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Topics 

• Plane Separation Properties of Interiors of Rays and Segments 

• The Z Theorem 

• Interiors of Angles and Triangles 

• The Crossbar Theorem 

• The Converse of the Crossbar Theorem 

 

Reading: Section 4.4: Interiors and the Crossbar Theorem, p 81 - 85 in Geometry: A Metric 

Approach with Models, Second Edition by Millman & Parker  

 

Homework: Section 4.4 #2, 4, 5, 6, 9, 10, 11, 12, 15  



Recall from Section 2.1: Theorem about Intersecting Lines in Incidence Geometry 

 

Theorem 2.1.6 Given two lines 𝑙1 and 𝑙2 in an incidence geometry, 

If 𝑙1 ∩ 𝑙2 has two or more distinct points, 

then 𝑙1 and 𝑙2 are the same line. That is, 𝑙1 = 𝑙2. 

 

The contrapositive of the statement of Theorem 2.1.6 can be stated as a corollary. 

 

Corollary 2.1.7 (contrapositive of Theorem 2.1.6)  

Given two lines 𝑙1 and 𝑙2 in an incidence geometry, 

If lines 𝑙1 and 𝑙2 are known to be distinct lines (that is, 𝑙1 ≠ 𝑙2), 

then either lines 𝑙1 and 𝑙2 do not intersect or they intersect in exactly one point. 

 

  



Recall Some Properties of Betweenness from Section 3.2 

 

Corollary 3.2.4 Fact about Three Distinct Collinear Points in a Metric Geometry 

Given: Three distinct collinear points 𝑃, 𝑄, 𝑅 in a metric geometry 

Claim: Exactly one of the points is between the other two. 

 

Theorem 3.2.6 Existence of Points with Certain Betweenness Relationships 

Given: Distinct points 𝐴, 𝐵 in a metric geometry 

Claim:  (i) There exists a point 𝐶 with 𝐴 − 𝐵 − 𝐶  

(ii) There exists a point 𝐷 with 𝐴 − 𝐷 − 𝐵  

 

  



Recall Definitions of Segment and Ray and their Interiors 

 

Definition of Segment 

Symbol: 𝐴𝐵̅̅ ̅̅  

Spoken: segment 𝐴 𝐵. 

Usage: 𝐴, 𝐵 are distinct points in a metric geometry ℳ = (𝒫, ℒ, 𝑑). 

Meaning: the set 

𝐴𝐵̅̅ ̅̅ = {𝐶 ∈ 𝒫|𝐶 = 𝐴  or  𝐴 − 𝐶 − 𝐵  or  𝐶 = 𝐵} 

Additional Terminology 

The end points (or vertices) of 𝐴𝐵̅̅ ̅̅  are the points 𝐴 and 𝐵. 

The interior of the segment is the set of all points of the segment that are not endpoints: 

int(𝐴𝐵̅̅ ̅̅ ) = 𝐴𝐵̅̅ ̅̅ − {𝐴, 𝐵} = {𝐶 ∈ 𝒫|𝐴 − 𝐶 − 𝐵} 

Symbol: length(𝐴𝐵̅̅ ̅̅ ) 

Spoken: the length of segment 𝐴𝐵̅̅ ̅̅  

Meaning:  the number 𝐴𝐵. That is, the length is the number 𝑑(𝐴, 𝐵).  



 

Definition of Ray 

Symbol: 𝐴𝐵⃗⃗⃗⃗  ⃗ 

Spoken: ray 𝐴 𝐵. 

Usage: 𝐴, 𝐵 are distinct points in a metric geometry ℳ = (𝒫, ℒ, 𝑑). 

Meaning: the set 

𝐴𝐵⃗⃗⃗⃗  ⃗ = {𝐶 ∈ 𝒫|𝐶 = 𝐴  or  𝐴 − 𝐶 − 𝐵  or  𝐶 = 𝐵  or  𝐴 − 𝐵 − 𝐶} 

= 𝐴𝐵̅̅ ̅̅ ∪ {𝐶 ∈ 𝒫|𝐴 − 𝐵 − 𝐶} 

Additional Terminology 

The initial point (or vertex) of 𝐴𝐵⃗⃗⃗⃗  ⃗ is the point 𝐴. 

