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Topics:
e Incidence Geometry

oDefinition

oModels
» Finite Geometries
= Cartesian Plane
= Poincaré¢ Plane
= (the Riemann Sphere 1s not a model of Incidence Geometry

e Theorem about intersecting lines in Incidence Geometry

Reading: pages 22 — 24 of Section 2.1 Definition and Models of Incidence Geometry in the book
Millman & Parker, Geometry: A Metric Approach with Models, Second Edition
(Springer, 1991, ISBN 3-540-97412-1)

Homework: Section 2.1 # 13, 16, 18, 19, 24



Abstract Geometry

Definition of Abstract Geometry
An abstract geometry A is an ordered pair A = (P, L) where P denotes a set whose
elements are called points and £ denotes a non-empty set whose elements are called lines,
which are sets of points satisfying the following two requirements, called axioms:
(i) For every two distinct points A, B € P, there exists at least one line [ € L such that
A€land B € l.
(ii) For every line [ € L there exist at least two distinct points that are elements of the
line.
Additional Terminology
Words: P liesonl or [ passes through P.
Usage: PeEPandl € L

Meaning: P € [

Requirements (1),(i1) are called the abstract geometry axioms. They are simply the requriements
that sets P, L must satisfy (in addition to £ being non-empty) in order for the pair (P, £) to be

qualified to be called an abstract geometry .



Incidence Geometry

Definition of Incidence Geometry
An incidence geometry A is an abstract geometry A = (P, L) that satisfies the following two
additional requirements, called axioms:
(i) For every two distinct points A, B € P, there exists exactly one line [ € £ such that
A€eland B € L.

(ii) There exist (at least) three non-collinear points.

Requirements (1),(i1) are called the incidence geometry axioms. Keep in mind that in order for a
pair A = (P, L) to be qualified to be called an incidence geometry, the pair A = (P, L) must

satisfy the two abstract geometry axioms and the two incidence geometry axioms.



Models of Incidence Geometries
Finite Geometries

[Example 1](Revisiting [Example 1] from Video 2.1a)
Finite sets that may or may not qualify to be called incidence geometries.
(a) Consider the pair (P, L) with D
e points P = {A,B,C,D,E} -
o lines £ = {{A,C},{4,D},{XE},{B,D},{B,E}{C,E},} t
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Is (P, £) qualified to be called an incidence geometry? Explain why or why not.
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(b) Consider the pair (P, L) with

e points P = {A,B,C,D,E}
e lines £ = {{4,B},{A,C},{B,C},{B,D},{C,D},{D,A}}

O Y cact  grometyy

ir\(.\\d((/\ce 9e,omeTfJ /j

Is (P, L) qualified to be called an incidence geometry? Explain why or why not.

Thy 6 an birad gesmery L
gf\]}:s XX ‘\(\C}MC(’ AAl I (7)

DM&S O\/Y/‘om Q/) xls wmm/;/f) /QIBJC
ace ’_Cc)\ll:('\aqr'



(¢) Consider the pair (P, £) with M) si\ra(j- felme 1'7 ﬁ,
e points P = {A,B,C,D}

e lines £ = {{4,B},{A,C},{4,D},{B,C,D},} l‘(\C l\olt/\(Q

%Jmejf&;
b

Is (P, L) qualified to be called an incidence geometry? Explain why or why not.
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(d) Consider the pair (P, L) with ﬁ

e points P = {A@, C ,(D)
e lines £ = {{4, B},{4,C},{4,D}, :
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Is (P, L) qualified to be called an incidence ge@lain why or why not.
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(e) Consider the pair (P, £) with

e points P = [t %,A,'B,c,?)

e lines £ = {{4, B, C}}
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Is (P, L) qualified to be called an incidence geometry? Explain why or why not.
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End of [Example 1] P 21T



The Cartesian Plane is an Example (a Model) of Incidence Geometry.

In the previous video, we saw that the Cartesian Plane is qualified to be called an abstract
geometry . That fact is proven in Proposition 2.1.1 of the book. In Proposition 2.1.4 of the book, it

is proven that the Cartesian Plane is also qualified to be called an incidence geometry.

