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Abstract Geometry 

 

Definition of Abstract Geometry  

An abstract geometry 𝒜 is an ordered pair 𝒜 = (𝒫, ℒ) where 𝒫 denotes a set whose 

elements are called points and ℒ denotes a non-empty set whose elements are called lines, 

which are sets of points satisfying the following two requirements, called axioms: 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists at least one line 𝑙 ∈ ℒ such that 

𝐴 ∈ 𝑙 and 𝐵 ∈ 𝑙. 

(ii) For every line 𝑙 ∈ 𝐿 there exist at least two distinct points that are elements of the 

line. 

Additional Terminology  

Words:   𝑃 lies on 𝑙   or   𝑙 passes through 𝑃. 

Usage: 𝑃 ∈ 𝒫 and 𝑙 ∈ ℒ 

Meaning: 𝑃 ∈ 𝑙 

Requirements (i),(ii) are called the abstract geometry axioms. They are simply the requriements 

that sets 𝒫, ℒ must satisfy (in addition to ℒ being non-empty) in order for the pair (𝒫, ℒ) to be 

qualified to be called an abstract geometry .  



Remarks on a Mistake in the Book’s Definition of Abstract Geometry  

 

Here is the book’s definition:. 

 

Book’s Definition of Abstract Geometry  

An abstract geometry 𝒜 consists of a set 𝒫, whose elements are called points, together 

with a collection ℒ of non-empty subsets of 𝒫, called lines, such that: 

(i) For every two points 𝐴, 𝐵 ∈ 𝒫, there is a line 𝑙 ∈ ℒ with 𝑎 ∈ 𝑙 and 𝑏 ∈ 𝑙. 

(ii) Every line has at least two points. 

 

An abstract geometry is written as a set: 𝒜 = {𝒫, ℒ}. 

 

There are some subtle differences between the book’s definition (in the red box) and my definition 

(in the green box).  

 

Notice that my definition contains the qualifiers distinct points and at least one line for clarity. 

 



Notice also that in my definition, an abstract geometry is presented as an ordered pair 𝒜 = (𝒫, ℒ), 

whereas in the book’s definition, an abstract geometry is presented as a set 𝒜 = {𝒫, ℒ}. The use of 

ordered pairs (or more generally, ordered n-tuples) is more standard in math. The symbol 

representing the set of points must be on the left in the ordered pair; the symbol representing the set 

of line, on the right. 

 

More importantly, I feel that the use of the phrase non-empty in the book’s definition is a mistake, 

for two reasons. 

 

Reason #1: Observe that axiom (ii) will ensure that each line 𝑙 will be a non-empty subset, so 

stating explicitly that the lines are …non-empty subsets… is redundant. You will see that our book 

is very spare in its presentation. There is never any redundancy. That there is redundancy in this 

definition is a sign that it is a mistke. 

 

Reason #2: If 𝒫 contains a single point 𝐴 and ℒ is the empty set containing no lines, then {𝒫, ℒ} 

satisfies the book’s definition! That is, the book’s definition does not require that there be any lines. 



On the other hand, notice that the use of the phrase non-empty in my definition (the definition in the 

green box) allows us to prove a theorem: 

 

Theorem: An abstract geometry must contain at least one line and at least two distinct points. 

 

Proof 

(1) Suppose that 𝒜 = (𝒫, ℒ) is an abstract geometry . 

(2) There exists at least one line 𝑙 ∈ ℒ (by (1) and the definition of abstract geometry .) 

(3) There exist at least two distinct points 𝐴, 𝐵 ∈ 𝑙  (by (2) and Abstract Geometry Axiom (ii)) 

End of Proof 

 

Because of the problems with the book’s definiton of abstract geometry (the definition in the red 

box above), we will not use that definition in this course. We will use my definition of abstract 

geometry (the definition in the green box above). 

 

  



Models of Abstract Geometry  

 

A model for abstract geometry is simply an example of a pair (𝒫, ℒ) that satisfies the definition of 

abstract geometry . 

 

The book presents three examples of abstract Geometries (three models) in Section 2.1. 

 The Cartesian plane 

 The Poincaré plane 

 The Riemann Sphere 

 

But will start with simpler models: finite geometries. 

  



Finite Geometries 

 

Observe that there is nothing in the definition of abstract geometry that says that there must be an 

infinite set of points. Indeed, it is possible for a pair (𝒫, ℒ) to qualify as an abstract geometry with 

only a finite set of points. 

 

Definition: A finite geometry is an abstract geometry in which the set of points 𝒫 is a finite set. 

 

  



[Example 1] Finite sets that may or may not qualify to be called abstract geometries. 

