB ^ LEDA, we have E0-B- ^
AE E. Hence /EOGB f-- QEHC by HL. Because D-G-E, we have
triangulations

i = {AE0GB, AGBE, AEBC} and r' = { AEHC, AGBE, EBC}

which imply that
EOBCE _ GBCH.

However, G may not be between D and E, as Figure 10-33 shows, so that
i and r' are not triangulations of UEOBCE and GBCH. Thus a different
argument is needed. We will proceed by induction.

We first show that E0E = GH. Since F 0 G we have F-D-G and
QADF -- LBDG by HA so that FD -- DG. (Note that F-D-G-H.)

Figure 10-33

Likewise F 0 H implies that F-E-H and FE EH. Thus

2- FE = FH = FD + DH
=DG+DH

DG + DG + GH
= (2 DG) + GH
=(2FD)+GH.
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Hence
2- (FE-FD)=GH>0

so that FE > FD and F-D-E-H. Thus FE - FD = DE and

EoE=2 DE = GH.

We next define a sequence of quadrilaterals. Choose points El, E2, E3, ...
on DE so that

Eo El-E2 E3-..

E1 = E
EjEi+1 ^_ GH for i = 0, 1, 2,... .

Note that E. e EoH for each i. Now EoE_ = n GH >_ EoG if n is large
enough. Let k be the smallest integer such that EOEk >_ EoG. Then since
Eo Ek _ 1-G-H and Ek _ 1 Ek = GH, we have E. E GH and Ek A H. (In
Figure 10-33 k = 3.) We shall prove that

EOBCE1 = E1BCE2 ... = Ek_1BCEk.
Now for each i with 0<i<k-2, E,G=E;E;+1+E;+1G=GH+

E;+1G = E;+1H so that LE1GB AE;+1HC by SAS. Hence E;B -_ E,-+1C
and LGEjB LHE;+1C. Thus /E;+1E,B ^- /E;+2E;+1C by SAS. But
this implies that EIBCE;+1 = E;+1BCEt+2. Hence

EOBCE1 =_ E1BCE2 __ Ek_1BCEk. (4-6)

By the choice of k we have Ek e GH and E. 0 H. Thus LEk_ 1 GB
LEkHC by HL and

Ek_ 1BCEk = GBCH.

See Figure 10-34 for the two cases Ek = G and G-Ek H.
Ek-1 Ek = G H Ek_1 G H

Since = is an equivalence relation (Problem Al) we may combine Equiva-
lences (4-5), (4-6) and (4-7) to obtain

AABC EOBCE1 ° ME,- ,BCE, =_ GBCH.
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Let A ABC be given. The next result says that we may construct another
triangle with one side BC and another side of arbitrary length (greater than
AB) such that the triangular regions are equivalent. In the Euclidean case
the theorem is clear if we replace "equivalent" by "have the same area" (see
Problem A4). As it is stated it requires the full force of Theorem 10.4.3.

Theorem 10.4.4. Let QABC be a triangle in a neutral geometry and let r be a
number greater than AB. Then there is a point P with BP = r and APBC
AABC.

PROOF. Let D, E, G, H be as in Theorem 10.4.2 so that AABC - GBCH.
Now

Zr>Z AB =BD _>BG

where the last inequality is a consequence of RUG 1 DE. By Theorem 6.5.8
there is a point M on CH with BM = Zr. See Figure 10-35. If P is the point
with B-M-P and BM ^ MP then BP = 2 BM = r.

We must show that APBC AABC. The first step is to show that if N
is the midpoint of PC then N is actually on DE = GH.

Figure 10-35

Since GBCH is a Saccheri quadrilateral, the perpendicular bisector 1
of BC is also perpendicular to GH = DE by Problem A6 of Section 7.2. If
Gand H' are the feet of the perpendiculars from B to C to MN, then Theorem
10.4.2 shows that G'BCH' is a Saccheri quadrilateral. Thus the same
problem (applied to s G'BCH') shows that 11 MN. Since M c DE and
there is only one line through M perpendicular to 1, MN = DE and so N e DE.

This means that G' = G and H' = H. Thus, invoking Theorem 10.4.3

APBC - GBBCH' = GBCH - AABC.



278 10 Area

In the proofs that follow, we shall proceed by considering the two cases,
Euclidean and hyperbolic. Because of Theorem 10.2.7, in the Euclidean case
there is only one area function. However, in the hyperbolic case things are
not the same. If a is any area function for a hyperbolic geometry and t > 0
then f, = to is also an area function. Philosophically this happens since there
is no "normalization" because there are no squares (i.e., the fourth axiom for
area is vacuous for a hyperbolic geometry-see the proof of Theorem 10.3.5).
It will turn out that for a hyperbolic geometry, every area function is of the
form f, = tS for some t (Theorem 10.4.9) so that the defect is essentially the
only hyperbolic area function. Our problem is that we cannot prove the
uniqueness result of Theorem 10.4.9 until we prove Bolyai's Theorem. For
this reason, we need the following terminology.

Definition. The special area function for a neutral geometry is the Euclidean
area function for a Euclidean geometry and the defect function for a hyper-
bolic geometry.

Theorem 10.4.5. If two Saccheri quadrilaterals ABCD and s PQRS in a
neutral geometry have congruent upper bases and the same special area, then
they are congruent.

PROOF. If the geometry is Euclidean, the Saccheri quadrilaterals are rec-
tangles. Since they have the same (upper) base and same area, they must
have the same height. Hence they are congruent. -

If on the other hand, the geometry is hyperbolic, then the special area
of UABCD is

a(UABCD) = S(SABCD)
=360-90-90-m(LB)-m(LC)

= 180 - 2m(L B).

Likewise 180 - 2m(LQ). Since
L B ^ L Q. Since L A^ L B and L P ^' L Q, we see that corresponding
angles of the two Saccheri quadrilaterals are congruent.

We shall now show that corresponding sides are congruent. If AB is not
congruent to PQ then one of those segments is longer, say PQ. We will
show that this assumption leads to the existence of a rectangle, which is
impossible in a hyperbolic geometry. See Figure 10-36.

Choose E e BA with BE ^_ QP and F e CD with CF RS. Since the
upper bases are congruent by assumption, APQR _- AEBC by SAS. Hence
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E F P S

Figure 10-36

A D

B C Q R

279

PR EC and L SRP -- L FCE by Angle Subtraction. Hence LSRP -
AFCE by SAS. Thus L CFE is a right angle. Likewise L BEF is a right
angle so that EBCF is a Saccheri quadrilateral.

If A 0 E and D 0 F then EADF is a rectangle, which is impossible
in a hyperbolic geometry. Hence A = E and D = F so that AB = EB PQ
and AD=EFf-- PS.Thus

We are now ready to prove Bolyai's theorem in the special case in which
both regions are triangles. This result will be derived by first showing that
each region is equivalent by finite decomposition to a Saccheri quadrilateral
and then showing that the two Saccheri quadrilaterals are congruent.

Theorem 10.4.6. Let a be the special area function in a neutral geometry. If
a(LABC) = a(LDEF) then AABC - ADEF.

PROOF. If AABC _- LDEF then &ABC - ADEF. Hence we consider the
case where one of the triangles has a side which is longer than the corre-
sponding side of the other triangle. Without loss of generality we shall
assume that DE > A. By Theorem 10.4.4, with r = DE, there is a point P
with PB ^ DE and APBC = ABC.

By Theorem 10.4.2 there is a Saccheri quadrilateral s GPBH with
N GPBH - APBC. The same result applied to LDEF says that there is a
Saccheri quadrilateral s MDEN with EMDEN - ADEF. By Theo-
rem 10.4.1

a(ADEF) = a(AABC)
= a(APBC) = a(UGPBH).

Since DE PB, Theorem 10.4.5 says that s MDEN ^' s GPBH. Hence
MDEN = GPBH. Gathering these results together we have

,ABC = APBC - GPBH - EMDEN =_ ADEF.

The proof of the next result follows from Theorem 8.2.10 in the hyperbolic
case. The Euclidean case is left as Problem A5.

Theorem 10.4.7. Let a be the special area function in a neutral geometry and
let LABC be a triangle. If 0 < x < oc(AABC) then there is a point Q e BC
with a(AABQ) = x.
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We have, at last, developed all the machinery necessary to prove Bolyai's
Theorem for the special area function.

Theorem 10.4.8 (Special Bolyai's Theorem). If a is the special area function
in a neutral geometry and R and R' are polygonal regions with a(R) = a(R')
then R - R'.

PRooF. First we want to show that R and R' have triangulations

T= {T1,Tz,.. ,Tk}

where a(Ti) = a(Sj) for each i.
Let T = {T1, ... , Tm} be any triangulation of R and let r' = {S1, ... ,

be any triangulation of R'. We will cut triangles off of the triangulations for
R and R' in such a manner that the areas of the discarded triangles are the
same. As we do this, we create new regions R1 and R'1 with a(R1) = a(R')
and triangulations T1 and Ti of these regions where the total number of
triangular regions in T1 and ri is strictly less than the total in T and T'.

If a(Tm) = let R 1 be the region with triangulation T, = {T1, ... J.- 11
and let Ri be the region with triangulation Ti = {S1, . . . 1}. Note that
the total number of regions in rl and Ti is m + n - 2 < m + n.

If a(Tm) > then let T. be the triangular region AABC. By Theorem
10.4.7 with x = a point Q e BC with a(AABQ) = a(S ). Hence
we can break T. into two parts Tm = AQC and T',, = ABQ with a(TM) _
a(S ). Let R1 be the region with triangulation Tl = {T1, ..., TmTm} and
R1 the region with triangulation r' = {S1, ..., Si_1}. Note that the total
number of regions in T1 and Tj is m + n - 1 < m + n.

If a(Tm) < a similar step breaking up S. into two pieces, one
of which has the same special area as Tm.

We may now repeat the process with R1 and R1, cutting off a triangular
region from both, again of equal area, and again so that the corresponding
triangulations have fewer elements. Eventually we reach the stage where
RP and R, have triangulations consisting of a single triangular region each
(so that RP and RP are actually triangular regions) and these regions have
equal special area. The desired triangulations T and T' are formed from
RP, RP and the triangular regions previously cut off. Since at each stage
we cut a single triangle off each region, T and T' have the same number of
elements.

Thus we have triangulations T = {T1, . . . , Tk} of R and T' = {S1, ... , SO
of R' with a(T;) = a(S;) for each i. By Theorem 10.4.6, T; - Si. Hence R = R'.

The Special Bolyai's Theorem can be used to prove the uniqueness of the
hyperbolic area function up to a scale factor.
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Theorem 10.4.9. If v is an area function in a hyperbolic geometry, then
a = t b for some t > 0, where b is the defect function.

PROOF. Since area functions are determined by their values on triangular
regions we only need to show that there is a t > 0 with a(AABC) _
t b(AABC) for every /ABC. This is the same as proving that

v(AABC)

=

a(ADEF)
for all LABC, /DEF. (4-8)

b(AABC) b(ADEF)

We first prove Equation (4-8) is true if the two triangles have the same
defect. In this case the special Bolyai's Theorem shows that AABC = ADEF.
By Theorem 10.4.1 we have a(AABC) = a(ADEF) so that Equation (4-8)
holds in this case.

Now suppose that b(AABC) 0 b(ADEF). We may suppose that

b(AABC) > b(ADEF). (4-9)

If we let x = b(ADEF) in Theorem 10.4.7 then there is a point Q e BC with

b(AABQ) = x = b(ADEF).

Hence by the special Bolyai's Theorem, AABQ =_ ADEF. But this means
that a(AABQ) = a(ADEF) by Theorem 10.4.1 so that

a(AABC) > a(AABQ) = a(ADEF). (4-10)

The importance of Inequality (4-10) is that it says that if one triangle has
larger 6-area than another, then it also has larger a-area. Intuitively, this
means that a is "relative size preserving."

Our method of proving Equation (4-8) for the general case will be to
show that the difference between

a(ADEF) b(ADEF)
6(AABC)

and
a(AABC)

is less than 1/q for any positive integer q. Let q > 0 be an integer. By re-
peated use of Theorem 10.4.7, there are points Po, P1, ... such that B =
Po P1_P2 -P9 = C and b(AAP,Pi+1) = 1/q b(QABC). See Fig-
ure 10-37.
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Since the triangular regions AP;Pi+1 all have the same defect, we have

Q(AABP,) a(AABC) for i = 1, 2, ... , q. (4-11)
q

The unique point Q e BC such that b(AABQ) = b(ADEF) lies in a unique
segment P;P;+1. More precisely, let p be the unique integer such that either

Pp = Q or Pp Q-PP+1.

For this value of p we have the following inequalities

b(AABPP) < b(AABQ) < b(AABPp+1) (4-12)

< bb ABC AB p 1 b ABC 4 13q (A ) (A Q) < (A )
q

( - )

p b(AABQ) p + 1
<

q b(AABC) < q
(4-14)

Since v is "relative size preserving" (Inequality (4-10)) we may replace b by
o- in Inequalities (4-11), (4-12), (4-13) and (4-14). In particular we have

p < a(AABQ) < p + l (4-15)
q u(,&ABC) q

As in the proof of Theorem 9.2.3, Inequalities (4-14) and (4-15) may be
subtracted to yield

Q(AABQ) b(AABQ)
a(AABC) b(AABC)

1
< -.

q

Since q can be arbitrarily large, the expression on the left must be zero. Hence

a(ADEF) _ a(AABQ) b(AABQ) _ b(ADEF)
Q(AABC) v(AABC) b(,&ABC) 6(,ABC)

so that we have Equation (4-8). But this means that

Q(AABC) _ a(ADEF)
b(AABC) b(ADEF)

Hence there is a number t = Q(ADEF)/b(ADEF) which does not depend on
AABC such that

a(AABC) = t b(AABC) for any /ABC. O

Having used the special Bolyai's Theorem to prove Theorem 10.4.9, we
now turn around and use Theorem 10.4.9 to prove the general Bolyai's
Theorem.
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Theorem 10.4.10 (Bolyai's Theorem). If a is an area function in a neutral
geometry and if R, R' are polygonal regions with v(R) = v(R') then R is
equivalent by finite decomposition to R'.

PROOF. If the geometry is Euclidean then a must be the unique Euclidean
area and the result was proved in Theorem 10.4.8.

If the geometry is hyperbolic then there is a real number t > 0 with
a = t S. Hence if v(R) = Q(R') then S(R) = 8(R'). By the special Bolyai's
Theorem R - R'.

In Problem Al of Section 10.3 you gave an example to show that the
product (base)(height) could not be used as an area function in hyperbolic
geometry. Our final result shows that in fact, no function of height and base
alone will give an area function. This result comes from the fact that the
defect (or special area) of a triangle is bounded by 180.

Corollary 10.4.11. The area of a triangle in a hyperbolic geometry is not
determined by just the base and height.

PROOF. Choose points PO P1-P2 with POP1 - P1P2 -

. Let Q be a point with QP0 1 POP, as in Figure 10-38. Note that each
of the triangles, AQPiPi+1, have the same base (PiPi+1 = P0P1) and the
same height (QP0). Thus if the area of a triangle depends just on its height
and base then u(AQP;Pi+ 1) must be independent of i for any area function Q.
But since u = tS for some t > 0 by Theorem 10.4.9, then there is an r > 0
(independent of i) for which

S(AQPiP;+1) = r for i = 0, 1.... .

Thus 8(AQPOPi) = i((AQPOP1) = ir. If we take i to be large so that i > 180/r
then we conclude that

S(AQPOPi) > 180

which is a contradiction. Thus the triangles LQPiPi+1 cannot all have the
same hyperbolic area. Therefore, the area of a triangle cannot depend just
on the base and height of the triangle.
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PROBLEM SET 10.4

Part A.

1. Prove that "equivalent by finite decomposition," -, is an equivalence relation.

2. Prove Theorem 10.4.1.

3. Complete the proof of Theorem i0.4.2 in the cases where AB or AC is perpendicular
to Dr.

4. Prove the area version of Theorem 10.4.4 for a Euclidean geometry without using
Theorem 10.4.3 or Bolyai's Theorem: If AABC is a triangle in a Euclidean geometry
and if r > AB, then there is a point P with PB = r such that a(APBC) = a(AABC),
where a is the area function.

5. Prove Theorem 10.4.7 for a Euclidean geometry.

6. Prove that in a Euclidean geometry any polygonal region R is equivalent by finite
decomposition to an equilateral triangle.

7. Let R be any polygonal region in a hyperbolic geometry. If a = to is a hyperbolic
area function and a(R) < 180t prove that R is equivalent by finite decomposition
to a triangle.

8. In the proof of Theorem 10.4.9 if r has m triangles and i has n triangles, what is
the maximum number of triangles in the triangulation T which was constructed?

Part B. "Prove" may mean "find a counterexample".

9. Repeat Problem A6 for a hyperbolic geometry.



CHAPTER 11

The Theory of Isometries

11.1 Collineations and Isometries

In mathematics when we have a class of objects satisfying certain axioms
(such as incidence geometries) it is natural to study functions that send one
object to another. Such functions are most interesting when they preserve
special properties of the objects. If T = {9, 2', d} and 9' = {.°', 2', d'} are
metric geometries and if gyp:.' is a function, what geometric properties
could we reasonably require cp to have?

Because there are two basic concepts in a metric geometry, namely the
ideas of lines and distance, there are two important types of functions between
metric geometries. One type (a collineation) sends lines to lines. The other
type (an isometry) preserves distance. In this section we will carefully define
collineations and isometries. We shall see that an isometry of neutral geome-
tries is a collineation and also preserves angle measure. We will end the
section with a proof that the Euclidean Plane & is essentially the only model
of a Euclidean geometry.

Recall that if p:X ---> Y, and if Z c X then qp(Z) = {cp(z)I z e Z}.

Definition. If f = {91, 2'} and .1' = {.9', 2'} are incidence geometries, then
preserves lines if for every line 1 of Y, cp(1) is a line of Y'; that

is,rp(l)e2'ifIe2'.
9 is a of meat, J if q is a bisection which preserves lines.

Example 11.1.1. LetS = -f' = {182, PE }. Show that q : R' -. R2 by (p(x, y) _
(2x + y, y - x + 5) is a collineation.

285
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SOLUTION. An inverse for q is given by

40,
Y/x-y+5 x+2y-10

3 , 3

so that p is a bijection. We must show that q preserves lines. If 1 = La then

rp(1)={(2a+y,y-a+5)IyeR}={(u,v)Iv=u-3a+5}

Ifl=L,,,,then

cp(l)={(2x+mx+b,mx+b-x+5)IxEfFB}
={((2+m)x+b,(m-1)x+b+5)IxEL18}.

Thus cp(l) = Lb if m = -2 and (p(1) = L, where n = (m - 1)/(m + 2) and
c = 5 + 3b/(m + 2) if m - 2. Hence q preserves lines and is a collineation.

0

Lemma 11.1.2. Let .0 _ {.°,.'} and .5' = {.9', 2'} be incidence geometries.
Let rp:.9' -* Y' be a bijection such that if 1 e 2 then cp(l) c 1' for some 1' e 2'
and if t' c 2' then qp-1(t') c t for some t c Y. Then (p is a collineation.

PROOF. We must show that cp(1) is a line, not just a subset of a line. Let 1= AB.
Then A'- cMA) and '. ( B )_ 4 r r distinct. Since Cp(l) c I' f o r some l' e 2'
and A' B' c- 1' we must have I' = A'B'.

On the other hand, p -1(l') c t for some t e 2, and A, B E_ 1(IHence
If C' e l' then C = cp 1(C') E AB = I and C' = w(Cc- l). Hence

V(I) = Vandffl preserves lines.

The importance of this result is that it is often easier to show that (p
and cp -' send lines into lines than it is to show that cp sends lines onto lines.

Example 11.1.3. Let .5 _ f' = {H, 2H } and let rp : a-fl -. I}-0 by

-x y
(p(x, A _ x2 + y2' x2 + y2

Show that 9 is a collineation.

SOLUTION. We first note geometrically what rp does to H. If r = x2 + y2
is the radius coordinate (for polar coordinates) then Equation (1-1) may
be written as

If we set

j(x, y) =
Y2

(x, y) and p(x, y) _ (-x, y)
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P (P)

Q
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P

P (Q)

Figure 11-1 Figure 11-2

then cp = p o j. The function j is called inversion in the unit circle and is
pictured in Figure 11-1. p is a (Euclidean) reflection across the y-axis as in
Figure 11-2. cp is thus inversion in a circle followed by reflection across the
y-axis.

We now show that cp is a collineation. An easy computation shows that
cp o cp(P) = P for all P e H. Hence cp is its own inverse and is a bijection.
Because cp = q t, we may use Lemma 11.1.2 to show that W preserves lines
by showing that for each 1 e 2H, 9(1) c 1' for some 1' a YH. In particular
we do not need to show that p(1) = 1'. There are four cases to consider:
1= 0L, 1= aL with a0, 1=,L, with e54 ±r, and 1 = ,L, with c= ±r.
Check carefully all the assertions which are made below.

If I = oL and P e I then P = (0, y) for some y > 0. Thus rp(P) = (0,1/y) E oL
so that cp(l) (-- 1.

If l = aL with a 0 then for P = (a, y) E I we have

-a
AP(P) = (a' + y2 a2 +

y2
= (z, w)

A routine calculation shows that

(

z
ll

+
2a/J

Z
+ w2 =

1
4aZ

so that cp(1) c dLs with d = - 1/2a and s = I1/2a1.
If l = 0L, with c 0 ±r then

cp(l) c A. with d = Z c 2 and sr -c
Finally

1
cp(t,L,) c ±aL where a =

2r

r
r2 - c2

Hence in all cases 9 (1) c 1' for some 1' e 2H.
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Starting with an incidence geometry {50, 2'} and a bijection (p: 9' -> .9',
we can create a new incidence geometry {So', Y') such that q is a collineation.
The proof of the next result which accomplishes this is left to Problem AT

Lemma 11.1.4. Let J r= {.9', 2'} be an incidence geometry and let (p:9--+ 99'
be a bijection. If 2' is defined by 2' = {cp(1)Il e 2'} then (p(5) = {.',.'}
is an incidence geometry (called the incidence geometry induced by (p) and
cp is a collineation.

We give an example of this process below. In Section 11.2 we will use it
to develop two important models of hyperbolic geometry which are due to
F. Klein and H. Poincare.

