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Topics: 

 Incidence Geometry 

o Definition 

o Models 

 Finite Geometries 

 Cartesian Plane 

 Poincaré Plane 

 (the Riemann Sphere is not a model of Incidence Geometry 

 Theorem about intersecting lines in Incidence Geometry 

 

Reading: pages 22 – 24 of Section 2.1 Definition and Models of Incidence Geometry in the book  

Millman & Parker, Geometry: A Metric Approach with Models, Second Edition 

(Springer, 1991, ISBN 3-540-97412-1) 

Homework: Section 2.1 # 13, 16, 18, 19, 24  



Abstract Geometry 

 

Definition of Abstract Geometry  

An abstract geometry 𝒜 is an ordered pair 𝒜 = (𝒫, ℒ) where 𝒫 denotes a set whose 

elements are called points and ℒ denotes a non-empty set whose elements are called lines, 

which are sets of points satisfying the following two requirements, called axioms: 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists at least one line 𝑙 ∈ ℒ such that 

𝐴 ∈ 𝑙 and 𝐵 ∈ 𝑙. 

(ii) For every line 𝑙 ∈ 𝐿 there exist at least two distinct points that are elements of the 

line. 

Additional Terminology  

Words:   𝑃 lies on 𝑙   or   𝑙 passes through 𝑃. 

Usage: 𝑃 ∈ 𝒫 and 𝑙 ∈ ℒ 

Meaning: 𝑃 ∈ 𝑙 

Requirements (i),(ii) are called the abstract geometry axioms. They are simply the requriements 

that sets 𝒫, ℒ must satisfy (in addition to ℒ being non-empty) in order for the pair (𝒫, ℒ) to be 

qualified to be called an abstract geometry .  



Incidence Geometry 

 

Definition of Incidence Geometry 

An incidence geometry 𝒜 is an abstract geometry 𝒜 = (𝒫, ℒ) that satisfies the following two 

additional requirements, called axioms: 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists exactly one line 𝑙 ∈ ℒ such that 

𝐴 ∈ 𝑙 and 𝐵 ∈ 𝑙. 

(ii) There exist (at least) three non-collinear points. 

 

Requirements (i),(ii) are called the incidence geometry axioms. Keep in mind that in order for a 

pair 𝒜 = (𝒫, ℒ) to be qualified to be called an incidence geometry, the pair 𝒜 = (𝒫, ℒ) must 

satisfy the two abstract geometry axioms and the two incidence geometry  axioms. 

  



Models of Incidence Geometries 

 

Finite Geometries 

 

[Example 1](Revisiting [Example 1] from Video 2.1a)  

Finite sets that may or may not qualify to be called incidence geometries. 

(a) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} 

 lines ℒ = {{𝐴, 𝐶}, {𝐴, 𝐷}, {𝐴, 𝐸}, {𝐵, 𝐷}, {𝐵, 𝐸}, {𝐶, 𝐸}, } 

 

 

 

 

Is (𝒫, ℒ) qualified to be called an incidence geometry? Explain why or why not. 

 

  



(b) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} 

 lines ℒ = {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐵, 𝐶}, {𝐵, 𝐷}, {𝐶, 𝐷}, {𝐷, 𝐴}} 

 

 

 

Is (𝒫, ℒ) qualified to be called an incidence geometry? Explain why or why not. 

 

 

  



(c) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷} 

 lines ℒ = {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶, 𝐷}, } 

 

 

 

Is (𝒫, ℒ) qualified to be called an incidence geometry? Explain why or why not. 

 

  



(d) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐴, 𝐵, 𝐶, 𝐷} 

 lines ℒ = {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐴, 𝐷}, {𝐵, 𝐶, 𝐷}, {𝐵, 𝐷}} 

 

 

 

 

Is (𝒫, ℒ) qualified to be called an incidence geometry? Explain why or why not. 

 

  



(e) Consider the pair (𝒫, ℒ) with 

 points 𝒫 = {𝐵, 𝐶} 

 lines ℒ = {{𝐴, 𝐵, 𝐶}} 

 

Is (𝒫, ℒ) qualified to be called an incidence geometry? Explain why or why not. 

 

 

 

 

 

 

 

 

End of [Example 1]  



The Cartesian Plane is an Example (a Model) of  Incidence Geometry. 

 

In the previous video, we saw that the Cartesian Plane is qualified to be called an abstract 

geometry . That fact is proven in Proposition 2.1.1 of the book.  In Proposition 2.1.4 of the book, it 

is proven that the Cartesian Plane is also qualified to be called an incidence geometry. 

 

The bulk of the book’s proof is taken up in proving that incidence geometry axiom (i) is satisfied. 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists exactly one line 𝑙 ∈ ℒ such that 

𝐴 ∈ 𝑙 and 𝐵 ∈ 𝑙. 