(a) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} 

 lines ℒ = {{𝐴, 𝐶}, {𝐴, 𝐷}, {𝐴, 𝐸}, {𝐵, 𝐷}, {𝐵, 𝐸}, {𝐶, 𝐸}, } 

Here is an illustration of (𝒫, ℒ) using dots and segments. 

 

 Is (𝒫, ℒ) qualified to be called an abstract geometry ? Explain why or why not. 

 

  



(b) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} 

 lines ℒ = {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}, {𝐷, 𝐴}} 

 

Is (𝒫, ℒ) qualified to be called an abstract geometry ? Explain why or why not. 

 

 

  



(c) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷} 

 lines ℒ = {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶, 𝐷}, } 

 

 

Is (𝒫, ℒ) qualified to be called an abstract geometry ? Explain why or why not. 

 

  



(d) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷} 

 lines ℒ = {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶, 𝐷}, {𝐵, 𝐷}} 

 

 

Is (𝒫, ℒ) qualified to be called an abstract geometry ? Explain why or why not. 

 

  



(e) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐵, 𝐶} 

 lines ℒ = {{𝐴, 𝐵, 𝐶}} 

 

Is (𝒫, ℒ) qualified to be called an abstract geometry ? Explain why or why not. 

 

 

 

 

 

 

 

 

End of [Example 1]  



The Cartesian Plane 

 

Definition: The Cartesian Plane, 𝒞, is the pair 𝒞 = (ℝ
2
, ℒ𝐸

) where 

 The set of points is the set ℝ2 of ordered pairs of real numbers. 

 The set of lines is the set ℒ𝐸 containing lines (sets of points) of two types: 

o A vertical line is a set of the form 𝐿𝑎 = {(𝑥, 𝑦) ∈ ℝ
2
|𝑥 = 𝑎}, where 𝑎 ∈ ℝ 

o A non-vertical line is a set of the form 𝐿𝑚,𝑏 = {(𝑥, 𝑦) ∈ ℝ
2
|𝑦 = 𝑚𝑥 + 𝑏}, where 𝑎, 𝑏 ∈ ℝ 

        

 

Proposition 2.1.1  

The Cartesian Plane 𝒞 = (ℝ
2
, ℒ𝐸

) satisfies the definition of abstract geometry . 

That is, the Cartesian Plane 𝒞 = (ℝ
2
, ℒ𝐸

) is a model of abstract geometry .  



The authors provide a nice proof of this proposition on page 18 of the book. 

 

 



There are some things about the book proof that may make it hard to understand. In particular, the 

book’s proof of Proposition 2.1.1 does not have numbered statements and does not have any kind 

of headings that indicate the proof structure. This is typical for a book written at the level of our 

book. Authors assume that the reader is skilled in reading and writing proofs.  

 

Although the book’s proofs may initially be difficult for a MATH 3110/5110 student to understand, 

the proof skills that the student acquired in MATH 3050 or CS 3000 can can help them make sense 

of the proofs. 

 

In most cases, the key to understanding the book’s proofs is to consider proof structure. In general, 

in MATH 3110/5110, I do not intend to duplicate proofs that are in the book with proofs written at 

a more introductory level, but I will discuss how the student should read the book’s proof of 

Proposition 2.1.1 and add structure to it, either mentally or on paper, and thereby make sense of it. 

 

  



To prove that (ℝ2
, ℒ𝐸

) is an abstract geometry means proving that (ℝ2
, ℒ𝐸

) satisfies the axioms. 

There are two axioms, so the proof will need to have two parts. 

Proof Part 1: Prove that (ℝ𝟐
, 𝓛𝑬) satisfies abstract geometry axiom (i) 

Proof Part 2: Prove that (ℝ𝟐
, 𝓛𝑬) satisfies abstract geometry axiom (ii) 

The authors don’t provide either heading, but they do start their proof with the following words. 

We must show that if 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two distinct points of ℝ2, then 

there is an 𝑙 ∈ ℒ contining both. 

That is the reader’s clue that the book’s proof is going to start with what I have called Proof Part 1 

above. 

 

Notice that the final sentence of the book’s proof is the following: 

It is easy to see that that each line has at least two points so that ℰ is an Abstract Geometry . 

 

Realize that the first half of that final sentence what I have called Proof Part 2 above. 

 

The second half of that final sentence is a belated explanation of what the whole proof has been 

about: Proving that (ℝ2
, ℒ𝐸

) is a model of abstract geometry .  



Now, consider how Proof Part 1 must be structured. Observe that abstract geometry axiom (i) is a 

universal statement. 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists at least one line 𝑙 ∈ ℒ such that 

𝐴 ∈ 𝑙 and 𝐵 ∈ 𝑙. 

Therefore, a proof that (ℝ2
, ℒ𝐸

) satisfies axiom (i) must have the following structure. 