Example 11.1.5. If cp:1182 --> ff82 by cp(x, y) = (x, y3) then cp gives a collineation
from' = {ll 2, y'_} to a new model 9(9) = {182, 2'}. Some of the lines of
cp(J') are pictured in Figure 11-3.

v (L-1)

I I I

N (L 1,0)

+8

Figure 11-3

I

So far we have briefly discussed bijections which preserve lines. We now
turn our attention to maps that preserve distance in a metric geometry.
For convenience we adopt the following notation for the rest of the book.

Notation. If cp : 50 -* 9" is a function and A E 5O then

cpA = cp(A).

Definition. Let 9 = {.9', 2',d } and !Y' = {So', .P', d'} be metric geometries.An'isome from 9 to 9r' is a function gyp: 9' -> 9" such that for all A, B e 50

d'(cpA, (pB) = d(A, B). (1-4)

A function q satisfying Equation (1-4) is said to preserve distance.
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Note that we have not assumed that an isometry is a bijection. It is an
easy exercise to show that an isometry is injective (Problem A8). Hence
an isometry is a bijection if and only if it is surjective. We shall see that an
isometry of neutral geometries is surjective in Lemma 11.1.16.

Lemma 11.1.6. An isometry of neutral geometries preserves betweenness. More
precisely, if {.', 2',d } is a metric geometry, if {91', 2', d', m') is a neutral
geometry, if cp:9' -> Y' is an isometry, and if A, B and C are points of 91'
with A-B-C then 9A-(pB-(pC. Furthermore if I e 2' then cp(1) c I' for
some I' E 2'.

PROOF. If A-B-C in 91 then A, B, C are collinear and

d(A, B) + d(B, C) = d(A, C)
so that

d'((pA, pB) + d'((pB, (pC) = d'((pA, (pC).

Since the strict triangle inequality is true in 9' (Theorem 6.3.8),42A- cvB..
and mC must be collinear so that A-( B-cyQ

Now let 1 = AB and V= j-q . If D E I and D A, D B then either
D-A-B A-D-B, or A-B-D. By the first part of the proof

A-cpB, Tfl _or_ In any case Q D c 1' and
o(ij_- .l

We cannot prove that an isometry is surjective yet (although it is) but
we can show that the image of a line is a line.

Lemma 11.1.7. If {.°, 2', d) is a metric geometry, if {Y', 2'', d', m'} is a
neutral geometry, and if (p: 9' -+ Y' is an isometry, then the image of a line of
9 under (p is a line of 9'.

PROOF. Since AB = AB u BA, it is sufficient to prove that (p(AB) = (pA(pB
for all A 0 B. We shall prove this by a judicious choice of rulers. Let be

AB Lh origin A an B nc Similarly let j ' be a ruler for
cpA(pB with origin (pA and (pB positive.

If D' a (oA('B then f'(D') = s > 0. There is a unique point D e AB with
f(D) = s. We e1aim. rD =.Q'. Now

___.

d'((pD, (pA) = d(D, A) = f (D) `f (Aj = f (D) = s. (1-5)

On the other hand

d'((PD,(PA) = I.f'((PD) -f'((PA)I '((PD)I. (1-6)

Hence f'((pD) _ +s. If we can show that f'((pD) 0 then (pD must be D'.
I) D A or D B then goD (pA or (pD =_q B. If A-D-B or A B-D

then by Lemma 11.1.6, (pA -cpD - In all cases (D E
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c p A ( p B so that f'(cpD) 0. Hence f'((pD) = +s and coD = Y. Thus cp(AB) _
cpAcpB. El

The proof of the next result uses the triangle inequality and is left to
Problem A14.

Lemma 11.1.8. If (p: 91 -+ ' is an isometry of neutral geometries and A, B,
C are noncollinear points of .9', then cpA, coB, coC are noncollinear points of 9'.

We now turn our attention to the effect of an isometry on angle measure.

Definition. A function cp:.9' -> .9' of protractor geometries preserves right
angles if L coAcpBcoC is a right angle in 9' whenever L ABC is a right angle
in Y.

cp preserves angle measure if for any L ABC in If, m'(L (pAcoBcpC) _
m(LABC) where m is the angle measure of .9' and m' is the angle measure
of So'.

Our goal is to show that isometries preserve angle measure. Note that
this will be true only because we have taken the convention that all angle
measures are degree measures (i.e., right angles have measure 90). If we
consider the Euclidean Plane with both degree and radian measure then the
identity function is an isometry that does not preserve angle measure.

Lemma 11.1.9. If cp:.9' - Y' is an isometry of neutral geometries then cp
preserves right angles.

PROOF. Let L ABC be a right angle in Y. We must show that L cpAcoBcoC
is a right angle. Let D be the unique point such that D-B-C and DB ^ BC
as in Figure 11-4. Then LABC LABD by SAS. Hence AC a- AD. Since
cp preserves distance we Dave

__

cpAtpB- cpAcpB, cpAcpC cpAcpD, cpBcpC -_oBcpD

Figure 11-4
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so that by SSS. Thus L cpAcp&C L cpAcpBgD.

Since cpD-coB-coC, L coAcoBcp C and L cOA(pBcpD form a linear pair of
congruent angles. Hence each is a right angle.

The next two lemmas tell us that isometries preserve the interiors of
angles and angle bisectors. The proof of the first is left to Problem A16.

Lemma 11.1.10. If cp:.9' -.Y' is an isometry of neutral geometries and D e
int(L ABC) then (pD a int(L (pAcpBcpC).

Lemma 11.1.11. Let -.9' be an isometry of neutral geometries. If BD
is the bisector of L ABC in .9' then cpBcpD is the bisector of L cpAcpBcpC.

PROOF. We may assume that BC ^ BA. the Cros th r..Manrem RD
intersects AC at a point E. See Figure 11-5. Then AABE - LCBE by
SAS so that AE ^_CE. Since cp preserves distance, LcpAcp (pE ^- LcpCcpBcpE
by SSS. Then L cpAcpBcpE cCcpB(pE. i Cz, 6cnE-,,,eA,s cpE e

=int(L cpAmBcpCl and cpB pc E bisects L ip C BcnC. Now cpBD = (p BD
cp(BE) =_p BcpE. Hence coBcpD bisects L (pAcpBcoC.

cpB

Figure 11-5

Lemma 11.1.12. Let cp:9 --> 9' be an isometry of neutral geometries. If
m(L ABC) = 90/24 for some integer q >_ 0 then m'(L cpAcpBcpC) = 90/2q also.

PROOF. Bisect a right angle q times and apply Lemma 11.1.11. See Figure
11-6 where, q = 3.

B A pB cpA

Figure 11-6
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Lemma 11.1.13. If 9:.9' -> .50' is an isometry of neutral geometries and
m(L ABC) = 90p/24 where p and q are integers with 0 < p < 211+1 then
m'(L cpAcpB(pC) = 90p/24 also.

PROOF. Choose points Do, D1..... Dp so that A_= Do D1- -Dr = C
and m(L D;BDi+ 1) = 90/2" for 0 < i <. P. Then

m` (L D;coB(pD,+1) = 90/2q and (p!._.-D.o.. --TD'.(PDn_° cpC.

By Ansle Addition

p-1 90p
m'(L coAcoB(pC) = > m'(L coDicoB(pDi+ 1) =

24i=o

Theorem 11.1.14. An isometry cp:9 - .9" of neutral geometries preserves
angle measure.

PROOF. If q is a sufficiently large positive integer then we_may find an integgr
p with 0 < p < 24+ 1 such that

0 < 90p < m(L ABC) < 90(29 1) < 180. (1-7)

If m(L ABC) = 90p/24 we are done by Lemma 11.1.13. Otherwise there
exist- points D and E_with D E inLABE), mLLABD =
90p/24, and m(L ABE) = 90(p ±_ 1 24. See Figure 11-7.

B

Figure 11-7
A

T ten C E int I DBE so that cpC e int(L mDmBmE) and

0 < 90
pp < m'(L cpAcpB(pC) < 90(29 1) < 180. (1-8)

Subtracting Inequality (1-8) from Inequality (1-7) we obtain

Im(LABC) - m'(LcoAcoBcoC)I <
90

'2"

Since this inequality is true for all large.values ofthteger..q,.vemust.have
m(L ABC) = m '(L cpA_cpBcpC
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An amusing corollary to Theorem 11.1.14 is that if a Pasch geometry can
be made into a neutral geometry by choosing an angle measure, then it can
be done in only one way if degree measure is used.

Corollary 11.1.15. If {.9, P, d) is a Pasch geometry then there is at most one
degree measure m such that {.°, 2', d, m} is a neutral geometry.

PROOF. Suppose that both {.9', 2', d, m} and {.9', 2', d, m'} are neutral geom-
etries. The function tp:9' -. .9' given by tpP = P for all P a 9 is an isometry.
Hence m(L ABC) = m'(L toAtpBtpC) = m'(L ABC) for any L ABC. Hence
m=m'.

We are now able to prove that an isometry of neutral geometries is a
collineation.

Lemma 11.1.16. If 9:9 -> 9' is an isometry of neutral geometries then tp is
surjective.

PROOF. Let Y e 9' and let A, B be two points of 9. If_D 11

D _ rpD for some D e AD by Lemma 11.1.7. Now assume_D' cow and
choose P, Q .,on opposite sides of AB with m(LPAB) mL_QA&-
m'( L D'tpAtpB) and d(P, A = d(Q, d f D;, A, as in Figure 11-8.

Figure 11-8

Then n (L ty.. PcAtgBJ = m(L 1'AB),_ m'(L12 tpAsp )._ Likewise

m(LpQW.AWB)='!mftLD yB).

Thus toP and tpQ are two points of 9" whose distance from tpA is d'(D', tpA)
and m'(L toPcoAtpB) = m'(L coQtoAcoB) = m'(L D'tpAtoB). H nce either cnP =
D or.ipQ._ D' (Why?) and

Theorem 11.1.17. An isometry 9:Y-+9" of neutral geometries is a
collineation.

PROOF. By Problem A8 and Lemma 11.1.16, tp is a bijection. Thus by Lemma
11.1.7, tp is a collineation.
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Corollary 11.1.18. Let (p:2 .9' be an isometry of a neutral geometry with
itself. Then cp-1 is an isometry, cp preserves angle measure, and cp is a
collineation.

The importance of isometries is that they preserve all geometric properties:
distance, angle measure, congruence, betweenness, and incidence. In effect
all an isometry does is rename the points. The internal structure of two
isometric geometries is the same. This is illustrated in the next result.

Theorem 11.1.19. If 9:.9' --> .9" is an isometry of neutral geometries then ,9'
satisfies EPP if and only if .9" does.

FIRST PROOF. Note that III 1' in So if and only if cp(l) 11 cp(l') in So' (Why?). Thus
there is a unique line through P 0 1 parallel to 1 if and only if there is a unique
line through cpP parallel to cp(l).

SECOND PROOF. Let QABC be a triangle in 9. Since 9 preserves angle
measure, QABC and / ro.4 pBcpC have the same defect: Since .9' satisfies
EPP if and only if some triangle has defect 0 and a similar statement holds
for .9°', the result is immediate.

The last result of this section tells us that it is not misleading to refer to
& as the Euclidean Plane because any Euclidean geometry is isometric to 9.

Theorem 11.1.20. Let 9 _ {99, 2', d, m} be a Euclidean geometry. Then there
is an isometry (p: 9, _ R2 of with the Euclidean plane 8.

PROOF. Let A be any point of .9' and let , and 12 be two lines which are
perpendicular at A. Choose B e l1, B ;A A, and C e 12, C: A. Let f1 be a
coordinate system for 11 with A as origin and B positive. Letf2 be a coordinate
system for 12 with A as origin and C positive. f1 and f2 will be used to define cp.

For each point P e .9', let P1 be the foot of the perpendicular from P to
11 and let P2 be the foot of the perpendicular from P to 12. See Figure 11-9.

Figure 11-9
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We define p: .' --+ R2 by

coP = (.f1(P1),.f2(P24

In order to prove that cp is an isometry we must show that d(P, Q) _
dE((pP, (pQ). Suppose that PQ is not parallel to either 1, of 12. (The cases where
this is not true are left to Problem A21.) Let m1 be the line through P parallel
to 1, and let m2 be the line through Q parallel to 12. Since 11112, we have
m1 1 m2 and m1 n m2 = {R} for some R. See Figure 11-10.

d(P,R) = I.f1(Pl) -.f1(R1)I

12

Q2 Q

P IR
i I

PI R1-Q,

P2 = R2

Figure 11-10

since PRR1P1 is a rectangle. Likewise

d(Q, R) = I.f2(Q2) - ff2(R2)I.

Since R1 = Q1 and R2 = P2 (Why?) we have

d(P,R) = If1(P1) -.f1(Q1)I and d(Q,R) = I.f2(P2) -.f2(Q2)I

so that by the Pythagorean Theorem

(d(P,Q))2 = (d(P,R))2 + (d(Q,R))2

_ (.f1(P1) -.fi(Q1))2 + (.f2(P2) -.f2(Q2))2

= (dE((PP, (PQ))2

Hence

d(P, Q) = dE(WP,(PQ)

There is a similar theorem that says that every hyperbolic geometry is
isometric to the Poincare Plane provided that the distance scale (Section
8.3) has been normalized so that 17(ln(J + 1)) = 45. The proof starts out in
somewhat the same fashion as above by choosing a coordinate system.
However, the Pythagorean Theorem is not available and other results must
be used. These results are essentially the trigonometry theory of hyperbolic
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geometry. You can find the proof in Chapter 33 of Martin [1975] or Chapter
10 of Greenberg [1980].

PROBLEM SET 11.1

Part A.

1. Show that q :l 2 R2 by cp(x, y) = (2x + y, 1 - y) is a collineation of {t82,.'E}.

2. Show that cp: R2 t82 by cp(x, y) = (2x, 2y) is a collineation of {t82,YE, dE} but
not an isometry.

3. Prove that the collineation of Example 11.1.1 is not an isometry.

*4. If 9:.9'- .9' is a collineation of incidence geometries prove that c0-1:.'-*. is
also a collineation.

*5. If the bijection cp:91 -*Y' is an isometry of metric geometries prove that cp-1 is
also an isometry.

6. Verify the various assertions made in the solution of Example 11.1.3.

7. Prove Lemma 11.1.4.

8. Prove that an isometry of metric geometries is injective.

*9. Let q.:Y - Y be an isometry of a neutral geometry. If A and B are points in Y
with qpA = B and cpB = A, then prove that cpM = M where M is the midpoint of
AB.

10. Let m > 0 and define gyp: H -* t-t by rp(x, y) = (mx + 1, my). Prove that 9 is a collinea-
tion of {lil,2'H).

11. Let 9: I 2 -. t82 by cpP = P. Then W may be thought of as a function from the
Euclidean Plane to the Taxicab Plane J. Show that cp is a collineation which
preserves angle measure but is not an isometry.

12. Let 0ERandletqe:R2 R2 be defined by

rpe(x,y)=(xcos6-ysin0,xsin0+ycos0).
Show that q is an isometry of if. We is called the special orthogonal transformation
by 0. In matrix terms rpe can be defined by

Pe (y) - (sin 0 cos 9) (y)
13. If we view R' as the set C of complex numbers then

H={Z=X+iyECy>0}.
Let a, b, c, d be real numbers with ad - be > 0 and set

a b az+b
S = (c d) and 45(Z) = cZ + d

a. Prove that if z e H then tps(z) E H.
b. Find S-1.
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c. If det S > 0 show that det S-' > 0.
d. Show that cps is a bijection by showing that cps_, is its inverse.

e. Show that if a > 0 and S = ( a b) then cps is an isometry of H. (We will see

later that cps is an isometry for any S with det(S) > 0.)

14. Prove Lemma 11.1.8.

15. Let (p: 9 - 9' be an isometry of neutral geometries. If A, B, C are noncollinear
points of 9, prove that cp(L ABC) = L cpAcpBcpC.

16. Prove Lemma 11.1.10.

17. Let cp : 9' -+ .9' be a collineation of a hyperbolic geometry that preserves angle
measurement. Prove that cp is an isometry. Show that the corresponding statement
for a Euclidean geometry is false.

18. Let cP : 9 -+ 9' be an isometry of neutral geometries. Prove that two lines of 9'
intersect (resp. are divergently parallel, or are asymptotically parallel) if and only
if their images under cp intersect (resp. are divergently parallel, or are asymptotically
parallel).

* 19. If (p: Yj . and ' : 5 ' . 9 3 are collineations, prove that i J i o q : 6 ' °6'° - Y3 is a
collineation.

*20. If p:5' 1 -a .V2 and : b'2 Y3 are isometries prove that IJ/ o cp :9'1 -+ 5' is an
isometry.

21. Complete the proof of Theorem 11.1.20 for the cases where PQ is perpendicular
to either 11 or 12.

22. If (p : 9 -.9" is an isometry of neutral geometries and 5 satisfies HPP prove that
.°' satisfies HPP.

11.2 The Klein and Poincare Disk Models ,3
In this optional section we shall present two other important models of a
hyperbolic geometry. We saw in the last section that if {.9', 2} is an incidence
geometry and if (p:.9' -> .9" is a bijection, then there is an induced incidence
geometry {.9", 2'} where 2' = {cp(1) 11 E 2'}. In this section we will see that a
bijection can also induce distance functions and angle measures. This idea
will be used to develop the new models and verify that they satisfy the axioms
of a hyperbolic geometry.

Definition. Let {.9', 2'} be an incidence geometry and let cp:9 -+ V' be a
bijection. If d is a distance function on .9' then the distance function d' on .9"
induced by cp is given by

d'(A',B') = d((p-'A',4 -1B').
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If m is an angle measure for the Pasch geometry {9, P, d) then the angle
measure m' on .9' induced by cp is given by

m'(LA'B'C') = m(Lcp-1A'cp-1B'(p-1C')

Example 11.2.1. Let 9: R2 R2 be given by cp(x, y) = (x, y3) as in Example
11.1.5. Find the line in cp(df) determined by A' = (3,8) and B' _ (2,27) and
find the distance between these points in cp(s).

SOULTION. (p 'A' = (3,2) and co -1B' = (2, 3). The Euclidean line joining
(2,3) to (3,2) is

l={(x,y)Jy= -x+5}

Figure 11-11

so that P (s, t) is on the line l' through A' and B' if and only if (s, '(-t) a 1,
i.e.,'t= -s+5.Thus

2It=(-s+ 5)3}.
See Figure 11-11.

d '(A', B') = de((2, 3), (3,2)) = ,12-

Theorem 11.2.2. If {.9', 2, d } is a metric geometry and if {.9', 2', d'} is the
geometry induced by the bijection (p: 9' --* 9', then {.', 2', d-'} is a metric
geometry.

PROOF. By Lemma 11.1.4 we know that {.9', 2'} is an incidence geometry.
The proof that d' is a distance function is left to Problem A2.

We may obtain rulers for d' by carrying over the rulers from 9. Let
1' e 2' so that 1' = cp(l) and choose a ruler f for 1. Then f' = f o c0-1 is a ruler
for 1' (Problem A2). Note that cp is an isometry.

The proof of the next result is left to Problems A3 and A4.
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Theorem 11.2.3. If {9, 2', d, m} is a protractor geometry and cp:9 -* .9' is a
bijection then the geometry induced by cp, {.9', 2', d', m'}, is also a protractor
geometry.

Theorem 11.2.4. If {., 2', d, m} is a neutral geometry and (p: 9' -+ 9' is a
bijection then the geometry {9`, 2', d', m'} induced by (p is also a neutral
geometry.

PROOF. We need to show that SAS is satisfied. Suppose that A', B', C', D',
E', F' are points in 9' with L A'B'C' -- L D'E'F', A'B' = D'E', and B'C' =
E'F'. Let A, B, C, D, E, F be the corresponding points of So (i.e., A = (P -'(A'),
etc.). Then L ABC = L DEF, AB f-- DE, and BC _- EF because of the defi-
nitions of d' and m'. Since .P is a neutral geometry

AABC ^_ /DEF.

Hence L BCA -- L EFD, L CAB a L FDE, and AC _- DF. This implies
that L B'C'A' L E'F'D', L C'A'B' ^ L F'D'E', and A'C' ^- D'F', again by
the definition of d' and m'. Hence AA'B'C' = QD'E'F' and the geometry
induced by cp satisfies SAS.

In the two applications of Theorem 11.2.4 that follow we will actually
start with {.9', 2'} and find a bijection 0: H -> .9" such that 2' = O(YH);
i.e., such that q1 is a collineation. We will then know that the incidence
geometry induced by >r is a neutral geometry. (Actually, we have not proved
that , satisfies SAS yet but will in Section 11.8. Once that has been proved
we will know our new models are also neutral geometries.)

Our two new models will have the same underlying set .9' (the unit
disk D) but will have quite different sets of lines. The first model will be the
Klein Plane. It is due to three 19th century mathematicians, Felix Klein
(1849-1925), Arthur Cayley (1821-1895), and Eugenio Beltrami (1835-1900).
The German mathematician Klein is well known for the introduction of
transformation geometry and the application of group theory to geometry.
In his famous Erlangen Program he proposed that geometry should be
viewed as the study of the invariants of a group acting on a set. See Millman
[1977]. The British mathematician Cayley was instrumental in uniting pro-
jective and metrical geometry. It is commonly felt (E. T. Bell [1937]) that
this paved the way for Klein's disk model. He also did fundamental work
in matrix theory as well as introducing n-dimensional space and, with
J. J. Sylvester, discovering and thoroughly investigating an algebraic phe-
nomenon called invariance theory. Besides his work in proving the relative
consistency of hyperbolic geometry in 1868, the Italian Beltrami is known
for his work on physical problems, abstract algebra, invariance theory, and
differential equations.
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Definition. Let D = {(u, v) a 182 I u2 + v2 < 11 be the unit disk. A K-line in
D is the intersection of D with a Euclidean line 1 c 182. The Cayley-Klein-
Beltrami Plane (or more simply the Klein Plane) is the incidence geometry
{ D, YK} where .K is the set of all K-lines in D.

We should note that (D, 2K} really is an incidence geometry because
of Problem A3 of Section 2.1. Some K-lines are illustrated in Figure 11-12.
Note that through the point P there are several lines parallel to 1. Hence
{ D, 2'K} cannot possibly satisfy EPP.

In order to apply Theorem 11.2.4 we must find a collineation between
{H, -WH} and { D, It°K}. Actually we will find a collineation cp : D -+ H and
then apply Theorem 11.2.4 to = cp-1. The choice of cp given below will
be motivated after the proof.

Proposition 11.2.5. The function cp: D -> H by

-
1 - u

v

- v2/tp(u v) =

(---
1u

' 1-v

is a collineationfrom {D,.PK} to {l-1,2'H}.

