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Topics: 

 Rulers 

o Definition of Ruler 

o Diagram illustrating the Ruler Equation 

o Examples of Rulers 

 Rulers for the 𝑑ℝ, 𝑑𝐸, 𝑑𝑇, 𝑑𝑆 distance functions on ℝ2 

 Rulers for the Poincaré distance function 𝑑𝐻 on ℍ 

 Metric Geometry 

o Definition of Metric Geometry 

o Corollary about the set of points that lie on a line in a Metric Geometry 

o Examples of Metric Geometry 

Reading: pages 30 – 35 of Section 2.2 Metric Geometry in the book Geometry: A Metric Approach 

with Models, Second Edition by Millman & Parker (Springer, 1991, ISBN 3-540-97412-1) 

Homework: Section 2.2 # 4, 5, 6, 9, 10, 11, 12, 17, 20  



Recall important definitions from Section 2.1 

 

Definition of Abstract Geometry  

An abstract geometry 𝒜 is an ordered pair 𝒜 = (𝒫, ℒ) where 𝒫 denotes a set whose 

elements are called points and ℒ denotes a non-empty set whose elements are called lines, 

which are sets of points satisfying the following two requirements, called axioms: 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists at least one line 𝑙 ∈ ℒ such that 𝐴 ∈ 𝑙 

and 𝐵 ∈ 𝑙. 

(ii) For every line 𝑙 ∈ 𝐿 there exist at least two distinct points that are elements of the line. 

 

Definition of Incidence Geometry 

An incidence geometry 𝒜 is an abstract geometry 𝒜 = (𝒫, ℒ) that satisfies the following two 

additional requirements, called axioms: 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists exactly one line 𝑙 ∈ ℒ such that 𝐴 ∈ 𝑙 

and 𝐵 ∈ 𝑙. 

(ii) There exist (at least) three non-collinear points. 

  



Procedure for Finding the Cartesian Line Passing through Two Distinct Points in ℝ𝟐 

Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two distinct points of ℝ2. 

If 𝑥1 = 𝑥2 then let 𝑎 = 𝑥1 = 𝑥2. In this case, 𝐿𝑎 ∈ ℒ𝐻 and 𝑃, 𝑄 ∈ 𝐿𝑎. 

If 𝑥1 ≠ 𝑥2 then define constants 𝑚, 𝑏 by the following formulas: 

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

 

𝑏 = 𝑦2 − 𝑚𝑥2 

Then 𝑃, ∈ 𝐿𝑚,𝑏 and 𝑄 ∈ 𝐿𝑚,𝑏. 

 

Procedure for Finding the Poincaré Line Passing Through Two Distinct Points in ℍ 

Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two distinct points of ℍ. 

If 𝑥1 = 𝑥2 then let 𝑎 = 𝑥1 = 𝑥2. In this case, 𝐿𝑎 ∈ ℒ𝐻 and 𝑃, 𝑄 ∈ 𝐿𝑎 . 

If 𝑥1 ≠ 𝑥2 then define constants 𝑐, 𝑟 by the following formulas: 

𝑐 =
𝑥2

2
− 𝑥1

2
+ 𝑦2

2
− 𝑦1

2

2(𝑥2 − 𝑥1
)

 

𝑟 = √(𝑥1 − 𝑐)2 + 𝑦
1

2 

In this case, 𝐿𝑐 𝑟 ∈ ℒ𝐻 and 𝑃, 𝑄 ∈ 𝐿𝑐 𝑟. 



And important definitions from Section 2.2 that were discussed in the previous video 

 

Definition of Distance Function  

words: 𝑑 is a distance function on set 𝑆 

meaning: 𝑑 is a function 𝑑: 𝑆 × 𝑆 → ℝ that satisfies these requirements 

(i) ∀𝑃, 𝑄 ∈ 𝑆(𝑑(𝑃, 𝑄) ≥ 0) 

(ii) 𝑑(𝑃, 𝑄) = 0 if and only if 𝑃 = 𝑄 

(iii) 𝑑(𝑃, 𝑄) = 𝑑(𝑄, 𝑃) 

 

 

Definition of the Absolute Value Distance Function on ℝ 

symbol: 𝑑ℝ 

meaning: the function 𝑑ℝ: ℝ × ℝ → ℝ defined by 𝑑ℝ
(𝑥, 𝑦) = |𝑥 − 𝑦| 

 

It should be clear to the reader that the Absolute Value Distance Function on ℝ really does satisfy 

the requirements to qualify to be called a distance function on ℝ. 

