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Topics 

 Observations about the way that lines split a drawing. 

 Partition of a Set 

 Convex Sets 

 Proving Statements about Convexivity 

 The Plane Separation Axiom 

 Proving Statements Using Given Conditional Statements and Their Contrapositives 

 Proving a Fact about Half Planes in a Metric Geometry 

 

Reading: Section 4.1 The Plane Separation Axiom, p 63 - 68 in Geometry: A Metric Approach 

with Models, Second Edition by Millman & Parker  

 

Homework: Section 4.1 # 1, 2, 4, 5, 6, 8, 9, 10, 11, 13   



Recall Definitions of Abstract Geometry and Incidence Geometry from Section 2.1 

 

Definition of Abstract Geometry  

An abstract geometry 𝒜 is an ordered pair 𝒜 = (𝒫, ℒ) where 𝒫 denotes a set whose 

elements are called points and ℒ denotes a non-empty set whose elements are called lines, 

which are sets of points satisfying the following two requirements, called axioms: 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists at least one line 𝑙 ∈ ℒ such that 𝐴 ∈

𝑙 and 𝐵 ∈ 𝑙. 

(ii) For every line 𝑙 ∈ 𝐿 there exist at least two distinct points that are elements of the line. 

 

Definition of Incidence Geometry 

An incidence geometry 𝒜 is an abstract geometry 𝒜 = (𝒫, ℒ) that satisfies the following two 

additional requirements, called axioms: 

(i) For every two distinct points 𝐴, 𝐵 ∈ 𝒫, there exists exactly one line 𝑙 ∈ ℒ such that 

𝐴 ∈ 𝑙 and 𝐵 ∈ 𝑙. 

(ii) There exist (at least) three non-collinear points. 

 



Recall this theorem from Section 3.2 

 

Theorem 3.2.6 Existence of Points with Certain Betweenness Relationships 

Given: Distinct points 𝐴, 𝐵 in a metric geometry 

Claim:  

(i) There exists a point 𝐶 with 𝐴 − 𝐶 − 𝐵  

(ii) There exists a point 𝐷 with 𝐴 − 𝐵 − 𝐷  

 

  



Chapter 4 Plane Separation 

Introduction: In the previous chapters, we saw that there is a notion of distance in our metric 

geometry that agrees with our notions about distance in drawings. In chapter 4, we are interested in 

other kinds of behavior of drawings. Here are four examples of familiar behavior of drawings: 

Example #1: Consider the way a drawn line 𝐿 “splits” the plane of a drawing. 

Notice three things:  

(1) Any point must be either on line 𝐿 or on one side of it or the other. 

(2) If two points are on the same side of line 𝐿, then the segment connecting 

those two points also lies on the same side of 𝐿 and does not intersect 𝐿. 

(3) If two points are on opposite sides of line 𝐿, then the segment connecting 

those two points will intersect line 𝐿. 

 

Example #2: In a drawing, any line that intersects a side of a triangle at a point that 

is not a vertex must also intersect at least one of the opposite sides.  

Example #3: Drawn triangles have an “inside” and an “outside”. 
 

Example #4:  In a drawing, any ray drawn from a vertex into the inside of a 

triangle must hit the opposite side of the triangle somewhere and go out. 
 

𝐿 

inside 

outside 



Section 4.1 The Plane Separation Axiom 

 

In Chapter 4, we will see the introduction of a new axiom, called the Plane Separation Axiom 

(PSA), that will insure that our axiomatic geometry will exhibit behavior analogous to the behavior 

of drawings described above. 

 

In order to understand the statement of the Plane Separation Axiom, we need to first discuss the 

concept of a partition of a set and the concept of a convex set. 

 

 

  



Partition of a Set 

 

The Plane Separation Axiom (PSA) uses the terminology of partition of a set. Here’s the definition. 

 

Definition of Partition of a Set 

Words: {𝐴1, 𝐴2, 𝐴3, … } is a partition of set 𝐴. 

Meaning: The following three requirements are all satisfied. 

 Each of the 𝐴𝑖 is a non-empty subset of 𝐴. 