PROOF. First we note that if (u, v) e D then v < 1 so that 1 - v > 0. Since
u2+v2<1, 1-u -v >0andtp(u,v)eH.

By Problem A5, T is a bijection-its inverse is

2x x2 + y2 1 )
- 1(x, y) =

i + x2 + y2' 1 + x2 + y2
(2-1

We must show that the image of a K-line is a line in ItH. If 1 is a K-line
then there are real numbers a, b, c with c2 < a2 + b2 (see Problem A6) and

1={(u,v)eBlau+bv=c}.
If (u, v) e 1 and (x, y) = cp(u, v) then by Equation (2-1)

2 z _y
u 1+x2+y2 and

xI++X2
+y2withy>0.
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Hence (u, v) E I if and only if

2x x2+y2-1
1+x2+y2)+b

(1+x2+y2)c

or if and only if

tax + b(x2 + y2) - b = c + c(x2 + y)

or if and only if

301

(b-c)(x2+y2)+2ax-b-c=0. (2-2)

If b 0 c then Equation (2-2) describes a Euclidean circle in R2 with its center
at (- a/(b - c), 0) and radius (a2 + b2 - c2)/(c - b)2. If b = c then Equation
(2-2) describes a vertical line x = b/a. (Note if b = c then since c2 < a2 + b2,
a is not zero.) Hence, since cp(l) c H, cp(l) is part of a type II line or a type I
line.

On the other hand (p-'(QL) is contained in the K-line {(u, v) e ®I u +av = a}
while (p %L,) is contained in the K-line {(u, v) E D I au + fly = y} where
a = -c, Q = (r2 - c2 + 1)/2 and y = (r2 - c2 - 1)/2. By Lemma 11.1.2, qp
is thus a collineation.

The function cp may seem very artificial. Actually it can be described
geometrically as the composition of two geometric functions cpl and 92:
cp = cp2 o (pl. cpl takes D to the right half of the sphere of radius 1 by linear
projection: cpl(u,v) = (u, 1 - u2 - v2, v). cp2 takes this right hemisphere to

Figure 11-13

Figure 11-14
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[I-I by what is called stereographic projection from the North Pole (0, 0, 1): a
point (x1, x2, x3) 0 (0, 0,1) on the unit sphere S2 is sent to the point where
the Euclidean line determined by (xt, x2, x3) and (0, 0,1) intersects the plane
x3 = 0. See Figures 11-13 and 11-14.

By Problem A4 of Section 11.1, cp-1 is also a collineation and the set of
lines it induces on D is precisely 'K. cp-1 then induces a neutral geometry
'£'' = {ED, .BK, dK, MK) where

dK(A,B) = dH(cpA,(pB)

mK(L ABC) = mH(L cpA(pBcOC).

Since S satisfies HPP it is a model of hyperbolic geometry. While it is easy
to find the line through two points in .7i', the computation of distance and
angle measure is more involved. It can be shown that if the vertex of an angle
in .7(A' is at (0, 0) then the angle measure is given by the Euclidean measure.
(See Problem B13 for a computation.) However, the angle measure of an
angle whose vertex is not (0, 0) is hard to compute.

Our second new model is due to Henri Poincare, who is also responsible
for {H, 2'H}. This example makes use of the idea of two circles being
perpendicular.

Definition. Two circles ',(C) and ce,(O) in 082 are perpendicular if they
intersect in two points A and B and if both L QAC and L OBC are right
angles. (See Figure 11-15.)

Figure 11-15 Figure 11-16

Definition. A P-line in D is the intersection of D with either a Euclidean line
through (0, 0) or with a Euclidean circle W which is perpendicular to the
circle {(u, v) (u2 + v2 = 11. The Poincare Disk is the abstract geometry
{D, 2'D} where 2D is the set of all P-lines.

Some P-lines are illustrated in Figure 11-16. Again note that {D,1D}
cannot satisfy EPP.

We shall make {D, PD} into a hyperbolic geometry by giving a collinea-
tion from {D,2K} to {D,IID}.
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Proposition 11.2.6. The function ti:D -> D given by

U v
0(u, V) \1+ 1-u2-v2'1+ 1-u2-v2 (2-3)

is a collineation from {D, YK} to {D, 2,}.

PROOF. By Problem A10, 0 is a bijection whose inverse is given by

- r 2x 2y 1
1(x, y) = 1 + x2 + y2' 1 + x2 + y2) (2-4)

To show that 0 is a collineation we must show that the image of a K-line
{(u, v) e D I au + by = c} is a P-line. If i(u, v) = (x, y) then by Equation

(2-4)
2x 2y

u

_
I+x2+y2 and v=1+x2+y2

Thus au + by = c if and only if

tax 2by

1+x2+y2+1+x2+y2
or

2ax+2by=c+c(x2+y2)
or

c(x2 + y2) - 2ax - 2by + c = 0. (2-5)

There are two cases to consider. If c = 0 then the original K-line I went
through the origin, and Equation (2-5) reduces to ax + by = 0, (x, y) e D. This
is a P-line. (Note that a K-line through the origin gets sent to a P-line through
the origin!)

If c 0, then Equation (2-5) describes a Euclidean circle ' with center
C = (a/c, b/c) and radius (a2/c2) + (b2/c2) - 1. We must show that IC is
perpendicular to 1W' _ {(x, y)Ix2 + y2 = 1}.

V' has center 0 = (0, 0) and radius 1. Since d,(0, C) = (a2/cz) + (b2/c2)
and 1 + (a 2/c2) + (b2/c2) - 1 > (a2/c2) + (b2/c2), the Two Circle Theo-
rem for the Euclidean Plane (Theorem 6.6.5) states that ' n le' consists of
exactly two points. If A e W n W' then

d,(0, A) = 1, dE(A, C) =
az bz

- 1
d' (0, C) =

az

e
bz

so that
(dE(0,A))2 + (dE(A, C))2 = (dE(0, C))2.

By the Pythagorean Theorem in -0, L OAC is a right angle. Thus f is per-
pendicular to " and the image of I is a P-line in this case also. Hence :/i is a
collineation.
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The function 0 can be described geometrically in a manner similar to cp
in Proposition 11.2.5. 0 = 02 o T, where q is the projection of ® onto the
right hemisphere as before. 02 is a stereographic projection also but this
time from the point (0, - 1,0) and to the plane x2 = 0. See Figures 11-17
and 11-18.

Figure 11-17 Figure 11-18

By Theorem 11.2.4, -9 = {®, 2D, dD, mD} is a neutral geometry (and by
Problem A7 it is a hyperbolic geometry) where

dD(A,B) =
dK(P -1A,0-1B)

=
_1B)

mD(LABC) = mK(L0-1A0-1B1-1C) = da(L<p0-1A(pf-1BgpI-1C)

It can be shown that the angle measure in 2 is essentially Euclidean; that
is, the Poincare measure of an angle is given by the Euclidean measure of the
angle formed by the Euclidean tangent rays just as in the case of , This
makes it easier to do computations in -9 than in A.

In Problem A12 you will show that (p o 0-': ® - ll is given by

(Po t(z)
l+iz

where we have identified the point (x, y) e 682 with the complex number z =
x + iy. Note that since (p and i-1 are isometries (p o 0-1 is also an isometry.

PROBLEM SET 11.2A

1. Let 9:682 --. 682 be given by cp(x, y) = (x + y, x - y). In the induced geometry
w(cf) _ { 682, 2', d', m'}
i. Let A' = (2,1), B' = (4,6) and find the line in 9(9) determined by A' and B'.
ii. Find d'(A', B').

iii. Prove for any P', Q' in 682 that d'(P',Q')= (1/f)dE(P',Q').
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2. In the proof of Theorem 11.2.2, prove that d' is a distance and f' = f o (p-' is a
ruler.

3. If {Y, 2', d} is a metric geometry which satisfies PSA and T: 9' -+ 9' is a bijection
prove that the geometry {.9', 2', d'} induced by (p also satisfies PSA.

4. If {So,.9',d,m} is a protractor geometry and (p:.1--*.' is a bijection, prove that
the geometry induced by (p is also a protractor geometry.

5. In Proposition 11.2.5, prove that Equation (2-1) does indeed give the inverse of (p.

6. Show that if ax + by = c describes a K-line then c2 < a2 + b2.

7. Show that the Poincare Disk satisfies HPP.

8. Describe geometrically all the lines in A' that are sent to type I lines of Y by (P.

9. In the Klein Plane give an example of two asymptotically parallel lines and two
divergently parallel lines.

10. In Proposition 11.2.6 prove that Equation (2-4) does give the inverse of i.

11. In the Poincare Disk give an example of two asymptotically parallel lines and
two divergently parallel lines.

12. Let p: D - H as given in Proposition 11.2.5 and let 0: D - D as given in
Proposition 11.2.6. View R2 as the set of complex numbers via the identifica-
tion (x, y) 4-+z = x + iy. Show that the collineation (p o D -. H is given by
(po11, 1(Z)=(z+i)/(1 + iz).

Part B.

13. In the Klein Plane .IF let A = (Z, 0), B = (0, 0), and C = (Z, z). Find dK(A, B),
dK(C, B), and mK(LABC).

14. In the Poincare Disk 2 let A = (z, 0), B = (0, 0), and C = (12, ?). Find dD(A, B),
dD(A, C), and mD(L ABC). (Hint: Use Problem A12.)

11.3 Reflections and the Mirror Axiom

From now on we shall only be interested in isometries from a geometry to
itself. A primary goal is a classification theorem which partitions the set of
all isometries of a neutral geometry according to their fixed point properties.
This process begins with the study of a special type of isometry called a
reflection.

We start this section with proofs that if an isometry fixes two points then
it fixes the line they determine, whereas if it fixes three noncollinear points
then it must be the identity function. Next we show that any isometry is the
composition of three or fewer reflections. Finally we show that for a pro-
tractor geometry the SAS axiom is equivalent to the existence of "many"
reflections.
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Definition. A function cp:9 -+ 5 fixes the point A E 5 if pA = A.

Lemma 11.3.1. Let cp:9 -+ 9 be an isometry of a neutral geometry. If q
fixes the points A and B then cp fixes each point on AB.

PROOF. Let f be a coordinate system for AB with A as origin and B positive.
Suppose that C e :4P and C A, C :A B. If C' = cpC, then we need to show
that C = C'. Now d(A, C') = d(A, C) since coA = A and q is an isometry.
Hence I f(C')I = I f(C)I and f(C) _ ±f(C). Since co preserves betweenness
(Lemma 11.1.6) either

or

or

A-B-C

A-C-B

C-A-B

so that

so that

so that

A-B-C'

A-C'-B

C'-A-B
None of these cases permit f (C') = -f(C). Hence f (C') = +f (C) and so
rpC=C'=C.

Lemma 11.3.2. Let 9: 9' -p 9' be an isometry of a neutral geometry. If cp fixes
three noncollinear points A, B, C then cp is the identity.

PROOF. cp fixes each point of the lines AB, BC and AC by Lemma 11.3.1 and
hence each of the points of QABC. Let D be any point in 9 and let E D
be a point in int(AB). By Pasch's Theorem bE intersects QABC at some
point F 0 E. Since both E and F belong to QABC they are both fixed. Hence
every point of EF, in a particular D, is fixed by cp. Thus 9D = D for any point
D and 9 is the identity isometry.

We are now ready to define a reflection across a line 1. The basic prop-
erties of a reflection are that it is an isometry, leaves 1 fixed, and interchanges
the half planes determined by 1.

Definition. Let I be a line in a neutral geometry. For each P E 9 let Pl be the
foot of the perpendicular from P to 1. Th a echon across; l is the function
pi:." -.Y given by

(p1P = P', where P-Pi P' and PP1 ^- P'P,, if P 01 (3-1)
1PIP =P,if PEI

Note that we are defining p,P to be the point P' such that Pi is the midpoint
of PP' if P 01. Examples in 9' and . f° are illustrated in Figure 11-19.
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*P

Figure 11-19
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Theorem 11.3.3. A reflection in a neutral geometry .9 is an isometry.

PROOF. Let A, B e 9, let I be a line in 9, and, for convenience, write p, as p.
We must show that d(A, B) = d(pA, pB). There are several cases to consider:
(i) A and B on the same side of 1, (ii) A and B on opposite sides of 1,
(iii) A e 1, B 1, (iv) A, B e 1. We shall complete the proof only for the first
case and leave the others to Problem A3.

Assume that A and B are on the same side of 1. If AB 1 1 then A, = B, = Q
for some Q. Let f be a ruler for AB with origin Q and A positive. Then for
P E :4P, f(pP) = -f(P). See Figure 11-20. Hence

d(PA,PB) = If(PA) -f(pB)I
= I -f(A) + f(B)
= d(A, B)

Now suppose that AB is not perpendicular to 1. Then A, 0 B,. Let A, = P
and B, = Q. See Figure 11-21. /PQB /PQpB by SAS so that PB PpB
and L BPQ ^ L pBPQ. Because AP I I BQ (Why?), B and Q lie on the same
side of AP and B e int(L APQ).

Since pA and pB lie on the same side of l (namely the opposite side from A)
a similar argument shows that pB a int(L pAPQ). By Angle Subtraction,
L APB ^- L pAPpB. Then QAPB ^- Q pAPpB by SAS and AB ^-, pApB
so that d(A, B) = d(pA, pB).

A
B

42
f pB

pA

I

pA

Figure 11-20 Figure 11-21
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In Problem A2 you will show that there are isometries with exactly one
fixed point and some with none. We now prove that if an isometry has at
least two fixed points then I is either a reflection or the identity.

Theorem 11.3.4. Let (p: 9' -> 9 be an isometry of a neutral geometry which
fixes two distinct points A and B. If cp is not the identity then it is reflection
across the line I = AB.

PROOF. If P E AB = l then cpP = P = p,P by Lemma 11.3.1.
Suppose that P 0 1. We claim that P and coP are on opposite sides of 1.

Since cp is an isometry AABP _- AABcoP by SSS (see Figure 11-22). If P
and cpP were on the same side of I then since L ABcpP ^- L ABP, the Angle
Construction Axiom would imply that BP a- BB P. Because Rcpt' BP this
would imply that cpP = P and so cp fixes three noncollinear points. By Lemma
11.3.2, cp must be the identity, which is contrary to the hypothesis. Hence P
and coP are on opposite sides of I so that PcpP intersects 1 at a unique point Q.

We must show that PQ 1 I and PQ ^ Let R Q be any other
point of 1. Then cpR = R and APQR - AcpPQR by SSS (see Figure 11-23).
Hence L PQR is a right angle. Since cpP-Q-P and cpPQ a- PQ we have
cpP=p1P.Thus cp=pl

Figure 11-22 Figure 11-23

In 1872, during an address at Erlangen, Germany, Felix Klein proposed
that geometry should be studied by the "group of motions" which preserve
the figures of the geometry. This famous address and the ideas contained in
it are called the "Erlangen Program." It refocused the study of geometry
from that time until the present. (A modern topological interpretation of
Klein's ideas is contained in Millman [1977].) Later we shall be interested in
determining the structure of this "group of motions." Right now we want to
show that the study of triangle congruences corresponds to the study of
isometries.

Theorem 11.3.5. In a neutral geometry AABC c ADEF if and only if there
is an isometry cp with cpA = D, cpB = E, and cpC = F. Furthermore, such an
isometry is uniquely determined.
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PROOF. If there is such an isometry then by SSS, AABC -- AtpAcpBcpC =
ADEF. Hence we will assume that AABC a ADEF and construct the
desired isometry T. tp will turn out to be the composition of three isometries,
cp = pta, each of which is either a reflection or the identity. See Figure 11-24.

I

Figure 11-24

If A = D let a be the identity. If A 0 D let I1 be the perpendicular bisector
of AD and let a be the reflection across 11. In either case AUAUBUC =
ADaBaC is congruent to ADEF since both are congruent to AABC.

We now proceed in a similar fashion with the congruent triangles
ADaBUC and ADEF. If aB = E then let T be the identity. If aB 0 E then
let 12 be the perpendicular bisector of oiBE and let T be the reflection across
12. In either case TUB = E. Note that DUB = DAUB ^- DE so that D is an
element of the perpendicular bisector of UBE. Hence TD = D. Also note that

ADETaC = ATUATaBTaC -- AABC a ADEF.

We repeat the process one more time. If TUC = F let p be the identity.
Otherwise let p be the reflection across the line 13 = DE = TUATaB. Note
that 13 is the perpendicular bisector of FTUC in this case. Hence.

pTUA=pTD=pD=D
pTUB = pE = E

pTUC = F.

Thus rp = pea gives the desired isometry. All that remains is to show that cp
is unique.

Now suppose that is also an isometry such that OA = D, OB = E, OC = F.
Then qi 1q, fixes A, B, and C so that by Lemma 11.3.2, - 1q is the identity
and cp = >/i. Hence there is a unique isometry sending A, B, C to D, E, F.
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Corollary 11.3.6. In a neutral geometry every isometry is the composition of
three or fewer reflections.

PROOF. Let cp be an isometry and let LABC be any triangle. Define D, E, F
by cpA = D, cpB = E, coC = F. Then AABC ^ ADEF by SSS. By the proof
of Theorem 11.3.5, cp = pww where each of a, -r, p is either the identity or a
reflection. Hence any isometry is the composition of three or fewer
reflections.

In the definition of a reflection we made strong use of the fact that there is a
unique perpendicular to a given line through a given point (Corollary 6.3.4).
This in turn required the full strength of the SAS axiom. The surprising fact
is that the whole process can be turned around; that is, if for every line in a
protractor geometry there is an isometry which acts like a reflection across
that line then the geometry satisfies SAS. This is formalized in the next
definition and theorem.

Definition. Let {2', 2', d, m} be a protractor geometry and let l be a line. A
mirro' in I is an isometry y which preserves lines and angle measure, fixes
each point of 1, and interchanges the half planes determined by l (i.e., if
P 0 1 then P and uP lie on opposite sides of 1).

A protractor geometry satisfies the Mirror Axiom if for each line 1 there
is a mirror in 1.

In Section 11.1 we proved that an isometry of a neutral geometry was a
collineation and preserved angle measure. Since we want to discuss mirrors
in the context of a more general protractor geometry, we need to assume
that a mirror is an isometry which also preserves lines and angle measures.
Note that because mirrors preserve length and angle measure, for any
mirror µ, AABC ^ LµA,uBuC.

Theorem 11.3.7. A protractor geometry is a neutral geometry if and only if it
satisfies the Mirror Axiom.

PROOF. Suppose that 9 = {.9', 2', d, m} is a protractor geometry. If is a
neutral geometry and I is a line then the reflection p, is a mirror in I so that
the Mirror Axiom is satisfied.

Suppose now that satifies the Mirror Axiom. We must show that SAS
is satisfied. Suppose that AB -- DE, L A -- L D, and AC -- DF. We must
prove that L B c L E, L C -- L F, and BC -- F. We will accomplish this
with a slight variation of the proof of Theorem 11.3.5. We will find at most
three mirrors a, r, p such that pra(LABC) = LDEF. This will "move" or
"superimpose" LABC onto LDEF.
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If A = D let a be the identity collineation. If A : D let a be a mirror in
the perpendicular bisector 11 of AD. Such a bisector exists in a protractor
geometry by Corollary 5.3.7. By Problem A6, aA = D. See Figure 11-25.

If aB = E let t be the identity. If aB-D-E let t be the mirror in the
perpendicular 12 to DE at D. Otherwise let t be the mirror in the angle
bisector 12 of L EDaB. In any case D e 12 so that tD = D. (Note we could
not let 12 be the perpendicular bisector of EaB because in a protractor
geometry it need not be the case that D E 12).

We claim taB = E. If aB-D-E, then since

DaB = aAaB a AB -- DE

12 is the perpendicular bisector of HE and ruB = E by Problem A6. If uB,
D, E are not collinear then 12 bisects L EDaB. aB and ruB lie on opposite
sides of 12 so that 12 n aBraB = {Q} for some Q. Q a int(LEDaB) (Why?).
Now L QDaB ^ L QDE since 12 is an angle bisector. L QDtB c L QDraB
since t is a mirror. ruB and E lie on the opposite side of 12 from aB. By the
Angle Construction Theorem L QDraB = L QDE so that DtaB = D. Since

DtaBaDaBAB^-DE

E = taB. Thus E = ruB in all cases.
Finally, if taC is on the same side of DE as F let p be the identity. Otherwise

let p be the mirror in DE. By using the Angle Construction Theorem again,
we can show praC = F just as we showed ruB = E.

cp = pta is an isometry which preserves angle measure since p, t, and a
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do. Hence QABC z pcpAcpBcpC. But

coA = prcA = p-rD = pD = D

cpB = pioB = pE = E
coC = praC = F.

Hence QABC f-- LDEF and SAS is satisfied.

Euclid, in his development of geometry, did not assume SAS as an axiom
but instead gave a proof based on the idea of "moving triangles around by
rigid motions." These rigid motions are what we call isometrics. Euclid
essentially assumed that there exist "enough" isometrics, an assumption that
Theorem 11.3.7 reduces to the existence of mirrors. Euclid's assumption,
which was called the "principle of superposition," was that a geometric figure
could be picked up and moved to another position without any distortion.

PROBLEM SET 11.3

Part A.

1. Let 9: 9 -> 9 be an isometry of a metric geometry. If A is a fixed point of P, prove
that cp preserves circles centered at A. More precisely, prove that cp('',(A)) c %(A).
Is it true that for all B e l',(A), cpB = B?

2. Prove that in t there are isometries with no fixed points and others with exactly
one fixed point.

3. Complete the proof of Theorem 11.3.3.

4. Let I = L be a type I line in the Poincare Plane. Find p,: H H.

*5. If p,:9 - 9 is the reflection across 1 in a neutral geometry, show that
a. P, = pi';
b. (p,)2 = Id.v.

6. Let p be a mirror in the perpendicular bisector of AB in a protractor geometry.
Prove that pA = B.

7. Let I be a line in a neutral geometry. If p is a mirror in I prove that p = p,, where
p, is the reflection defined by Equation (3-1).

Part B.

8. Because of Problem A5 we know that every reflection p has the property p2 = Id.
Find an example in the Euclidean plane of an isometry cp which is neither a
reflection nor the identity but which satisfies cp2 = Id.
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In this section we shall introduce two new concepts in a neutral geometry-
pencils and cycles. A cycle will be a generalization of a circle while a pencil
will be a special collection of lines. These ideas will be useful later as we
classify isometrics by their fixed points. In this section we will see how pencils
can be used to extend certain Euclidean results to arbitrary neutral geome-
tries. For example, in a Euclidean geometry the perpendicular bisectors of
the sides of a triangle are concurrent. In a neutral geometry, this need not be
true, but they will all belong to the same pencil.