  



Three Distance Functions on ℝ𝟐 

 

Definition of the Euclidean Distance Function on ℝ𝟐 

symbol: 𝑑𝐸 

meaning: the function 𝑑𝐸: ℝ
2

× ℝ
2

→ ℝ defined by 

𝑑𝐸((𝑥1, 𝑦1
), (𝑥2, 𝑦2

)) = √(𝑥1 − 𝑥2
)2 + (𝑦1 − 𝑦2

)2 

 

Definition of the Taxicab Distance Function on ℝ𝟐 

symbol: 𝑑𝑇 

meaning: the function 𝑑𝑇: ℝ
2

× ℝ
2

→ ℝ defined by 

𝑑𝑇((𝑥1, 𝑦1
), (𝑥2, 𝑦2

)) = |𝑥1 − 𝑥2
| + |𝑦1 − 𝑦2

| 

 

Definition of the Max (or Supremum) Distance Function on ℝ𝟐 

symbol: 𝑑𝑆 

meaning: the function 𝑑𝑆: ℝ
2

× ℝ
2

→ ℝ defined by 

𝑑𝑆((𝑥1, 𝑦1
), (𝑥2, 𝑦2

)) = max{|𝑥1 − 𝑥2
|, |𝑦1 − 𝑦2

|}  



The Poincaré Distance Function on ℍ 

 

Definition of the Poincaré Distance Function on ℍ 

symbol: 𝑑𝐻 

meaning: the function 𝑑𝐻: ℍ × ℍ → ℝ defined by in the following way 

Suppose 𝑃 = (𝑥1, 𝑦1
) and 𝑄 = (𝑥2, 𝑦2

) are any two points of ℍ. 

If 𝑥1 = 𝑥2 then compute the distance between them using the formula 

𝑑𝐻
(𝑃, 𝑄) = |ln (

𝑦2

𝑦1

)| 

If 𝑥1 ≠ 𝑥2 then compute the distance between them using the formula 

𝑑𝐻
(𝑃, 𝑄) = |ln (

𝑥1 − 𝑐 + 𝑟

𝑦1

𝑥2 − 𝑐 + 𝑟

𝑦2

)| 

where 𝑐, 𝑟 are the constants describing the type II line that passes through 𝑃 and 𝑄. 

 

  



Rulers as a Way of Measuring Distance in Drawings 

 

We have seen introduced three distance functions for the Cartesian Plane (ℝ
2

, ℒ𝐸
) and a distance 

function for the Poincaré Plane (ℍ, ℒ𝐻
). Those distance functions enable one to find the distance 

𝑑(𝑃, 𝑄) between points 𝑃 and 𝑄 by using the (𝑥, 𝑦) coordinates of the two points. If our goal was 

just to be able to measure distance, then we are done: we have a great way to do that. 

 

But at the beginning of the current section, 2.2, it was observed that there is nothing in the axioms 

for incidence geometry that requires that lines contain an infinite set of points. Indeed, we have seen 

a bunch of examples of finite geometries that are qualified to be called incidence geometries. 

 

One might at first think that we could simply add an axiom that requires that all lines have contain 

an infinite set of points. But it is not that simple. We want the behavior of lines that is prescribed by 

the axioms to mimic the behavior of lines that we observe in our informal straight-line drawings. 

One aspect of that behavior has to do with the way that we measure distance in drawings. 

