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A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay beƩer understand what you will find beyond this
page.

This text is Part I of a three–text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivaƟves, and the basics of
integraƟon, found in Chapters 1 through 6.1. The second text covers material
oŌen taught in “Calc 2:” integraƟon and its applicaƟons, along with an introduc-
Ɵon to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “mulƟvariable calc:” para-
metric equaƟons, polar coordinates, vector–valued funcƟons, and funcƟons of
more than one variable, found in Chapters 9 through 14. All three are available
separately for free at www.apexcalculus.com. These three texts are intended
to work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

PrinƟng the enƟre text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com.

A result of this spliƫng is that someƟmes a concept is said to be explored in
a “later secƟon,” though that secƟon does not actually appear in this parƟcular
text. Also, the index makes reference to topics and page numbers that do not
appear in this text. This is done intenƟonally to show the reader what topics are
available for study. Downloading the .pdf of APEX Calculus will ensure that you
have all the content.

For Students: How to Read this Text

MathemaƟcs textbooks have a reputaƟon for being hard to read. High–level
mathemaƟcal wriƟng oŌen seeks to say much with few words, and this style
oŌen seeps into texts of lower–level topics. This book was wriƩen with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and secƟon starts with an introducƟon of the coming material,
hopefully seƫng the stage for “why you should care,” and endswith a look ahead
to see how the just–learned material helps address future problems.

Please read the text; it is wriƩen to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definiƟons, the truth
of theorems, and the applicaƟon of mathemaƟcal techniques. When you en-
counter a sentence you don’t understand, read it again. If it sƟll doesn’t make
sense, read on anyway, as someƟmes confusing sentences are explained by later
sentences.

You don’t have to read every equaƟon. The examples generally show “all”
the steps needed to solve a problem. SomeƟmes reading through each step is
helpful; someƟmes it is confusing. When the steps are illustraƟng a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathemaƟcs needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of geƫng bogged down in reading how the number was found.

http://apexcalculus.com
http://amazon.com


Most proofs have been omiƩed. In mathemaƟcs, proving something is al-
ways true is extremely important, and entails much more than tesƟng to see if
it works twice. However, students oŌen are confused by the details of a proof,
or become concerned that they should have been able to construct this proof
on their own. To alleviate this potenƟal problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

InteracƟve, 3D Graphics

New to Version 3.0 was the addiƟon of interacƟve, 3D graphics in the .pdf
version. Nearly all graphs of objects in space can be rotated, shiŌed, and zoomed
in/out so the reader can beƩer understand the object illustrated.

As of this wriƟng, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To acƟvate the interacƟve mode, click on
the image. Once acƟvated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to invesƟgate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object leŌ/right or up/down. By right-clicking on the graph one can access
a menu of other opƟons, such as changing the lighƟng scheme or perspecƟve.
One can also revert the graph back to its default view. If you wish to deacƟvate
the interacƟvity, one can right-click and choose the “Disable Content” opƟon.

Thanks

There are many people who deserve recogniƟon for the important role they
have played in the development of this text. First, I thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my Ɵme
and aƩenƟon at home. Many thanks to Troy Siemers, whose most important
contribuƟons extend far beyond the secƟons he wrote or the 227 figures he
coded in Asymptote for 3D interacƟon. He provided incredible support, advice
and encouragement for which I am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contribuƟons and to Jennifer Bowen for
reading through somuchmaterial and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica LiberƟni and other faculty of VMI who have given me
numerous suggesƟons and correcƟons based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their paƟence in teaching
Calc III while I was sƟll wriƟng the Calc III material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the soluƟons, and thanks to the tutors for spending their Ɵme doing so.
A very special thanks to KrisƟ Brown and Paul Janiczek who took this opportu-
nity far above & beyond what I expected, meƟculously checking every soluƟon
and carefully reading every example. Their comments have been extraordinarily
helpful. I am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra Ɵme to work on this project. Finally, a huge
heap of thanks is to be bestowed on the numerous people I do not know who
took the Ɵme to email me correcƟons and suggesƟons. I am blessed to have so
many people give of their Ɵme to make this book beƩer.



APEX – Affordable Print and Electronic teXts

APEX is a consorƟum of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–wriƟng paradigm is facing a poten-
Ɵal revoluƟon as desktop publishing and electronic formats increase in popular-
ity. However, wriƟng a good textbook is no easy task, as the Ɵme requirements
alone are substanƟal. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboraƟon, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is enƟrely free; someone always bears some cost. This text
“cost” the authors of this book their Ɵme, and that was not enough. APEX Cal-
culuswould not exist had not the Virginia Military InsƟtute, through a generous
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Each text is available as a free .pdf, protected by a CreaƟve Commons At-
tribuƟon - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the laƩer, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add secƟons that are “missing” or remove secƟons that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

• Numerous typographical and “small”mathemaƟcal correcƟons (again, thanks
to all my close readers!).