We now define three different kinds of pencils-pointed, parallel, and
asymptotic. Each consists of a family of lines with a certain incidence prop-
erty. Each will have associated with it an object called its center.

Definition. Let {.9', 2', d, m} be a neutral geometry. The pointed pencil 971c
with center C is the set of all lines through the point C.

The parallel pencil Y, perpendicular to the line 1 is the set of all lines per-
pendicular to 1. The center of 91 is I if the geometry is hyperbolic and is the
set of all lines parallel to 1 if the geometry is Euclidean.

If the geometry is hyperbolic, the asymptotic pencil 9,g along the ray A
is the set of all lines which contain a ray asymptotic to AB. The center of 91,-
is the pencil 91A-g itself.

A pencil is any set which is either a pointed pencil, a parallel pencil, or
an asymptotic pencil.

Note that each pencil has a unique center which may be either a point,
a line, or a pencil. In Figure 11-26 parts (a) and (b) illustrate pointed pencils
in d and .°, (c) is a parallel pencil in B while (d) and (e) are parallel pencils
in . ", and (f) and (g) are asymptotic pencils in -*.

The center of an asymptotic pencil may be thought of as an "ideal" point
in the following way. If two rays are asymptotic then intuitively they meet
"at infinity". Any other ray asymptotic to these two rays also meets them "at
infinity". Classically, this place "at infinity" is referred to as an "ideal" point.
In the Poincare Plane the "ideal" points are represented by the points along
the x-axis together with one other point. (See Problem B13 of Section 8.1.) In
the Poincare Disk and Klein Plane the "ideal" points are represented by the
points on the boundary of the disk: xz + y2 = 1. An asymptotic pencil
consists of all lines through an "ideal" point and thus in some sense is
similar to a pointed pencil.

In Theorem 9.1.5 we saw that the perpendicular bisectors of the sides of a
triangle are concurrent in a Euclidean geometry. This means that the three
lines belong to the same pointed pencil. Our first result generalizes this
result to a neutral geometry.
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(a) (b) (c)
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(d)

A

(e) (f)

Figure 11-26
(g)

Theorem 11.4.1. In a neutral geometry the perpendicular bisectors of the
sides of a triangle /ABC all belong to the same pencil.

PROOF. Let the perpendicular bisectors of AB, B, and AC be 1, m, n respec-
tively. There are three possible incidence relations between I and m which
lead to three cases: l n m 0 0, 1 and m have a common perpendicular t, or
I and m are asymptotic.

Case 1. l n m 54 0. Let P e I n m. By Problem A10 of Section 6.4, P e n
also so that 1, m, n all belong to the pointed pencil Yp.

Case 2. 1 and m have a common perpendicular t. We will show that n is
also perpendicular to t so that 1, m, n e Y. Let P be the midpoint of AB and
let Q be the midpoint of AC. By Problem A2 none of A, B, C, P, and Q
belong to t. Let A', B', C', P', Q' be the feet of the perpendiculars from A, B,
C, P, Q to t. In Problem A2 you will also show that P' :A A', P' 0 B',
Q' : B', Q' : C' and A' # C'. This means that the various angles and seg-
ments in the next paragraph all exist. We will show that A'ACC' is a
Saccheri quadrilateral.
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Now AA', BB, CC', PP', and QQ all belong to the pencil 9, and are
pairwise parallel to each other. Hence, since A-P-B and B-Q-C, we
have A'-P'-B' and B'-Q'-C'. /APP' --- ABPP' and ACQQ' -- ABQQ'
by SAS. Hence L AP'P -- L BP'P and L CQ'Q ^- L BQ'Q. Now A E
int (L A'P'P), C E int(L C'Q'Q), Be int(L B'P'P), and B e int(L B'Q'Q) (Why?).
Hence we may use Angle Subtraction to obtain L AP'A' ^- L BP'B' and
L C'Q'C -- L B'Q'B. Thus L AP'A' ^' ABP'B' and ABQ'B' ACQ'C' by
HA. Hence AT _- BB' a CC and A'ACC' is a Saccheri quadrilateral.
Therefore the perpendicular bisector n of AC must also be the perpendicular
bisector of A'C'. Hence n I t and n c Y.

Case 3. 11 m. Note first that 11 m implies that n n l = n n m = 0, for if this
were not true then Case 1 would show that 1, m, and n are concurrent which
is impossible since 11 m implies I II m. Notice also that Case 2 prohibits n from
having a common perpendicular with either I or m. Thus m I n and 11 n. To
show that 1, m, n belong to the same asymptotic pencil means we must show
that 1, m, and n are "asymptotic at the same end." We do this by first finding
a common transversal for 1, m, n.

Figure 11-28

Suppose that BC is a longest side of AABC so that LA >_ LB and
L A >_ L C. Then there are points P and Q on BC with L BAP ^L B and
L CAQ _- L C. See Figure 11-28. Thus PA ^ PB so that P is on 1, the per-
pendicular bisector of AB. Likewise Q e n. Thus the line RC intersects I at
P, BC intersects n at Q, and M intersects m at the midpoint of C. Thus 1,
m, and n have a common transversal, namely C.

Finally, by Problems A3 and A4, the lines 1, m, n cannot form a trebly
asymptotic triangle but instead must all belong to the same asymptotic
pencil.

Definition. Let Y be a pencil. Two points P and Q are equivalent with respect
to ./, written P ' , Q, if there is a line I E 9 such that Q is the image of P
under the reflection across l; i.e., Q = p,P.

We shall normally omit the subscript Y in P -9 Q if there is no danger
of confusion.
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Theorem 11.4.2. If 9 is a pencil in a neutral geometry then ., is an equiva-
lence relation.

PROOF. Let P be any point. Then there is a line 1 e Y with P e 1 (Why?).
Since p,P = P, P - P and - is reflexive.

Suppose P - Q so that there is an I e Y with Q = p,P. Then p1Q =
p,p,P = P and Q - P. Thus - is symmetric.

To show that - is transitive we assume that P - Q and Q - R. If P, Q, R
are not distinct points then either P = Q so that Q - R implies P - R, or
P = R so that P - R by the first part, or Q = R so that P - Q implies that
P - R. Hence we assume that P, Q and R are distinct. There will be two cases
depending on whether P, Q and R are collinear or not. Note that Q = p,P
and R = pmQ for some lines 1, m c Y.

Case 1. P, Q, R are collinear. Since P, Q, and R are distinct, 10 m and
both I and m are perpendicular to PQ. Hence 1, m e Pfd so that Y = Y,
where t = PQ by Problem Al. Let n be the perpendicular bisector of PR.
Then ne.,=9 HenceP - R.

Case 2. P, Q, and R are noncollinear. I is the perpendicular bisector of
PQ and m is the perpendicular bisector of QR. Since 1 :Am Problem Al
implies that l and m belong to a unique pencil, and that pencil must be Y.
By Theorem 11.4.1, the perpendicular bisector n of PR also belongs to 9.
Hence R = p, P and P - R. Thus - is transitive.

We now turn our attention to cycles. As we shall see, cycles generalize
the notion of circles. In a Euclidean geometry three noncollinear points lie
on a unique circle, but this need not be true in a hyperbolic geometry.
However, three noncollinear points will always lie on a unique cycle. There
will also be results on tangents to cycles which are quite similar to those with
circles. Most of these will be left as exercises.

Definition. Let 9 be a pencil in a neutral geometry. A cycle ' of 9 is an
equivalence class with respect to -,. A cycle is degenerate if it is a single
point (the center of.' ='c) or a line (the line 1 of 9 = Yj). All other cycles
are called nondegenerate. The center of a cycle is the center of the associated
pencil 9.

Theorem 11.4.3. In a neutral geometry ct nondegenerate cycle with respect to
a pointed pencil Sac is a circle with center C. If IC is a nondegenerate cycle of a
parallel pencil 9, then every point of W is the same distance from l and W lies
on one side of 1.

The proof of the above result is left as Problem A5. The second part of
the theorem is quite interesting because it says that a cycle l of 9, is an



11.4 Pencils and Cycles 317

"equidistant curve" of 1. Although this curve is a line in the Euclidean case,
it is not in a hyperbolic geometry. Can you find an example in .Ye?

By Problem A6 the set of all points a distance r > 0 from a line I consists
of two cycles. See Figure 11-29.

W,

W2

Figure 11-29

Theorem 11.4.4. In a neutral geometry any three distinct points lie on a unique
cycle.

PRooF. Let the three points be P, Q and R. Let I be the perpendicular bisector
of PQ and m be the perpendicular bisector of QR. Then Q = p,P and R =
Since P, Q and R are distinct, 10 m so that 1 and m belong to a unique pencil
9. With respect to this pencil we have P - Q and Q - R. Hence P, Q, R
belong to the same equivalence class and thus the same cycle W. Since 9 is
unique and P can belong to only one cycle of 9°, there is only one cycle that
contains P, Q, and R.

The next idea is a generalization of the idea of a fixed point. It is extremely
important in many areas of mathematics and will be very useful as we prove
the classification theorem in Sections 11.5 and 11.6.

Definition. A set d is an invariant set of a collineation cp if 9 (sit) c d.

Note carefully that the definition says that d is invariant if for each
a e d, cp(a) a W. It is quite possible that 9(a) a for a e .4. For example, if
sp:R'-.Q82by(p(x,y)=(x+1, y) then .W={(x,y)el2I-7<y<3}isan
invariant set, but no point of .sat of fixed. The set 94 = {(x, y) e il2Ix > 0) is
also invariant, but 9(.4) R. We shall usually say "sl is invariant" rather
than ".sa1 is 'an invariant set for cp" if it is clear which collineation we are
referring to.

It makes sense to ask if a pencil Y is invariant. Y is a set of lines so that
sp(y) _ {(p(l)I I e Y}. Thus Y will be invariant under cp if cp(l) e Y for every
Ie Y.

The remaining results are left as homework.

Theorem. 11.4.5. Let cp be an isometry of a neutral geometry and let o be a
pencil. If cp can be written as a composition of reflections across lines of 9
then the center of 91, each cycle of /, and Y itself are invariant under p.
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Theorem 11.4.6. Let W1 and `12 be two nondegenerate cycles of the pencil 9
in a neutral geometry. Let 1, m e 9. Suppose that I intersects '1t and '1Z at A1,
A2 and m intersects '1 and lez at B1, B2. If . = °9c so that l'1 and W2 are
actually circles with center C suppose further that C is not between Al and AZ
and C is not between B1 and B2. Then ;f AZ - B7B2. Hence two "concentric
cycles" are the same distance apart.

It is possible to define a tangent to a cycle at a point. However, we cannot
use the same definition we did for circles.

Definition. Let '1 be a nondegenerate cycle of the pencil . in a neutral
geometry. If P e le then the tangent line to'1 at P is the line through P which
is perpendicular to the unique line of Y through P.

Theorem 11.4.7. In a neutral geometry, if the line 1 is tangent to the non-
degenerate cycle le at P then 1 n'1 contains just the point P.

The converse of Theorem 11.4.7 is false (Problem A11) which is why we
had to define tangents differently for cycles than we did for circles.

Theorem 11.4.8. In a neutral geometry, if l is tangent to the nondegenerate
cycle '1 at P then the set '1 - {P} lies on one side of 1.

Because of this theorem we can define the interior and exterior of a cycle.

Definition. Let '1 be a nondegenerate cycle in a neutral geometry {9", 2', d, m}.
For each P e'1 let HP be the half plane determined by the tangent line to
'1 at P which contains le - {P}. The interior of'1 is

int('1) = n HP.
PE,e

The exterior of '1 is
ext('1) = Y -'' - int('1).

The next theorem is proved almost the same way as Theorem 6.5.10. The
hard part is finding a replacement for Theorem 6.5.9 to use.

Theorem 11.4.9. If '1 is a nondegenerate cycle in a neutral geometry and
P e ext('1) then there are exactly two lines through P tangent to W.

PROBLEM SET 11.4

Part A.
1. If I and m are distinct lines of a neutral geometry, prove that there is a unique

pencil with 1, m c 9.
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2. In the proof of Theorem 11.4.1 show that
a. none of A, B, C, P, and Q belong to t;
b. P'# A', P'# B', Q'#B',Q':A C',A'#C'.

3. Let 1, in, n be three distinct lines in a neutral geometry with 1 I M, I I n and m I n. Prove
that either there is a ray P asymptotic to all three lines (so that all three belong
to 3'p) or else I = AB, m = CD, n = EP with AB I DC, CD I FE, EF I BA (so that
we have a trebly asymptotic triangle). See Figure 11-30.

Figure 11-30

4. Let 1, m, n be three distinct lines in a neutral geometry with 1 I m, in I n, and l I n. Prove
that if 1, m, n have a common transversal t then 1, in, n all belong to the same pencil.

5. Prove Theorem 11.4.3.

6. Let r > 0 and let I be a line in a neutral geometry. Prove that 9 = {P E YI
d(P, 1) = r} is the union of two cycles.

7. Let q be the isometry of Problem A12 of Section 11.1. What are the invariant
sets of coq?

8. Prove Theorem 11.4.5.

9. Prove Theorem 11.4.6.

10. Prove Theorem 11.4.7.

11. Find a nondegenerate cycle W, a point P e W, and a line l which intersects'' only
at P but is not tangent to W.

12. Let ' be a nondegenerate cycle in a neutral geometry. If P ' and there is a line
through P tangent to le, prove there are exactly two lines through P tangent to W.

13. Describe the cycles of the different possible pencils of if.

14. Let ' be a nondegenerate cycle and let P E 16. How many lines intersect ' just at
P? (Your answer will depend on the type of pencil associated with W.)

15. Let I = AB' and AP, BQ E = Y. Prove P -,. Q if and only if a] APQB.

16. Ifm,neY,=1 andPemprovethereisauniqueQenwithP -,Q.

17. Repeat Problem A16 for the pencil YAB
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18. If I is divergently parallel to m let .T = {lines t 1 t is transversal to 1, m with
alternate interior angles congruent}. Prove that .% is contained in a pointed
pencil if the geometry is hyperbolic.

19. In a neutral geometry let 1 and m be distinct lines in a pencil °J with P e 1, Q e m.
Prove that P - Q if and only if P = Q or j 5!y is transversal to 1, m with alternate
interior angles supplementary.

20. In a neutral geometry let 1, m be two lines of a pencil Y that intersect a cycle 9 of
Y at points A # B. Choose P on the same side of 1 as B and Q on the same side
of m as A and with AP and B Q tangent to ' at A, B. Prove that L PAB ft L QBA.

21. If ABCD has its vertices on a cycle W in a neutral geometry prove that
m(LA) + m(LC) = m(LB) + m(LD).

22. Prove that the interior of a cycle is convex.

Part B. "Prove" may mean "find a counterexample".

23. Describe the possible cycles in the Poincare Plane .-Y.

24. Prove Theorem 11.4.8.

25. Prove Theorem 11.4.9.

26. Repeat Problem A16 for the pencil YA.

27. For the situation in the proof of Theorem 11.4.1 find an example where A' = Q'.
Thus it need not be true that A', B', C', P', Q' are distinct.

11.5 Double Reflections and Their Invariant Sets

In the next section we shall classify isometrics according to their geometric
properties. That is, we will partition the set of all isometrics of a neutral
geometry into classes with two isometrics in the same class if and only if
they act in a similar fashion. The primary geometric property that will be
used in this partitioning will be invariant sets. We shall start the process in
this section by studying reflections and isometrics which are the composition
of two reflections (double reflections).

Convention. Throughout Sections 11.5 and 11.6 all results refer to
a neutral geometry {.9°, P, m, d }.

Theorem 11.5.1. If p, is the reflection across the line 1 then

(i) A point A is fixed by p, if and only if A c 1.
(ii) A line m 34 l is invariant under p, if and only if m 11.

(iii) A pencil Y is invariant under p, if and only if either l e 9 or 91 = °J,.
(iv) p, interchanges the half planes determined by 1.
(v) Pit = p,.
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This theorem, whose proof is left to Problem Al, fairly well sums up all
the important properties of a reflection. We may thus turn our attention to
isometries which can be written as the composition of two reflections.

Definition. A double reflection cp is an isometry which can be written as the
composition of two distinct reflections: cp = pi pm with l jk in. cP is a rotation
with center A if l n in = {A}. cp is translation along n if n is a common perpen-
dicular of I and m. cp is a parallel displacement if I and in are asymptotically
parallel.

First we would like to see that rotations and translations behave essentially
as we would expect from our Euclidean experience. This is done in the next
two theorems. The proof of the first is left to Problem A2.

Theorem 11.5.2. Let I and in be distinct lines with 1 n in = {C} so that cp = pip.
is a rotation about C. Let 0 be the smaller of the measures of the angles
formed by I and in. If 1 is not perpendicular to m then m(LPCcoP) = 20 for
any P O C. (See Figure 11-31.) If 11 in and P 54 C then P-C-cpP and
PC ^ CcoP.

m m

Figure 11-31

Theorem 1153. Let I and m be distinct lines with common perpendicular t so that
cp =pip. is a translation along t. If I and m intersect t at A and B respectively
then d(P, cpP) = 2d(A, B) for all P E t. If Q 0 t then Q and coQ lie on the same
side of t and d(Q, cQ) > 2d(A, B) with equality if and only if the geometry
is Euclidean.

PROOF. Let f be a coordinate system for t with f (B) = 0 and f (A) = r > 0
so that d(A, B) = r. Suppose P e t and f (P) = s. Then pmP e t and has
coordinate - s. Hence coP = p, pmP e t has coordinate r - (- s - r) = 2r + s.
Thus d(P, cpP) =_2r + s - sl = 2r = 2d(A, B).

If Q 0 t then QpmQ is perpendicular to m. Since in 1 t, we have QpmQ I I t.
Hence Q and p.Q lie on the same side of t. Similarly pmQ and p, pmQ = pQ
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lie on the same side oft. Hence Q and tpQ lie on the same side oft.
Let P be the foot of the perpendicular from Q to t. Since ip preserves

perpendicularity, the foot of the perpendicular from cpQ to t must be cpP.
Now d(P, Q) = d(tpP, (pQ) so that PQcpQTP is a Saccheri quadrilateral.
Hence

d(Q, (pQ) > d(P, coP) = 2d(A, B).

Since the upper base of a Saccheri quadrilateral is congruent to the lower
base only when the geometry is Euclidean, we are done.

There are no parallel displacements in a Euclidean geometry because
parallel lines always have a common perpendicular there. In Problem A3
you will describe the parallel displacement in Y determined by the asymp-
totically parallel lines L and bL.

Clearly if (p is a double reflection then W is either a rotation, a translation,
or a parallel displacement. However, it is conceivable that 9 = p,pm = p pp
where I and m have a common perpendicular while n and p don't. This would
mean that the ideas of reflection, translation, and parallel displacement are
not disjoint. Our first task is to show a double reflection can be only one of
the three possibilities. This will be done by investigating the fixed points and
invariant sets of a double reflection.

Theorem 11.5.4. Let cp = p, pm be a double reflection. Then B is a fixed point
of 9 if and only if Belnm.

PROOF. If B e 1 n m then by Theorem 11.5.1

cpB=p,pmB=p,B=B.

This completes the proof in one direction.

Suppose now that (p fixes the point B so that p, pmB = B. Since (p,)2 =
identity,

p,B = Pi(P1PmB) = (P1P1)PmB = PmB.

Let C = p1B = pmB. We will show that C = B. This will imply that B =
p,B = pmB and B e l n m by Theorem 11.5.1.

If B 0 C then I and m are both perpendicular to BC at its midpoint by
the definition of a reflection. But this implies I = m, which is impossible.
Thus C = B and p,, pm each fix B. Hence B belongs to both 1 and m so that
Belnm.

Corollary 11.5.5. An isometry (p has exactly one fixed point if and only if
cp is a rotation.
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PROOF. Thanks to the previous theorem a rotation 4 = pip. fixes exactly
one point, namely the unique intersection of l and m. On the other hand
if cp fixes exactly one point then in order to prove that cp is a rotation it is
sufficient to prove that cp is a double reflection. We do this by showing that
pig is a reflection for some line 1.

Suppose the isometry cp fixes the point D. Let E: D be any other point.
By hypothesis E j4 cpE so that we may let I be the perpendicular bisector
of Then d(D, E) = d(TD, (pE) = d(D, (pE) so that D belongs to the
perpendicular bisector of EcpE, i.e., D e 1. Since p1(9E) = E, the isometry
pip fixes both D and E and so it fixes every point on m = DE by Lemma 11.3.1.
If p,cp is the identity then cp = pi 1 = p, and T has more than one fixed point,
contrary to the hypothesis. Hence by Theorem 11.3.4, pig = p, and

4P = Pi 1Pm = PiPm.

Since D e I and D e m, cp is a rotation with center D.

Corollary 11.5.6. If (p is a translation or a parallel displacement then W does
not fix any points and so cp is not a rotation.

Now that we know that a rotation is neither a translation nor a parallel
displacement we turn our attention to showing that a translation is not a
parallel displacement. Whereas fixed points were the key to distinguishing
rotations, invariant lines will be the deciding factor in the next step.

Theorem 11.5.7. Let cp = pipm be a double reflection which is not a rotation.
If the geometry is Euclidean then cp is a translation. If the geometry is hyperbolic
then cp is a translation along t if and only if tp leaves the line t invariant. Further-
more, in this case ip is not a parallel displacement.

PROOF. In the Euclidean case every double reflection is a rotation or a
translation so there is nothing to prove. Furthermore if 9 is a translation
along t then t is left invariant.

In the hyperbolic case we first assume that t is left invariant by cp and
show that 1p is a translation along t. Let 9 be the unique pencil containing
both I and m. We shall show that 05 is the pencil 0, consisting of all lines
perpendicular to t. This will mean that 11 t and m 1 t so that (p is a trans-
lation along t. The proof will be by contradiction. We assume that t is not
the center of Y. Note that in a hyperbolic geometry t is the center of 05 if
and only if 05 = Y,.

Since t is not the center of 0 there is a point A E t which is not in the center
of Y. (Note that if 0 is an asymptotic pencil there are no points at all in
the center of 9a.) Let '' be the unique cycle of 9 through A. Since A is not
in the center of °5 and the geometry is hyperbolic, ' is a nondegenerate
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cycle. Let B = cpA. B = A because cp is not a rotation. ' is invariant under
cp so that B E le. Since t is invariant, B E t also. Thus B e W n t. We claim
(pB = A.