The interior of the ray is the set of all points of the ray except the initial point: 

int(𝐴𝐵⃗⃗⃗⃗  ⃗) = 𝐴𝐵⃗⃗⃗⃗  ⃗ − {𝐴} = {𝐶 ∈ 𝒫|𝐴 − 𝐶 − 𝐵  or  𝐶 = 𝐵  or  𝐴 − 𝐵 − 𝐶} 

 

 

  



Recall the Plane Separation Axiom 

 

Definition: The Plane Separation Axiom (PSA) (My version of the definition) 

• Words: A metric Geometry (𝒫, ℒ, 𝑑) satisfies the plane separation axiom (PSA) 

• Meaning: For every line 𝑙 ∈ ℒ, there are two associated sets of points called half planes, 

denoted 𝐻1 and 𝐻2, with the following properties: 

(i) The three sets 𝑙, 𝐻1, 𝐻2 form a partition of the set 𝒫 of all points. 

(ii) Each of the half planes is convex. 

(iii) If 𝐴 ∈ 𝐻1 and 𝐵 ∈ 𝐻2, then 𝐴𝐵̅̅ ̅̅  intersects line 𝑙. 

• Additional Terminology:  

• Line 𝑙 is called the edge of half planes 𝐻1 and 𝐻2. 

• Words: Points 𝐴, 𝐵 lie on the same side of line 𝑙. 

• Meaning: Points 𝐴, 𝐵 are elements of the same half plane associated to 𝑙. 

• Words: Points 𝐴, 𝐵 lie on opposite sides of line 𝑙. 

• Meaning: Points 𝐴, 𝐵 are elements of different half planes associated to 𝑙. 

  



 

PSA (ii) and (iii) and their Contrapositives  

 

PSA (ii):  If distinct points 𝑃,𝑄 are in the same half plane, then 𝑃𝑄̅̅ ̅̅  does not intersect line 𝑙. 

PSA (ii) (contrapositive):  If 𝑃𝑄̅̅ ̅̅  does intersect line 𝑙, then 𝑃, 𝑄 are not in the same half plane. 

 

PSA (iii) If 𝑃, 𝑄 are not in the same half plane, then 𝑃𝑄̅̅ ̅̅  intersects line 𝑙. 

PSA (ii) (contrapositive) If 𝑃𝑄̅̅ ̅̅  does not intersect line 𝑙, then 𝑃, 𝑄 are distinct points in the same 

half plane. 

  



Definition: Pasch’s Postulate (PP) 

• Words: A metric Geometry (𝒫, ℒ, 𝑑) satisfies Pasch’s Postulate (PP) 

• Meaning: For every line and for every triangle, if the line intersects a side of the triangle at 

a point that is not a vertex, then the line intersects at least one of the opposite sides. 

 

Theorem About Two Equivalent Statements in a Metric Geometry 

Given: Metric Geometry ℳ = (𝒫, ℒ, 𝑑) 

Claim: The following statements are equivalent (TFAE) 

(1) The metric geometry satisfies the Plane Separation Axiom (PSA). 

(2) The metric geometry satisfies Pasch’s Postulate (PP). 

 

Definition of Pasch Geometry 

A Pasch Geometry is a metric geometry that satisfies the Plane Separation Axiom (PSA). 

Remark: By the Theorem About Two Equivalent Statements in a Metric Geometry, we see that 

Pasch Geometries are also the metric geometries that satisfy Pasch’s Postulate (PP). 

  



Section 4.4 Interiors and the Crossbar Theorem 

 

Plane Separation Properties of Interiors of Rays and Segments  

 

The Plane Separation Axiom (PSA) discusses some of the ways in which points and line segments 

intersect a line and its half planes.  

 

It will be useful to articulate some more ways in which line segments intersect a line and its half 

planes and to also consider ways in rays intersect a line and its half planes. 

 

For that, we will start by considering convexivity properties. 

 

  



I will point out, but will not prove, the following convexivity properties of lines, rays, segments, 

and their interiors: 

 

In a metric geometry, a line is a convex set. 

 

 

In a metric geometry, a ray is a convex set. 

 

 

In a metric geometry, a segment is a convex set. 

