												,							
L	Α	S	Т	Ν	Α	Μ	E					,	F	Ι	R	S	Т	Ν	Α

Homework H09, *Revised Version* MATH 3110/5110 Due Friday, April 1, 2022

Problem:	1	2	3	4	Total	Rescaled		
Your Score:								
Possible:	20	20	20	80	100	10		

M E

In the *Revised Version*, I removed one Suggested Exercise, changed the order of the problems, clarified the wording of problem [1], and fixed a grammatical error in problem [4].

Observe that there are 140 points possible. Any points scored over 100 will be considered Extra Credit.

Suggested Exercises: 6.1 # 1, 2, 4, 5, 6, 7, 8, 9, 10, 12 (removed #13)

[1] In neutral geometry, if ΔPQR is isosceles, with $\overline{PQ} \simeq \overline{PR}$, and ray \overline{PS} bisects angle $\angle QPR$,

then ray \overrightarrow{PS} also bisects side \overrightarrow{QR} . (Remark: It is not given that S is on \overrightarrow{QR} , so you should not assume that it is.)

(a) Illustrate the statement.

(b) Prove the statement.

[2] In a neutral geometry, if ΔPQR is an isosecles triangle with $\overline{PQ} \simeq \overline{PR}$ and T is the midpoint of \overline{QR} , then $\overleftarrow{PT} \perp \overleftarrow{QR}$.

- (a) Illustrate the statement.
- (**b**) Prove the statement.

[3] In a neutral geometry, if a triangle is equilateral, then it is equiangular.

- (a) Illustrate the statement.
- (**b**) Prove the statement.

[4] Prove or disprove:

(a) In a neutral geometry, in every quadrilateral $\Box PQRS$ ray \overrightarrow{RP} is the bisector of $\angle QRS$.

(**b**) In a neutral geometry, if quadrilateral $\Box PQRS$ has the properties that $\overline{QP} \simeq \overline{QR}$ and that \overline{QS} is the bisector of $\angle PQR$, then $\overline{SP} \simeq \overline{SR}$.

(c) In a neutral geometry, if quadrilateral $\Box PQRS$ has $\overline{QP} \simeq \overline{QR}$, then $\angle P \simeq \angle R$.

(d) In a neutral geometry, if the diagonal segments of quadrilateral $\Box PQRS$ intersect at a point *T* that is the midpoint of both diagonal segments, then $\overline{QR} \simeq \overline{SP}$.