 𝐴 is the union of all the 𝐴𝑖. That is, 

𝐴 = ⋃ 𝐴𝑖

𝑖

 

 The sets 𝐴1, 𝐴2, 𝐴3, … are mutually disjoint. That is,  

If 𝑖 ≠ 𝑗  then 𝐴𝑖 ∩ 𝐴𝑗 = 𝜙 

 

  



[Example 1] Examples of Partitions 

 

(a) The set {𝑒𝑣𝑒𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠, 𝑜𝑑𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠} is a partition of ℤ. 

 

{… , −4, −2,0,2,4, … } ∪ {… , −3, −1,1,3, … } = {… , −4, −3, −2, −1,0,1,2,3,4, … } = ℤ 

 

(b) The set {ℝ
+

, ℝ
−} is not a partition of ℝ. because ℝ+

∪ ℝ
− is not all of ℝ 

 

 

(c) The set {ℝ
+

, ℝ
−

, {0}} is a partition of ℝ. 

 

 

 

(d) The set {𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠, 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠} is a partition of ℝ. 

 

 

End of [Example 1]  



Convex Sets 

 

Another term used in the Plane Separation Axiom (PSA) is convex set. 

 

Definition of Convex 

 Words: 𝑆 is convex 

 Usage: A metric geometry (𝒫, ℒ, 𝑑) is given, and 𝑆 ⊂ 𝒫 is a set of points. 

 Meaning: for every two distinct points 𝐴, 𝐵 ∈ 𝑆, the segment 𝐴𝐵̅̅ ̅̅ ⊂ 𝑆. 

 Quantified version:  ∀𝐴, 𝐵 ∈ 𝑆, 𝐴 ≠ 𝐵(𝐴𝐵̅̅ ̅̅ ⊂ 𝑆). 

 Universal Conditional Version: ∀𝐴, 𝐵 ∈ 𝒫, 𝐴 ≠ 𝐵(If 𝐴, 𝐵 ∈ 𝑆 then 𝐴𝐵̅̅ ̅̅ ⊂ 𝑆) 

 

 

 

 

  



How do we prove that a set is convex? 

 

The statement of convexity is a universal statement, so we must do a general proof. 

  



[Example 2] In the Euclidean plane metric geometry, (ℝ2, ℒ𝐸 , 𝑑𝐸), define 𝒫1, 𝒫2 ⊂ ℝ2 by  

𝒫1 = {(𝑥, 𝑦) ∈ ℝ2|3 < 𝑥 < 5}   and   𝒫2 = {(𝑥, 𝑦) ∈ ℝ2|3 < 𝑦 < 5} 

We claim that 𝒫1 and 𝒫2 are convex. 

Proof that 𝓟𝟏 is convex. 

(1) Suppose that 𝐴, 𝐵 ∈ 𝒫1 and that 𝐴 ≠ 𝐵 

(2) Then 𝐴 = (𝑥𝐴, 𝑦𝐴) where 3 < 𝑥𝐴 < 5 (by (1) and definition of set 𝒫1. 

(3) And 𝐵 = (𝑥𝐵, 𝑦𝐵) where 3 < 𝑥𝐵 < 5 (by (1) and definition of set 𝒫2. 

(4) Suppose 𝐶 ∈ 𝐴𝐵̅̅ ̅̅ . 

(5) Then 𝐶 = 𝐴 or 𝐶 = 𝐵 or 𝐴 − 𝐶 − 𝐵. (by (4) and definition of segment) 

(6) (Cases (i) and (ii)) Clearly, if 𝐶 = 𝐴 or 𝐶 = 𝐵, then 𝐶 ∈ 𝒫1. 

(7) (Case (iii)) Also, if 𝐴 − 𝐶 − 𝐵, then the 𝑥 coordinate of 𝐶 will be between 𝑥𝐴 and 𝑥𝐵. So 

the 𝑥 coordinate of 𝐶 will be somewhere between 3 and 5. So 𝐶 ∈ 𝒫1 in this case as well. 

(8) Conclude that 𝐶 ∈ 𝒫1 (because it is true in every case). 

(9) Therefore, 𝐴𝐵̅̅ ̅̅ ⊂ 𝒫1 (by (4),(8), and definition of subset) 

(10) Conclude that 𝒫1 is convex (by (1), (9), and definition of convex) 

End of proof 

The Proof that 𝓟𝟐 is convex is similar 



Picture of set 𝒫1 

 

Picture of set 𝒫2 

 

End of [Example 2]  



[Example 3] More abstract proof about convexivity.  