 

Proof that (ℝ𝟐
, 𝓛𝑬) satisfies abstract geometry axiom (i) 

(1) Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two distinct points of ℝ2. 

 

some step here 

 

(*) There exists at least one line 𝑙 ∈ ℒ𝐸 such that 𝑃 ∈ 𝑙 and 𝑄 ∈ 𝑙. (some justification) 

End of Proof  



Furthermore, it is easy to articulate an OR statement for the second statement of the proof. 

 

Proof that (ℝ𝟐
, 𝓛𝑬) satisfies abstract geometry axiom (i) 

(1) Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two points of ℝ2. 

(2) 𝒙𝟏 = 𝒙𝟐 or 𝒙𝟏 ≠ 𝒙𝟐  (property of real numbers) 

 

some steps here 

 

(*) There exists at least one line 𝑙 ∈ ℒ𝐸 such that 𝑃 ∈ 𝑙 and 𝑄 ∈ 𝑙. (some justification) 

End of Proof 

 

  



The presence of the OR statement enables a proof by cases. The boldface content added to the 

proof outline below shows that structure. 

 

Proof that (ℝ𝟐
, 𝓛𝑬) satisfies abstract geometry axiom (i) 

(1) Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two points of ℝ2. 

(2) 𝑥1 = 𝑥2 or 𝑥1 ≠ 𝑥2  (property of real numbers) 

(3) (Case 1) Suppose that 𝒙𝟏 = 𝒙𝟐 

…….some steps here……. 

(**) There exists at least one line 𝒍 ∈ 𝓛𝑬 such that 𝑷 ∈ 𝒍 and 𝑸 ∈ 𝒍 in this case. (some 

justification) 

(***) (Case 2) Suppose that 𝒙𝟏 ≠ 𝒙𝟐 

…….some steps here……. 

(****) There exists at least one line 𝒍 ∈ 𝓛𝑬 such that 𝑷 ∈ 𝒍 and 𝑸 ∈ 𝒍 in this case. (some 

justification) 

(*) (Conclusion of Cases) Therefore, there exists at least one line 𝑙 ∈ ℒ𝐸 such that 𝑃 ∈ 𝑙 and 

𝑄 ∈ 𝑙. (because it is true in every case) 

End of Proof  



Finally, we can fill in the missing steps with details taken from the book’s proof. 

 

Proof that (ℝ𝟐
, 𝓛𝑬) satisfies abstract geometry axiom (i) 

(1) Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two points of ℝ2. 

(2) 𝑥1 = 𝑥2 or 𝑥1 ≠ 𝑥2  (property of real numbers) 

(3) (Case 1) Suppose that 𝑥1 = 𝑥2 

(4) Let 𝒂 = 𝒙𝟏 = 𝒙𝟐. 

(5) Observe that 𝑳𝒂 ∈ 𝓛𝑬 and that 𝑷 ∈ 𝑳𝒂 and 𝑸 ∈ 𝑳𝒂. 

(6) There exists at least one line 𝑙 ∈ ℒ𝐸 such that 𝑃 ∈ 𝑙 and 𝑄 ∈ 𝑙 in this case. (by (5)) 

(7) (Case 2) Suppose that 𝑥1 ≠ 𝑥2 

(8) Let 𝒎 =
𝒚𝟐−𝒚𝟏

𝒙𝟐−𝒙𝟏

 and 𝒃 = 𝒚𝟐 − 𝒎𝒙𝟐. 

(9) Observe that 𝑳𝒎,𝒃 ∈ 𝓛𝑬. Basic arithmetic shows that 𝑷 ∈ 𝑳𝒎,𝒃 and 𝑸 ∈ 𝑳𝒎,𝒃. 

(10) There exists at least one line 𝑙 ∈ ℒ𝐸 such that 𝑃 ∈ 𝑙 and 𝑄 ∈ 𝑙 in this case. (by (9)) 

(11) (Conclusion of Cases) Therefore, there exists at least one line 𝑙 ∈ ℒ𝐸 such that 𝑃 ∈ 𝑙 and 

𝑄 ∈ 𝑙. (Because by (6),(10), we see that it is true in every case) 

End of Proof  



What we end up with, finally, is the content of the book’s proof, but organized with some added  

 

Proof that (ℝ𝟐
, 𝓛𝑬) satisfies the definition of abstract geometry  

 

Part 1: Proof that (ℝ𝟐
, 𝓛𝑬) satisfies abstract geometry axiom (i) 

(1) Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two points of ℝ2. 

(2) 𝑥1 = 𝑥2 or 𝑥1 ≠ 𝑥2  (property of real numbers) 

(3) (Case 1) Suppose that 𝑥1 = 𝑥2 

(4) Let 𝑎 = 𝑥1 = 𝑥2. 