The bulk of the book’s proof is taken up in proving that incidence geometry axiom (1) 1s satisfied.
(i) For every two distinct points A, B € P, there exists exactly one line [ € £ such that
A€landB € l.

That portion of the proof is clear enough, and there is no need for me to discuss it here.

But the authors leave it to the reader to prove that incidence geometry axiom (ii) is satisfied

(ii) There exist (at least) three non-collinear points.
To prove that this axiom i1s satisfied, one must produce an example of three non-collinear points. In
presenting an example, one must not just present the points, but also explain clearly why they are
non-collinear. An example is most useful if it is very simple, involving no computations. It is worth

presenting such an example here.



[Example 2] Three non-collinear points in the Cartesian Plane

Consider A = (x4, y,) = (2,5),B = (xp,yp) = (2,4),C = (x.,y.) = (10,4).

e Observe that x, = x,, so that the Cartesian line that 4l @S)
passes through A and B must be a vertical line.

e Observe that x;, # x., so that the Cartesian line that

passes through B and C must be a non vertical line.

e Therefore the Cartesian line that passes through A P (2 / LD c LG"' "’)

and B cannot be the same as the Cartesian line that

passes through B and C.

Conclude that A, B, C are non-collinear in the Cartesian Plane.

End of [Example 2]



The Poincaré Plane is an Example (a Model) of Incidence Geometry.

In the previous video, we saw that the Poincaré Plane 1s qualified to be called an abstract
geometry. That fact is proven in Proposition 2.1.2 of the book. In Proposition 2.1.5 of the book, it

is proven that the Poincaré Plane is also qualified to be called an incidence geometry.

As with its proof of Proposition 2.1.4, the bulk of the book’s proof of Proposition 2.1.5 is taken up
in proving that incidence geometry axiom (1) is satisfied.
(i) For every two distinct points A, B € P, there exists exactly one line [ € L such that
A€land B € l.
That portion of the proof is clear enough, and there is no need for me to discuss it here.
But as in the book’s proof of Proposition 2.1.4, in their proof of Proposition 2.1.5, the the authors
leave it to the reader to prove that incidence geometry axiom (ii) is satisfied.
(ii) There exist (at least) three non-collinear points.
To prove that this axiom is satisfied, one must produce an example of three non-collinear points.
Because computations involving Poincaré lines can be so messy, it 1s particularly useful to have a

simple example involving no compl}él}ions. Here 1s such an example.

t



[Example 3] Three non-collinear points in the Poincaré Plane

Consider A = (x4, y,) = (2,5),B = (xp,y,) = (2,4),C = (x.,y.) = (10,4).
e Observe that x, = x;, so that the Poincaré line that
passes through A and B must be a fype [ line. @' d |

e Observe that x;, # x., so that the Poincaré line that

passes through B and C must be a fype I line. @_ L’) 1d, v

e Therefore the Poincare line that passes through A

and B cannot be the same as the Poincare line that

passes through B and C.

Conclude that A, B, C are non-collinear in the Poincare Plane.

End of [Example 3]



The Riemann Sphere is not a model of Incidence Geometry
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Theorem about Intersecting Lines in Incidence Geometry

Theorem 2.1.6 Given two lines [; and [, in an incidence geometry,
If [; N [, has two or more distinct points,

then [; and [, are the same line. That is, [; = [,.

The contrapositive of the statement of Theorem 2.1.6 can be stated as a corollary.

Corollary 2.1.7 (contrapositive of Theorem 2.1.6)
Given two lines [; and [, in an incidence geometry,
If lines [; and [, are known to be distinct lines (that is, [; # [,),

then either lines [; and [, do not intersect or they intersect in exactly one point.




Observe that Theorem 2.1.5 and its Corollary 2.1.8 are not theorems of abstract geometry . Indeed,

S——
>éve have seen examples of abstract geometry in which two distinct lines intersect in more than
y—-—\ —

one point.

A

N

rED CY%O\MA %J)’D o\c( A\(TII\CT ll/\(f
~5 Y\ H\‘}tr(&(j YN ‘H'\"“"f\( (,da(\T

Of course, nelther of thes¥ examples qualifies as an incidence geometry. That’s the point.

End of Video