Let 𝒫1 ⊂ 𝒫 and 𝒫2 ⊂ 𝒫 be sets of points in a metric geometry. 

Prove or disprove: If 𝒫1 and 𝒫2 are convex, then 𝒫1 ∩ 𝒫2 is convex. 

 

Solution: The statement doesn’t mention anything specific about the metric geometry, so the claim 

is actually implicitly quantified. That is, it is a universal claim about all metric geometries. That is,  

∀metric geometry(𝒫, ℒ, 𝑑)(∀𝒫1, 𝒫2 ⊂ 𝒫(If 𝒫1, 𝒫2 are convex, then 𝒫1 ∩ 𝒫2 is convex)) 

Proof: 

(1) Suppose (𝒫, ℒ, 𝑑) is a metric geometry, and that 𝒫1, 𝒫1 are convex subsets of 𝒫 

(2) Suppose that 𝑃, 𝑄 ∈ 𝒫1 ∩ 𝒫2 and that 𝑃 ≠ 𝑄. 

(3) 𝑃, 𝑄 ∈ 𝒫1 and 𝑃, 𝑄 ∈ 𝒫2 (by (2) and definition of intersection.) 

(4) 𝑃𝑄̅̅ ̅̅ ⊂ 𝒫1 and 𝑃𝑄̅̅ ̅̅ ⊂ 𝒫2 (by (1), (3), and definition of convex) 

(5) Then 𝑃𝑄̅̅ ̅̅ ⊂ 𝒫1 ∩ 𝒫2. (by (4)) and definition of intersection) 

(6) We have shown that 𝒫1 ∩ 𝒫2 is convex. (by (2),(5) and definition of convex) 

End of Proof 

 

End of [Example 3]  



How do we prove that a set is not convex? 

 

Must first determine the negation of the statement that the set is convex. 

 

Convex ≡ ∀𝑃, 𝑄 ∈ 𝑆, 𝑃 ≠ 𝑄(𝑃𝑄̅̅ ̅̅ ⊂ 𝑆) 

𝑁𝑂𝑇(Convex) ≡ 𝑁𝑂𝑇(∀𝑃, 𝑄 ∈ 𝑆, 𝑃 ≠ 𝑄(𝑃𝑄̅̅ ̅̅ ⊂ 𝑆)) 

≡ ∃𝑃, 𝑄 ∈ 𝑆, 𝑃 ≠ 𝑄(𝑁𝑂𝑇(𝑃𝑄̅̅ ̅̅ ⊂ 𝑆)) 

≡ ∃𝑃, 𝑄 ∈ 𝑆, 𝑃 ≠ 𝑄(𝑃𝑄̅̅ ̅̅ ⊄ 𝑆) 

 

Observe that the statement of not convex is an existential statement. Therefore, if the goal is to 

prove that a set is not convex, then one must produce an example of distinct points 𝑃, 𝑄 ∈ 𝑆 such 

that 𝑃𝑄̅̅ ̅̅ ⊄ 𝑆. 

 

 

  



[Example 2] Let 𝒫1 ⊂ 𝒫 and 𝒫2 ⊂ 𝒫 be sets of points in a metric geometry. 

Prove or disprove: If 𝒫1 and 𝒫2 are convex, then 𝒫1 ∪ 𝒫2 is convex. 

 

Solution: As with the previous example, the claim is implicitly quantified. That is, the claim is 

∀metric geometry(𝒫, ℒ, 𝑑)(∀𝒫1, 𝒫2 ⊂ 𝒫(If 𝒫1, 𝒫2 are convex, then 𝒫1 ∪ 𝒫2 is convex)) 

 

In this case, the statement is false. To prove that the statement is false, we need to prove that its 

negation is true. In order to know how to do that, we need to first correctly write the negation. It is 

extremely important that you remember that the negation of a conditional statement is not another 

conditional statement! 