(5) Observe that 𝐿𝑎 ∈ ℒ𝐸 and that 𝑃 ∈ 𝐿𝑎 and 𝑄 ∈ 𝐿𝑎. 

(6) There exists at least one line 𝑙 ∈ ℒ𝐸 such that 𝑃 ∈ 𝑙 and 𝑄 ∈ 𝑙 in this case. (by (5)) 

(7) (Case 2) Suppose that 𝑥1 ≠ 𝑥2 

(8) Let 𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1

 and 𝑏 = 𝑦2 − 𝑚𝑥2. 

(9) Observe that 𝐿𝑚,𝑏 ∈ ℒ𝐸. Basic arithmetic shows that 𝑃 ∈ 𝐿𝑚,𝑏 and 𝑄 ∈ 𝐿𝑚,𝑏. 

(10) There exists at least one line 𝑙 ∈ ℒ𝐸 such that 𝑃 ∈ 𝑙 and 𝑄 ∈ 𝑙 in this case. (by (9)) 



(11) (Conclusion of Cases) Therefore, there exists at least one line 𝑙 ∈ ℒ𝐸 such that 𝑃 ∈ 𝑙 and 

𝑄 ∈ 𝑙. (Because by (6),(10), we see that it is true in every case) 

End of Proof Part I 

 

Proof Part 2: Prove that (ℝ𝟐
, 𝓛𝑬) satisfies abstract geometry axiom (ii) 

 

(It is easy to see that a line of either type has at least two points, so we omit this proof.) 

End of Proof that (ℝ𝟐
, 𝓛𝑬) satisfies the Definition of Abstract Geometry  

 

The MATH 3110/5110 student should realize that “reading” the Millman & Parker book, or any 

advanced math book, entails a process like the one presented above. That is, when reading a proof 

in the book, the reader must (either mentally or on scrap paper) add outline form, statement 

numbers, additional statements, and clear justifications for each step. 

 

Throughout the semester in MATH 3110/5110, I will occasionally assign Homework, Quiz, or 

Exam problems that ask the student to rewrite a proof from the book, adding outline form, 

statement numbers, additional statements, and clear justifications for each step.  



Note that the steps in the proof of Proposition 2.1.1 provide us with a procedure for finding the 

Cartesian line through two distinct points 𝑃, 𝑄 ∈ ℝ
2. I will present the procedure here. 

 

Procedure for Finding the Cartesian Line Passing through Two Distinct Points in ℝ𝟐 

Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two distinct points of ℝ2. 

If 𝑥1 = 𝑥2 then let 𝑎 = 𝑥1 = 𝑥2. In this case, 𝐿𝑎 ∈ ℒ𝐻 and 𝑃, 𝑄 ∈ 𝐿𝑎. 

If 𝑥1 ≠ 𝑥2 then define constants 𝑚, 𝑏 by the following formulas: 

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

 

𝑏 = 𝑦2 − 𝑚𝑥2 

Then 𝑃, ∈ 𝐿𝑚,𝑏 and 𝑄 ∈ 𝐿𝑚,𝑏. 

 

Remark: It is worth noting that the proof in Proposition 2.1.1 does not address the issue of 

uniqueness of the line. That is, the proof only shows how one can find a Cartesian line. The proof 

does not show that the resulting line is the only such line. But later in Section 2.1, it will be shown 

that, given two distinct points in ℝ2, there is only one Cartesian line passing through both. That is 

why, in my presentation of the procedure, I used the phrase “…Finding the Cartesian Line…”. 



The Poincaré Plane 

 

Definition: The Poincaré Plane, ℋ, is the pair ℋ = (ℍ, ℒ𝐻
) 

 The set of points is the set ℍ = {(𝑥, 𝑦) ∈ ℝ
2
|𝑦 > 0}. (the upper-half plane) 

 The set of lines is the set ℒ𝐻 containing lines (sets of points) of two types: 

o A type I line is a set of the form  𝐿𝑎 = {(𝑥, 𝑦) ∈ ℍ|𝑥 = 𝑎}, where 𝑎 ∈ ℝ 

o A type II line is a set of form 

𝐿𝑐 𝑟 = {(𝑥, 𝑦) ∈ ℍ|(𝑥 − 𝑐)
2
+ 𝑦

2
= 𝑟

2}, where 𝑐 ∈ ℝ and 𝑟 > 0 

        

 

Proposition 2.1.2 The Poincaré Plane ℋ = (ℍ, ℒ𝐻
) is a model of abstract geometry . 

  



The authors provide a nice proof of this proposition on page 19 of the book. The main idea of the 

authors’ proof is the following: 

 

Procedure for Finding the Poincaré Line Passing Through Two Distinct Points in ℍ 

Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two distinct points of ℍ. 