 

 

In a metric geometry, the interior of a ray is a convex set. 

 

 

In a metric geometry, the interior of a segment is a convex set. 

  



The following theorem is proven in the book. The proof is not difficult, so I won’t discuss it here. 

 

Theorem 4.4.1 In a Pasch Geometry,  

if 𝒜 is a nonempty convex set that does not intersect line 𝑙, 

then all points of 𝒜 lie on the same side of 𝑙. 

 

  



The proof of the following theorem is straightforward, and so I won’t discuss the proof here. 

(You’ll prove it in a homework exercise. Your proof should use Theorem 4.4.1) 

 

Theorem 4.4.2 In a Pasch Geometry, 

let 𝒜 be a line, ray, segment, interior of a ray, or interior of a segment. 

(i) If 𝑙 is a line with 𝒜 ∩ 𝑙 = 𝜙, then all of 𝒜 lies on one side of 𝑙. 

(ii) If 𝐴 − 𝐵 − 𝐶 and 𝐴𝐶⃡⃗⃗⃗  ⃗ ∩ 𝑙 = {𝐵} 

then int(𝐵𝐴⃗⃗⃗⃗  ⃗) and int(𝐵𝐴̅̅ ̅̅ ) both lie on the same side of 𝑙, 

while int(𝐵𝐶⃗⃗⃗⃗  ⃗) and int(𝐵𝐶̅̅ ̅̅ ) both lie on the other side of 𝑙. 

 

It is worthwhile making a variety of drawings that illustrate the statement of Theorem 4.4.2. This 

will not only help you understand the statement of the theorem, but also help train your eyes so that 

in future proofs, you will recognize situations where you need to use the theorem. 

  



Illustrations of Theorem 4.4.2 (i) 

  



Illustration of Theorem 4.4.2 (ii) 

  



The Z Theorem 

The following theorem is easily proven using Theorem 4.4.2. See the book for a proof. 

 

Theorem 4.4.3 (The Z Theorem) In a Pasch geometry, if 𝑃 and 𝑄 are on opposite sides of 𝐴𝐵⃡⃗⃗⃗  ⃗, 

then 𝐵𝑃⃗⃗⃗⃗  ⃗ ∩ 𝐴𝑄⃗⃗ ⃗⃗  ⃗ = 𝜙. In particular, 𝐵𝑃̅̅ ̅̅ ∩ 𝐴𝑄̅̅ ̅̅ = 𝜙. 

 

Illustration of the Statement of Theorem 4.4.3 

  



Interiors of Angles and Triangles 

 

Definition of More Descriptive Half Plane Notation 

Symbol: 𝐻
𝐴𝐵⃡⃗⃗⃗  ⃗,𝐶

 

Usage: 𝐴, 𝐵, 𝐶 are non-collinear points in a Pasch geometry. 

Meaning: The half plane of line 𝐴, 𝐵 that contains 𝐶. 

 

  



 

Definition of Angle and Triangle Interiors 

Symbol: int(∠𝐴𝐵𝐶) 

Spoken: the interior of angle 𝐴, 𝐵, 𝐶 

Meaning: 𝐻
𝐵𝐴⃡⃗⃗⃗  ⃗,𝐶

∩ 𝐻
𝐵𝐶⃡⃗⃗⃗  ⃗,𝐴

 

Symbol: int(Δ𝐴𝐵𝐶) 

Spoken: the interior of triangle 𝐴, 𝐵, 𝐶 

Meaning: 𝐻
𝐴𝐵⃡⃗⃗⃗  ⃗,𝐶

∩ 𝐻
𝐵𝐶⃡⃗⃗⃗  ⃗,𝐴

∩ 𝐻
𝐶𝐴⃡⃗⃗⃗  ⃗,𝐵

 

 

  



 

Theorem 4.4.6 Given ∠𝐴𝐵𝐶 in a Pasch geometry, if 𝐴 − 𝑃 − 𝐶, then 𝑃 ∈ int(∠𝐴𝐵𝐶). 

 

Illustration of the Statement of the Theorem 

 

 

 

 

 

 

You’ll justify and illustrate the steps in a given proof of Theorem 4.4.6 in your homework. 