• “Large”mathemaƟcal correcƟons and adjustments. Therewere a number
of places in Version 3.0 where a definiƟon/theorem was not correct as
stated. See www.apexcalculus.com for more informaƟon.

• More useful numbering of Examples, Theorems, etc. “DefiniƟon 11.4.2”
refers to the second definiƟon of Chapter 11, SecƟon 4.

• The addiƟon of SecƟon 13.7: Triple IntegraƟonwith Cylindrical and Spher-
ical Coordinates

• The addiƟon of Chapter 14: Vector Analysis.

https://github.com/APEXCalculus
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1: L®Ã®ãÝ
Calculus means “a method of calculaƟon or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathemaƟcs that had taken place into
the first half of the 17th century, mathemaƟcians and scienƟsts were keenly
aware of what they could not do. (This is true even today.) In parƟcular, two
important concepts eluded mastery by the great thinkers of that Ɵme: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× Ɵme.” But what if the rate is not constant
– can distance sƟll be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathemaƟcians, Sir
IsaacNewton andGoƪried Leibniz, are creditedwith independently formulaƟng
a system of compuƟng that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundaƟon of “the calculus” is the limit. It is a tool to describe a par-
Ɵcular behavior of a funcƟon. This chapter begins our study of the limit by ap-
proximaƟng its value graphically and numerically. AŌer a formal definiƟon of
the limit, properƟes are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

1.1 An IntroducƟon To Limits
We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the funcƟon y = sin x
x . When x is near the value 1, what value (if

any) is y near?
While our quesƟon is not precisely formed (what consƟtutes “near the value
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Figure 1.1.1: sin(x)/x near x = 1.
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Figure 1.1.2: sin(x)/x near x = 0.

x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471

1.001 0.84117
1.01 0.838447
1.1 0.810189

Figure 1.1.3: Values of sin(x)/x with x
near 1.

Chapter 1 Limits

1”?), the answer does not seem difficult to find. Onemight think first to look at a
graph of this funcƟon to approximate the appropriate y values. Consider Figure
1.1.1, where y = sin x

x is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value
(if any) is y near? By considering Figure 1.1.2, one can see that it seems that y
takes on values near 1. But what happens when x = 0? We have

y → sin 0
0

→
“ 0
0
”
.

The expression “0/0” has no value; it is indeterminate. Such an expression gives
no informaƟon about what is going on with the funcƟon nearby. We cannot find
out how y behaves near x = 0 for this funcƟon simply by leƫng x = 0.

Finding a limit entails understanding how a funcƟon behaves near a parƟcu-
lar value of x. Before conƟnuing, it will be useful to establish some notaƟon. Let
y = f(x); that is, let y be a funcƟon of x for some funcƟon f. The expression “the
limit of y as x approaches 1” describes a number, oŌen referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete definiƟon (that will come in the next secƟon); this is a
pseudo-definiƟon that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x

≈ 0.84 and lim
x→0

sin x
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-definiƟon of a limit, not the actual definiƟon.)

Once we have the true definiƟon of a limit, we will find limits analyƟcally;
that is, exactly using a variety of mathemaƟcal tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a funcƟon can provide
a good approximaƟon, though oŌen not very precise. Numerical methods can
provide a more accurate approximaƟon. We have already approximated limits
graphically, so we now turn our aƩenƟon to numerical approximaƟons.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
1.1.3.

NoƟce that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned

Notes:
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x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333

0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 1.1.4: Values of sin(x)/x with x
near 0.

2.5 3 3.5

0.26

0.28

0.3

0.32

0.34

x

y

Figure 1.1.5: Graphically approximaƟng a
limit in Example 1.1.1.

x x2−x−6
6x2−19x+3

2.9 0.29878
2.99 0.294569
2.999 0.294163
3 not defined

3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 1.1.6: Numerically approximaƟng
a limit in Example 1.1.1.

1.1 An IntroducƟon To Limits

with the value of the funcƟon at that parƟcular x value; we are only concerned
with the values of the funcƟon when x is near 1.

Now approximate limx→0 sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 1.1.2. The table in Figure 1.1.4
shows the value of sin(x)/x for values of x near 0. Ten places aŌer the decimal
point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concerned with the value of our funcƟon at x = 0, only on the behavior
of the funcƟon near 0.

This numerical method gives confidence to say that 1 is a good approxima-
Ɵon of limx→0 sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects

of the limit concept.

Example 1.1.1 ApproximaƟng the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.