If 𝑥1 = 𝑥2 then let 𝑎 = 𝑥1 = 𝑥2. In this case, 𝐿𝑎 ∈ ℒ𝐻 and 𝑃, 𝑄 ∈ 𝐿𝑎 . 

If 𝑥1 ≠ 𝑥2 then define constants 𝑐, 𝑟 by the following formulas: 

𝑐 =
𝑥2

2
− 𝑥1

2
+ 𝑦2

2
− 𝑦1

2

2(𝑥2 − 𝑥1
)

 

𝑟 = √(𝑥1 − 𝑐)2 + 𝑦
1

2 

In this case, 𝐿𝑐 𝑟 ∈ ℒ𝐻 and 𝑃, 𝑄 ∈ 𝐿𝑐 𝑟. 

 

Remark: Later in Section 2.1, it will be shown that, given two distinct points in ℍ, there is only 

one Poincaré line passing through both. That is why, in my presentation of the procedure, I used 

the phrase “…Finding the Poincaré Line…”. 

  



[Example 2] Let 𝑃 = (5,3) and 𝑄 = (10,2) 

(a) Find the equation for the Cartesian line through 𝑃 and 𝑄. 

Solution: 

Introduce 𝑥, 𝑦 notation:  𝑃 = (5,3) = (𝑥1, 𝑦1
) and 𝑄 = (10,2) = (𝑥2, 𝑦2

). 

 

We follow the Procedure for Finding the Cartesian Line Passing Through Two Distinct Points. 

 

Since 𝑥1 ≠ 𝑥2 the Cartesian line that passes through 𝑃, 𝑄 will be a non-vertical line. 

 

We find constants 𝑚, 𝑏 by using the formulas presented in the Procedure: 

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

=
2 − 3

10 − 5
= −

1

5
 

𝑏 = 𝑦2 − 𝑚𝑥2 = 2 − ((−
1

5
) 10) = 4 

The Cartesian line that passes through 𝑃, 𝑄 will be the non-vertical line 

𝐿
−
1

5
,4

= {(𝑥, 𝑦) ∈ ℝ
2
|𝑦 = (−

1

5
) 𝑥 + 4} 

  



(b) Find the equation for the Poincaré line through 𝑃 and 𝑄. 

Solution: 

We follow the Procedure for Finding the Poincaré Line Passing Through Two Distinct Points. 

 

Since 𝑥1 ≠ 𝑥2 the Poincaré line that passes through 𝑃, 𝑄 will be a type II line. 

 

We find constants 𝑐, 𝑟 by using the formulas presented in the Procedure: 

𝑐 =
𝑥2

2
− 𝑥1

2
+ 𝑦2

2
− 𝑦1

2

2(𝑥2 − 𝑥1
)

=
2

2
− 3

2
+ 10

2
− 5

2

2(10 − 5)
= 7 

𝑟 = √(𝑥1 − 𝑐)2 + 𝑦
1

2
= √(5 − 7)2 + 32 = √13 

The Poincaré line that passes through 𝑃, 𝑄 will be the type II line 

𝐿7 √13
= {(𝑥, 𝑦) ∈ ℍ|(𝑥 − 7)2 + 𝑦

2
= 13} 

  



(c) Illustrate your solutions to (a) and (b) with drawings. 

Solution: 

The Cartesian line 𝐿
−

1

5
,4

 will be a straight-looking line with slope 𝑚 = −
1

5
 and y intercept (0,4). 

The Poincaré line 𝐿7 √13
 will be the upper half of a circle centered at (7,0) with radius √13. 

We plot these lines on different axes, to be clear that the lines live in different worlds.  

Observe the important points that we include in the drawings, with their coordinates labeled: 

The points 𝑃,𝑄, all axis intercepts, and the center of the circle. 

 

      

 

End of [Example 2]  



The Riemann Sphere 

 

Definition: The Riemann Sphere, ℛ, is the pair ℛ = (𝑆
2
, ℒ𝑅

) 

 The set of points is the set 𝑆2
= {(𝑥, 𝑦, 𝑧) ∈ ℝ

2
|𝑥

2
+ 𝑦

2
+ 𝑧

2
= 1}. (the unit sphere in ℝ2) 

 The set of lines, ℒ𝑅, containing lines of the form 

𝒢𝑎,𝑏,𝑐 = {(𝑥, 𝑦, 𝑧) ∈ 𝑆
2
|𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0}, where 𝑎, 𝑏, 𝑐 ∈ ℝ 

           

  



Remarks about the definition of lines on the Riemann Sphere. 

 The line 𝒢𝑎,𝑏,𝑐 is the intersection of 𝑆2 with a plane through the origin in ℝ3. So the set 𝒢𝑎,𝑏,𝑐 

will actually be a circle. 