 

 

  



Observe this immediate consequence (corollary) of Theorem 4.4.6 

In a Pasch geometry, all points in the interior of one side of a triangle are in the interior of the 

opposite angle. That is, in any triangle Δ𝐴𝐵𝐶 the following subset relationship is true 

int(𝐴𝐶̅̅ ̅̅ ) ⊂  int(∠𝐴𝐵𝐶) 

 

  



The Crossbar Theorem 

 

Theorem 4.4.7 (The Crossbar Theorem) 

In a Pasch geometry, if 𝑃 ∈ int(∠𝐴𝐵𝐶), 

then 𝐵𝑃⃗⃗⃗⃗  ⃗ intersects 𝐴𝐶̅̅ ̅̅  at a unique point 𝐹 such that 𝐴 − 𝐹 − 𝐶. 

 

Proof 

Part 1: Introduce point 𝑬 and use Pasch’s Postulate 

(1) In a Pasch geometry, suppose that 𝑃 ∈ int(∠𝐴𝐵𝐶). (Illustrate) 

 

 

 

(2) There exists a point 𝐸 such that 𝐸 − 𝐵 − 𝐶. (Justify) (Illustrate) 

 

By Theorem 3.2.6(i) applied 

to given points 𝑪, 𝑩. 

  



(3) Pasch’s Postulate is satisfied. (Justify) 

By (1) and Theorem 4.3.1 that says if a metric geometry satisfies PSA then it satisfies PP. 

Remark: Theorem 4.3.3 that says if a metric geometry satisfies PP then it satisfies PSA. 

I incorporated Theorems 4.3.1 and 4.3.3 into the theorem that I called 

“Theorem About Two Equivalent Statements in a Metric Geometry” 

 

(4) line 𝐵𝑃⃡⃗⃗⃗  ⃗ intersects segment 𝐴𝐸̅̅ ̅̅  or segment 𝐴𝐶̅̅ ̅̅ . (Justify) (Illustrate) 

By Pasch’s Postulate applied to 

line 𝑩𝑷⃡⃗ ⃗⃗  ⃗ that intersects 𝚫𝑨𝑬𝑪 

at point 𝑩 such that 𝑬 − 𝑩 − 𝑪. 

 

Part 2: Show that line 𝑩𝑷⃡⃗ ⃗⃗  ⃗ does not intersect segment 𝑨𝑬̅̅ ̅̅ . 

(5) 𝑃 and 𝐶 are on the same side of 𝐴𝐵⃡⃗⃗⃗  ⃗. (Justify) (Illustrate) 

Because 𝑷 ∈
𝒃𝒚 (𝟏)

int(∠𝑨𝑩𝑪) =
𝒅𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏

𝑯
𝑩𝑨⃡⃗⃗⃗  ⃗,𝑪

∩ 𝑯
𝑩𝑪⃡⃗⃗⃗  ⃗,𝑨

 

so 𝑷 ∈ 𝑯
𝑩𝑨⃡⃗⃗⃗  ⃗,𝑪

 

  



(6) 𝐶 and 𝐸 are on opposite sides of 𝐴𝐵⃡⃗⃗⃗  ⃗. (Justify) (Illustrate) 

By (1),(4), we know 𝑨𝑩⃡⃗⃗⃗  ⃗ intersects 𝑬𝑪̅̅ ̅̅  

at point 𝑩 such that 𝑬 − 𝑩 − 𝑪. 

PSA (ii) (contrapositive) tells us that  

𝑪 and 𝑬 are not in the same half plane of 𝑨𝑩⃡⃗⃗⃗  ⃗. 

 

(7) Therefore, 𝑃 and 𝐸 are on opposite sides of 𝐴𝐵⃡⃗⃗⃗  ⃗. (Justify) (Illustrate) 

 

By (5),(6) 

 

(8) 𝐵𝑃⃗⃗⃗⃗  ⃗ ∩ 𝐴𝐸̅̅ ̅̅ = 𝜙. (Justify) (Illustrate) 

 

By Theorem 4.4.3 (the Z Theorem) 

applied to points 𝑷, 𝑬 on opposite 

sides of 𝑨𝑩⃡⃗⃗⃗  ⃗. 

  



(9) There exists a point 𝑄 such that 𝑃 − 𝐵 − 𝑄. 