 



In our drawings, we do not measure distance between two points 𝑃 and 𝑄 by using the Euclidean 

distance formula. We find the distance between 𝑃 and 𝑄 by putting a ruler alongside the line that 

contains 𝑃 and 𝑄. We use the ruler to get numbers that correspond to the points 𝑃 and 𝑄. These 

numbers are called the coordinates of 𝑃 and 𝑄. We then subtract the coordinates of 𝑃 and 𝑄 to find 

the distance between 𝑃 and 𝑄. 

 

We will define something analogous to this process in our incidence geometries. The thing that we 

will introduce is fittingly called a ruler. Just as a ruler in a drawing is related to the distance in a 

drawing, the ruler in an incidence geometry will be related to the distance function (if there is one). 

In other words, the definition of a ruler will only apply to incidence geometries that have distance 

functions. 

 

 

  



Rulers in Axiomatic Geometry 

 

Definition of a Ruler for a Line  

words: 𝑓 is a ruler for line 𝑙 

alternate words: 𝑓 is a coordinate system for line 𝑙 

alternate words: 𝑓 is a coordinate function for line 𝑙 

usage: There is an incidence geometry (𝒫, ℒ) in the discussion, and there is a distance 

function 𝑑 on the set of points 𝒫 in the discussion, and 𝑙 ∈ ℒ. 

meaning: 𝑓 is a function 𝑓: 𝑙 → ℝ that satisfies these requirements 

(i) 𝑓 is a bijection. 

(ii) 𝑓 “agrees with” the distance function 𝑑 in the following way: 

For each pair of points 𝑃 and 𝑄 (not necessarily distinct) on line 𝑙, this equation is true: 

|𝑓(𝑃) − 𝑓(𝑄)| = 𝑑(𝑃, 𝑄) 

Additional Terminology: 

The equation above is called the Ruler Equation. 

The number 𝑓(𝑃) is called the coordinate of 𝑷 with respect to 𝒇. 

 



Illustrating the Relationship Between a Ruler and the Distance Function 

Observe that given points 𝑃 and 𝑄 on a line 𝑙, there are two different processes that can be used to 

produce a real number. 

 

Process #1: 

Feed the pair of points (𝑃, 𝑄) into the Distance Function on the Set of Points, the function 𝑑, to 

get a real number, denoted 𝑑(𝑃, 𝑄) called the distance between 𝑃 and 𝑄. This process could be 

illustrated with an arrow diagram: 

 

The bottom half of the diagram, we have seen before. It is the arrow diagram that tells us that the 

symbol 𝑑 represents a function with domain 𝒫 × 𝒫 and range ℝ. The top part of the diagram has 

been added. It shows what happens to an actual pair of points. 

 

  

𝒫 × 𝒫 ℝ 

(𝑃, 𝑄) 𝑑(𝑃, 𝑄) 
𝑑 



Process #2: (This is a two-step process.) 

First Step: Let 𝑙 be the line passing through points 𝑃 and 𝑄 and let 𝑓 be a ruler for line 𝑙. Feed 

point 𝑃 into 𝑓 to get a real number 𝑓(𝑃) (the coordinate of 𝑃) and feed point 𝑄 into 𝑓 to get a 

real number 𝑓(𝑄) (the coordinate of 𝑄). This gives us a pair of real numbers, (𝑓(𝑃), 𝑓(𝑄)). 

Second Step: Feed the pair of real numbers (𝑓(𝑃), 𝑓(𝑄)) into the Distance Function on the Set 

of Real Numbers, the function 𝑑ℝ, to get a real number, denoted 𝑑ℝ(𝑓(𝑃), 𝑓(𝑄)). We know 

exactly how the Distance Function on the Set of Real Numbers works. The real number 

𝑑ℝ(𝑓(𝑃), 𝑓(𝑄)) is just |𝑓(𝑃) − 𝑓(𝑄)|. 

 

The two-step process can be illustrated with a two-step arrow diagram: 

 

  

𝒫 × 𝒫 ℝ × ℝ 

(𝑃, 𝑄) (𝑓(𝑃), 𝑓(𝑄)) 
𝑓 × 𝑓 

ℝ 

|𝑓(𝑃) − 𝑓(𝑄)| 
𝑑ℝ 



Having identified two different processes that can be used to turn a pair of points on a line 𝑙 into a 

single real number, an obvious question is this: 

 

Obvious Question: Do the two processes give the same result? That is, for any points 𝑃 and 𝑄 on 

line 𝑙, and a ruler 𝑓 for line 𝑙, does 𝑑(𝑃, 𝑄) equal |𝑓(𝑃) − 𝑓(𝑄)|? 