 All circles that lie on 𝑆2 can be described as the intersection of 𝑆2 with a plane. But not all of 

the planes are planes through the origin. So not all circles that lie on 𝑆2 qualify to be called 

lines in ℛ = (𝑆
2
, ℒ𝑅

). 

 Consider the picture on the left. All of the blue lines, which would be called “lines of 

longitude” on a globe, do lie on planes through the origin. So all “lines of longitude” on a 

globe qualify to be called lines in ℛ = (𝑆
2
, ℒ𝑅

). 

 Consider the picture in the middle. The red circles, which would be called “lines of latitude” 

on a globe, mostly lie in planes that are not through the origin. Only one “line of latitude”, the 

equator, lies in a plane through the origin. So the equator is the only “line of latitude” on the 

globe that qualifies to be called a line in ℛ = (𝑆
2
, ℒ𝑅

). 

 Consider the picture on the right. Besides the lines of longitude and the equator, there are 

other circles that lie on 𝑆2 that do qualify to be called called lines in ℛ = (𝑆
2
, ℒ𝑅

). 



 For the line 𝒢𝑎,𝑏,𝑐 is the intersection of 𝑆2 with a plane, the vector (𝑎, 𝑏, 𝑐)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is a normal vector 

to that plane. (Observe that there are many triples (𝑎, 𝑏, 𝑐) that describe the same plane, so 

there is more than one symbol 𝒢𝑎,𝑏,𝑐 that describes the same line. 

 The line 𝒢𝑎,𝑏,𝑐 is a circle that lies on 𝑆2 and has radius 𝑟 = 1, which is the same as the radius 

of 𝑆2. Not all circles that lie on 𝑆2 are this big. In the pictures above, most of the red circles 

have radius 𝑟 < 1. Only the red equator, has 𝑟 = 1. 

 Such circles, the ones that lie on a sphere and have a radius that is the same as the radius of 

the sphere, are called great circles for the sphere. So another way of describing the lines in 

the Riemann Sphere ℛ = (𝑆
2
, ℒ𝑅

) is to say that the lines in ℛ = (𝑆
2
, ℒ𝑅

) are the great circles 

on 𝑆2. That is why the script capital G character, 𝒢, is used in the symbol 𝒢𝑎,𝑏,𝑐 denoting the 

lines in ℛ = (𝑆
2
, ℒ𝑅

). 

 

The book presents a short proof of the following proposition. 

 

Proposition 2.1.3 The Riemann Sphere ℛ = (𝑆
2
, ℒ𝑅

) is a model of abstract geometry . 

 



I won’t discuss the proof—it is mainly about solving equations—but it is worthwhile to make an 

observation about the number of lines that pass through two given points: 

 

The proof of Proposition 2.1.3 shows that given any two distinct points 𝑃, 𝑄 ∈ 𝑆
2, there exists a 

great circle 𝒢 on 𝑆2 such that 𝑃, 𝑄 ∈ 𝒢. Good. That is one of the requirements that ℛ = (𝑆
2
, ℒ𝑅

) 

must meet in order to qualify to be called an abstract geometry . But the great circle 𝒢 is not always 

unique. 

 For example, for 𝐴 = (1,0,0) and 𝐵 = (0,1,0), there is exactly one great circle 𝒢 on 𝑆2 such 

that 𝐴, 𝐵 ∈ 𝒢. That circle is the equator. 

 But for 𝑁 = (0,0,1) and 𝑆 = (0,0, −1), there are many great circles 𝒢 on 𝑆2 such that , 𝑆 ∈ 𝒢. 

Every line of longitude on 𝑆2 is a great circle 𝒢 on 𝑆2 such that 𝑁, 𝑆 ∈ 𝒢. 

Observe that nothing in the definiton of abstract geometry forbids this behavior. Indeed, abstract 

geometry axiom (i) says 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists at least one line 𝑙 ∈ ℒ such that 𝐴, 𝐵 ∈ 𝑙. 

If we desire that a geometry have the property that there is exactly one such line, then we will need 

to say that in the axioms of the geometry. We will see that done in the definition of incidence 

geometry in the next video.  



Additional Terminology Involving Points and Lines 

 

Definition of Collinear 

Words: The set of points 𝑆 ⊂ 𝒫 is collinear. 

Meaning: There exists a line 𝑙 ∈ ℒ that passes through all the points in 𝑆. That is, 𝑆 ⊂ 𝑙. 

 

The reader is probably comfortable with the word collinear from experience. But realize that 

collinear points can have surprising configurations in abstract geometries. 

 

  



[Example 3] (a) Let 𝐴 = (3,4), 𝐵 = (6,5), 𝐶 = (10,3). Observe that these three points lie on a 

circle of radius 𝑟 = 5 centered at the point (6,0). That is, they all lie on the Poincaré line 𝐿6 5 

Therefore, the set {𝐴, 𝐵, 𝐶} is collinear in the Poincaré plane. 