 

By Theorem 3.2.6(i) applied 

to given points 𝑷, 𝑩. 

(10) 𝑄 and 𝑃 are on opposite sides of 𝐵𝐶⃡⃗⃗⃗  ⃗ (which is the same line as 𝐸𝐶⃡⃗ ⃗⃗ ).  

By (1),(9), we know 𝑩𝑪⃡⃗⃗⃗  ⃗ intersects 𝑸𝑷̅̅ ̅̅  

at point 𝑩 such that 𝑷 − 𝑩 − 𝑸. 

PSA (ii) (contrapositive) tells us that  

𝑸 and 𝑷 are not in the same half plane of 𝑩𝑪⃡⃗⃗⃗  ⃗. 

 

(11) 𝑃 and 𝐴 are on the same side of 𝐵𝐶⃡⃗⃗⃗  ⃗. (Justify) (Illustrate) 

 

Because 𝑷 ∈
𝒃𝒚 (𝟏)

int(∠𝑨𝑩𝑪) =
𝒅𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏

𝑯
𝑩𝑨⃡⃗⃗⃗  ⃗,𝑪

∩ 𝑯
𝑩𝑪⃡⃗⃗⃗  ⃗,𝑨

 

so 𝑷 ∈ 𝑯
𝑩𝑪⃡⃗⃗⃗  ⃗,𝑨

 

  



(12) 𝑄 and 𝐴 are on opposite sides of 𝐵𝐶⃡⃗⃗⃗  ⃗ (which is the same line as 𝐸𝐶⃡⃗ ⃗⃗ ). (Justify) (Illustrate) 

 

By (10),(11) 

 

(13) 𝐵𝑄⃗⃗ ⃗⃗  ⃗ ∩ 𝐴𝐸̅̅ ̅̅ = 𝜙. (Justify) (Illustrate) 

By (12) and Theorem 4.4.3 (the Z Theorem) 

applied to points 𝑸, 𝑨 on opposite 

sides of 𝑩𝑪⃡⃗⃗⃗  ⃗. 

 

(14) 𝐵𝑃⃡⃗⃗⃗  ⃗ = 𝐵𝑃⃗⃗⃗⃗  ⃗ ∩ 𝐵𝑄⃗⃗ ⃗⃗  ⃗ (Justify) (Illustrate) 

In Exercise 3.3#14, you showed that 

If 𝑷 ∈ 𝑩𝑸⃡⃗⃗⃗⃗⃗ − 𝑩𝑸⃗⃗⃗⃗ ⃗⃗ , then 𝑩𝑷⃡⃗ ⃗⃗  ⃗ = 𝑩𝑷⃗⃗⃗⃗⃗⃗ ∩ 𝑩𝑸⃗⃗⃗⃗ ⃗⃗  

That is, if 𝑷 − 𝑩 − 𝑸, then 𝑩𝑷⃡⃗ ⃗⃗  ⃗ = 𝑩𝑷⃗⃗⃗⃗⃗⃗ ∩ 𝑩𝑸⃗⃗⃗⃗ ⃗⃗  

  



(15) 𝐵𝑃⃡⃗⃗⃗  ⃗ ∩ 𝐴𝐸̅̅ ̅̅ = 𝜙. That is, line 𝐵𝑃⃡⃗⃗⃗  ⃗ does not intersect segment 𝐴𝐸̅̅ ̅̅ . (Justify) (Illustrate) 

 

By (8),(13),(14) 

 

 

Part 3: Prove that 𝑩𝑷⃗⃗⃗⃗⃗⃗  must intersect segment 𝑨𝑪̅̅ ̅̅ . 

(16) Line 𝐵𝑃⃡⃗⃗⃗  ⃗ must intersect segment 𝐴𝐶̅̅ ̅̅ . (Justify) 

 

By (4),(15) 

 

(17) 𝐵𝑄⃗⃗ ⃗⃗  ⃗ ∩ 𝐴𝐶̅̅ ̅̅ = 𝜙. (Justify) (Illustrate) 

 

By (12) and Theorem 4.4.3 (the Z Theorem) 

applied to points 𝑸, 𝑨 on opposite 

sides of 𝑩𝑪⃡⃗⃗⃗  ⃗. 

