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Five Topics for this Video 

 Models of Neutral Geometry 

 Facts of the Euclidean Plane 

 The CS  CA Theorem (Pons Asinorum) 

 Using the CS  CA Theorem to prove a fact about special rays in triangles 

 Using the CS  CA Theorem to prove a particular congruence 

 

Reading: Pages 128 – 129 of Section 6.1 The Side-Angle Side Axiom 

in Geometry: A Metric Approach with Models, Second Edition by Millman & Parker  

 

Homework: Section 6.1 # 4, 5, 6, 7, 10, 12, 13 

 

   



Stuff from Previous Sections that will be Needed in this Video 

 

Theorem 4.4.6 Given Δ𝐴𝐵𝐶 in a Pasch geometry,  if 𝐴 − 𝑃 − 𝐶, then 𝑃 ∈ int(∠𝐴𝐵𝐶). 

That is, int(𝐵𝐶̅̅ ̅̅ ) ⊂ int(∠𝐴𝐵𝐶) 

 

  



Definition of Linear Pair (from Section 5.3) 

Words: Two angles from a linear pair. 

Meaning: The two angles can be labeled ∠𝐴𝐵𝐶 and ∠𝐶𝐵𝐷 with 𝐴 − 𝐵 − 𝐷. 

Illustration: 

 

 

 

 

Theorem 5.3.2 The Linear Pair Theorem 

In a protractor geometry,  

if ∠𝐴𝐵𝐶 and ∠𝐶𝐵𝐷 form a linear pair, then 𝑚(∠𝐴𝐵𝐶) + 𝑚(∠𝐴𝐵𝐶) = 180 

 

 

 

  



Definition of Angle Bisector (from Section 5.3) 

Words: a bisector of ∠𝐴𝐵𝐶 

Usage: ∠𝐴𝐵𝐶 is an angle in a protractor geometry 

Meaning: a ray 𝐵𝐷⃗⃗⃗⃗⃗⃗  such that 𝐷 ∈ int(∠𝐴𝐵𝐶) and 𝑚(∠𝐴𝐵𝐷) = 𝑚(∠𝐷𝐵𝐶). 

 

 

 

 

 

Theorem 5.3.8 Existence of a Unique Angle Bisector 

If ∠𝐴𝐵𝐶 is an angle in a protractor geometry, then ∠𝐴𝐵𝐶 has a unique angle bisector. 

 

 

 

 

 

  



Theorem 5.3.11 (Congruent Angle Addition Theorem) 

In a protractor geometry, 

if 𝐷 ∈ 𝑖𝑛𝑡(∠𝐴𝐵𝐶) and 𝑆 ∈ 𝑖𝑛𝑡(∠𝑃𝑄𝑅) and ∠𝐴𝐵𝐷 ≃ ∠𝑃𝑄𝑆 and ∠𝐷𝐵𝐶 ≃ ∠𝑆𝑄𝑅, 

then ∠𝐴𝐵𝐶 ≃ ∠𝑃𝑄𝑅. 

 

 

 

 

Theorem 5.3.12 (Congruent Angle Subtraction Theorem) 

In a protractor geometry, 

if 𝐷 ∈ 𝑖𝑛𝑡(∠𝐴𝐵𝐶) and 𝑆 ∈ 𝑖𝑛𝑡(∠𝑃𝑄𝑅) and ∠𝐴𝐵𝐷 ≃ ∠𝑃𝑄𝑆 and ∠𝐴𝐵𝐶 ≃ ∠𝑃𝑄𝑅 , 

then ∠𝐷𝐵𝐶 ≃ ∠𝑆𝑄𝑅. 

 

 

 

  



Remember that in our book Section 5.4, the cosine and sine functions are defined abstractly, using 

calculus. Their definitions do not involve right triangles or the unit circle. 