Now (pB e le n t since le and t are invariant and B E le n t. If (pB 0 A
then A, B, (pB are three distinct points which belong to two distinct cycles
' and t. (Note t may not be a cycle of 9 but it certainly is a cycle of some

pencil.) This contradicts Theorem 11.4.4 which says that three distinct points
belong to a unique cycle. Hence we must have (pB = A.

Thus the isometry (p interchanges A and B. By Problem A9 of Section 11.1,
cp fixes the midpoint of AB. This contradicts the assumption that W is not a
rotation. Hence it must be that t is the center of 9 after all and I and m are
both perpendicular to t. Thus (p is a translation along t and is not a parallel
displacement.

Theorem 11.5.8. In a Euclidean geometry a translation along t leaves invariant
only those lines parallel to t. In a hyperbolic geometry a translation along t
leaves only the line t invariant. A parallel displacement has no invariant lines.

PROOF. The Euclidean case is left to Problem AT In the hyperbolic case if
cp = pipm is a translation along t then t is the center of the (parallel) pencil
determined by 1 and m. By Theorem 11.4.5 this center is invariant under cp.

On the other hand, if tp = p, pm is not a rotation and if co leaves a line
invariant, then by Theorem 11.5.7 that line must be the center of the unique
pencil Y determined by 1 and m. Hence (p is not a parallel displacement
and t is the only line invariant under (p.

Corollary 11.5.9. If (p = pip. is a double reflection, then 9 is exactly one of a
rotation, a translation, or a parallel displacement. cp is not a reflection.

Theorem 11.5.10. Two distinct asymptotic pencils 9Ag and 9cj have a unique
line I in common.

PROOF. Let P be any point not in AB u D. Choose points R, S so that
PR I AB and -153 1 CD. If P, ,R, S are collinear then we may let 1 PR. If P,
R, S are not collinear let 1 be the line of enclosure of LRPS (Problem A6
of Section 8.2). Either way, l e 9 n .

Suppose V e YAK n 9c-g with I' : 1. Since 1, 1' E YA,A, l and l' are asymp-
totic at one end. Since 1, 1' a Ycb, 1 and l' are also asymptotic at the other
end. This contradicts Problem A5 of Section 8.3. Hence I = 1'.

We have investigated invariant points and invariant lines of a double
reflection. We now turn to invariant pencils.

Theorem 11.5.11. In a hyperbolic geometry a parallel displacement tp = pip.
leaves invariant exactly one pencil, namely the pencil determined by 1 and m.
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PROOF. Let cp = ptpm be a parallel displacement and let ? be the (asymptotic)
pencil determined by I and m. By Theorem 11.4.5, cp leaves 9 invariant.

If 9 leaves a pointed pencil 9c invariant then the center C must be fixed
by gyp, which is impossible. If the cp leaves the parallel pencil Y, invariant,
then the center t is invariant also, which is impossible since cp is a parallel
displacement and so has no invariant lines. Finally if cp leaves an asymptotic
pencil Y' ? invariant, then 9 must leave the unique line 1 e Y' n Y
invariant. But this is impossible since parallel displacements have no in-
variant lines. Thus 1 is the only pencil invariant under cp.

The invariant pencils of a translation are fairly simple to determine. The
proof of the next result is left to Problem All. We will leave the determination
of the invariant pencils of a rotation until after we discuss half-turns, which
are a special type of rotation. This will be done in the next section.

Theorem 11.5.12. A translation never leaves a pointed pencil invariant. In a
Euclidean geometry a translation leaves every parallel pencil invariant. In
a hyperbolic geometry, a translation along a line t leaves invariant only the
parallel pencil Y and the two asymptotic pencils that contain t.

It is possible to write a double reflection in more than one way as a
composition of two reflections. For example, if 1, m, n, p all belong to the
pointed pencil °1c and I 1 m while n 1 p, then pipm = pnpp (Problem A12).
However, our next result says that even if an isometry can be written as a
double reflection in more than one way, all the lines must belong to the
same pencil.

Theorem 11.5.13. If the double reflection cp can be written both as q. = ptpm
and as q = pp, then 1, m, n, and p all belong to the same pencil.

PROOF. Let Y be the unique pencil that contains I and m while Y' is the
unique pencil that contains n and p. By Theorem 11.4.5, cp leaves the center
of 9a invariant and leaves the center of Y' invariant. If q is a rotation then
the pencils are pointed and their centers must consist of the same single
point. Hence Y = Y'.

If cp is a translation then the pencils must be parallel pencils Y _ Yo
and Y' = Yb, where a is a common perpendicular of I and m while b is a
common perpendicular of n and p. By Theorem 11.5.8, cp leaves a and b
invariant. If the geometry is Euclidean then a l l b by the same theorem and
Y = Y. = .fib = .Y'. If the geometry is hyperbolic then a = b and Y - Y'.

Finally if q is a parallel displacement then 9 and 9' are their own centers.
Since a parallel displacement leaves only one pencil invariant by Theorem
11.5.11, 9 = 9'. Hence in all cases Y _ Y' and 1, m, n and p all belong to
the same pencil.
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Our last result in this section is that the composition of two double
reflections is a double reflection. This will require two preliminary results.
The first gives a condition for when a composition of three reflections is
really a reflection. It illustrates how efficient it is to use the language of
pencils.

Theorem 11.5.14. If 1, m, n belong to the same pencil 9 and if co = PiPmPn
then co = pp for some p e Y.

PROOF. Let A and B be distinct points on n that are not in the center of Y.
Let ./ and 9 be the cycles of 9 through A and B. Assume that A is not
equivalent to B so that .sat : 9. If (pA = A we define p to be n so that p e 9.
If cpA A let p be the perpendicular bisector of In this case, since
p (.d) = .sad, we have cpA E .sW and so A - cpA. Since pPA = cpA we must have
that p e Y. We claim that cp = pp in either case.

Now in either case ppcp fixes A. Since p c- 9, 9 is invariant under ppcp
by Theorem 11.4.5. Hence ppcp must leave invariant the line n which is the
(unique) line of 9 that goes through A. If 9 is not a pointed pencil then n
intersects 9 in exactly one point B (Why?). Since ppcp leaves both n and -4
invariant, it must fix B. On the other hand, if 9 is a pointed pencil 9c then
ppcp must fix C e n. Either way p.Co fixes two points of n (A, B or A, C) and
thus fixes each point of n. Hence ppcp is either a reflection (which must be
pn) or the identity.

If p,Cp = pn then PiPmPn = cP = PpPn so that pipm = ps,, which contradicts
Corollary 11.5.9. Hence ppcp = id and cp = pp lid = pp where p e 9.

Note that the above proof is constructive-it tells us how to actually
find p if we are given 1, m, and n.

Corollary 11.5.15. If 1, m, n belong to the pencil 9 then there exists p, q e 9
such that pi pm = p pP and pi pm = pgPn

PROOF. By Theorem 11.5.14, pn pi pm = p, for some p E Y. Hence pi pm =
p 1 pp = p. pp. Likewise pI pm pn = pq for some q e 9 so that pi pm = pg pn 1 =

PgPn

Theorem 11.5.16. The composition of two double reflections is a double re-
flection or the identity.

PROOF. This insidious proof is based on producing two pencils 9' and 9A
and applying Theorem 11.5.14 twice. 9A is simply the pointed pencil at an
arbitrary point A of the line d. 9' will be constructed below.

Let cp = p, pb p pd be the composition of two double reflections. If b = c
then cp = p,pd which is a double reflection (or the identity if a = d). Hence
we assume that b 0 c. Let 9 be the unique pencil that contains b and c.
Let A be any point on d and let l be the line of 9 through A. By Theorem
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11.5.14, PbP,Pt = pm for some m e 7. 1Let 9' be any pencil containing a and
m (Y' is unique if a 0 m). Let n be a line of Y' through A. (n is unique if
Y' :'A.) Then

(P = PaPbPCPa = Pa(PbPCPI)PLPd = PaPmPIPd = (PaPmPJ(PnPtPd)-

Since a, in, n e .9', pa pm pn is a reflection across a line of .9'. Since n, 1, d are
in the pointed pencil 9A, PnPIPd is a reflection across a line of YA. Hence q
is a double reflection (or the identity if these two reflections are the same).

Corollary 11.5.17. The composition of three reflections is not a double
reflection.

PROOF. If papbPc = PIPm then papbPcPm = Pt By the previous theorem
PaPbP,Pm is a double reflection. But a double reflection is not a reflection
(Corollary 11.5.9) so that pOPbpC cannot be a double reflection.

PROBLEM SET 11.5

Part A.

Throughout this set all geometries are assumed to be neutral.

1. Prove Theorem 11.5.1.

2. Prove Theorem 11.5.2.

3. Let I = L and m = bL be two distinct type I lines in .*' so that rp = p,pm is a parallel
displacement. Find a (simple) formula for tp(x, y) where (x, y) e H.

4. Let cp = p,pm be a double reflection and A a point with tpA A. If n is the per-
pendicular bisector of AcpA prove that 1, m, n all belong to the same pencil.

5. Let cp be a rotation about A and let , be a rotation about B. If A # B prove that
q : kp-

6. Prove Corollary 11.5.6.

7. Prove the Euclidean part of Theorem 11.5.8.

8. Let cp be a translation along I and let s be a translation along m with 1 # M. Prove
that cps = 0rp if and only if the geometry is Euclidean.

9. Prove Corollary 11.5.9.

10. Let .9 and 9' be two pencils. By considering cases, describe 9 n 9'.

11. Prove Theorem 11.5.12.

12. If 1, m, n, p e .00c with I 1 m and n I p prove that p,pm = p p,.
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13. Let 1, m, n be the perpendicular bisectors of AB, BC and AC respectively. Prove
that pi p, p is a reflection in a line through A.

14. If 1, m, n do not belong to the same pencil then prove that pipmp is not a reflection.

15. Let cp and 0 be two double reflections associated with the pencil Y (i.e., (P = pipm
with 1, m e Y). If cpA = OA and Y YA then prove that cp = 0.

16. Let cp and q1 be two double reflections and suppose A ¢ B. If cpA = cA and coB =
cB prove that cp = . (Thus double reflections which agree on two distinct points
are equal.)

17. Given AABC let T be the translation along AB such that (pA = B, let 0 be the
translation along Be with c/iB = C, and let t be the translation along AC-` with
tC = A. Prove that a = t& is a rotation about A and that if P # A then
m L PAIP = b(LABC). (This result is a special case of an important result in dif-
ferential geometry called the Gauss-Bonnet Formula. See Millman-Parker [1977].)

11.6 The Classification of Isometries

As mentioned before, we want to classify isometries according to their
geometric properties. A classification theorem will partition the set of iso-
metries of a neutral geometry into a collection of disjoint geometrically
meaningful subsets. A simple but rather useless classification is given by
{identity} v {all other isometries}. The classification which we will even-
tually prove will show that every isometry is either the identity, a reflection,
a rotation, a translation, a parallel displacement, or a glide. (Glides will be
defined later.) Our first approach to the classification theorem will be a
parity check involving the number of'reflections needed to write an isometry.
By Corollary 11.3.6 every isometry can be written as a composition of
(three or fewer) reflections.

Definition. An isometry cp is an even isometry if it can be written as the
composition of an even number of reflections. cp is an odd isometry if it can
be written as a composition of an odd number of reflections.

We wish to prove that an isometry is either even or odd but not both.

Theorem 11.6.1. Every even isometry is either the identity or a double reflection.
Every odd isometry is either a reflection or a product of three reflections. An
isometry cannot be both even and odd.

PROOF. Suppose that cp can be written as a composition of k reflections. If
k > 4 then we can use Theorem 11.5.16 to rewrite cp as a composition of
k - 2 or k - 4 reflections. This may be repeated until we have cp written as
a composition of three or fewer reflections. This will not affect the even-
or oddness of 9 since k, k - 2, and k - 4 are either all odd or all even. Thus



11.6 The Classification of Isometrics 329

every even isometry is either the identity or a double reflection while every
odd isometry is either a reflection or the composition of three reflections.
Since the latter two are neither the identity nor double reflections (Corollary
11.5.9 and Theorem 11.5.17) the theorem is proved.

The next result is left as Problem Al.

Theorem 11.6.2. If co is an isometry then cppi(p -t = Poo)

Definition. An involution is an isometry cp # identity such that cp = q . A
half-turn about the point A is a rotation about A which is also an involution.

Every reflection is an involution. Intuitively a half-turn is a "rotation
through 180 degrees." We will show in Theorem 11.6.5 that every involution
is either a half-turn or a reflection. This will use the following fact which
says that distinct reflections commute exactly when they are across per-
pendicular lines.

Theorem 11.6.3. If 10 m then pi pm = pm p, if and only if I 1 m.

PROOF. Let cp = pm. If 11 m then T(l) = I so that by Theorem 11.6.2, p, =
pq(i) = cp pilp -1 = pmp, p, 1. Hence pip. = pm pi. On the other hand, if pi pm =
pm pi then pt = pm pi p, 1 = p,(i) so that cp(l) = 1. Since 1 54 m, we must have
11 m by Theorem 11.5.1.

Theorem 11.6.4. A double reflection cp = pip. is an involution if and only if
I 1 m. In this case cp is a half-turn. For each point A there is a unique half-turn
1, about A.

PROOF. pip. is an involution if and only if 1: m and pip. = (p1p.)-1. Since
(P,Pm)-1

= Pm1Pi 1 = PmPt

the first assertion follows from Theorem 11.6.3. If 11 m then pip. is a half-
turn about the point where I and m intersect.

For each A we can find lines I and m which are perpendicular at A. Hence
there is at least one half-turn pip. about A. Suppose that p, p,, is also a
half-turn about A. By Corollary 11.5.15 there is a reflection ps with p. pp =
pip.- Since p pp = pips is a half-turn about A, 11 s and I n s = {A}. Thus
s = m and pip. = pips = p p.. Hence there is only one half-turn about A.

Theorem 11.6.5. Every involution tp is either a half-turn or a reflection.

PROOF. Let A be any point with A coA. Since cprpA = A, cp interchanges
A and 1pA. Hence rp fixes the midpoint M of A1oA.
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If M is the only fixed point of (p then cp is a rotation about M by Corollary
11.5.5 and is thus a half-turn since it is an involution. If cp also fixes the
point N then W is the reflection in the line MN by Theorem 11.3.4.

We are now able to determine the invariant pencils of a rotation. The
proof of the following result is left to Problem A8.

Theorem 11.6.6. A rotation which is not a half-turn does not have any invariant
lines. The invariant lines of a half-turn about A are the lines through A. The
only invariant pencil of a rotation which is not a half-turn is the pointed pencil
associated with the fixed point of the rotation. The invariant pencils of the
half-turn rlA are YA and all the parallel pencils 9, for lines I with A e 1.

We already know that every even isometry is either a rotation, a trans-
lation, a parallel displacement, or is the identity. The only isometries we
have not really studied are the triple reflections pipmp when 1, m, n do not
belong to the same pencil. The first step will be to identify a special type of
triple reflection called a glide. A glide along a line I will consist of a trans-
lation along 1 followed by a reflection across 1. In Figure 11-32 we see the
result of applying a glide several times to a geometric figure. The result
reminds us of the gliding strokes of an ice skater.

(OP 3p

P (pZP

Figure 11-32

Definition. A glide along 1 is an isometry cp = pi pm pn where pm pn is a transla-
tion along 1.

Theorem 11.6.7. If (p = p,pmp. is a glide along 1 then

(i) PIP,,,Pn = PmPnP,
(ii) tp has no fixed points.

(iii) 1 is the only invariant line of cp.
(iv) 9 interchanges the half planes determined by 1.

PROOF.

(i) Since pm p is a translation along I both m and n are perpendicular to
1. Hence by Theorem 11.6.3, pm p, = p, pm and pn p, = AN so that

PIPmPn = PmAPn = P.nPnPI.
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(ii) If T fixes exactly one point then it is a rotation by Corollary 11.5.5.
But then cp is both even and odd which is impossible. If cp fixes two points
A and B then it fixes every point on the line AB. cp is not the identity so that
by Theorem 11.3.4, p, pm pn = co = p, for some t. Then p,pm = p, p t =
p, pn so that by Theorem 11.5.13, 1, m, n and t belong to the same pencil.
Since m n, m 1 1, and n 1 1, this pencil must be the parallel pencil Y1.
This is impossible because 1 9i, and cp cannot have any fixed points.

(iii, iv) Clearly P leaves 1 invariant and interchanges the half planes of
1. If t 0 1 is left invariant and A e t then cpA A and t = A-(p-A. A 0 1 so
that A and cpA are on opposite sides of 1. Thus t intersects I at a point B.
Since both I and t are invariant, coB e I n t so that (pB = B. This contradicts
the second part of the theorem so that I must be the only invariant line of
(P.

We leave to Problem A9 the determination of which pencils are invariant
under a glide.

Theorem 11.6.8. If r is a line and B 0 r then p,rlB is a glide.

PROOF. Let m be the perpendicular to r through B and let n be the per-
pendicular to m through B as in Figure 11-33. Since B r, n 0 r and p,pn
is a translation along m while the half-turn rlB is qB = P,Pm Hence

Pm(PrPn) = (PrPn)Pr = Pr(PnPm) = PAB

and MB is a glide along m.

B Q
n

m

Figure 11-33

The next result classifies all odd isometries.

Theorem 11.6.9. A triple reflection W = pipmpn is either a reflection or a
glide but not both.

PROOF. If 1, m, n belong to the same pencil then (p is a reflection by Theorem
11.5.14. Hence we will assume that 1, m, n do not belong to the same pencil
and will show that cp is a glide. We do this by rewriting p in a different
manner in Equation (6-3).
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Let A e I and let p 0 1 be the line through A that is in the pencil I deter-
mined by m and n. Then there is a t e 4 with

PpPmPn = Pt- (6-1)

See Figure 11-34. Let B be the foot of the perpendicular s from A to t. Since
1, p, and s all intersect at A, they all belong to the same pencil PA. Thus
there is an r e PA with

P1PpPS = Pr

I

Now B 0 r (or else r = AB = s, and Equation (6-2) implies p, = pp so that
1= p). Thus, using Equations (6-1) and (6-2) we have

PrPsPt = (P1PpPS)PS(PpPmPn) = (PiPp)(PpPmPn) = PIPmPn = (P. (6-3)

Since s 1 t and s n t = {B}, PA = nB. Because B 0 r, (p = prpsp, =
prrla is a glide by Theorem 11.6.8. Since a reflection has a fixed point and
a glide does not, (p cannot be both a glide and a reflection.

We can now prove our main theorem which classifies all isometries
based upon their invariant sets.

Theorem 11.6.10 (Classification Theorem). Every isometry of a neutral
geometry is exactly one of the following

(i) identity (ii) reflection
(iii) rotation (iv) translation
(v) parallel displacement (vi) glide

PROOF. If W is an isometry then it is either even or odd but not both. If cp
is even it is the identity or a double reflection. By Corollary 11.5.9 every
double reflection is either a rotation, a translation, or a parallel displacement
but not any two of these. If rp is odd then by Theorem 11.6.9, cp is either a
reflection or a glide but not both.
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Our classification theorem was proved by considering isometries as
compositions of reflections. Interesting theorems regarding even isometries
can be found by considering double reflections as the basic building blocks.

Theorem 11.6.11. An isometry cp is a translation if and only if it is the composi-
tion of two distinct half-turns.

PROOF. Let cp = rlAr1B be the composition of two half-turns with A = B.
Let I = AB, let m be perpendicular to 1 at A, and let n be perpendicular to 1
at B. Then

4P = (PmPI)(PIPn) = P,nPn

so that cp is a translation along 1.
On the other hand, if cp = pm pn is a translation along I then there are

points A and B with m perpendicular to 1 at A and with n perpendicular to I
at B. Since m 0 n we have A B and (p = pmP,, = PmPIPIPn = nAqB

Theorem 11.6.12. In a Euclidean geometry the composition of three half-
turns rlArlBrlc is a half-turn flD. In a hyperbolic geometry IlAfBfC is a half-turn
if and only if A, B, C are collinear.

PROOF. If A, B, C all lie on the line p and if 1, m, n are perpendicular to p
at A, B, C then

f1Af1Bf1c = (PiPp)(PpPm)(PnPp) = PIPmPnPp = PSPp

for some s 1 p by Theorem 11.5.14. Let s n p = {D}. Then rlAlBf1C = ?ID'
Now assume that A, B, C are not collinear. Let 1 = AB and let E be the

foot of the perpendicular m from C to 1. The isometry cp = rjArls may be
written, thanks to Theorem 11.6.11, as pn pm for some n 1 1. Let F be the
point where n intersects 1. See Figure 11-35. Let p be the line through C
perpendicular to m so that rlc = pmpp. Then

flA'lBf1c = 'Plc = (PnPm)(PmPp) = PnPp

C

a
A B

E

Figure 11-35

11

M

Thus for A, B, C noncollinear l1AiiR11C will be a half-turn if and only if n 1 p.
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Now n 1 1, 1 1 m, and m 1 p. If n n p = {D} then CEFD is a Lambert
quadrilateral. If the geometry is Euclidean n 1 p and rlArlBflc = PaPp = ?ID,
If the geometry is hyperbolic the rotation papp is not a half-turn since L FDC
is not a right angle. If n is divergently parallel to p then pa pp is a translation
and if n is asymptotically parallel to p then p pp is a parallel displacement.
Hence in the Euclidean case r1A IAC is always a half-turn and in the hyper-
bolic case it is a half-turn if and only if A, B, and C are collinear.

Note that, courtesy of Theorem 11.6.11 every translation is the composi-
tion of half-turns. By Theorems 11.6.11 and 11.6.12 the only rotations in
a Euclidean geometry which are the compositions of half-turns are half-
turns. However, the situation is different in the hyperbolic case.

Theorem 11.6.13. In a hyperbolic geometry, every double reflection is a
composition of half-turns.

PROOF. We know the result is true for translations (Theorem 11.6.11).
Suppose that papb is a rotation about C (so a b). Let a = AC, b = BC,
and 1 be the line of enclosure of L ACB. Set D to be the foot of the perpendic-
ular from C to I and choose E with C-D-E. Let m be perpendicular to
CD at E. I I a and l b while m is divergently parallel to both a and b. See
Figure 11-36. Hence papr and papb are translations since divergently par-
allel lines have a common perpendicular. Then papb = PaPmPmPb is a com-
position of two translations and hence a composition of four half-turns.

b

Figure 11-36

If pC pd is a parallel displacement let X E c, Y e d and I = X Y. Then
pCpi and PiPa are rotations so that PCpd = PCPIPIPd is a composition of two
rotations and hence a composition of eight half-turns.