  



(18) Therefore, 𝐵𝑃⃗⃗⃗⃗  ⃗ must intersect segment 𝐴𝐶̅̅ ̅̅ . (Justify) (Illustrate) 

 

By (16),(14),(17) 

 

Part 3: Prove property of the intersection of 𝑩𝑷⃗⃗⃗⃗⃗⃗  and 𝑨𝑪̅̅ ̅̅ . 

(19) The intersection of line 𝐵𝑃⃡⃗⃗⃗  ⃗ and segment 𝐴𝐶̅̅ ̅̅  must just be a single point. Call the point 𝐹. 

(Justify) 

 

By Corollary 2.1.7, two distinct lines cannot intersect in more than one point. 

 

(20) 𝐹 ≠ 𝐴. (Justify) 

We know that 𝑷 is not on line 𝑩𝑨⃡⃗⃗⃗  ⃗, because 𝑷 ∈ int(∠𝑨𝑩𝑪). 

So line 𝑩𝑷⃡⃗ ⃗⃗  ⃗ is not the same line as 𝑩𝑨⃡⃗⃗⃗  ⃗. That is, they are distinct lines. 

Lines 𝑩𝑷⃡⃗ ⃗⃗  ⃗ and 𝑩𝑨⃡⃗⃗⃗  ⃗ intersect at 𝑩. 

By Corollary 2.1.7, two distinct lines cannot intersect in more than one point. 

In other words, 𝑩𝑷⃡⃗ ⃗⃗  ⃗ and 𝑩𝑨⃡⃗⃗⃗  ⃗ cannot also intersect at 𝑨.  



(21) 𝐹 ≠ 𝐶. (Justify) 

By reasoning similar to the justification for (20). 

 

(22) Therefore, 𝐴 − 𝐹 − 𝐶. (Justify) 

Because ray 𝑩𝑷⃗⃗⃗⃗⃗⃗  intersects segment 𝑨𝑪̅̅ ̅̅  at a single point 𝑭 (by (19)) 

and 𝑭 is not one of the endpoints (by (20),(21)), 

the only remaining option is that 𝑨 − 𝑭 − 𝑪 (by definition of line segment). 

 

Conclusion 

(23) We have proven that 𝐵𝑃⃗⃗⃗⃗  ⃗ intersects 𝐴𝐶̅̅ ̅̅  at a unique point 𝐹 such that 𝐴 − 𝐹 − 𝐶. (Illustrate) 

 

 

 

 

 

End of Proof  



The Converse of the Crossbar Theorem 

 

Recall that a conditional statement: If A then B 

 

is logically equivalent to its contrapositive: If NOT(B) then NOT(A). 

 

As a result of this, any time one proves a theorem that has the form of a conditional statement, one 

knows that the contrapositive version of the same statement is automatically true. The 

contrapositive statement is not another theorem: it is just a different way of saying the theorem that 

has already been proven. 

 

But the original statement is not logically equivalent to its converse: If B then A. 

 

As a result of this, when a known theorem has the form of a conditional statement, the converse 

statement is not automatically true. (The converse statement is not just a different way of saying the 

theorem that has already been proven.)  If the converse statement is true, then it constitutes another 

theorem, and it will have to be proven with a new proof.  



That is the situation with the Crossbar Theorem. The Converse of the Statement of the Crossbar 

Theorem is a new theorem that has to be proven with a new proof. 

 

Theorem (Converse of the Statement of the Crossbar Theorem) 

Given ∠𝐴𝐵𝐶 and point 𝑃 in a Pasch Geometry, if 𝐵𝑃⃗⃗⃗⃗  ⃗ intersects int(𝐴𝐶̅̅ ̅̅ ), then 𝑃 ∈ int(∠𝐴𝐵𝐶). 

 

Illustration of the statement of the theorem. 

 

 

 

 

You will prove the theorem in suggested exercise 4.4#12. 

Hint: In assigned homework exercises H06 [3],[4], you study and write proofs that are about 

proving that a point is in the interior of some angle, or that some set of points is a subset of the 

interior of some angle. The same kind of techniques used in those two assigned homework 

exercises will be useful for suggested exercise 4.4#12.  

End of Video 