 

The Trigonometric Functions (introduced in Section 5.4 on p.112) 

The Cosine Function 

cos: [0,180] → [−1,1] 

is defined using calculus (NOT using right triangles or circles) 

The Sine Function  

sin: [0,180] → [0,1] 

is defined using by the following equation (NOT using right triangles or circles) 

sin(𝜃) = √1 − (cos(𝜃))2 

The Tangent Function (not introduced in the book) 

tan: [0,90) → [0, ∞) 

is defined using by the following equation (NOT using right triangles or circles) 

tan(𝜃) =
sin(𝜃)

cos(𝜃)
 

  



Now Recall Content from Section 6.1 Discussed in Video 6.1a 

 

We saw the Definition of Triangle Congruence 

In order to formulate a definition of triangle congruence in an axiomatic geometry, it helps to have 

a notion of corresponding parts of triangles. 

 

Definition of Corresponding Parts of Two Triangles 

Let Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 be two triangles in a protractor geometry, and let 𝑓: {𝐴, 𝐵, 𝐶} → {𝐷, 𝐸, 𝐹} 

be a bijection from the set of vertices of Δ𝐴𝐵𝐶 to the set of vertices of Δ𝐷𝐸𝐹. Then associated to 

the bijection 𝑓 is an automatic correspondence of six pairs of parts of the two triangles. 

Segment 𝐴𝐵̅̅ ̅̅  of Δ𝐴𝐵𝐶 corresponds to segment 𝑓(𝐴)𝑓(𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ of Δ𝐷𝐸𝐹. 

Segment 𝐵𝐶̅̅ ̅̅  of Δ𝐴𝐵𝐶 corresponds to segment 𝑓(𝐵)𝑓(𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ of Δ𝐷𝐸𝐹. 

Segment 𝐶𝐴̅̅ ̅̅  of Δ𝐴𝐵𝐶 corresponds to segment 𝑓(𝐴)𝑓(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ of Δ𝐷𝐸𝐹. 

Angle ∠𝐴𝐵𝐶 of Δ𝐴𝐵𝐶 corresponds to angle ∠𝑓(𝐴)𝑓(𝐵)𝑓(𝐶) of Δ𝐷𝐸𝐹. 

Angle ∠𝐵𝐶𝐴 of Δ𝐴𝐵𝐶 corresponds to angle ∠𝑓(𝐵)𝑓(𝐶)𝑓(𝐴) of Δ𝐷𝐸𝐹. 

Angle ∠𝐶𝐴𝐵 of Δ𝐴𝐵𝐶 corresponds to angle ∠𝑓(𝐶)𝑓(𝐴)𝑓(𝐵) of Δ𝐷𝐸𝐹. 

  



 

Definition of Congruence between Triangles 

Words: A congruence between Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 

Usage: Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 are two triangles in a protractor geometry, 

Meaning: A bijection 𝑓: {𝐴, 𝐵, 𝐶} → {𝐷, 𝐸, 𝐹} from the set of vertices of Δ𝐴𝐵𝐶 to the set of 

vertices of Δ𝐷𝐸𝐹 such that each pair of corresponding parts is congruent. That is, 

𝐴𝐵̅̅ ̅̅ ≃ 𝑓(𝐴)𝑓(𝐵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝐵𝐶̅̅ ̅̅ ≃ 𝑓(𝐵)𝑓(𝐶)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

𝐶𝐴̅̅ ̅̅ ≃ 𝑓(𝐶)𝑓(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

∠𝐴𝐵𝐶 ≃ ∠𝑓(𝐴)𝑓(𝐵)𝑓(𝐶) 

∠𝐵𝐶𝐴 ≃ ∠𝑓(𝐵)𝑓(𝐶)𝑓(𝐴) 

∠𝐶𝐴𝐵 ≃ ∠𝑓(𝐶)𝑓(𝐴)𝑓(𝐵) 

 

 

  



 

Definition of Congruent Triangles 

Words: Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 are congruent. 

Usage: Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 are two triangles in a protractor geometry, 

Meaning: There exists a congruence between Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹. 