Negating a Conditional Statement 

Incorrect negation: 𝑁𝑂𝑇(If 𝐴 then 𝐵) ≡ If 𝐴 then 𝑁𝑂𝑇(𝐵) 

Correct negation: 𝑁𝑂𝑇(If 𝐴 then 𝐵) ≡ 𝐴 and 𝑁𝑂𝑇(𝐵) 

 

So the negation of the original claim is the following: 

∃metric geometry(𝒫, ℒ, 𝑑)(∃𝒫1, 𝒫2 ⊂ 𝒫(𝒫1, 𝒫2 are convex and 𝒫1 ∪ 𝒫2 is not convex)) 

 



We see that the negation is an existential statement. Remember that one must prove an existential 

statement by providing an example. 

 

In the special case that one is disproving a universal statement by providing an example to show 

that the negation is true, the example is called a counterexample. 

 

So our job is to produce an example consisting of a metric geometry (𝒫, ℒ, 𝑑) and two sets of 

points, 𝒫1, 𝒫2 ⊂ 𝒫, such that 𝒫1 and 𝒫2 are convex and 𝒫1 ∪ 𝒫2 is not convex. 

 

Consider the Euclidean plane metric geometry, (ℝ
2

, ℒ𝐸, 𝑑𝐸
) and sets 𝒫1, 𝒫2 ⊂ ℝ

2 defined by  

𝒫1 = {(𝑥, 𝑦) ∈ ℝ
2

|3 < 𝑥 < 5} 

𝒫2 = {(𝑥, 𝑦) ∈ ℝ
2

|3 < 𝑦 < 5} 

We observed in [Example 2] that 𝒫1 and 𝒫2 are convex. 

However, notice that 𝒫1 ∪ 𝒫2 is not convex. 

 

We need to be very clear about the claim that 𝒫1 ∪ 𝒫2 is not convex. That is, we must provide an 

example of points 𝐴, 𝐵 ∈ 𝒫1 ∪ 𝒫2 such that 𝐴𝐵̅̅ ̅̅ ⊄ 𝒫1 ∪ 𝒫2. 



So let 𝐴 = (3,0) and 𝐵 = (0,3).  

Then 𝐴 ∈ 𝒫1, so 𝐴 ∈ 𝒫1 ∪ 𝒫2 

And 𝐵 ∈ 𝒫2, so 𝐵 ∈ 𝒫1 ∪ 𝒫2 

Now observe that (2,2) ∈ 𝐴𝐵̅̅ ̅̅  but (2,2) ∉ 𝒫1 ∪ 𝒫2. 

This shows that 𝐴𝐵̅̅ ̅̅ ⊄ 𝒫1 ∪ 𝒫2. 

 

End of [Example 4]  



The Plane Separation Axiom 

With the terminology of partition of a set and convex set, we are now able to understand the 

wording of the Plane Separation Axiom. 

Definition: The Plane Separation Axiom (PSA) (My version of the definition) 

 Words: A metric Geometry (𝒫, ℒ, 𝑑) satisfies the plane separation axiom (PSA) 

 Meaning: For every line 𝑙 ∈ ℒ, there are two associated sets of points called half planes, 

denoted 𝐻1 and 𝐻2, with the following properties: 

(i) The three sets 𝑙, 𝐻1, 𝐻2 form a partition of the set 𝒫 of all points. 

(ii) Each of the half planes is convex. 

(iii) If 𝐴 ∈ 𝐻1 and 𝐵 ∈ 𝐻2, then 𝐴𝐵̅̅ ̅̅  intersects line 𝑙. 

 Additional Terminology:  

 Line 𝑙 is called the edge of half planes 𝐻1 and 𝐻2. 

 Words: Points 𝐴, 𝐵 lie on the same side of line 𝑙. 

 Meaning: Points 𝐴, 𝐵 are elements of the same half plane associated to 𝑙. 

 Words: Points 𝐴, 𝐵 lie on opposite sides of line 𝑙. 

 Meaning: Points 𝐴, 𝐵 are elements of different half planes associated to 𝑙. 

  



Illustrations of the Plane Separation Axiom (PSA) 

 

PSA (i) The three sets 𝑙, 𝐻1, 𝐻2 form a partition of the set 𝒫 of all points. 

 

 

 

 

PSA (ii) Each of the half planes is convex. 

 

 

 

 

PSA (iii) If 𝐴 ∈ 𝐻1 and 𝐵 ∈ 𝐻2, then 𝐴𝐵̅̅ ̅̅  intersects line 𝑙. 