(b) Let Let 𝑃 = (3,6), 𝐵 = (6,5), 𝑄 = (10,7). Observe that these three points lie on a circle of 

radius 𝑟 = 5 centered at the point (6,10). This circle is not centered on the 𝑥 axis, so it does not 

correspond to a Poincaré line. So the set {𝑃, 𝐵, 𝑄} is not collinear in the Poincaré plane. 

              

End of [Example 4]  



Definition of Distinct Points and Distinct Lines 

Words: points 𝐴 and 𝐵 are distinct 

Meaning: points 𝐴 and 𝐵 are not the same point.  

Words: lines L and M are distinct 

Meaning: lines L and M are not the same line.  

 

This may seem silly, because 𝐴, 𝐵 are distinct letters. One would assume that they are not the same 

point. But in fact one must not assume that simply because 𝐴, 𝐵 are distinct letters, that they must 

necessarily represent distinct points. There will be some situations where a point 𝐴 is known to 

exist that satisfies some criteria, and a point 𝐵 is known to exist that satisfies some other criteria. It 

might turn out that points 𝐴 and 𝐵 are actually the same point. But of course, it might turn out that 

they are distinct points. 

 

The situation for lines is richer, though, because lines are sets of points. Two say that lines 𝐿,𝑀are 

the same line means that they are equal as sets of points. That is, set 𝐿 equals set 𝑀. If there are any 

points that are on one line and not the other line, then the lines 𝐿,𝑀 are distinct.  



Definition of Intersecting Lines 

Words: lines L and M intersect 

Meaning: The intersection of sets 𝐿 and 𝑀 is not empty. That is, 𝐿 ∩ 𝑀 ≠ 𝜙. In other words, 

there exists at least one point 𝑃 that lies on both lines. 

Additional Terminology 

Words: Lines 𝐿 and 𝑀 do not intersect 

Meaning: 𝐿 ∩ 𝑀 = 𝜙 

Definition of Parallel Lines 

Words: lines L and M are parallel 

Symbol: 𝐿 ∥ 𝑀 

Meaning: Either 𝐿 and 𝑀 do not intersect or they are the same line. 

Meaning in Symbols:  𝐿 ∩ 𝑀 = 𝜙 or 𝐿 = 𝑀 

Additional Terminology 

Words: lines L and M are not parallel 

Symbol: 𝐿 ∦ 𝑀 

Meaning: 𝐿 and 𝑀 intersect and they are not the same line. 

Meaning in Symbols:  𝐿 ∩ 𝑀 ≠ 𝜙 and 𝐿 ≠ 𝑀  



Two Recurring Questions in Geometry 

 

The BIG QUESTIONS 

 BIG QUESTION #1: Do parallel lines exist? 

 BIG QUESTION #2: Given a line 𝐿 and a point 𝑃 not on 𝐿, how many lines exist that 

contain 𝑃 and are parallel to 𝐿? 

 

[Example 5] Answers to the BIG QUESTIONS in some finite abstract geometries 

(a) Consider the pair (𝒫, ℒ) with  

 points 𝒫 = {𝐴, 𝐵, 𝐶} 

 lines ℒ = {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐵, 𝐶}} 

It is clear that (𝒫, ℒ) qualifies to be called an abstract geometry . 

 

What is the answer to BIG QUESTION #1?  

 

What is the answer to BIG QUESTION #2?  



(b) Consider the pair (𝒫, ℒ) with  

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷} 

 lines ℒ = {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}} 

It is clear that (𝒫, ℒ) qualifies to be called an abstract geometry . 

 

What is the answer to BIG QUESTION #1?  

 

 

What is the answer to BIG QUESTION #2? 

  



(c) Consider the pair (𝒫, ℒ) with  

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} 

 lines ℒ = {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐴, 𝐸}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐵, 𝐸}, {𝐶, 𝐷}, {𝐶, 𝐸}, {𝐷, 𝐸}} 

It is clear that (𝒫, ℒ) qualifies to be called an abstract geometry . 

 

  



What is the answer to BIG QUESTION #1?  

 

 

  



What is the answer to BIG QUESTION #2? 

 

 

 

 

 

 

 

 

 

 

End of [Example 5]  



[Example 6] Answers to the BIG QUESTIONS in the Cartesian Plane 

 

What is the answer to BIG QUESTION #1 in the Cartesian Plane?  

 

Clearly, parallel lines exist. For example, the vertical lines 𝐿3 ∥ 𝐿5 

 

 

 

What is the answer to BIG QUESTION #2 in the Cartesian Plane? 