 

Definition of Symbol to Indicate a Particular Congruence 

Symbol: Δ𝐴𝐵𝐶 ≃ Δ𝐷𝐸𝐹 

Usage: Δ𝐴𝐵𝐶 and Δ𝐷𝐸𝐹 are two triangles in a protractor geometry, 

Meaning: The particular bijection 𝑓: {𝐴, 𝐵, 𝐶} → {𝐷, 𝐸, 𝐹} defined by 

𝑓(𝐴) = (𝐷), 𝑓(𝐵) = (𝐸), 𝑓(𝐶) = (𝐹) 

is a congruence. 

 

Theorem (Exercise 6.1#1)  

In a protractor geometry,  congruence is an equivalence relation on the set of all triangles 

  



Definition of the Side-Angle-Side Axiom 

Words: A protractor geometry satisfies the Side-Angle-Side (SAS) Axiom. 

Meaning: If there is a bijection between the vertices of two triangles, and two sides and the 

included angle of the first triangle are congruent to the corresponding parts of the second 

triangle, then all the remaining corresponding parts are congruent as well, so the bijection is a 

congruence and the triangles are congruent. 

 

 

Definition of the Angle-Side-Angle Axiom 

Words: A protractor geometry satisfies the Angle-Side-Angle (ASA) Axiom. 

Meaning: If there is a bijection between the vertices of two triangles, and two angles and the 

included side of one triangle are congruent to the corresponding parts of the other triangle, 

then all the remaining corresponding parts are congruent as well, so the bijection is a 

congruence and the triangles are congruent. 

 



Definition of the Side-Side-Side Axiom 

Words: A protractor geometry satisfies the Side-Side-Side (SSS) Axiom. 

Meaning: If if there is a bijection between the vertices of two triangles, and the three sides of 

one triangle are congruent to the corresponding parts of the other triangle, then all the 

remaining corresponding parts are congruent as well, so the bijection is a congruence and the 

triangles are congruent. 

 

 

Definition of the Angle-Angle-Side Axiom 

Words: A protractor geometry satisfies the Angle-Angle-Side (AAS) Axiom. 

Meaning: If if there is a bijection between the vertices of two triangles, and two angles and a 

non-included side of one triangle are congruent to the corresponding parts of the other 

triangle, then all the remaining corresponding parts are congruent as well, so the bijection is a 

congruence and the triangles are congruent. 

 



Neutral Geometry 

The four triangle congruence axioms articulate desirable triangle congruence behavior. We can 

require that just one axiom, about just one particular kind of desirable behavior, be satisfied. We 

can then prove theorems that show that triangles will also have the other three kinds of desirable 

behavior. That is the idea behind the definition of neutral geometry. 

 

Definition of Neutral Geometry 

A neutral geometry (or absolute geometry) is a protractor geometry that satisfies SAS. 

 

In Chapter 6, we will prove three theorems about desirable triangle congruence behavior. 

Theorem: Every neutral geometry satisfies ASA. 

Theorem: Every neutral geometry satisfies SSS. 

Theorem: Every neutral geometry satisfies AAS. 

Note that the statements of the three theorems have been mentioned here just as an introduction to 

the coming material. The three theorems have not yet been proven and they do not yet have 

theorem numbers, so we may not yet use any of them in proofs. Soon, but not yet. 

End of Review of previous Material  



First Topic for Video 6.1b: Models of Euclidean Geometry  

Which of our protractor geometries qualify to be called neutral geometries?  

 

Recall from Video 6.1 [Example 3] that the Taxicab plane does not satisfy SAS. 

In the Taxicab plane let  

𝐴 = (−1,1), 𝐵 = (0,0), 𝐶 = (1,1) 

and let  

𝐷 = (2,2), 𝐸 = (2,0), 𝐹 = (4,0) 

Observe that  

𝐴𝐵̅̅ ̅̅ ≃ 𝐷𝐸̅̅ ̅̅  

∠𝐴𝐵𝐶 ≃ ∠𝐷𝐸𝐹 

𝐵𝐶̅̅ ̅̅ ≃ 𝐸𝐹̅̅ ̅̅  

But 𝐶𝐴̅̅ ̅̅ ≄ 𝐹𝐷̅̅ ̅̅  

 

Therefore, the Taxicab plane is not a neutral geometry.  