PROBLEM SET 11.6

Part A.
Throughout this set all geometries are assumed to be neutral.
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1. Prove Theorem 11.6.2.

2. If 1 is a line and A 0 1 then prove that nA(I) is divergently parallel to 1.

3. Prove that if cp is an isometry then MAT-1 = n,,A

4. If cp is an isometry prove that (pp, = p,cp if and only if 9(1) = I.

5. If rp is an isometry prove that (PJA = nAC° if and only if cpA = A.

6. Let rp be a rotation about A. If the line l is invariant under cp prove that cp = nA
and AEI.

7. If p,p,,p = prove that 1, m, n belong to the same pencil.

8. Prove Theorem 11.6.6.

9. If cp is a glide along 1, what are the invariant pencils of cp?

10. If P o Q how many rotations send P to Q? Half-turns? Translations? Parallel
displacements? Reflections? Glides? (Be careful to distinguish between the Eu-
clidean and hyperbolic cases.)

It. If cp and are glides along 1, prove that go is either a translation along I or the
identity.

12. If cp = p,p,,,p prove that 9z is either a translation or the identity.

13. If cp is a glide along l and B e 1 prove there is a liner with P = p,nB

14. If cp is a glide along 1 and 0 is a glide along m with I i m prove that cpq' is a half-turn
if and only if the geometry is Euclidean.

15. Prove Hjelmslev's Lemma: Let cp be a glide along 1 and let m be a line which is not
invariant under cp. If P E m then the midpoint of PrpP lies on 1. If Q is any other
point of m, the midpoint of QcpQ is the same as the midpoint of PcpP if and only if
11 m.

16. Given a glide cp how would you find the invariant line 1 along which cP is a glide?

17. Prove Hjelmslev's Theorem: If rp is an isometry and m is a line which is not
invariant then there is a line n such that for any P e m, the midpoint of PPP is on
n. Furthermore, the midpoints of all such segments PrpP with P E m are either
distinct or are all the same.

18. Is Hjelmslev's Theorem still true if m is an invariant line of cp?

Part B. "Prove" may mean "find a counterexample".

19. Prove that any translation is the composition of two rotations.

20. Prove that any translation is the composition of two glides.

21. In a hyperbolic geometry, prove that any translation is the composition of two
parallel displacements.

22. In a hyperbolic geometry prove that any rotation is the composition of two
parallel displacements.
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23. In a hyperbolic geometry prove that any rotation is the composition of two
translations.

24. In a hyperbolic geometry prove that any parallel displacement is the composition
of two rotations.

25. In a hyperbolic geometry prove that any parallel displacement is the composition
of two translations.

26. In a hyperbolic geometry prove that any even isometry is the composition of
three half-turns.

27. In a Euclidean geometry show that a rotation is never the composition of two
translations.

11.7 The Isometry Group

We shall see in this section that the collection of all isometries of a metric
geometry forms a special algebraic structure called a group. Groups are
a major object of study in a course in abstract algebra. (For example, see
Herstein [1990] or McCoy-Janusz [1987].) We shall assume in this section
that the reader has some familiarity with the subject and will give only a few
introductory words about the theory of groups. This language will then be
applied to the group of isometries of a neutral geometry.

Definition. A group {G, } is a set G together with an operation, , for combin-
ing elements of G such that

(i) if g, h e G then g h e G;
(ii) ifg,h,keGthen
(iii) there is an element e e G, called the identity, such that e g = g e =

g for every g e G;
(iv) for each g e G there is an element g-' e G, called an inverse of g, such

=g-1'g=e.

Among the first results in group theory are the facts that each group has
exactly one identity element and each element has a unique inverse. Further-
more, in order to show that h is the inverse of g it is only necessary to show
that gh = e (and not hg = e also). Simple examples of groups are given by
the integers under addition (e = 0 and inverse means negative) and the
positive real numbers under multiplication (e = 1 and inverse means re-
ciprocal). Both of these examples have the property that they are commu-
tative: the order two elements are combined does not matter. This is not
typical of groups in general.

Example 11.7.1. Show that the set SL(2, l) of 2 x 2 matrices with real
entries and determinant + 1 form a group under matrix multiplication.
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SOLUTION. Recall that the product of two matrices A = (a d) and B =

(e f is given by
g h)

AB =
(ae + bg of + bh

ce + dg cf + dh

If det(A) = (ad - bc) = 1 and det(B) = (eh - fg) = 1 then a straightforward
calculation shows that

det(AB) = (ae + bg)(cf + dh) - (af + bh)(ce + dg)

=(ad-bc)(eh-fg)= 1. 1 = 1.

Thus the product of two elements of SL(2, Il) is in SL(2, l1) and axiom (i)
is satisfied.

A straightforward but tedious calculation shows that (AB)C = A(BC)

so that axiom (ii) is satisfied. The identity element is I = (I i). Finally

the inverse of (a
d ) is

(- d b) because
c

(a b1( d -b)-(ad-be -ab+ab)-(1 0I
c dX - c a cd - cd -be + ad )0 1)=

Note that in this example, AB need not equal BA; e.g., let A =
1 1

(0 1

and B = (0
O)

z

The group SL(2, l8) will be very important when we study the collection
of isometries of the Poincare Plane .afo We will see that it is essentially the
set of even isometries of .*.

Theorem 11.7.2. The collection of all collineations of an incidence geometry
with itself forms a group under composition of functions.

PROOF. Let p :.' --> 9 and ':.9' -* .9' be collineations. Then cp o is a
collineation by Problem A19 of Section 11.1. Thus axiom (i) is satisfied.

The composition of functions is associative so that axiom (ii) is satisfied.
The identity element is given by the identity function

id: Y -> ." by id(P) = P for all P e .,

which is clearly a collineation.
If p is a collineation let cp-t denote the inverse of the bijection cp. By

Problem A4 of Section 11.1, q, is also a collineation. Hence the set of
collineations of .9' forms a group.

We leave the proof of the next result as Problem Al.
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Theorem 11.7.3. If 9 = {.0, £, d } is a metric geometry then the set .5(T)
of all bijections of 9 which preserve distance forms a group under composition
of functions. In particular, the set of isometries of a neutral geometry forms
a group under composition.

Definition. The isometry group of a neutral geometry .N' _ {9, 1, d, m} is
the group f(A) of all isometries of A.

The isometry group of a neutral geometry is a group in its own right
and also a subset of the group of all collineations. This arrangement has a
formal name.

Definition. If {G, } is a group and if H is a subset of G, then H is a subgroup
of G if {H, } is a group.

Theorem 11.7.4. The set of all even isometries of a neutral geometry .N(
is a subgroup of the isometry group

Theorem 11.7.5. Let Y be a pencil in a neutral geometry and set

-9 = {ptpmll and m are in 9}.

Then -9 is a subgroup of the isometry group and is commutative.

PROOF. Suppose tp = ptpm and >li = belong to 2. Then by Corollary
11.5.15 there is a t e Y with 0 = p pp = pm pt. Hence ip ii = pt pm p pp =
PiPmPmPt = Pier E -9. Hence axiom (i) is satisfied. Axiom (ii) is trivial and
id = p, pt e -q if I e 9a so axiom (iii) is satisfied.

If 9 = pi pm e 2 then g t = P. t p, t = pmPZ e -9 so that tp has an inverse
in -9. Hence -9 is a subgroup of the isometry group.

Finally we must show that if g, f e -9 then cp ' 1= iliip. Let (p = pt pm
and >G = p. By Corollary 11.5.15 there are lines s, t e 91 with 0 = ps pt =
PmPt, 09 = PsPIPlPm = PSPm Thus since /-' = (PmPt)-' = PtPm,

oW = P9Pm = Ps_(V ,)Pm = Ps(PsPIPtPm)Pm

= Apt = PIPmPmPt = go-

Hence l is commutative.

By taking different kinds of pencils in Theorem 11.7.5 we get subgroups of
rotations, translations or parallel displacements.

Theorem 11.7.6. In a Euclidean geometry the set of all translations together
with the identity form a commutative subgroup of the isometry group.

The statement of Theorem 11.7.6 needs the words "together with the
identity" because by definition the identity is not a translation. However, it
is the product of two reflections: Id = pp,.
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Definition. Let S be a subset of a group G and let H be a subgroup of G
which contains S. Then H is generated by S if every subgroup of G which
contains S also contains H. (This is the same as saying that every element of
H can be written as a product of elements of S or their inverses.)

Theorem 11.7.7. In a hyperbolic geometry the subgroup H of even isometries
is generated by the set of half-turns.

PROOF. By Theorem 11.6.13 every double reflection is a product of half-turns,
as is the identity. Hence H is generated by the set of half-turns.

There are several other special sets that generate the even isometries.
See Problems A6, A7, and A8.

The isometry group of a neutral geometry is very large. The classification
theorem partitions it into subsets (not subgroups) according to certain
geometric properties. These geometric properties are reflected as certain
algebraic properties involving the order of a group element.

Definition. If {G, } is a group and g e G then g has finite order if g" = e
for some positive integer n. In this case the order of g is the smallest positive
integer r such that g' = e.

Clearly the identity has order 1 and every involution has order 2. If
n is an integer greater than 2 then it is possible to find a rotation with order
n (Problem A9). However, not every rotation has finite order (Problem
A10). The next result, whose proof is left to Problem All, says that if an
isometry qp has order n > 2 then (p must be a rotation.

Theorem 11.7.8. In a neutral geometry if 9 is either a translation, a glide,
or a parallel displacement then cp does not have finite order.

Just as two geometries are equivalent if they are isometric, there is a
notion of equivalence of groups. This is given by saying that there is a
bijection that preserves the group operation.

Definition. Two groups {G, } and {G', *} are isomorphic if there is a bijec-
tion f : G -> G' such that f (g, . 92) = f(g1) * f(g2) for every two elements
91,92ofG.

In the last section we will determine the isometry groups of ' and *.
Because of the next result we will then know the (abstract) structure of the
isometry group of any neutral geometry.

Theorem 11.7.9. Let .N'1, .N'2 be two neutral geometries and let cp bean isometry
from .N1 to Y2. Then the isometry groups of .N'1 and .N'2 are isomorphic.
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PROOF. If q . 9 ° 1 -* 92 is an isometry we define a function f :,f (.A,",)
by

f(a)=gcic 1 ifae (A1).

Note first that f(a) e f(.N'2) because it is the composition of isometrics and
f(a):.A"2 -..N2. We must show that f is a bijection and that f(a1QZ) _
f(a1)f(a2) for all a1, a2 e O(.'1).

If f(a1) = f(a2) then gpatlp-1 = cpa2tp so that

cp 1((pclcp 1)(P = cp 1(cpc2cp 1)9 or Q1 = a2.

Hence f is injective.
If ,r e let a = cp- 12(p. a e J(A') because it is the composition of

isometrics and u: -4`1 - .N'1. Clearly f(a) = r so that f is surjective and
hence a bijection.

Finally, if a1, a2 e J(.K1) then

f(a1a2) = 1pa162W 1 =
1Pa1g0

1(Pa21p

= f(a1)f(a2)

Hence f(.N'1) is isomorphic to .f(.N'2).

PROBLEM SET 11.7

Part A.

1. Prove Theorem 11.7.3.

2. Prove Theorem 11.7.4.

3. Prove Theorem 11.7.6.

4. Prove that the isometry group of a neutral geometry is generated by the set of
reflections.

5. Prove that the isometry group of a neutral geometry is generated by the set of
glides.

6. Prove that the subgroup of even isometries of a neutral geometry is generated by
the set of rotations.

7. Prove that the subgroup of even isometrics of a hyperbolic geometry is generated
by the set of translations.

8. Prove that the subgroup of even isometrics of a hyperbolic geometry is generated
by the set of parallel displacements.

9. Let A be a point in a neutral geometry and let n be an integer greater than 2. Find
a rotation about A whose order is n.

10. Let A be a point in a neutral geometry. Find a rotation about A which does not
have finite order.
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11. Prove Theorem 11.7.8.

12. If ff and s2 are Euclidean geometries prove that .5(IIl) is isomorphic to .f(st"2).

Part B. "Prove" may mean "find a counterexample".

13. If N is a subgroup of G then N is a normal subgroup if gng-' e N for every g e G
and n e N. Prove that the subgroup of even isometries of a neutral geometry is a
normal subgroup.

14. Prove that the subgroup of even isometries of a neutral geometry is generated by
the set of translations.

15. A transformation of a neutral geometry is a collineation which preserves between-
ness, segment congruence, and angle congruence. Prove that the set of trans-
formations of a neutral geometry forms a group. Is it the same as the isometry
group?

The remaining problems completely determine the finite subgroups of the isometry
group. A group is finite if it has only a finite number of elements. A group is cyclic if it
is generated by a single element g. (In this case the group consists just of powers, positive
and negative, of g.) A finite group is a dihedral group if it is generated by two elements
g and h such that

(i) g has finite order n for some n
(ii) h has order 2

(iii) gh = hg"-'.

16. Prove that a finite group of isometries does not contain translations, parallel
displacements, or glides.

17. If a finite group of isometrics contains more than one rotation, they all have the
same center. (Hint: Suppose that (p is a rotation about A and 0 is a rotation
about B with A # B. Let I = AB, show that 'cp can be written as (pgplpm)2
and use Problem A12 of Section 11.6.)

18. If G is a finite group of isometrics with more than 2 elements, then prove there is
a unique point fixed by each of the isometrics in G.

19. If a finite group G of isometrics does not contain any reflections then prove G is a
cyclic group.

20. If a finite group G of isometrics contains a reflection then prove that G is a
dihedral group.

11.8 The SAS Axiom in -ff

In this section we shall finally verify that the Poincare Plane Y =
{H, YH, dH, mH} actually satisfies the Side-Angle-Side Axiom. Because of
Theorem 11.3.7, we may prove that is a neutral geometry by showing that
there is a mirror for every line I E 2H.
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The first step in this program is to introduce an alternative description of
H which comes from viewing R 2 as the set C of complex numbers. The point
(x, y) e 182 may be identified with z = x + iy e C, so that

H={z=x+iyeCIy>0}.

That is, we view H as the set of complex numbers with positive imaginary
part. This observation is the basis for a great deal of advanced mathematics
(e.g., geometric function theory, Riemann surface theory, eigenvalue problems
for the Laplace operator among others) because it blends complex variables
and geometry. We shall describe below the notion of a fractional linear
transformation from the theory of complex functions. (The only prerequisite
for the material that follows is how to add, subtract, multiply and divide
complex numbers.)

Definition. A real positive fractional linear transformation (which we abbre-
viate as FLT) is a function rp: H -* H of the form

_az+b
W(z) cz + d

where a, b, c,deRandad-bc>0.

Note that the defining equation gives cp(z) as a complex number. In
Problem Al you will show that the imaginary part of 9(z) is positive if
z e H so that 9(H) c H. One of our goals is to show that an FLT is an
isometry of H. In fact it will turn out that the set of FLT's is precisely the set
of even isometrics. To this end we set up a correspondence between matrices
and FLT's.

Definition. If 0 =
(a

d) is a matrix with a positive determinant, then the
c

FLT associated with 0 is

M(z) =
az + b

cz+d

If we just say that cp is the FLT associated with the matrix 0 then it is
assumed that det(P) > 0. Note that the FLT associated with the identity
matrix I is the identity FLT, 4p(z) = z. Every 2 x 2 matrix of positive deter-
minant determines an FLT. On the other hand, it is possible that two different
matrices give the same FLT. We will see when this happens in Proposition
11.8.3. First we need a result whose proof is left to Problem A2.

Proposition 11.8.1. If 9 and are the FLT's associated with the matrices
0 and W then 9 o cli is the FLT associated with the product matrix OP.

Proposition 11.8.2. If cp: H --> H is an FLT then p is a bijection.
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PROOF. Let cp be associated with the matrix 0. Since det 1i > 0, 1i has an
inverse 0 -1, whose determinant is also positive. Let t be the FLT determined
by d-1. Since c-10 = I = 450-1, an application of Proposition 11.8.1 shows
that both i1iq and cpo are the identity FLT. Hence iV is the inverse of (p, and
cp is a bijection.

Proposition 11.8.3. Let A 0 0 and let qp and 0 be the FLT's associated with 0
and 1'. If W = Ad then cp = 0. On the other hand, if 0 and IF determine the same
FLT then YF _ .1tk for some nonzero real number A.

PROOF. First, if 0 = I a dl then 'F = Ad) so that

Aaz+Ab az+b
(z) - 9z

Acz -+ Ad cz + d
andiG=cp.

Next, suppose that the identity FLT cp(z) = z is associated with the matrix
,=(a

d) so that
c

az + b
cz + d

=z forallze0-l.

Thus az + b = czZ + dz or

czZ+(d-a)z-b=0 forallzEV-fl. (8-1)

Since the quadratic polynomial equation in Equation (8-1) has more than
two solutions (in fact, all of 0-f), its coefficients must all be zero: c = 0,
d-a=0, -b =0. Hencea=d= AforsomeAandb =c =0. Thus

(0 )=A( )=AI

and Al 0since )2=det000.
Finally suppose that both 0 and P determine the same FLT cp. Then by

Proposition 11.8.1, TO-1 determines the identity FLT, pp-'. Hence by the
second part of the proof,

IFO - 1 = AI or 'F = AO for some A 0.

The value of this result is that it allows us to "normalize" the matrix 0
when desired either by assuming that det(O) = 1 (i.e., let d = (det O)- ),
that a particular entry of 0 is > 0 (A = ± 1), or that a particular nonzero
entry of 0 is 1 (A = reciprocal of that entry).

Definition. A special translation is an FLT i whose associated matrix may be

written as (m b) where m > 0. In this case i(z) = mz + b.
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The special inversion is the FLT o whose associated matrix is I 0 of so

that o(z) = -1/z.

A special rotation is an FLT t'B whose associated matrix is
cos B -sin B
sin 0 cos 0

for some 0 e R.

We will eventually see that a special translation is a translation (in the
sense of Section 11.5) if m Y-1 1 and is a parallel displacement if m = 1 and
b:0. r will turn out to be the half-turn about i (0, 1) and Ce will be a
rotation about i. For convenience we may omit the word "special" in this
section.

Proposition 11.8.4. Every FLT is either a (special) translation or can be written
as a composition T1QT2, where T1 and T2 are (special) translations and o is the
(special) inversion.

PROOF. If the FLT lp corresponds to the matrix
(a

b) we may assume that
c

c >- 0 by Proposition 11.8.3. If c = 0 we can assume that d = 1 by the same
result and so q is a translation (possibly the identity).

If c > 0 then by matrix multiplication we have

ad - be a
(01 b

0 1

-0l
C0 1)-(cc d)

Thus we may let T
1

be the FLT determined by

ad - be 0

and T2 the FLT determined by
)0 1

This proposition is useful because it allows us to show that an FLT is a
collineation by considering only translations and the special inversion. The
first part of this program is a routine calculation and is left to Problem A4.

Proposition 11.8.5.
(i) If r is the (special) translation T(z) = mz + b then

TCL) = +bL

T(cLr) = me+bLmr
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(ii) If a is the (special) inversion then a(0L) = 0L; if a:0, a(aL) = dL, with
d=-1/2a, s=Idl; if c96 ±r, a(cL,)=AL, with d=c/(r2-c2), s=lr/(r2-c2)I;
a(±,L,) = ±aL with a= - 1/2r.

(iii) A special translation or special inversion is a collineation.

Proposition 11.8.6. An FLT cp is a collineation.

PROOF. If cp is a translation then the result follows from Proposition 11.8.5.
If cp is not a translation then lp = T1aT2. By Proposition 11.8.5, T11 T2 and a
are collineations, so their composition is also a collineation.

Our next step is to show an FLT preserves distance. This will use the
following lemma whose proof is left to Problem A5.

Lemma 11.8.7. If cp:9 -> 9' is a collineation of a metric geometry then
preserves distance if and only if for each line I there is a ruler f : cp(l) -+ Q8 such
that f o cp: l -.118 is a ruler for 1.

Proposition 11.0.8. If cp is an FLT then p preserves distance.

PROOF.

Case 1. rp is a special translation. Suppose (p(z) = mz + b and 1= aL so
that 01) = riia+bL. The standard ruler for cp(l) is f(x, y) =1n y. Then

(f o(p)(x,y)=f(mx+b,my)=ln(my)=Iny+lnm.

f o cp is certainly a ruler for 1.
Likewise if I = L, so that (p(l) _ +6L,,,, and if f is the standard ruler for

cp(l) then

mx+b-(mc+b)+mr x-c+r
(f o (p)(x, y) = f (mx + b, my) =1n = In

/my y

and f o q is a ruler for I.
Case 2. T is the special inversion a. The proof in this case proceeds along

similar lines and considers four subcases (as in Proposition 11.8.5(ii)). In each
case choose f to be the standard ruler for cp(l). The calculations are messy
but not difficult. We will consider only the case where 1= aL with a 0 and
leave the rest to Problem B8.

cp(aL) = dL, where d = -1/2a and s = Idl. The standard ruler for dL, is
f(x, y) = ln((x - d + s)/y). Hence, since

-x y
1P(x, Y) = (x2+y2x2+y2)
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we have

(f°41)(x, Y)=f2
x

y2,
xy

2+Y2 =ln
G +

= In
2a

/ -x
X` + y`

- d C\

Y
x2 + y2

= In

-a+(a2+y2) +
Ga

1

2a

n (ya) =lny - Ina ifa>0

(T)=1n(a)lnY ifa<0.
Y

a

In either case (a > 0, a < 0) f ° cp is a ruler for L.
Case 3. rp = TIQT2. By the first two cases and Lemma 11.8.7, translations

and the inversion preserve distance. Hence so do compositions of them and
in particular qp = T1UT2 preserves distance.

Now we want to show that an FLT preserves angle measure. In this
case we will not use the factorization cp = T1or2 of an arbitrary FLT but
will exploit the homogeneity of H. By this we mean that we will prove that
FLT's preserve the measure of angles whose vertex, is at B = (0,1) F-, i and
then translate, via a special translation, the general case to this case.

Recall that if L ABC is an angle in then-41

mH(L ABC) = cos- t
<TB , TBc>

IITBAIIITBCII

where the tangent vector TEA of the ray BA is defined by

(0, yA - yB) if AB = aL

TBA (yB,c-xB) if AB'=cL,and x6<xA
-(yB,C-XB) if AB=cL,andxB>XA.

Proposition 11.8.9. If T is a (special) translation then T preserves angle measure.