 

Answer: The fact that 𝑓 is a ruler guarantees that the two results will always match. 

𝑑(𝑃, 𝑄) = |𝑓(𝑃) − 𝑓(𝑄)| 

𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 #1 = 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 #2 

 

  



The fact that these two processes always yield the same result can be illustrated by combining the 

two arrow diagrams into a single, larger diagram. In order to improve readability, we will bend the 

diagram for process #2. The resulting diagram is 

 

In the diagram, we see that there are two different routes to get from a pair of points (that is, an 

element of 𝒫 × 𝒫) to the set of real numbers, ℝ. The slanting arrow is Process #1. The two-step 

path that goes straight across and then straight down is Process #2. The circled equal sign in the 

middle of the diagram indicates that these two paths always yield the same result. In diagram 

jargon, we say that the diagram commutes. 

 

  

= 

𝒫 × 𝒫 ℝ × ℝ 
𝑓 × 𝑓 

ℝ 

𝑑ℝ 
𝑑 



We can superimpose on the diagram some additional symbols that show what happens to an actual 

pair of points. 

 

The two diagrams above may seem rather strange to you, but these sorts of diagrams are very 

common in higher-level math. Remember that the two diagrams are merely illustrations of what it 

means when we say that a function 𝑓 is a ruler. They illustrate the relationship between a ruler 𝑓 

and the distance function 𝑑. 

  

= 

𝒫 × 𝒫 ℝ × ℝ 

(𝑃, 𝑄) (𝑓(𝑃), 𝑓(𝑄)) 
𝑓 × 𝑓 

ℝ 

|𝑓(𝑃) − 𝑓(𝑄)| 

𝑑ℝ 
𝑑 

𝑑(𝑃, 𝑄) 



Metric Geometry 

 

Definition of Metric Geometry  

A metric geometry ℳ is an ordered triple ℳ = (𝒫, ℒ, 𝑑) that satisfies the following: 

 (𝒫, ℒ) is an incidence geometry. 

 𝑑 is a distance function on the set of points 𝒫 

 Every line 𝑙 ∈ ℒ has a ruler. This is requirement is called the Ruler Postulate. 

 

  



Four Examples of Metric Geometries 

 

Proposition 2.2.4: The triple (ℝ
2

, ℒ𝐸, 𝑑𝐸
) is consisting of the Cartesian Plane 𝒞 = (ℝ

2
, ℒ𝐸

) 

incidence geometry along with the Euclidean distance function 𝑑𝐸 satisfies the Ruler Postulate, so 

the triple (ℝ
2

, ℒ𝐸, 𝑑𝐸
) is qualified to be called a metric geometry. 

Definition: The Euclidean Plane ℰ is defined to be the metric geometry ℰ = (ℝ
2

, ℒ𝐸, 𝑑𝐸
). 

 

Proposition 2.2.7: The triple (ℝ
2

, ℒ𝐸, 𝑑𝑇
) is consisting of the Cartesian Plane 𝒞 = (ℝ

2
, ℒ𝐸

) 

incidence geometry along with the taxicab distance function 𝑑𝑇 satisfies the Ruler Postulate, so 

the triple (ℝ
2

, ℒ𝐸, 𝑑𝑇
) is qualified to be called a metric geometry. 

Definition: The Taxicab Plane 𝒯 is defined to be the metric geometry 𝒯 = (ℝ
2

, ℒ𝐸, 𝑑𝑇
). 

 

Fact: The triple (ℝ
2

, ℒ𝐸, 𝑑𝑆
) is consisting of the Cartesian Plane 𝒞 = (ℝ

2
, ℒ𝐸

) incidence 

geometry along with the max distance function 𝑑𝑆 satisfies the Ruler Postulate, so the triple 

(ℝ
2

, ℒ𝐸, 𝑑𝑆
) is qualified to be called a metric geometry. 