We could similarly show that the Max plane is not a neutral geometry. 

 

But it is shown in the book that our two most familiar models of protractor geometry do qualify to 

be called models of neutral geometry. 

  



 

Proposition 6.1.2 (Euclidean Law of Cosines) (proven in exercise 5.4#3) 

If 𝑃, 𝑄, 𝑅 are three non-collinear points in ℝ2, 

then (𝑑𝐸
(𝑃, 𝑅))

2

= (𝑑𝐸
(𝑄, 𝑃))

2

+ (𝑑𝐸
(𝑄, 𝑅))

2

− 2𝑑𝐸
(𝑄, 𝑃)𝑑𝐸

(𝑄, 𝑅) cos(𝑚𝐸
(∠𝑃𝑄𝑅)). 

In other words, for triangle Δ𝑃𝑄𝑅, if 𝑝, 𝑞, 𝑟 are defined to be the lengths of the sides opposite 

those vertices and 𝜃 = 𝑚𝐸
(∠𝑃𝑄𝑅), then 𝑞2

= 𝑝
2

+ 𝑞
2

− 2𝑝𝑞 cos(𝜃) 

 

 

 

 

 

 

It is straightforward to use the Euclidean Law of Cosines is used to prove the following. 

 

Proposition 6.1.3 The Euclidean plane satisfies SAS (and therefore is a neutral geometry). 

 

(See the book page 128 for a proof.)  



The following proposition is presented in the book, although it is not proven until much later in the 

book. (We won’t study its proof in our course.) 

 

Proposition 6.1.4 The Poincaré plane satisfies SAS (and therefore is a neutral geometry). 

 

 

 

 

  



Second Topic for this Video: Facts of the Euclidean Plane 

 

In your homework exercise 6.1#6, you’ll use the Euclidean Law of Cosines to prove the following. 

 

Corollary (The Pythagorean Theorem of Euclidean Geometry)(proven in exercise 6.1#6) 

In the Euclidean plane, if triangle Δ𝐴𝐵𝐶 has a right angle at 𝐶, 

then (𝑑𝐸
(𝐴, 𝐵))

2

= (𝑑𝐸
(𝐶, 𝐵))

2

+ (𝑑𝐸
(𝐶, 𝐴))

2

 

In other words, for triangle Δ𝐴𝐵𝐶, if 𝑎, 𝑏, 𝑐 are the lengths of the sides opposite those vertices 

∠𝐴𝐶𝐵 is a right angle, then 𝑐2
= 𝑎

2
+ 𝑏

2 

 

 

  



In your homework, you will use the Euclidean Law of Cosines and the Pythagorean Theorem of 

Euclidean Geometry to show that the trigonometric defined in Section 5.4 agree with the 

SOHCAHTOA definitions of sine and cosine that may have been your first introduction to those 

functions back in middle school. (Note that these results are valid only in the Euclidean plane.) 

 

Corollary (SOHCAHTOA interpretation of Sine, Cosine, Tangent) (proven in 6.1#7) 

In the Euclidean plane, if triangle Δ𝐴𝐵𝐶 has a right angle at 𝐶, and 𝑚𝐸
(∠𝐵) = 𝜃, then 

sin(𝜃) =
𝐴𝐶

𝐴𝐵
   and  cos(𝜃) =

𝐵𝐶

𝐵𝐴
   and  tan(𝜃) =

𝐴𝐶

𝐵𝐶
 

in other words 

sin(𝜃) =
opposite

hypotenuse
   and  cos(𝜃) =

adjacent

hypotenuse
   and  tan(𝜃) =

opposite

adjacent
 

The acronym for this behavior is SOHCAHTOA. 