 

  



It is worth comparing the wording of my version of the PSA with the book’s version on page 64. 

 

Definition: The Plane Separation Axiom (PSA) (Book version of the definition) 

A metric Geometry {𝒫, ℒ, 𝑑} satisfies the plane separation axiom (PSA) if for every line 𝑙 ∈

ℒ, there are two subsets 𝐻1 and 𝐻2 of 𝒫 (called half planes determined by 𝒍) such that 

(i) 𝒫 − 𝑙 = 𝐻1 ∪ 𝐻2. 

(ii) 𝐻1 and 𝐻2 are disjoint and each is convex. 

(iii) If 𝐴 ∈ 𝐻1 and 𝐵 ∈ 𝐻2, then segment 𝐴𝐵̅̅ ̅̅ ∩ 𝑙 ≠ 𝜙. 

Observe that the overall meaning of PSA described by the two versions of the definition is the 

same. But I have three complaints about the book’s version of the definition. 

 The book’s version of the definition does not use the terminology of a partition of a set. This 

is silly, because that should be standard terminology for a course at this level. 

 Furthermore, in the book’s definition, the fact that the three sets 𝑙, 𝐻1, 𝐻2 form a partition of 

the set 𝒫 of all points is conveyed partly by (i) and partly by the start of (ii). This is silly.  The 

fact that those three sets form a partition should all be part of just one statement. 

 The book’s definition does not use the terminology of a segment and line intersecting.  

Because of these complaints, I will hereafter refer only to my version of the PSA.  



To actually use the PSA, it will be crucial to be able to do three things: 

(1) Understand the interpretations of PSA (ii) and (iii) as conditional statements. 

(2) Understand the associated contrapositive for each conditional statements. 

(3) Know how to use a given conditional statement and its contrapositive to prove new statements. 

 

  



Interpretations of PSA (ii) and (iii) as Conditional Statements, and their Contrapositives 

 

Consider PSA (ii): Each of the half planes is convex. 

 

Using the definition of convex, we can restate PSA (ii) as a conditional statement, and state its 

contrapositive: 

 

PSA (ii):  If distinct points 𝑃, 𝑄 are in the same half plane, then 𝑃𝑄̅̅ ̅̅  does not intersect line 𝑙. 

PSA (ii) (contrapositive):  If 𝑃𝑄̅̅ ̅̅  does intersect line 𝑙, then 𝑃, 𝑄 are not in the same half plane. 

 

Now consider PSA (iii), which already has the form of a conditional statement. We can state it in a 

slightly different version, and state its contrapositive: 

 

PSA (iii) If 𝑃, 𝑄 are not in the same half plane, then 𝑃𝑄̅̅ ̅̅  intersects line 𝑙. 

PSA (iii) (contrapositive) If 𝑃𝑄̅̅ ̅̅  does not intersect line 𝑙, then 𝑃, 𝑄 are distinct points in the same 

half plane. 

  



Proving Statements Using Given Conditional Statements and their Contrapositives 

 

Suppose that two axioms (or theorems) are stated in the form of conditional statements, as follows. 

 

 Axiom <100>: If the dog is blue, then the car is red. 

 Axiom <101>: If the car is red, then the bear is hungry. 

 

The contrapositives of these two axioms would be the following statements: 

 

 Axiom <100> (contrapositive): If the car is not red, then the dog is not blue. 

 Axiom <101> (contrapositive): If the bear is not hungry, then the car is not red. 

 

Remember that the contrapositive statements are logically equivalent to the original statements. 

 

  



For example, suppose that we wanted to prove that the car is red. 

 

We would have to use Axiom <100>. Our strategy would be to 

 First prove somehow that the dog is blue. 

 Then use Axiom <100> to say that the car is red. 

 

Note that we would not use Axiom <101> to prove that the car is red. Axiom <101> tells us 

something about the situation where we already know that the car is red. (It tells us that in this 

situation, the bear is hungry.) 

 

Now suppose that we want to prove that the car is not red. 

 

It is important to realize that Axiom <100> does not help us in this case! To prove that the car is 

not red, we must use Axiom <101> (contrapositive). Our strategy would be to 

 First prove somehow that the bear is not hungry. 

 Then use Axiom <101> (contrapositive) to say that the car is not red. 