Definition: The Max Plane ℳ is defined to be the metric geometry ℳ = (ℝ
2

, ℒ𝐸, 𝑑𝑆
). 

  



Proposition 2.2.6 The triple (ℍ, ℒ𝐻, 𝑑𝐻
) is consisting of the Poincaré Plane ℋ = (ℍ, ℒ𝐻

) 

incidence geometry along with the Poincaré distance function 𝑑𝐻 satisfies the Ruler Postulate, so 

the triple (ℍ, ℒ𝐻, 𝑑𝐻
) is qualified to be called a metric geometry. 

Definition: The Poincaré Plane ℋ is defined to be the metric geometry (ℍ, ℒ𝐻, 𝑑𝐻
). 

 

I will not provide proofs that any of these four “metric geometries” that I have presented are 

actually qualified to be called metric geometries. 

 The book provides a detailed proof of Proposition 2.2.4 about the Euclidean plane. 

 The book provides a partial proof of Proposition 2.2.7 about the Taxicab plane. You will be 

asked to finish that proof in your homework exercise 2.2#12. 

 We will accept without proof that the Max plane ℳ is qualified to be called a metric 

geometry. 

 The book provides a detailed proof of Proposition 2.2.6 about the Poincaré plane. 

 

Though I won’t discuss the proof here, I will point out that part of the proofs involve producing 

ruler functions that work. The table on the next page presents rulers that do work.. 

  



Rulers for Some of our Incidence Geometries 

The table below presents Rulers for the Cartesian plane with three different distance functions 

(Euclidean distance, taxicab distance, max distance), as well as for the Poincaré plane with the 

Poincaré distance. 

Incidence 

Geometry 

Distance 

Function 
Type of Line Standard Ruler 

𝒞 = (ℝ
2

, ℒ𝐸
) 𝑑𝐸 

𝐿𝑎 = {(𝑎, 𝑦) ∈ ℝ
2} 

𝐿𝑚,𝑏 = {(𝑥, 𝑦) ∈ ℝ
2

|𝑦 = 𝑚𝑥 + 𝑏} 

𝑓(𝑎, 𝑦) = 𝑦 

𝑓(𝑥, 𝑦) = 𝑥√𝑎 + 𝑚2 

𝒞 = (ℝ
2

, ℒ𝐸
) 𝑑𝑇 

𝐿𝑎 = {(𝑎, 𝑦) ∈ ℝ
2} 

𝐿𝑚,𝑏 = {(𝑥, 𝑦) ∈ ℝ
2

|𝑦 = 𝑚𝑥 + 𝑏} 

𝑓(𝑎, 𝑦) = 𝑦 

𝑓(𝑥, 𝑦) = 𝑥(1 + |𝑚|) 

𝒞 = (ℝ
2

, ℒ𝐸
) 𝑑𝑆 

𝐿𝑎 = {(𝑎, 𝑦) ∈ ℝ
2} 

𝐿𝑚,𝑏 = {(𝑥, 𝑦) ∈ ℝ
2

|𝑦 = 𝑚𝑥 + 𝑏} 
We won’t discuss 

ℋ = (ℍ, ℒ𝐻
) 𝑑𝐻 

𝐿𝑎 = {(𝑎, 𝑦) ∈ ℍ} 

𝐿𝑟𝑐 = {(𝑥, 𝑦) ∈ ℍ|(𝑥 − 𝑐)2
+ 𝑦

2
= 𝑟 2} 

𝑓(𝑎, 𝑦) = ln(𝑦) 

𝑓(𝑥, 𝑦) = ln (
𝑥 − 𝑐 + 𝑟

𝑦
) 

 

 



Two Examples Involving Computing Coordinates of Given Points  

[Example 1] Points on a type I line in the Poincaré plane 

Let 𝐴 = (𝑥𝐴, 𝑦𝐴
) = (1,3) and 𝐶 = (𝑥𝐶, 𝑦𝐶

) = (1,5). 