That portion of the proof is clear enough, and there is no need for me to discuss it here. 

 

But the authors leave it to the reader to prove that incidence geometry axiom (ii) is satisfied 

(ii) There exist (at least) three non-collinear points. 

To prove that this axiom is satisfied, one must produce an example of three non-collinear points. In 

presenting an example, one must not just present the points, but also explain clearly why they are 

non-collinear. An example is most useful if it is very simple, involving no computations. It is worth 

presenting such an example here.  



[Example 2] Three non-collinear points in the Cartesian Plane 

 

Consider 𝐴 = (𝑥𝑎, 𝑦𝑎) = (2,5), 𝐵 = (𝑥𝑏, 𝑦𝑏) = (2,4), 𝐶 = (𝑥𝑐, 𝑦𝑐) = (10,4). 

 Observe that 𝑥𝑎 = 𝑥𝑏, so that the Cartesian line that 

passes through 𝐴 and 𝐵 must be a vertical line. 

 Observe that 𝑥𝑏 ≠ 𝑥𝑐, so that the Cartesian line that 

passes through 𝐵 and 𝐶 must be a non vertical line. 

 Therefore the Cartesian line that passes through 𝐴 

and 𝐵 cannot be the same as the Cartesian line that 

passes through 𝐵 and 𝐶. 

Conclude that 𝐴, 𝐵, 𝐶 are non-collinear in the Cartesian Plane. 

 

End of [Example 2] 

  



The Poincaré Plane is an Example (a Model) of Incidence Geometry. 

 

In the previous video, we saw that the Poincaré Plane is qualified to be called an abstract 

geometry. That fact is proven in Proposition 2.1.2 of the book.  In Proposition 2.1.5 of the book, it 

is proven that the Poincaré Plane is also qualified to be called an incidence geometry. 

 

As with its proof of Proposition 2.1.4, the bulk of the book’s proof of Proposition 2.1.5 is taken up 

in proving that incidence geometry axiom (i) is satisfied. 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists exactly one line 𝑙 ∈ ℒ such that 

𝐴 ∈ 𝑙 and 𝐵 ∈ 𝑙. 

That portion of the proof is clear enough, and there is no need for me to discuss it here. 

But as in the book’s proof of Proposition 2.1.4, in their proof of Proposition 2.1.5, the the authors 

leave it to the reader to prove that incidence geometry axiom (ii) is satisfied. 

(ii) There exist (at least) three non-collinear points. 

To prove that this axiom is satisfied, one must produce an example of three non-collinear points. 

Because computations involving Poincaré lines can be so messy, it is particularly useful to have a 

simple example involving no compuations.  Here is such an example.  



[Example 3] Three non-collinear points in the Poincaré Plane 

 

Consider 𝐴 = (𝑥𝑎, 𝑦𝑎) = (2,5), 𝐵 = (𝑥𝑏, 𝑦𝑏) = (2,4), 𝐶 = (𝑥𝑐, 𝑦𝑐) = (10,4). 

 Observe that 𝑥𝑎 = 𝑥𝑏, so that the Poincaré line that 

passes through 𝐴 and 𝐵 must be a type I  line. 

 Observe that 𝑥𝑏 ≠ 𝑥𝑐, so that the Poincaré line that 

passes through 𝐵 and 𝐶 must be a type II  line. 

 Therefore the Poincaré line that passes through 𝐴 

and 𝐵 cannot be the same as the Poincaré line that 

passes through 𝐵 and 𝐶. 

Conclude that 𝐴, 𝐵, 𝐶 are non-collinear in the Poincaré Plane. 

 

End of [Example 3] 

  



The Riemann Sphere is not a model of Incidence Geometry 

 

 

 

 

  



Theorem about Intersecting Lines in Incidence Geometry 

 

 

Theorem 2.1.6 Given two lines 𝑙1 and 𝑙2 in an incidence geometry, 

If 𝑙1 ∩ 𝑙2 has two or more distinct points, 

then 𝑙1 and 𝑙2 are the same line. That is, 𝑙1 = 𝑙2. 

 

The contrapositive of the statement of Theorem 2.1.6 can be stated as a corollary. 

 

Corollary 2.1.7 (contrapositive of Theorem 2.1.6)  

Given two lines 𝑙1 and 𝑙2 in an incidence geometry, 

If lines 𝑙1 and 𝑙2 are known to be distinct lines (that is, 𝑙1 ≠ 𝑙2), 

then either lines 𝑙1 and 𝑙2 do not intersect or they intersect in exactly one point. 

 

  



Observe that Theorem 2.1.5 and its Corollary 2.1.8 are not theorems of abstract geometry . Indeed, 

it we have seen examples of abstract geometry in which two distinct lines intersect in more than 

one point. 

 

                         

 

Of course, neither of these examples qualifies as an incidence geometry. That’s the point. 

 

 

End of Video 

  