 

 

  



Third Topic for this Video: the CS  CA Theorem (Pons Asinorum) 

 

Definition of Types of Triangles in a Protractor Geometry 

Given a triangle in a protractor geometry 

The triangle is called scalene if no two sides are congruent. (In other words, all three sides have 

different lengths.) 

The triangle is called isosceles if at least two sides are congruent. 

The triangle is called equilateral if all three sides are congruent. 

If a triangle is isosceles, then the base angles of the triangle are the angles opposite the 

congruent sides. (Note that an equilateral triangle will have three base angles, while a triangle 

that is isosceles but not equilateral will have two base angles.) 

 

  

scalene isosceles isosceles and equilateral 



Theorem 6.1.5 (Pons Asinorum) (Isosceles Triangle Theorem) (CS  CA Theorem) 

In Neutral geometry, if two sides of a triangle are congruent, then the angles opposite those sides 

are also congruent. That is, in a triangle, if CS then CA. 

 

Proof 

(1) Suppose that Δ𝐴𝐵𝐶 has 𝐵𝐴̅̅ ̅̅ ≅ 𝐵𝐶̅̅ ̅̅ . 

 

 

 

 

  



(2) Using the bijection (𝐴, 𝐵, 𝐶) ↦ (𝐶, 𝐵, 𝐴) between the vertices of Δ𝐴𝐵𝐶 and Δ𝐶𝐵𝐴, we have 

the following pairs of corresponding parts 

parts of Δ𝐴𝐵𝐶 ↔ parts of Δ𝐶𝐵𝐴 

𝐵𝐴̅̅ ̅̅ ↔ 𝐵𝐶̅̅ ̅̅  

∠𝐴𝐵𝐶 ↔ ∠𝐶𝐵𝐴 

𝐵𝐶̅̅ ̅̅ ↔ 𝐵𝐴̅̅ ̅̅  

 

 

 

(2) Observe that the corresponding parts in each of these three pairs are congruent 

parts of Δ𝐴𝐵𝐶 ≃ parts of Δ𝐶𝐵𝐴  

𝐵𝐴̅̅ ̅̅ ≃ 𝐵𝐶̅̅ ̅̅  (given) 

∠𝐴𝐵𝐶 ≃ ∠𝐶𝐵𝐴 (congruent to itself because it has the same measure as itself) 

𝐵𝐶̅̅ ̅̅ ≃ 𝐵𝐴̅̅ ̅̅  (given) 

  



(3) Δ𝐴𝐵𝐶 ≅ Δ𝐶𝐵𝐴 (by the SAS congruence axiom) 

 

 

 

 

 

 

 

(4) Therefore, ∠𝐵𝐴𝐶 ≅ ∠𝐵𝐶𝐴. (by (3) and the definition of triangle congruence) 

 

 

 

 

 

 

 

End of proof  



Fourth Topic: Using the CS  CA Theorem to prove a fact about special rays in triangles 

 

Special Rays in Triangles 

Given a triangle Δ𝐴𝐵𝐶 in a protractor geometry, there exist three special rays from 𝐴. 

 The ray from 𝐴 that is perpendicular to 𝐵𝐶⃡⃗⃗⃗  ⃗. 

 The ray from 𝐴 that bisects ∠𝐵𝐴𝐶. 

 The ray from 𝐴 that is bisects 𝐵𝐶̅̅ ̅̅ . 

 

 

 

 

 

 

 

It is important to realize that these three rays are not in general the same ray. 

  



But it can be shown that in neutral geometry, if Δ𝐴𝐵𝐶 is an isosceles triangle, with 𝐴𝐵̅̅ ̅̅ ≃ 𝐴𝐶̅̅ ̅̅ , then 

the three rays are actually the same ray. Parts of this fact are proven in various places in our book 

and in my videos. 