(a) Find the coordinates of 𝐴, 𝐶 on the Poincaré line 𝑙 that passes through them, using the standard 

ruler for line 𝑙. 

 

 

 

(b) Use the coordinates to find the distance between 𝐴 and 𝐶. 

 

 

 

(c) Use the distance function 𝑑𝐻 to find the distance between 𝐴 and 𝐶. 

  



(d) Compare the results from (b) and (c). Is the ruler equation satisfied? 

 

 

(e) Illustrate your results from (a), (c). 

 

End of [Example 1]  



[Example 2] Points With Different 𝒙 Coordinates in the Euclidean plane 

Let 𝐵 = (𝑥𝐵, 𝑦𝐵
) = (1,4) and 𝐷 = (𝑥𝐷, 𝑦𝐷

) = (8,3). 

(a) Find the coordinates of 𝐵, 𝐷 on the line 𝑙 that passes through them, using the standard ruler 𝑓 

for that line in the Euclidean plane ℰ 

 

 

 

 

 

(b) Compute |𝑓(𝐵) − 𝑓(𝐷)| 

 

  



(c) Use the Euclidean distance function 𝑑𝐸 to find the Euclidean distance between 𝐵 and 𝐷. 

 

 

 

 

 

 

 

(d) Compare the results from (b) and (c). Is the ruler equation satisfied? 

  



(e) Illustrate your results from (a), (c). 

 

 

 

 

 

End of [Example 2]  



[Example 3] Points With Different 𝒙 Coordinates in the Taxicab Plane 

Let 𝐵 = (𝑥𝐵, 𝑦𝐵
) = (1,4) and 𝐷 = (𝑥𝐷, 𝑦𝐷

) = (8,3). 

(a) Find the coordinates of 𝐵, 𝐷 on the line 𝑙 that passes through them, using the standard ruler 𝑓 

for that line in the taxicab plane 𝒯 

 

 

 

 

 

 

 

(b) Compute |𝑓(𝐵) − 𝑓(𝐷)| 

 

  



(c) Use the Taxicab distance function 𝑑𝑇 to find the Taxicab distance between 𝐵 and 𝐷. 

 

 

 

 

 

 

 

 

(d) Compare the results from (b) and (c). Is the ruler equation satisfied? 

  



(e) Illustrate your results from (a), (c). 

 

 

 

 

End of [Example 3]  



[Example 4] Points With Different 𝒙 Coordinates in the Poincaré plane 

Let 𝐵 = (𝑥𝐵, 𝑦𝐵
) = (1,4) and 𝐷 = (𝑥𝐷, 𝑦𝐷

) = (8,3). 

(a) Find the coordinates of 𝐵, 𝐷 on the line 𝑙 that passes through them, using the standard ruler 𝑓 

for that line in the Poincaré plane ℋ. 

 

  



(b) Compute |𝑓(𝐵) − 𝑓(𝐷)| 

 

  



(c) Use the Poincaré distance function 𝑑𝐻 to find the Poincaré distance between 𝐵 and 𝐷. 

  



(d) Compare the results from (b) and (c). Is the ruler equation satisfied? 

  



(e) Illustrate your results from (a), (c). 

 

 

 

 

 

End of [Example 4]  



Finding the Point That Has a Given Coordinate on a Given Line With a Given Ruler 

Suppose that a line 𝐿 in a metric geometry (𝒫, ℒ, 𝑑) has a ruler 𝑓. 

Then 𝑓 is a function, 𝑓: 𝐿 → ℝ. 

 

 

 

Therefore, the inverse relation 𝑓−1 will be a relation from ℝ to 𝐿. Furthermore, since 𝑓 is bijective, 

the inverse relation 𝑓−1 will be qualified to be called an inverse function.  

 

 

 

 

It is possible to find the general formula for the inverse function 𝑓−1 for each of the standard 

rulers. This will involve solving equations. Some of the equations are terribly messy, though. For 

that reason, I won’t discuss finding the general formula for the inverse function 𝑓
−1 for in these 

notes. (The textbook also does not discuss it.) But I will present some examples involving finding 

the point that has a given coordinate on a given line with a given ruler. You have some homework 

exercises of this type. 