PROOF. First note that if TBA = TBA/II TBAII then

mH(LABC) = cos-'((TBA, TBC>)

We claim that if c(z) = mz + b then TEA = TEzA-
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Case 1. AB = oL with A = (a, yA) and B = (a, yB). Then

TA = (ma + b, myA) and TB = (ma + b, myB)
so that

TtBsA = (0, mYA mYB) and TtBsA (0, YA - YB = T
= ` l BA

I YA - YBI

347

since m > 0.

Case 2. AB' = cL,. Here r(,L,) _ +bLm, so that by a routine calculation

TtBsA = ±(myB, me + b - (mxB + b)) = ±(myB, me - mxB)

where the sign is the same as the sign of

(mxA + c) - (mxB + c) = m(xA - XB).

Since TBA = ±(yB, c - XB) where the sign is that of XA - XB, and since
m > 0, we see that T,B,A = TBA. Thus

mH(LTATBTC) = cos-'(<TrBtA, T .C>

= cos-'(<TBA, TBc> = mH(L ABC)

and T preserves angle measurement.

Proposition 11.8.10. If cp = a is a (special) rotation and B = (0,1) E 10,
then mH(L ABC) = mH(L cpAcpBcpC).

PROOF. Since B = (0, 1) we have

(0, yA - 1) if AB = oL
TBA = (1, c) if AB = EL,, 0 < xA

-(1, c) if AB = cL 0 > XA.

Since the vector TBA has length 1, it can be written as TBA = (sin co, cos (o)
where

w=0 ifAB=0L, YA>1
co=180 if AB=0L, yA<1

0<w<180 and cotco=c if AB=cL 0<xA
180<co<360 and cotco=c if ABF=cL 0>xA

Case 1. cp = Co = id. The proof in this case is immediate.
Case 2. co = b90 = a. If A = (0, y) E oL = AR then cpA = (0,1/y) and

TBA = - T pBQA. If A = (x, y) e cL, = A$ then as noted above

TBA = ±(1, c) where the sign is that of x.
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Furthermore

so that

y
rpA =

(_x
xe + y2' x2 + ye

E L.

Tq,Bq,A = ±(110 where the sign is that of x4,A =
-x

x2 + y2'

Hence T r,B4,A TBA and T,,BgA = - TBA.

Since in all cases TIpB¢A = -TBA is clear that W preserves the measure
of angles with vertex B if cp = X90 = v.

Case 3. cp = S6 where cos 0 sin 0 -A 0. By Problem A6, q sends oL to
A where c = cot 20 and r = Icsc 201. The tangent to cL, at B = (0, 1) is
T = ±(1, cot 20). Let D = (0, 2) so that TBD = (0, 1). Now

_ 3 sin 0 cos 0 2
rp(0, 2) - (4

sin 2 0 + cost 4 sine B + cost 0

When (3 sin 0 cos 0)/(4 sine 0 + cos20) > 0 we need to take the plus sign
for T:

Ta1q,D = (1, cot 20).

In this case sin 0 cos 0 > 0 so that sin 20 > 0 and

TQB9D = (sin 20, cos 20).

When sin 0 cos 0 < 0 we have

T.B,PD = -(1, cot 20) and (sin 2B, cos 20).

Hence either way (sin 20, cos 20).
Now suppose that BA is a ray with TBA = (sin 2a, cos 2a) so that BA is

the image of BD under Ca. Then

e+a(BD)ce(BA) =

which has tangent (sin 2(0 + a), cos 2(0 + a)). Hence the ray with T =
(sin 2a, cos 2a) is sent to the ray with tangent (sin 2(0 + a), cos 2(0 + a)). If
TBC = (sin 2$, cos 2/3) then

m(LcpAcpB(pC) = cos-1(<(sin 2(0 + a), cos 2(0 + a)),

(sin 2(0 + /3), cos 2(0 + /3))>)

= cos-'(sin 2(0 + a) sin 2(0 + /3) + cos 2(0 + a) cos 2(0 + /3))

= cos-1(cos 2(0 + a - 0 - /3))

= cos-1(cos2(a - /3))

= cos-1(<(sin 2a, cos 2a), (sin 2$, cos 2$)>)

= m(L ABC).

Hence cp = Ce preserves angle measure of angles with vertex at B = (0, 1).
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Proposition 11.8.11. If I is a line in and B = (p, q) a 1, then there is a trans-
lation T that sends B to (0, 1) (and I to a line through (0, 1)).

PROOF. Let c be the FLT associated with the matrix

Cl/q -p/ql
0 1 J

Proposition 11.8.12. If an FLT 0 fixes the point B = (0, 1) then >li is a special
rotation.

PROOF. Since (0,1) .- i, ii0(i) = i. If 0 is associated with the matrix IF =
a
c

then ii(i) = i implies that

ai+b
ci+d =i or ai+b= -c+d1.

bl

d

Hence a= d and b = -c so that P = (_b a) for some a and b. By

Proposition 11.8.3 we may assume that det(P) = a2 + b2 = 1 so that a =
cos 0, b = - sin 0 for some 0 and >li is a special rotation.

Proposition 11.8.13. If cp is any FLT then cp preserves angle measure.

PROOF. Let L ABC be given and let T be a translation sending B to (0, 1)
while T' is a translation sending cpB to (0, 1). (T and T' exist by Proposition
11.8.11.) Then = i cpt- 1 is an FLT sending (0,1) to (0,1). Hence it is a
special rotation by Proposition 11.8.12 and preserves the measure of angles
with vertex at (0, 1). Therefore

mH(L ABC) = mH(LTATBTC)

= mH(LOTAI1/TBII/TC)

= mH(L cpA(pBcoC)

since cp = T'-'O'r.

Recall that a mirror for the line 1 is a collineation which preserves distance
and angle measure, fixes each point of 1, and interchanges the half planes
determined by 1. We will show that Y is a neutral geometry by finding a
mirror for oL and transporting it to any other line by way of FLT's.

Definition. The special reflection p is the function p: H -> H by p(x, y) _
(-x,y) (i.e., p(z) = -z).

Proposition 11.8.14. p is a mirror for L.
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PROOF.

Step 1. p is a bijection since p-1 = p. p sends L to _aL and cL, to _cL,
so that p is a collineation.

Step 2. We must show that p preserves distance. Let I be a line and f
be the standard ruler for the line p(1). An easy calculation shows that f o p
is the standard ruler for I if 1 is a type I line and is the negative of the standard
ruler for I if I is a type II line. Hence by Lemma 11.8.7, p preserves distance.

Step 3. We must show that p preserves angle measure. If the ray A-D
has tangent TAB = (u, v) then TPAPB = (- u, v). Since <(u, v), (r, s)> = <(- u, v),
(- r, s)> and I I(u, v)I I = I I(- u, v)II, the result follows from the definition of mH.

Step 4. p certainly interchanges the half planes of oL and leaves each
point of oL fixed. Hence p is a mirror.

The next result will be useful in transporting mirrors from one line to
another. It is also important in its own right because it is the formal state-
ment that Jr is homogeneous. `

Proposition 11.8.15. If 1 and m are lines in .) then there is an FLT Io with
cp(1) = m.

PROOF. We will show there is an FLT cp, sending aL to 1. Then t will
be the desired FLT.

I l l = aL define gyp, to be the translation p,(z) = z + a. If 1= cL, let cp, _
rb45 where r is the translation r(z) = rz + c. The special rotation 1;45 sends
oL to 0L, while r sends 0L1 to EL,. In both cases gyp, sends oL to 1.

Proposition 11.8.16..; = {l-fl, ItH, dH, mH} satisfies the Mirror Axiom and is
thus a neutral geometry.

PROOF. Let I be any line in Y, let p, be an FLT that sends oL to 1, and let p
be the special reflection across L. Set

Pi = (p,Pcpi
1.

We claim that p, is the desired mirror. Clearly p, is a collineation, preserves
distance, and preserves angle measure since cp,, p, and (p,-' all do.

Suppose that A 0 1. Then q 'A 0 oL so that 91'A and p9A 'A are on
opposite sides of 0L.

Thus q 1 Aplpi 1 A intersects oL at a point B and Ap,A = q ,cpi 1 Acp, pcp,-1 A
intersects 1 = cp,(0L) at cp,B. Hence A and p,A are on opposite sides of I
and p, interchanges the half planes of 1.

If A E 1 then cp, IA E oL so that plpi to = cpi to and p,A = cp,ptp, 'A =
9,9i to = A. Hence p, fixes each point of 1. Thus p, is a mirror. Because
the Mirror Axiom is equivalent to SAS (Theorem 11.3.7) .y° is a neutral
geometry.
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PROBLEM SET 11.8

Part A.

1. Prove cp(l-l) c l9 if rp is an FLT.

2. Prove Proposition 11.8.1.

3. Prove that (0, 1) is a fixed point of Ca for each 0.

4. Prove Proposition 11.8.5.

5. Prove Lemma 11.8.7.

6. Prove that pa(0L) = L, where c = cot 20 and r = Icsc 201 if 0 # 90n for any
integer n.

7. Prove that the special reflection p is not an FLT. (Hence the collecton of FLT's is
not the entire isometry group of X..)

Part B.

8. Complete the proof of case 2 in Proposition 11.8.8.

9. Let G = GL+(2, R) be the group of 2 x 2 matrices with real entries and positive
determinants. Let N = {A e GSA = 21 for some A # 0}.
a. Prove that N is a normal subgroup of G.
b. Prove that the set of all FLT's forms a group F under composition.
c. Prove that F is isomorphic to the quotient group GIN. (GIN is called the

special projective linear group and is denoted PSL(2, li).)

10. Show that you can replace G in Problem B9 with SL(2, 18) and obtain the same
result. That is, let N' = {A e SL(2, OB)IA = AI for some 1 # 0} _ {±I} and prove
F is isomorphic to SL(2, l)/N'.

11.9 The Isometry Groups of & and

In this final section we shall explicitly determine the isometry groups of
our two basic models-the Euclidean Plane 9 = { 182, PE, dE, mE} and the
Poincare Plane Y = {H, PF,, dH, mH}. In the Euclidean Plane we will show
that the isometry group is almost the product of two groups. In particular,
every isometry can be written as a rotation about (0, 0) (or possibly the
identity) followed by either reflection across the y-axis (or the identity), and
then followed by a translation (or the identity). In the Poincare Plane every
isometry will either be an FLT or an FLT preceded by the special reflection.

The keys to determining the two isometry groups will be the classification
theorem (Theorem 11.6.10), the fixed point properties of the various types
of isometries, and the following observation.
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Theorem 11.9.1. If A, B, C, D are points in a neutral geometry and AB
CD then there are exactly two isometries which send A to C and B to D. One
of these is even and the other odd.

PROOF. By Problem Al there is at least one such isometry cp. If I = CD,
then picp is a second (different) isometry sending A, B to C, D. Note one of
cp, pr(p is even and the other is odd.

Now suppose iV is any isometry sending A and B to C and D. Then >liq
fixes both C and D. By Theorem 11.3.4, either /icp-t = identity (so that
tli = (p) or 0cp-1 = p, (so that i/i = p, T). Hence 9 and p, T are the only iso-
metries sending A and B to C and D.

We first consider the Euclidean Plane and identify all translations and
all rotations about (0, 0).

Definition. If A e l 2, then the Euclidean translation by A is the function
TA: R2 -- R2 given by

TA(P) = P + A.

Proposition 11.9.2. An isometry rp: a82 - R2 of the Euclidean Plane is a
translation if and only if it is a Euclidean translation TA for some A (0, 0).

PROOF. Since

dE(TAP,TAQ) = II(P + A) - (Q + A)II = IIP - QII = dE(P,Q)

TA is an isometry for each A E 182. If A 0 (0, 0) then TA has no fixed points
and is either a glide or a translation. If 0 = (0, 0) then every line parallel
to OA is invariant under TA so that TA cannot be a glide. (Glides have only
one invariant line by Theorem 11.6.7.) Thus if A j4 (0,0), TA is a translation.

Let cp be a translation along a line 1. Let l' be the unique line through
O parallel to 1. 1' is invariant so that A = cpO E 1'. We will show that co =
TA.

Since A e 1', 4pA E 1' also. Furthermore

dE(O, A) = dE((pO, WA) = dE(A, (pA) = dE(TA, A).

Because 0, A, and TA are collinear, either 0 = (pA or O-A-cpA. If TA =
O then the translation 1p2 has a fixed point, which is impossible. Thus
O-A-q A. Since dE(O, A) = dE(A,1pA) this implies that 4pA = A + A.

Thus the two translations cp and TA send 0 to A and A to A + A. Since
both T and TA are even (they are translations) Theorem 11.9.1 says they are
equal: (P = TA.

Definition. If 8 is a real number, then the special orthogonal transformation by
8 is the function q : 1182 -. Q82 given by

4pe(x,y)=(xcos0-ysin0,xsin0+ycos0).
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If we write elements of i82 as column vectors then cpa can be given by
matrix multiplication

fe(y) - (sins0 cos 0 (y)
We shall say that the matrix on the right hand side of Equation (9-1)
represents the special orthogonal transformation by 0, cpe. By Problem A2,
cp0 is an isometry for each 0. Note that ape = 9e+36o (We are assuming the
standard extension of cos(t) and sin(t) to all values of t, not just those
between 0 and 180.) The next result tells us that cpe is a rotation.

Proposition 11.9.3. An isometry cp: R' -+ R2 is a rotation about 0 if and only
if (p = q for some 0 which is not a multiple of 360.

PROOF. A point (x, y) is fixed by 96 if and only if

5 xcos0-ysin0=x
xsin0+ycos0=y

or

(x(cos0-1)-ysin0=0
x sin 0 + y(cos 0 - 1) = 0

Equations (9-2) have a unique solution (x, y) if and only if

00(cos0-1)2+sin20=cos20-2cos0+1+sin' 0
=2-2cos0.

(9-2)

Therefore 1pe has a unique fixed point if and only if 2 cos 0 2, which occurs
if and only if 0 is not a multiple of 360. Thus We is a rotation if 0 is not a
multiple of 360.

On the other hand, let (p be a rotation about 0 and let (p(1,0) _ (a, b).
Note a 0 1.

1 = dE((0,0), (1,0)) = dE((p(0,0), (p(1,0)) = dE((0,0), (a, b)).

Hence al + bl = 1. Let 0 be a number such that a = cos 0 and b = sin 0.
Since a 1, 0 is not a multiple of 360. The two rotations cp and T, are both
even and agree on (0,0) and (1, 0). Hence T = q by Theorem 11.9.1.

A matrix representing a special orthogonal transformation (Equation
(9-1)) has the property that its inverse is its transpose:

cos 0 - sin 0 -1 _ cos 0 sin 0

sin 0 cos 0 - sin 0 cos 0

Any matrix with the property that A-1 = A` is called an orthogonal matrix.
If A-1 = A` then I = AA` so that

1 = det(I) = det(AA`) = det(A)det(A`) = det(A)det(A).
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Thus det A = ± 1. In Problem A3 you will show that the only orthogonal
2 x 2 matrices with determinant + 1 are the special orthogonal matrices.
We now consider those with determinant -1.

Let R be the matrix R = 0). Clearly R = R` = R-' so that R
( 0 1

is an orthogonal matrix. Let A be any orthogonal matrix. Then

(RA)-' = A- 'R-' = A`R` = (RA)'

so that RA is also an orthogonal matrix. Since

det(RA) = det(R)det(A) = -det(A),

if det(A) _ -1 then RA is a special orthogonal matrix B. This means that
A= R -'B = RB. By Problem A4, R represents reflection across the y-
axis and is thus an isometry. Hence A = RB also represents an isometry.

Definition. An orthogonal transformation of R2 is any isometry that can be
represented by an orthogonal matrix. The set of all 2 x 2 orthogonal trans-
formations is denoted 0(2). The set of all 2 x 2 special orthogonal transfor-
mations is denoted SO(2).

Proposition 11.9.4. If q is an isometry of l 2 that fixes the origin 0 then
cp is an orthogonal transformation. If cp is even then it can be uniquely repre-
sented by a special orthogonal matrix A. If cp is odd then it can be uniquely

represented by RA, where A is a special orthogonal matrix and R = (
1 0)
0 1

PROOF. Suppose co fixes 0. If qp is even then cp is a rotation (or the identity).
By Proposition 11.9.3, cp = cpe for some 0. (0 = 0 gives the identity.) cpe is
unique even though 6 is not.

If cp is odd then pcp is even where p is reflection across the y-axis. Hence
pcp is represented by a unique special orthogonal matrix A and cp is repre-
sented by RA. In particular, cp is an orthogonal transformation.

Proposition 11.9.5. Any isometry cp of l 2 can be uniquely written as cp =
TA/i when TA is a Euclidean translation and 0 e 0(2).

PROOF. Let A = cp(O) so that 0 = tA'cp is an isometry which fixes 0. By
Proposition 11.9.4, 0 e 0(2). Hence cp = TAO.

Suppose that cp = -c,o' also with qi' e 0(2). Then B = TB(O) = TB0'(O) _
cp(O) = A so that B = A. Hence tB'cp = TA 'cp Thus cp can be
uniquely written in the form cp = iAl with 0 c 0(2).

Proposition 11.9.5 says that every isometry of l 2 can be written as a
product of a Euclidean translation and an orthogonal transformation. The
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collection of Euclidean translations forms a group isomorphic to X82:

TATB = TA+B By Problem A5 the set of all orthogonal transformations
0(2) also forms a group. You might think that f(s) is thus the direct product
of the groups l2 and 0(2). (Recall that the direct product of two groups G
and H is G x H = {(g, h) I g e G, h e H } with operation (gl, h,)(g2, h2) =
(g1g2, h1h2).) This is not true as the next result shows. The proof is left to
Problem A6.

Proposition 11.9.6. The group structure of the isometry group of .0 is given
as follows.

with
^9) = {TA0I A e 082, e 0(2)}

(TA4')(TB(P) = (TATV B)('Yco) = TA+V B'Yco (9-3)

(TA'i1 =T-,y-,AV1 (9-4)

Because of the way >' affects TB and "twists" it to Ty,B, the group structure
on .f((9) is often referred to as a twisted product of the groups 112 and 0(2).

We now turn our attention to determining f(.°). The first step is to
prove that the set of even isometries is precisely the set of FLT's. This
requires an investigation of special translations.

Proposition 11.9.7. A special translation qp of .C is either a translation along
a type I line or else a parallel displacement whose invariant asymptotic pencil
is the pencil of type I lines.

PROOF. Let 9 be the special translation 9(z) = mz + b where m > 0. We
first show that cp has no fixed points. If m = 1 and b 54 0 there are clearly no
fixed points. Assume m # 1. If (p(z) = z then mz + b = z so that z =-
- bl(m - 1). Since b and m are real numbers, the imaginary part of z is zero
and so z 0 H. Thus no point of H is fixed by cp.

What lines are invariant under (p? By Proposition 11.8.5

.+bL,a, and (P(aL) = ma+bL.

Thus if a type II line is invariant under cp then me + b = c and mr = r.
Hence m = 1 and b = 0 so that (p is the identity. If cp is not the identity, 9
has no invariant type II lines. The type I line aL is invariant if and only if
a = ma + b, or a = -b/(m- 1). Hence 9 has a unique invariant type I
line if m 0 1. In this case cp must be either a translation or a glide.

Ifm 0 1 and x> -b/(m - 1) then

mx+b>mj -b I+b=-mb+mb-b -b
m-1 m-1 m-1

so that mx + b > - b/(m - 1) also. This means that T does not interchange
the half planes of aL. Thus cp cannot be a glide and so is a translation along
aLfora= -b/(m - 1) ifm0 1.
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If m = 1 and b 0 0 then cP has no invariant points or lines. Hence cp is
a parallel displacement. Since cp leaves the pencil of type I lines invariant,
the proof is complete.

Proposition 11.9.8. The special inversion a is a half-turn about iH(0,1). In
particular a is a rotation.

PROOF. cr(z) = z implies -1/z = z or z2 = -1. Thus the only fixed point
of or in 0-0 is i 4-+(0,1). Therefore a is a rotation about i. a2(z) = a(a(z)) =
-1/(-1/z) = z so that C2 = identity. Thus a is an involution and hence a
half-turn.

Proposition 11.9.9. cp is an even isometry of :i if and only if cp is an FLT.

PROOF. If cp is an FLT then cp can be written as a product of special translations
and the special inversion by Proposition 11.8.4. Since these isometries are
even any FLT is an even isometry.

Suppose cp is an even isometry and that A` B. Let C = cpA and D = cpB
so that AB ^- CD. By Problem A7 there is an FLT 4i with OA = C and
OB = D. Since both cp and 0 are even they are equal by Theorem 11.9.1.
Hence cP is an FLT.

The next result is left to Problem A1O.

Proposition 11.9.10. The special reflection p: 0-0 -+ I-ll by p(z) = z is a reflec-
tion. Any odd isometry 0 of ° can be uniquely written as >li = cpp where
co is an FLT.

If the FLT cp sends z/to (az + b)/(cz + d) then cop sends z to (-az + b)/

(-cz + d). The matrix f a, d,J =
(-a

d
satisfies a'd' - b'c' < 0. Hence

bevery odd isometry corresponds to a matrix ( a d) with negative

determinant.

Definition. A function >': 0-i -. ill by

_az+b
(z) cz + d

with ad-bc<0

is called a conjugate fractional linear transformation (CFLT).

The next two results are left as exercises.

Proposition 11.9.11. The composition of two CFLT's is an FLT. The com-
position of an FLT and a CFLT is a CFLT. The matrix associated with the
product of two FLT's or CFLT's is the product of the corresponding matrices.
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Proposition 11.9.12. The set of all 2 x 2 matrices with nonzero determinant
forms a group which is denoted GL(2, IIi). Every element of GL(2, Ill) deter-
mines an isometry, either an FLT or a CFLT. Every isometry of 0 arises
in this way. Two matrices rh, W E GL(2, R) determine the same isometry if
and only if W = RcP for some 2:0

The final description of J(.X) involves the ideas of normal subgroups
and factor groups. (See Problem B9 of Section 11.8.) To understand the
statement of the theorem and its proof requires a knowledge of homomor-
phism, kernels, and the Fundamental Theorem of Homomorphisms. (See
Herstein [1990] or McCoy-Janusz [1987].)

Proposition 11.9.13. The isometry group of A' is isomorphic to PGL(2, II8) _
GL(2,11)/N, when N is the normal subgroup of GL(2, Ill)

N= A 4.

PROOF. The function f that takes a matrix 1i E GL(2, R) to its associated
FLT or CFLT is a homomorphism (f(Ol') = f(k)f(t')) by Proposition
11.9.11. By Proposition 11.9.12, N is the set of matrices sent to the identity
so that N is the kernel of f. Since f : GL(2, Ill) -..0(.°) is surjective (Prop-
osition 11.9.12), the Fundamental Theorem of Homomorphisms says that
f(.r) is isomorphic to the factor group GL(2, 1)/N.