 

[Example 1] (presented below) Prove in neutral geometry, if Δ𝐴𝐵𝐶 is an isosceles triangle, with 

𝐴𝐵̅̅ ̅̅ ≃ 𝐴𝐶̅̅ ̅̅ , and if 𝑀 is the midpoint of 𝐵𝐶̅̅ ̅̅ , then 𝐴𝑀⃗⃗⃗⃗ ⃗⃗  bisects ∠𝐵𝐴𝐶. (That is, the ray from 𝐴 that 

bisects 𝐵𝐶̅̅ ̅̅  is also the ray from 𝐴 that bisects ∠𝐵𝐴𝐶.) 

 

Exercise 6.1#8 Prove in neutral geometry, if Δ𝐴𝐵𝐶 is an isosceles triangle, with 𝐴𝐵̅̅ ̅̅ ≃ 𝐴𝐶̅̅ ̅̅ , and if 

𝑀 is the midpoint of 𝐵𝐶̅̅ ̅̅ , then 𝐴𝑀⃗⃗⃗⃗ ⃗⃗ ⊥ 𝐵𝐶⃡⃗⃗⃗  ⃗. (That is, the ray from 𝐴 that bisects 𝐵𝐶̅̅ ̅̅  is also the ray 

from 𝐴 that is perpendicular to 𝐵𝐶⃡⃗⃗⃗  ⃗.) 

 

 

  



[Example 1] In neutral geometry, suppose that Δ𝐴𝐵𝐶 is isosceles, with 𝐴𝐵̅̅ ̅̅ ≃ 𝐴𝐶̅̅ ̅̅ . 

Show that if 𝑀 is the midpoint of 𝐵𝐶̅̅ ̅̅ , then 𝐴𝑀⃗⃗⃗⃗ ⃗⃗  bisects ∠𝐵𝐴𝐶. 

Illustration of the statement 

 

 

 

 

 

 

Proof 

(1) In neutral geometry, suppose that Δ𝐴𝐵𝐶 has 𝐴𝐵̅̅ ̅̅ ≃ 𝐴𝐶̅̅ ̅̅  and that 𝑀 is the midpoint of 𝐵𝐶̅̅ ̅̅ . 

 

 

  



(2) ∠𝐴𝐵𝐶 ≃ ∠𝐴𝐶𝐵 (By Theorem 6.1.5 CS  CA applied to Δ𝐴𝐵𝐶 with 𝐴𝐵̅̅ ̅̅ ≃ 𝐴𝐶̅̅ ̅̅ ) 

 

 

 

 

 

(3) Δ𝐴𝐵𝑀 ≃ Δ𝐴𝐶𝑀 (By SAS axiom applied to  𝐴𝐵̅̅ ̅̅ ≃ 𝐴𝐶̅̅ ̅̅  and ∠𝐴𝐵𝑀 ≃ ∠𝐴𝐶𝑀 and 𝑀𝐵̅̅ ̅̅̅ ≃ 𝑀𝐶̅̅̅̅̅) 

 

 

 

 

 

(4) ∠𝑀𝐴𝐵 ≃ ∠𝑀𝐴𝐶 (By (3) and definition of triangle congruence) 

 

 

  



(5) 𝑀 ∈ int(∠𝐴𝐵𝐶) (By Theorem 4.4.6 that tells us that int(𝐵𝐶̅̅ ̅̅ ) ⊂ int(∠𝐴𝐵𝐶)) 

 

 

 

 

 

 

(6) ray 𝐴𝑀⃗⃗⃗⃗ ⃗⃗  bisects ∠𝐵𝐴𝐶. (by (4),(5) and definition of angle bisector.) 

