												,										
L	Α	S	Т	Ν	Α	M	E					,	F	Ι	R	S	Т	Ν	Α	Μ	Е	

<u>Homewor</u>	<u>k H07</u>
MATH 311	0/5110

Due Friday, March 18, 2022

Problem:	1	2	3	4	5	6	7	Total	Resca
Your Score:									
Possible:	20	20	20	20	20	20	20	100	10

led

Notice that there are actually 14 points possible. Any points scored over 10 will be extra credit.

Suggested Exercises: 4.4 # 2,3,4,5,6,9,10,11,12,13,15,17,19,23,25

Assigned Exercises:

- [1] (based on 4.4#4) Thm 4.4.6 says: Given $\angle ABC$ in a Pasch geometry, if A P C, then $P \in int(\angle ABC)$.
- (a) Illustrate the statement of the Theorem.
- (b) Justify and illustrate the steps in this proof of the Theorem.
 - (1) Suppose that in a Pasch geometry, $\angle ABC$ and point P satisfy A P C. (Illustrate.)
 - (2) Segment \overline{PC} does not intersect line \overleftarrow{BA} . (Justify.) (Illustrate.)
 - (3) Points *P*, *C* are in the same half plane of line \overrightarrow{BA} . (Justify.) So $P \in H_{\overrightarrow{BA},C}$. (Illustrate.)
 - (4) Segment \overline{PA} does not intersect line \overleftarrow{BC} . (Justify.) (Illustrate.)
 - (5) Points *P*, *A* are in the same half plane of line \overleftarrow{BC} . (Justify.) So $P \in H_{\overrightarrow{BC},A}$. (Illustrate.)
 - (6) So $P \in H_{\overrightarrow{BA},C} \cap H_{\overrightarrow{BC},A}$. (Justify.)
 - (7) Therefore, $P \in int(\angle ABC)$. (Justify.) (Illustrate.)

End of Proof

- [2] (4.4#5) Here is a true Statement: In a Pasch geometry, if $P \in int(\angle ABC)$. then $int(\overrightarrow{BP}) \subset int(\angle ABC)$.
- (a) Illustrate the Statement.
- (b) Prove the statement: Provide clear illustrations for all the steps of your proof.

[3] (4.4#9) Theorem 4.4.8 says:

In a Pasch geometry, if $\overrightarrow{CP} \cap \overleftrightarrow{AB} = \phi$, then $P \in int(\angle ABC)$ if and only if A, C are on opposite sides of \overleftrightarrow{BP} . As always, I prefer to state *If-and-Only-If* theorems using the terminology of *Equivalent Statements*.

- In a Pasch geometry, given points A, B, C, D with $\overline{CP} \cap \overleftarrow{AB} = \phi$, the following are equivalent (TFAE): (i) $P \in int(\angle ABC)$
 - (ii) A, C are on opposite sides of \overrightarrow{BP} .

Illustrate the statement of the Theorem. (Don't Prove the Theorem! Just illustrate the statement.)

[4](4.4#11) Here is a true Statement:

In a Pasch geometry, if $\overline{CP} \cap \overleftarrow{AB} = \phi$,

then either $\overrightarrow{BC} = \overrightarrow{BP}$ or $P \in int(\angle ABC)$ or $C \in int(\angle ABP)$. (exclusive or)

Illustrate the Statement. (Don't Prove the Statement! Just illustrate the statement.)

As discussed throughout the semester, a *conditional statement* is a statement of the form: *If A then B* A conditional statement is *logically equivalent* to its *contrapositive*: *If NOT(B) then NOT(A)*. As a result of this, any time one proves a theorem that has the form of a conditional statement, one knows that the contrapositive version of the same statement is automatically true. The contrapositive statement is not another theorem: it is just a different way of saying the theorem that has already been proven.

But the original statement is *not* logically equivalent to its *converse*: *If B then A*. As a result of this, when a known theorem has the form of a conditional statement, the converse statement is not automatically true. (The converse statement is *not* just a different way of saying the theorem that has already been proven.) If the converse statement *is* true, then it constitutes *another theorem*, and it will have to be proven with a *new proof*.

That is the situation with the Crossbar Theorem and the Converse of the Statement of the Crossbar Theorem.

Crossbar Theorem (Proven in the book and in Video 4.4)(Restated a little differently here.)

Given $\angle ABC$ and point P in a Pasch geometry, if $P \in int(\angle ABC)$ then \overrightarrow{BP} intersects $int(\overrightarrow{AC})$.

Converse of the Statement of the Crossbar Theorem (You will prove this in problem [5])

Given $\angle ABC$ and point P in a Pasch geometry, if \overrightarrow{BP} intersects $\operatorname{int}(\overrightarrow{AC})$, then $P \in \operatorname{int}(\angle ABC)$.

[5](4.4#12) Prove the following Theorem (Converse of the Statement of the Crossbar Theorem)
Given ∠ABC and point P in a Pasch geometry, if BP intersects int(AC), then P ∈ int(∠ABC).
Provide clear illustrations for all the steps of your proof that can be visualized.

[6](a) Write the *contrapositive* of the statement of the *Crossbar Theorem*.(b) Write the *contrapositive* of the *Converse of the Statement of the Crossbar Theorem*.

[7] (**Remark:** In Homework H06 problem [1], you proved that a triangle is *not* a convex set.) (4.4#15) Prove Theorem 4.4.10: In a Pasch geometry, $int(\Delta ABC)$ *is* convex.