  



The discussion above is relevant to your use of PSA (ii) and PSA (iii) in proofs. Since we will be 

so often referring to PSA (ii) and (iii) and their contrapositives, it is worthwhile to present them in a 

nice green box. 

 

PSA (ii) and (iii) and their Contrapositives  

 

PSA (ii):  If distinct points 𝑃, 𝑄 are in the same half plane, then 𝑃𝑄̅̅ ̅̅  does not intersect line 𝑙. 

PSA (ii) (contrapositive):  If 𝑃𝑄̅̅ ̅̅  does intersect line 𝑙, then 𝑃, 𝑄 are not in the same half plane. 

 

PSA (iii) If 𝑃, 𝑄 are not in the same half plane, then 𝑃𝑄̅̅ ̅̅  intersects line 𝑙. 

PSA (iii) (contrapositive) If 𝑃𝑄̅̅ ̅̅  does not intersect line 𝑙, then 𝑃, 𝑄 are distinct points in the 

same half plane. 

 

  



For instance, suppose that know that distinct points 𝑃 and 𝑄 are not on some line 𝑙, and you want to 

prove that they are in the same half plane of 𝑙.  

 

You should not use PSA (ii). That statement says something about the situation where you already 

know that points 𝑃 and 𝑄 are in the same half plane. (It says that in that situation, segment 𝑃𝑄̅̅ ̅̅  does 

not intersect line 𝑙.)  

 

Rather, you should use PSA (iii) (contrapositive). Your strategy should be to 

 Prove somehow that segment 𝑃𝑄̅̅ ̅̅  does not intersect line 𝑙 

 Then use PSA (iii) (contrapositive) to say that points 𝑃 and 𝑄 are in the same half plane. 

 

  



Or instead, suppose that know that distinct points 𝑃 and 𝑄 are not on some line 𝑙, and you want to 

prove that they are not in the same half plane of 𝐿.  

 

You should not use PSA (iii). That statement says something about the situation where you already 

know that points 𝑃 and 𝑄 are not in the same half plane. (It says that in that situation, segment 𝑃𝑄̅̅ ̅̅  

does intersect line 𝑙.)  

 

Rather, you should use PSA (ii) (contrapositive). Your strategy should be to 

 Prove somehow that segment 𝑃𝑄̅̅ ̅̅  does intersect line 𝑙. 

 Then use PSA (ii) (contrapositive) to say that points 𝑃 and 𝑄 are not in the same half plane. 

 

 

 

 

 

 

 



[Example 3] Prove the following: 

Given: a line 𝐿 in a metric geometry that satisfies the Plane Separation Axiom (PSA) 

Claim: Each of the half planes determined by 𝐿 contains a point. 

Proof 

(1) Suppose 𝐿 is a line in a metric geometry that satisfies the PSA. (Illustrate.) 

 

 

 

(2) There exist two distinct points on 𝐿. Call them 𝑃 and 𝑄. (Justify.) (Illustrate.) 

 

 

 

(3) There exists a point not on 𝐿. Call it 𝑅.  (Justify.) (Illustrate.) 

  



(4) Point 𝑅 lies in one of the two half planes determined by line 𝐿. (Justify.) Call that half plane 

𝐻1. (Illustrate.) 

 

 

 

 

 

 

(5) There exists a unique line passing through 𝑃 and 𝑅. (Justify.) 

 

(6) The line passing through 𝑃 and 𝑅 is not 𝐿. (Justify.) So it must be a new line. Call it 𝑀. 

(Illustrate.) 

 

  



(7) There exists a point such that 𝑅 − 𝑃 − 𝑝𝑜𝑖𝑛𝑡. (Justify.) 

 

 

 

 

(8) This point cannot be the same as any of our previous three points. (Justify.) So it must be a 

new point. Call it 𝑆. So 𝑅 − 𝑃 − 𝑆. (Illustrate.) 

 

 

  



(9) Point 𝑆 lies in the other half plane determined by line 𝐿. (Justify.)Call that half plane 𝐻2. 

 

 

 

 

 

 

(10) We have shown that half planes 𝐻1, 𝐻2 each contain a point. (Illustrate.) 

 

 

 

 

 

End of Proof 

End of [Example 3] 

 

End of Video 