The group PGL(2, 1) = GL(2, 1)/N is called the real projective linear
group. It arises in the study of projective geometry as the set of transformations
of a projective line. By Theorem 11.7.9 and the result (which we did not prove)
that any two hyperbolic geometries with the same distance scale are isometric,
the isometry group of any hyperbolic geometry (say the Poincare Disk or
the Klein Plane) is isomorphic to PGL(2, R).

PROBLEM SET 11.9

Part A.

1. In a neutral geometry prove there is an isometry cp with cpA = C and cpB = D
if and only if AB c CD.

2. Prove that cpe, as given by Equation (9-1), is an isometry of 9.

3. Let A be a 2 x 2 orthogonal matrix. If det A = + 1 prove
cos 8 -sin B

that A = for some 8.
sin B cos 8/

4. Let R be the orthogonal matrix
0

1) Show that R corresponds to reflection

across that line Lo.
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5. Prove that 0(2) is a group and that S0(2) is a subgroup of 0(2).

6. Prove Proposition 11.9.6.

7. In . if AB CD prove there is an FLT sending A to C and B to D.

8. Let B = (0, 0), C = (5, 0), D =(0,5), E=(3,2), F=(-1,5) and G =(6,6) in 9.
Find the unique isometry qp sending B, C, D to E, F, G respectively. Express your
answer in the form rAIi for some A E I82 and 0 E 0(2).

9. Let A = (0,1), B = (0, 2), C = (3, 6) and D = (3, 3) in . . Find the unique FLT
which sends A to C and B to D.

10. Prove Proposition 11.9.10.

11. Prove Proposition 11.9.11.

12. Prove Proposition 11.9.12.
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PART I: The Notation
'B (Cartesian Plane) 18
`B,(C) (circle) 150

(Poincari Disk) 304
if (Euclidean Plane) 32
I (great circle) 20
Jr (Poincar6 Plane) 20
J(X) (isometry group) 338
Jt' (Klein Plane) 302
JI (Moulton Plane) 97
9 (Projective Plane) 26

(pointed pencil) 313
Y, (parallel pencil) 313

YAc (asymptotic pencil) 313
9t (Riemann Sphere) 21
9t (set of polygonal regions) 249
Y (Taxicab Plane) 34

D (unit disk) 300
H (upper half plane) 19
P (set of projective points) 26
R' (real coordinate plane) 18
S2 (unit sphere) 20

Sap (P-lines) 302
Set (Cartesian lines) 18

(Poincard lines) 19
2'K (K-lines) 3000
Seu (Moulton lines) 97

(Projective lines) 26
:CR (great circles) 19

do (Poincari disk distance) 304
dt (Euclidean distance) 29,44
dH (hyperbolic distance) 28
dK (Klein distance) 302
d,M (Moulton distance) 99
d ,v (twisted distance) 69
d r (projective distance) 37
dR (spherical distance) 37
dT (taxicab distance) 29

mD
ME
mH
MK
mM

(Poincari disk angle measure) 304
(Euclidean angle measure) 93
(Poincari angle measure) 95
(Klein angle measure) 302
(Moulton angle measure) 101

d( P, Q) (distance between points) 28
d(P,1) (distance from point to line) 145,

216
d(!, I') (distance between lines) 216
int (interior) 82, 83, 84, 153, 249
L. (vertical Cartesian line) 18
Lm, a (nonvertical Cartesian line) 18
LA # (Cartesian line) 43

o L (type I Poincar6 line) 19
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Mm. A

TVA

TBA

(type II Poincard line) 19 LA BC (angle) 59
(Moulton line) 97 AABC (triangle) 61
(Euclidean tangent) 94 LA BC (triangular region) 249
(Euclidean unit tangent) 346 O A BCD (quadrilateral) 86

(P, l ) (critical number) 188 s ABCD (Saccheri quadrilateral) 178

L ABCD (Lambert quadrilateral 186
8(AABC) (defect) 205 (A 15)

t, (hyperbolic rotation) 344 AB... E (polygon) 248
nA (half-tum) 329 IRIAB E (polygonal region) 250
17 (t) (critical function) 192 (A, B) (dot product) 42
Pi (reflection) 306 II A ll (length) 42
7A (Euclidean translation) 352 X 1 (X peril) 70
A (value of isometry on A) 288 - (similar) 234

0 (Euclidean rotation) 352 (equivalence of rays) 197

H (equivalent mod a pencil) 315
AB (line) 22 1 (perpendicular) 106
AB (ray) 54 (equivalent by finite decomposition)
A B (segment) 52 272

A B (distance) 48 II (parallel) 24
A - B -C (between) 48 (asymptotic) 197
A-B-C-D (between)51

PART II: The Models

The Cartesian Plane
abstract geometry 18 lines 18,25 (A 14), 43, 70
incidence geometry 22, 24 (AS), 25 (A 14), parallel lines 25 (A10)

47 (B6)

The Euclidean Plane d' _ (R 2, YE, dE, m t: )
abstract geometry 18
angle addition 117
angle construction 115
angle measure 93, 96 (A6), 115, 119
betweenness 50,51 (Al)
circles 150

collineation 295,296 (A 1, A2, A3)
critical function 195 (A3)
cycles 319 (A 13)
distance 28, 36 (A 1), 44
EPP 195 (AS)
fixed points of isometrics 312 (A2)
half planes 71, 68 (A2), 69 (A3)
incidence geometry 22, 24 (AS), 25 (A 14),

47 (B6)
isometry 358 (A8)

isometry group 355
Linear Pair Theorem 118
Iines 18, 25 (A 14), 43, 70
metric geometry 31
orthogonal transformation 354
parallel lines 25 (A 10), 177 (A7)
PSA 72
Pythagorean Theorem 130 (A6)
rays 55
rulers 35,36 (A4, A9), 40 (A 1), 44,46 (A5)
SAS 128
segments 55
triangle construction 165 (A5)
triangle inequality 45
trigonometric functions 130 (A7)
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The Klein Plane .f= (D, Y'K, dK, mK)
angle measure 302, 305 (B 13) lines 300,305 (A6, AS)
distance 302, 305 (B 13) parallel lines 305 (A9)

The Max Plane (R 2, YE, dS, me)
angle measure 96 (B8) metric geometry 37 ((B 18)
circles 158 (Al), 159 (A6, AS) segment construction 58 (A8)
distance 37 (B 18) triangle inequality 46 (B8)
equidistant lines 186 (827)

The Missing Strip Plane (.9', 2, d')
circles 159 (822) incidence geometry 81 (A4)
Crossbar Theorem 84 (A2 1) lines 79
EPP 177 (B2) PSA 80

The Moulton Plane Al _ (R 2, Y'M, d,4, m 4)
angle measure 101 metric geometry 99
angle sum 103 (A 10) perpendicular lines 109 (B23)
circles 159 (B17) protractor geometry 102
distance 99 PSA 99
EPP 177 (812) SAS 130 (B11)
incidence geometry 97 triangle inequality 103 (812)
lines 97, 102 (Al)

The Poincare Disk .9 _ (D, 1'D, dD, MA
angle measure 304, 305 (B 14) lines 302
distance 304, 305 (814) parallel lines 305 (All)

The Plane Jr=(H,2'H,dH,mH)
abstract geometry 19
alternate interior angles 177 (A5)
angle addition 122
angle bisector 109 (A11, A12), 213 (A8)
angle construction 122
angle measure 95,96 (Al, A2, A3), 120
area 269, 271(A10, A11, B12)
asymptotic rays 204 (B13)
asymptotic triangle 204 (A8, A9)
betweenness 48, 51 (A2)
CFLT 356
circles 151,158 (A2)
circumscribed circle 246 (A5)
collineation 286,296 (A 10)
concurrence of perpendicular bisectors 230

(A19)
critical function 190, 195 (A4), 213 (A3)
cycles 320 (823)
distance 28, 36 (A2), 223 (B 14)
distance scale 222 (A8)
equidistant sets 195 (A7, AS, A9)

363

Euclidean tangent to a ray 94, 120
FLT 342, 358 (A7, A9)
half planes 73, 75 (A4)
HPP 195 (A6)
incidence geometry 23, 24 (A8)
isometry 222 (A10)
isometry group 357
line of enclosure 213 (A7)
lines 24 (Al, A2, A6, A7, A9)
metric geometry 33
midpoints 58 (A11)
Mirror Axiom 350
parallel displacement 327 (A3)
parallel lines 25 (Al 1), 173,177 (A6, AlO)
perpendicular lines 107, 109 (B19), 173
PSA 73
Pythagorean Theorem 108 (A9)
quadrilateral 89 (A4)
reflection 312 (A4)
ruler 35, 36 (A6, AS, A11)
Saccheri quadrilateral 185 (Al, A2)
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SAS 350 segments 52
segment congruence 58 (A9) triangle congruence 130 (A2)
segment construction 57 triangle construction 165 (B 10)

The Projective Plane 9 = (P, Y',,, d p)
distance 37 (B23) parallel lines 26 (B28)
lines 26 (B27) points 9 (B 18), 26 (1326, B27)

The Riemann Sphere ? {S2, Y'R, dR)
betweenness 53 (C 13) lines 20.24 (A3, A4)
distance 37 (B22) parallel lines 25 (A12)

The Thxicab Plane .f = (R', .1'E, d m E )
angle measure 96 (AS) PSA 75 (AS)
betweenness 51 (A3), 52 (A 10) Pythagorean Theorem 148 (AS)
circles 150, 158 (AS) rulers 35, 36 (A5, A10), 40 (A3)
collineation 297 (A11) SAS 126, 143 (B11)
distance 29 segment congruence 58 (A7)
equidistant lines 186 (B26) segment construction 58 (A 10)
metric geometry 34 SSS 135 (B15)
perpendicular bisectors 149 (B 15) triangle congruence 109 (A16)
perpendicular distance 148 (A4) triangle construction 165 (A6)
Pons asinorum 130 (B 12) triangle inequality 46 (137)

The Twisted Plane (R 2, .l'E, dN )
circles 159 (B18)
distance 69 (B19)

PART III: The Terminology
AAA Congruence Theorem 208
Absolute geometry (see Neutral geometry)
Abstract geometry 17
All or None Theorem 194
Altitude 145

concurrence of 241
foot 145

Angle 59
acute 104
Addition Axiom 92
Addition Theorem 108

alternate interior 171

base 129, 178

bisector 108
concurrence of 239

comparison 135
complementary 104

PSA 69 (B 19)

congruence 108

Construction Axiom 92
Construction Theorem 108

corresponding 171

exterior 135, 205
measure 90

degree 91
grade 91
radian 91

obtuse 104

remote interior 135
right 104

Subtraction Theorem 108
sum for hyperbolic geometry 207
supplementary 104
trisector 109 (B17)

Area function 251

Index
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Euclidean 263

uniqueness 263
hyperbolic 269

special form in .Jt° 269
uniqueness 281

special 278
Aristotle's'Meorem 218
ASA Congruence Axiom 131

equivalent to SAS 133

Asymptotic lines 203
convergence of 219

Asymptotic rays 197
strictly 196

Asymptotic triangle 203
congruence 203

doubly 213 (A6)
trebly 319 (A3)

Beltrami, E. 299
Betweenness 47

of numbers 49

Biangle (see Open Miangle)
Bijection 12
Binary relation 5
Birkhoff, G. 27
Bolyai, J. 170
Bolyai's Theorem 272, 283

for triangles 279
for special area 280

Boundary of polygonal region 250

Carroll, L. 170
Cartesian Plane 18 (see also Part II of this

index)
Cartesian product 4
Cauchy-Schwarz Inequality 45
Cayley, A. 299
Centroid 240
Change of Scale 220
Chord 150
Circle 37 (B19), 150

chord 150
determined by three points 152
diameter 150
radius 150

secant of 154

tangent to 154

365

Circumcenter 241
Circumcircle 229 (A6), 246 (A4)
Classification Theorem 332

of double reflections 324
of finite isometry groups 341
of involutions 329
of triple reflections 331

Closed triangle (see Asymptotic
triangle)

Collinear points 22
Collineation 285
Comparison:

angle 135
segment 135

Complementary angles 104
Composition of functions 12
Concurrence 226

of altitudes 241

of angle bisectors 239

of medians 240

of perpendicular bisectors 226.241

Congruence:
of angles 108
of asymptotic triangles 203

of quadrilaterals 179

of Saccheri quadrilaterals 180
of segments 56
of triangles 125

Conjugate fractional linear transformation
356

Consecutive vertices 248
Continuous function 155
Convex set 63
Convex polygonal region 251

defect of 266
Coordinate system (see Ruler)
Corresponding angles 171
Cosh(t) 32
Cosine function 112
Critical function 192

decreasing 206
nonincreasing 192
surjectivity of 210

Critical number 188
Crossbar Theorem 84

converse 85 (A 12)

Crossbar interior 86 (B25)
Cycle 316

center of 316
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degenerate 316

determined by three points 317

Dedekind 167
Defect 205

Addition Theorem 207
of convex polygonal region 266
of polygonal region 269
of triangle 205
of triangular region 265

Descartes, R. 19
Diameter of circle 150
Distance:

between lines 216
between a point and a line 145, 216

between points 28
scale 221

change of 220
Divergently parallel lines 214

distance between 216
divergence of 218

Dodgson, C. 170
Domain 9
Double reflection 321

classification 324
Doubly asymptotic triangle 213 (A6)

Endpoints of segment 54
uniqueness 54

EPP (see Euclidean parallel property)
Equiangular triangle 130 (A5)
Equiangular quadrilateral 186 (A28)
Equidistant sets 183
Equilateral triangle 129
Equivalence relation 6
Equivalent by finite decomposition 272
Equivalent rays 197
Equivalent with respect to a pencil 315
Erlangen Program 299, 308
Euclid 169

Fifth Postulate of 169, 174
equivalence to EPP 176

Euclidean geometry 194
angle sum 182

Euclidean parallel property (EPP) 176
equivalent to Euclid's Fifth Postulate 176
equivalent forms 224
and Pythagorean Theorem 237
and rectangles 225

Index

and Saccheri quadrilaterals 225

Euclidean Plane 32 (see also Part II of this

index)
Euler line 243
Euler points 243
Even isometry 328
Exterior angle 135

of open triangle 205

Exterior Angle Theorem 136
for closed triangle 206

Exterior of circle 153
Exterior of cycle 318
External Tangent Theorem 158
Extreme point 53

Family of parallel lines 259
Finite geometry 26 (A 19)
Fixed point of isometry 306
Fractional linear transformation (FLT) 342

associated matrix 342

conjugate 356

Function 9
bijective 12
domain of 9
identity 13
image of 10
injective 11

inverse 13

range of 9
surjective 10

Gauss, C. 170
Geometry:

absolute 127

abstract 17

Euclidean 194

finite 26 (A 19)
hyperbolic 194
incidence 22

induced 26 (B20), 288, 299
metric 30
neutral 127
Pasch 76
protractor 91

scissors 68
Giordano's Theorem 184
Glide 330
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Great circle 20
Group 336

cyclic 341

dihedral 341

finite 341
isometry 338
isomorphism 339
order of element 339

HA Theorem 147
Half planes determined by a line 64

edge 67

uniqueness 67
unique 65

Half-turn 329
Hilbert, D. 27

axioms of geometry 166
Hinge Theorem 140
Hjelmslev's Lemma and Theorem 335

(A15, A17)
HL Theorem 146
HPP (see Hyperbolic parallel property)
Hyperbolic functions 32
Hyperbolic geometry 194
Hyperbolic parallel property 194
Hyperbolic Plane (see Poincard Plane)
Hypotenuse 143

uniqueness 143

Ideal point 204 (B13), 313
Identity function 13
Image 10
Improper integral 110
Incenter 239
Incidence of geometry 22
Induced angle measure 298
Induced distance function 297
Induced geometry:

by a bijection 288, 298

on a subset 26 (B20)

Injection 12
Inscribed circle 246 (A2)
Inside of a polygonal region 250
Intermediate Value Theorem 73, 155
Interior:

of angle 83

of circle 153

367

of convex polygon 249

of cycle 318

of ray 82

of segment 82

of triangle 84
Internal bisector 134 (A 13)
Invariant set 317
Inverse cosine 111

Inverse function 13
Inversion, special 344

Involution 329
classification of 329

Isometry 221, 288
as a collineation 293

classification 332
even 328

odd 328

preserves angle measure 292
Isometry group 338

finite subgroups 341

of 355
of 357

Isosceles triangle 129

Klein, F. 27, 299, 308
Klein Plane 300 (see also Part II of this

index)
K-line 300

Lambert, J. 170
Lambert quadrilateral 186 (A15)
Law of cosines 128
Least upper bound 188

Legs 143,178
Length of segment 54
Line-Circle Theorem 157
Line of enclosure 213 (A6), 228
Line segment 52
Linear pair 104
Linear Pair Theorem 105

converse 106

Lobachevsky, N. 170
Longest side 143

Manifold 59 (C22)
Max Plane 37 (B18) (see also Part II of this
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index)
Median 148 (A3), 240

concurrence 240
Metric geometry 30
Midpoint 58 (All)

existence and uniqueness 58 (A 12)

Mirror 310
Mirror Axiom 310

and SAS 310
Missing Strip Plane 79 (see also Part II of

this index)
Miibius Strip 69 (C20)
Morley's Theorem 244
Moulton Plane 97 (see also Part II of this

index)

Nassir-Eddin 170
Neutral geometry 127
Nine point circle 243
Noncollinear points 22

Odd isometry 328
Omar Khayam's Theorem 185 (A 11)
One-to-one (see Function, injective)
Onto (see Function, surjeetive)

Open Mouth Theorem 140
converse 142 (A9)

Open triangle 196
Opposite sides of line 66
Opposite sides of quadrilateral 87
Ordered pair 4
Orthocenter 241
Orthogonal group 354

Pappus 129

Parallel decomposition 260
Parallel displacement 321
Parallel lines 24
Parallelogram 183
Pasch, M. 75
Pasch geometry 76
Pasch's Postulate 75

equivalent to PSA 76

Pasch'sTheorem 75
strong form 85 (A7)

Passing point 53

Index

Passing set 68 (A 14)

Peano's Axiom 80 (Al)
Pencil 313

asymptotic 313
center of 313

parallel 313
pointed 313

Perpendicular bisector 107, 147
concurrence 226, 241

Perpendicular circles 302
Perpendicular Distance Theorem 144
Perpendicular lines 106
Perpendicular to a line:

existence 107, 133
uniqueness 107, 137

Plane 20
Plane Separation Axiom (PSA) 64
Playfair, J. 170
Plethora of lines (see Pencil)
P-line 302
Poincari, H. 20, 27, 170, 302
Poincare Disk 302 (see also Part II of this

index)
Poincare Plane 19 (see also Part 11 of this

index)
Polygon 248

convex 249

interior of 249
Polygon Inequality 180
Polygonal region 249

boundary of 250
defect of 269

Pons asinorum 129, 134 (A10)
converse 121

PP (see Pasch's Postulate)
Preserve

angle measure 290
distance 288
lines 285

right angles 290
Proclus 169, 170
Projective Plane 9 (B18),26 (B27) (see

also Part II of this index)
Protractor 90
Protractor geometry 91
PSA (see Plane Separation Axiom)
Ptolemy 170
Pythagorean Theorem 130 (A6), 143, 147,

157, 236, 255 (A10, Al1)
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equivalent to EPP 237
Euclid's proof 253
Garficid's proof 255 (A 11)

Quadrilateral 86
angles of 87
congruence of 179
convex 87
diagonal of 87
sides of 87
vertex of 87

Radius 150
Range 9
Ray 54

in terms of a ruler 55

Rectangle 183
Reflection 306

double 321

special 349

Regular polygon 256 (B 16).
Remote interior angle 135
Riemann, G. 21
Riemann Sphere 21 (see also Part 11 of this

index)
Right triangle 143
Rotation 321

special 344
Ruler 30
Ruler Placement Theorem 38
Ruler Postulate 30

SAA Theorem 138
Saccheri 170, 178

Saccheri quadrilateral 178
congruence 180

Saccheri's Theorem 181
Same side of line 66
SAS Congruence Axiom 127

SAS Similarity Theorem 238 (A7)
Scalene triangle 129

Scissors geometry 68
Secant of a circle 154
Sech(t) 32
Segment 52

comparison 135
congruence 56
length 54

Segment Addition Theorem 57
Segment Construction Theorem 56
Segment Subtraction Theorem 58
Similar triang!es 234
Similarity theory from area 255 (A 12)
Simson line 246 (B14)
Sine function 112
Sinh(t) 32
Size of polygonal region 257
Sloping Ladder Theorem 160
Special area function 278
Special orthogonal group 354
Square 183
SSS Congruence Axiom 132

equivalence to SAS 164
SSS Similarity Theorem 236
Standard rulers 35
Stereographic projection 301
Subgroup 338

normal 341 (B13)
Subtangent 159 (B19)
Supplementary angles 104
Surjection 12
Synthetic approach 165

Tangent
of circle 154

existence and uniqueness 155
of cycle 318

Tanh(t) 32
Taxicab Plane 34 (see also Part II of this

index)
Tlansformation 341 (B15)

fractional linear 342

orthogonal 354

special orthogonal 352

'Translation 321
Euclidean 352

special hyperbolic 343

Transversal 170
'Trapezoid 252
Trebly asymptotic triangle 319 (A3)
Triangle 61

asymptotic 203
closed 203

congruence 125

and isometrics 308
defect of 205

369
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equiangular 130 (A5)
equilateral 129
isosceles 129
open 196
right 143
scalene 129
sides of 62
similar 234
vertices 62

uniqueness 62
'lliangle Construction Theorem 161
'Bangle Inequality 45, 139

general form 141 (A6)

Triangular region 249
defect of 263

Triangulation 257
base 257, 258
refinement of 263
star 265

Tligonometric functions 123 (A7)
Twisted Plane 69 (B 19) (see also Part II of

this index)
Two Circle Theorem 163

of cycles through three points 317
of Euclidean area 263
of Euclidean Geometry 294
of hyperbolic area 281
of hyperbolic geometry 295

Unit sphere 20

Vertex
of angle 61

uniqueness 60
of polygon 248
of ray 55

uniqueness 55
of segment 54

uniqueness 54
of triangle 62

uniqueness 62
Vertical angles 104
Vertical Angle Theorem 108
Vitale, G. 170

Wallis, J. 170

Index

Uniqueness
of angle measure in a neutral geometry 293 Z Theorem 82
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