 

 

 

 

 

 

End of proof 

End of [Example 1]  



Fifth (and Final) Topic: Using the CS  CA Theorem to prove a particular congruence 

 

[Example 2](similar to 6.2#10) Prove the following: In a neutral geometry, if Δ𝐴𝐵𝐶 and points 

𝐷, 𝐸 satisfy 𝐴 − 𝐷 − 𝐵 and 𝐴 − 𝐸 − 𝐶 and 𝐴𝐷̅̅ ̅̅ ≃ 𝐴𝐸̅̅ ̅̅  and ∠𝐵𝐷𝐶 ≃ ∠𝐶𝐸𝐵 and 𝐷𝐶̅̅ ̅̅ ≃ 𝐵𝐸̅̅ ̅̅ , 

then ∠𝐵𝐶𝐷 ≃ ∠𝐶𝐵𝐸. 

 

Illustration of the Statement: 

 

  



Proof 

(1) Suppose that in a neutral geometry, Δ𝐴𝐵𝐶 and points 𝐷, 𝐸 satisfy 𝐴 − 𝐷 − 𝐵 and 𝐴 − 𝐸 − 𝐶 

and 𝐴𝐷̅̅ ̅̅ ≃ 𝐴𝐸̅̅ ̅̅  and ∠𝐵𝐷𝐶 ≃ ∠𝐶𝐸𝐵 and 𝐷𝐶̅̅ ̅̅ ≃ 𝐵𝐸̅̅ ̅̅ . 

 

 

 

 

 

 

(2) ∠𝐴𝐷𝐶 ≃ ∠𝐴𝐸𝐵  

because  

𝑚(∠𝐴𝐷𝐶) = 180 − 𝑚(∠𝐵𝐷𝐶) by linear pair theorem 

 = 180 − 𝑚(∠𝐵𝐸𝐶) because given ∠𝐵𝐷𝐶 ≃ ∠𝐶𝐸𝐵 

 = 𝑚(∠𝐴𝐸𝐵) by linear pair theorem 

 

  



(3) Δ𝐴𝐷𝐶 ≃ Δ𝐴𝐸𝐵 (By the SAS axiom applied to 𝐴𝐷̅̅ ̅̅ ≃ 𝐴𝐸̅̅ ̅̅ , ∠𝐴𝐷𝐶 ≃ ∠𝐴𝐸𝐵, 𝐷𝐶̅̅ ̅̅ ≃ 𝐵𝐸̅̅ ̅̅ ) 

 

 

 

 

 

 

(4) 𝐴𝐶̅̅ ̅̅ ≃ 𝐴𝐵̅̅ ̅̅  (by (2) and definition of triangle congruence) 

 

 

 

 

(5) ∠𝐴𝐶𝐷 ≃ ∠𝐴𝐵𝐸 (by (2) and definition of triangle congruence) 

  



(6) ∠𝐴𝐵𝐶 ≃ ∠𝐴𝐶𝐵 (By Theorem 6.1.5 CS  CA applied to Δ𝐴𝐵𝐶 with 𝐴𝐵̅̅ ̅̅ ≃ 𝐴𝐶̅̅ ̅̅  by (4) 

 

 

 

 

 

 

 

(7) 𝐷 ∈ int(∠𝐴𝐶𝐵) (By Theorem 4.4.6 that tells us that if 𝐴 − 𝐷 − 𝐵 then 𝐷 ∈ int(∠𝐴𝐶𝐵)) 

  



(8) 𝐸 ∈ int(∠𝐴𝐵𝐶) (By Theorem 4.4.6 that tells us that if 𝐴 − 𝐸 − 𝐶 then 𝐷 ∈ int(∠𝐴𝐵𝐶)) 

 

 

 

 

 

(9) ∠𝐵𝐶𝐷 ≃ ∠𝐶𝐸𝐵 (By Theorem 5.3.12 (Congruent Angle Subtraction) applied to 𝐷 ∈ int(∠𝐴𝐶𝐵) 

and 𝐸 ∈ int(∠𝐴𝐵𝐶) such that ∠𝐴𝐶𝐷 ≃ ∠𝐴𝐵𝐸 (by (4)) and  ∠𝐴𝐵𝐶 ≃ ∠𝐴𝐶𝐵 (by 5) 

 

 

 

 

 

 

 

End of Proof 

End of Video  