 

In solving these problems, it is helpful to use the symbol 𝜆 to denote the value of a coordinate. 



[Example 5] Finding point with specified coordinate on lines in the Euclidean plane 

(a) Find the point 𝑃 on the vertical line 𝐿3 that has coordinate 𝜆 = 5 in the standard ruler for that 

line in the Euclidean plane. 

Solution: Since 𝑃 is on the vertical line 𝐿3, we know that 𝑃 must be of the form 𝑃 = (3, 𝑦). 

The standard ruler for the vertical line 𝐿𝑎 in the Euclidean plane is the function 

𝜆 = 𝑓(𝑎, 𝑦) = 𝑦 

We are given 𝑎 = 3 and 𝜆 = 5. Therefore, 𝑦 = 𝜆 = 5.  Thus, 𝑃 is the point 𝑃 = (3,5). 

(b) Find the point 𝑃 on the non-vertical line 𝐿3,−4 that has coordinate 𝜆 = 5 in the standard ruler 

for that line in the Euclidean plane. 

Solution: The standard ruler the non-vertical line 𝐿3,−4 in the Euclidean plane is the function 

𝜆 = 𝑓(𝑥, 𝑦) = 𝑥√1 + 𝑚2 = 𝑥√1 + 32 = 𝑥√10 

We are given 𝜆 = 5. So, 𝜆 = 5 = 𝑥√10. Solving for 𝑥, we obtain 𝑥 =
5

√10
.  

Since 𝑃 is on the non-vertical line 𝐿3,−4 we know 𝑦 is obtained from the equation 𝑦 = 3𝑥 − 4. 

Therefore, 𝑦 = 3 (
5

√10
) − 4 =

15

√10
− 4. So 𝑃 = (

5

√10
,

15

√10
− 4) ≈ (1.581,0.743). 

End of [Example 5] 

  



[Example 6] Finding point with specified coordinate on lines in the taxicab plane 

(a) Find the point 𝑃 on the vertical line 𝐿3 that has coordinate 𝜆 = 5 in the standard ruler for that 

line in the taxicab plane. 

Solution: Since 𝑃 is on the vertical line 𝐿3, we know that 𝑃 must be of the form 𝑃 = (3, 𝑦). 

The standard ruler for the vertical line 𝐿𝑎 in the taxicab plane is the function 

𝜆 = 𝑓(𝑎, 𝑦) = 𝑦 

We are given 𝑎 = 3 and 𝜆 = 5. Therefore, 𝑦 = 𝜆 = 5. Thus, 𝑃 is the point 𝑃 = (3,5). 

(b) Find the point 𝑃 on the non-vertical line 𝐿3,−4 that has coordinate 𝜆 = 5 in the standard ruler 

for that line in the taxicab plane. 

Solution: The standard ruler the non-vertical line 𝐿3,−4 in the taxicab plane is the function 

𝜆 = 𝑓(𝑥, 𝑦) = 𝑥(1 + |𝑚|) = 𝑥(1 + |3|) = 4𝑥 

We are given 𝜆 = 5. So, 𝜆 = 5 = 4𝑥. Solving for 𝑥, we obtain 𝑥 =
5

4
.  

Since 𝑃 is on the non-vertical line 𝐿3,−4 we know 𝑦 is obtained from the equation 𝑦 = 3𝑥 − 4. 

Therefore, 𝑦 = 3 (
5

4
) − 4 =

15

4
− 4 = −

1

4
. So 𝑃 = (

5

4
, −

1

4
) = (1.25, −0.25). 

End of [Example 6] 

  



[Example 7] Finding point with specified coordinate on lines in the Poincaré plane 

(a) Find the point 𝑃 on the type I line 𝐿3  that has coordinate 𝜆 = 5 in the standard ruler for that 

line in the Poincaré plane. 

Solution: Since 𝑃 is on the type I line 𝐿3 , we know that 𝑃 must be of the form 𝑃 = (3, 𝑦). 