SÊ½çã®ÊÄ To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 1.1.5 and
1.1.6, respecƟvely.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a beƩer approximaƟon.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.

This example may bring up a few quesƟons about approximaƟng limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximaƟon as a table, why
bother with it?

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximaƟon?

Notes:

3
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Figure 1.1.7: Graphically approximaƟng a
limit in Example 1.1.2.

x f(x)
-0.1 0.9
-0.01 0.99
-0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

Figure 1.1.8: Numerically approximaƟng
a limit in Example 1.1.2.
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Graphs are useful since they give a visual understanding concerning the be-
havior of a funcƟon. SomeƟmes a funcƟon may act “erraƟcally” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing uƟliƟes are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in quesƟon. In Example 1.1.1, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do beƩer. Using values “on both sides of 3” helps us idenƟfy trends.

Example 1.1.2 ApproximaƟng the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =
{

x+ 1 x < 0
−x2 + 1 x > 0 .

SÊ½çã®ÊÄ Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined funcƟon, so it
behaves differently on either side of 0. Figure 1.1.7 shows a graph of f(x), and
on either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 1.1.8 shows values of f(x) for values of x near 0.
It is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1.

IdenƟfying When Limits Do Not Exist

A funcƟon may not have a limit for all values of x. That is, we cannot say
limx→c f(x) = L for some numbers L for all values of c, for there may not be a
number that f(x) is approaching. There are three common ways in which a limit
may fail to exist.

1. The funcƟon f(x)may approach different values on either side of c.

2. The funcƟon may grow without upper or lower bound as x approaches c.

3. The funcƟon may oscillate as x approaches c without approaching a spe-
cific value.

Notes:

4
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Figure 1.1.9: Observing no limit as x → 1
in Example 1.1.3.

x f(x)
0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

Figure 1.1.10: Values of f(x) near x = 1 in
Example 1.1.3.
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Figure 1.1.11: Observing no limit as x →
1 in Example 1.1.4.

x f(x)
0.9 100.
0.99 10000.
0.999 1.× 106
1.001 1.× 106
1.01 10000.
1.1 100.

Figure 1.1.12: Values of f(x) near x = 1 in
Example 1.1.4.

1.1 An IntroducƟon To Limits

We’ll explore each of these in turn.

Example 1.1.3 Different Values Approached From LeŌ and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =
{

x2 − 2x+ 3 x ≤ 1
x x > 1 .

SÊ½çã®ÊÄ A graph of f(x) around x = 1 and a table are given in Figures
1.1.9 and 1.1.10, respecƟvely. It is clear that as x approaches 1, f(x) does not
seem to approach a single number. Instead, it seems as though f(x) approaches
two different numbers. When considering values of x less than 1 (approaching
1 from the leŌ), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behavior is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1.

Example 1.1.4 The FuncƟon Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

SÊ½çã®ÊÄ A graph and table of f(x) = 1/(x − 1)2 are given in Figures
1.1.11 and 1.1.12, respecƟvely. Both show that as x approaches 1, f(x) grows
larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

1
very small number

= very large number.

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1
(x− 1)2

does not exist.

Example 1.1.5 The FuncƟon Oscillates
Explore why lim

x→0
sin(1/x) does not exist.

SÊ½çã®ÊÄ Two graphs of f(x) = sin(1/x) are given in Figures 1.1.13.
Figure 1.1.13(a) shows f(x) on the interval [−1, 1]; noƟce how f(x) seems to os-
cillate near x = 0. One might think that despite the oscillaƟon, as x approaches

Notes:
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Figure 1.1.14: InterpreƟng a difference
quoƟent as the slope of a secant line.

Chapter 1 Limits

0, f(x) approaches 0. However, Figure 1.1.13(b) zooms in on sin(1/x), on the
interval [−0.1, 0.1]. Here the oscillaƟon is even more pronounced. Finally, in
the table in Figure 1.1.13(c), we see sin(x)/x evaluated for values of x near 0. As
x approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and 1 infinitely many Ɵmes! Because of this oscillaƟon,

lim
x→0

sin(1/x) does not exist.
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x sin(1/x)
0.1 −0.544021
0.01 −0.506366
0.001 0.82688
0.0001 −0.305614

1.× 10−5 0.0357488
1.× 10−6 −0.349994
1.× 10−7 0.420548

(a) (b) (c)

Figure 1.1.13: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 1.1.5.

Limits of Difference QuoƟents

We have approximated limits of funcƟons as x approached a parƟcular num-
ber. We will consider another important kind of limit aŌer explaining a few key
ideas.