 

You’re all used to the idea that the answer to this question is 1. But it is worthwhile to present the 

two possible cases and explain why we know the answer is 1. 

 

  



Case 1: When the given line 𝐿 is a vertical line 𝐿𝑎 and point 𝑃 = (𝑥2, 𝑦2
) ∉ 𝐿𝑎, then it must be that 

𝑥2 ≠ 𝑎. Observe that the vertical line 𝐿𝑥2
 passes through 𝑃 and is parallel to 𝐿𝑎. Furthermore, any 

other lines, vertical or non-vertical, that pass through 𝑃 will not be parallel to 𝐿𝑎. So line 𝐿𝑥2
 is the 

only line that passes through 𝑃 and is parallel to 𝐿𝑎. (These facts are proven by solving equations.) 

 

 

  



Case 2: When the given line 𝐿 is a non-vertical line 𝐿𝑚,𝑏 and point 𝑃 = (𝑥2, 𝑦2
) ∉ 𝐿𝑚,𝑏, there will 

be exactly one non-vertical line 𝐿𝑚,𝑘 with the same slope 𝑚 that passes through 𝑃. The 𝑦 intercept 

𝑘 can be found by the formula 

𝑘 = 𝑦2 − 𝑚𝑥2 

Observe that the non-vertical line 𝐿𝑚,𝑘 passes through 𝑃 and is parallel to 𝐿𝑎. Furthermore, any 

other lines, vertical or non-vertical, that pass through 𝑃 will not be parallel to 𝐿𝑎. So line 𝐿𝑚,𝑘 is 

the only line that passes through 𝑃 and is parallel to 𝐿𝑎. (These facts are proven by solving 

equations.) 

 

 

 

 

 

So we conclude that the answer to BIG QUESTION #2 in the Cartesian Plane is 

There exists exactly one line 𝑀 that passes through 𝑃 and is parallel to 𝐿. 

 

End of [Example 6]  



[Example 7] Answers to the BIG QUESTIONS in the Poincaré Plane 

 

What is the answer to BIG QUESTION #1 in the Poincaré Plane?  

 

 

Clearly, parallel lines exist. For example, the vertical lines 𝐿3 ∥ 𝐿5  

 

 

What is the answer to BIG QUESTION #2 in the Poincaré Plane? 

 

As we did when we answered this question in the Cartesian Plane, it will be useful to consider two 

cases. 

 

 



Case 1: When the given line 𝐿 is a type I line 𝐿𝑎  and point 𝑃 = (𝑥2, 𝑦2
) ∉ 𝐿𝑎 , then it must be that 

𝑥2 ≠ 𝑎. Observe that the type I line 𝐿𝑥2
 passes through 𝑃 and is parallel to 𝐿𝑎 . But there will also 

be many type II lines that pass through 𝑃 and are parallel to 𝐿𝑎 . (These facts are proven by solving 

equations.) 

 

 

  



Case 2: When the given line 𝐿 is a type II line 𝐿𝑐 𝑟 and point 𝑃 = (𝑥2, 𝑦2
) ∉ 𝐿𝑐 𝑟, there will be 

many type II lines that pass through 𝑃 and are parallel to 𝐿𝑐 𝑟. There may or may not be any type I 

lines that pass through 𝑃 and are parallel to 𝐿𝑐 𝑟. (These facts are proven by solving equations.) 

 

 

 

 

 

 

 

 

 

 

So we conclude that the answer to BIG QUESTION #2 in the Poincaré Plane is 

There is an infinite collection of lines that pass through 𝑃 and are parallel to 𝐿. 

 

End of [Example 7]  



[Example 8] Answers to the BIG QUESTIONS in the Riemann Sphere 

 

What is the answer to BIG QUESTION #1 in the Riemann Sphere? 

           

One might at first be tempted to say that parallel lines exist on the Riemann Sphere ℛ = (𝑆
2
, ℒ𝑅

), 

because the lines of latitude (the red circles) are parallel to each other. But remember that the only 

line of latitude that qualifies to be called a line in ℛ = (𝑆
2
, ℒ𝑅

) is the equator. 

 

Notice that all of the blue lines of longitude intersect at the north and south pole, and they all 

intersect the equator at some point on the equator, and they all intersect the green great circles (the 

ones that are neither lines of longitude nor the equator) at two points. Furthermore, notice that the 



equator intersects every green great circle at two points. Conclude that there are no parallel lines on 

the Riemann Sphere. Therefore, the answer to BIG QUESTION #1 is that  

There are no parallel lines on the Riemann Sphere. 

 

And of course, because there are no parallel lines, the answer to BIG QUESTION #2 is, 

There are no lines that pass through 𝑃 and are parallel to 𝐿 on the Riemann Sphere. 

 

 

 

End of [Example 8] 

[End of Video]  