The standard ruler for the vertical line 𝐿𝑎 in the Poincaré plane is the function 

𝜆 = 𝑓(𝑎, 𝑦) = ln(𝑦) 

We are given 𝑎 = 3 and 𝜆 = 5. Therefore, 𝜆 = ln(𝑦) = ln(5). Solving this equation for 𝑦, we 

obtain 𝑦 = 𝑒
(5). Thus, 𝑃 is the point 𝑃 = (3, 𝑒

(5)
). 

(b) Find the point 𝑃 on the type II line 𝐿2 √3
 that has coordinate 𝜆 = ln(5) in the standard ruler for 

that line in the Poincaré plane. 

Solution: The standard ruler the type II line 𝐿2 √3
 in the Poincaré plane is the function 

𝜆 = 𝑓(𝑥, 𝑦) = ln (
𝑥 − 𝑐 + 𝑟

𝑦
) = ln (

𝑥 − 2 + √3

𝑦
) 

We are given 𝜆 = ln(5). That is,  

ln (
𝑥 − 2 + √3

𝑦
) = ln(5) 



Solving this eqution for 𝑥 in terms of 𝑦, we obtain 

𝑥 = 5𝑦 + 2 − √3 

This is what we will call the coordinate equation. 

Because 𝑃 lies on the line 𝐿2 √3
, we know that (𝑥, 𝑦) must also satisfy the circle equation 

(𝑥 − 2)2
+ 𝑦

2
= (√3)

2

= 3 

So we have two equations in 𝑥, 𝑦 

{

𝑥 = 5𝑦 + 2 − √3  𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

(𝑥 − 2)2
+ 𝑦

2
= (√3)

2

= 3    𝑐𝑖𝑟𝑐𝑙𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛

 

We can solve for 𝑦 by substituting the coordinate equation into the circle equation. 

3 = (𝑥 − 2)2
+ 𝑦

2
 

= ((5𝑦 + 2 − √3 ) − 2)

2

+ 𝑦
2

 

= (5𝑦 − √3 )
2

+ 𝑦
2

 

= 25𝑦
2

− 10𝑦√3 + 3 + 𝑦
2

 

= 26𝑦
2

− 10𝑦√3 + 3 

  



Subtracting 3 from both sides and factoring the right side, we obtain  

0 = 26𝑦
2

− 10𝑦√3 

= 2𝑦(13𝑦 − 5√3) 

The solutions to this equation are 𝑦 = 0 and 𝑦 =
5√3

13
. But 𝑦 = 0 is not allowed, because our point 

must be in the upper half plane. (And notice that the original coordinate equation 

ln (
𝑥 − 2 + √3

𝑦
) = ln(5) 

is not even defined when 𝑦 = 0‼) So we conclude that 𝑦 =
5√3

13
. 

We find the corresponding 𝑥 value by using the value of 𝑦 in the coordinate equation. 

𝑥 = 5𝑦 + 2 − √3 = 5 (
5√3

13
) + 2 − √3 = ⋯ =

26 + 12√3

13
 

So point 𝑃 has coordinates 

𝑃 = (𝑥, 𝑦) = (
26 + 12√3

13
,
5√3

13
) ≈ (3.599,0.666) 

  



Remarks: 

(1) One can get this approximate result from Wolfram Alpha by typing 

Solve x=5y+2-sqrt(3) and (x-2)^2+y^2=3 

(2) One can check the result most easily by substituting the decimal approximation 

(𝑥, 𝑦) = (
26 + 12√3

13
,
5√3

13
) ≈ (3.599,0.666) 

into the special ruler function 

𝑓(𝑥, 𝑦) = ln (
𝑥 − 𝑐 + 𝑟

𝑦
) = ln (

𝑥 − 2 + √3

𝑦
) 

The result is 

𝑓(3.599,0.666) = ln (
3.599 − 2 + √3

0.666
) ≈ 1.609 

By comparison, 

𝜆 = ln(5) ≈ 1.609 

End of [Example 7] 

 

End of Video  