Let f(x) represent the posiƟon funcƟon, in feet, of some parƟcle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the parƟcle is at posiƟon 10 Ō., and when x = 5, the parƟcle is at 20 Ō. Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the parƟcle traveled 10 feet in 4 seconds, we can say the parƟcle’s average
velocity was 2.5 Ō/s. We write this calculaƟon using a “quoƟent of differences,”
or, a difference quoƟent:

f(5)− f(1)
5− 1

=
10
4

= 2.5Ō/s.

This difference quoƟent can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essenƟally what we are doing:

Notes:
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Figure 1.1.15: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

h f(1+h)−f(1)
h

−0.5 9.25
−0.1 8.65
−0.01 8.515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 1.1.16: The difference quoƟent
evaluated at values of h near 0.

1.1 An IntroducƟon To Limits

given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 1.1.14.

Now consider finding the average speed on another Ɵme interval. We again
start at x = 1, but consider the posiƟon of the parƟcle h seconds later. That is,
consider the posiƟons of the parƟcle when x = 1 and when x = 1 + h. The
difference quoƟent is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quoƟent for all values of h (even
negaƟve values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quoƟent computes the
average velocity of the parƟcle over an interval of Ɵme of length h starƟng at
x = 1.

For small values of h, i.e., values of h close to 0, we get average velociƟes
over very short Ɵme periods and compute secant lines over small intervals. See
Figure 1.1.15. This leads us to wonder what the limit of the difference quoƟent
is as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

As we do not yet have a true definiƟon of a limit nor an exact method for
compuƟng it, we seƩle for approximaƟng the value. While we could graph the
difference quoƟent (where the x-axis would represent h values and the y-axis
would represent values of the difference quoƟent) we seƩle for making a table.
See Figure 1.1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathemaƟcal things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathemaƟcal curiosiƟes; they allow us to link posiƟon, velocity and
acceleraƟon together, connect cross-secƟonal areas to volume, find the work
done by a variable force, and much more.

In the next secƟon we give the formal definiƟon of the limit and begin our
study of finding limits analyƟcally. In the following exercises, we conƟnue our
introducƟon and approximate the value of limits.

Notes:
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Exercises 1.1
Terms and Concepts

1. In your own words, what does it mean to “find the limit of
f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5).

4. Describe three situaƟons where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quoƟent?

6. When x is near 0, sin x
x

is near what value?

Problems
In Exercises 7 – 16, approximate the given limits both numer-
ically and graphically.

7. lim
x→1

x2 + 3x− 5

8. lim
x→0

x3 − 3x2 + x− 5

9. lim
x→0

x+ 1
x2 + 3x

10. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

11. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

12. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

13. lim
x→2

f(x), where

f(x) =
{

x+ 2 x ≤ 2
3x− 5 x > 2 .

14. lim
x→3

f(x), where

f(x) =
{

x2 − x+ 1 x ≤ 3
2x+ 1 x > 3 .

15. lim
x→0

f(x), where

f(x) =
{

cos x x ≤ 0
x2 + 3x+ 1 x > 0 .

16. lim
x→π/2

f(x), where

f(x) =
{

sin x x ≤ π/2
cos x x > π/2 .

In Exercises 17 – 24, a funcƟon f and a value a are
given. Approximate the limit of the difference quoƟent,
lim
h→0

f(a+ h)− f(a)
h

, using h = ±0.1,±0.01.

17. f(x) = −7x+ 2, a = 3

18. f(x) = 9x+ 0.06, a = −1

19. f(x) = x2 + 3x− 7, a = 1

20. f(x) = 1
x+ 1

, a = 2

21. f(x) = −4x2 + 5x− 1, a = −3

22. f(x) = ln x, a = 5

23. f(x) = sin x, a = π

24. f(x) = cos x, a = π

8



Note: the common phrase “the ε-δ defi-
niƟon” is read aloud as “the epsilon delta
definiƟon.” The hyphen between ε and δ
is not a minus sign.

1.2 Epsilon-Delta DefiniƟon of a Limit

1.2 Epsilon-Delta DefiniƟon of a Limit
This secƟon introduces the formal definiƟon of a limit. Many refer to this as “the
epsilon-delta,” definiƟon, referring to the leƩers ε and δ of the Greek alphabet.

Before we give the actual definiƟon, let’s consider a few informal ways of
describing a limit. Given a funcƟon y = f(x) and an x-value, c, we say that “the
limit of the funcƟon f, as x approaches c, is a value L”:

1. if “y tends to L” as “x tends to c.”

2. if “y approaches L” as “x approaches c.”

3. if “y is near L” whenever “x is near c.”

The problem with these definiƟons is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to, or
approach, c? How near do x and y have to be to c and L, respecƟvely?

The definiƟon we describe in this secƟon comes from formalizing 3. A quick
restatement gets us closer to what we want:

3′. If x is within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The tradiƟonal notaƟon for the x-tolerance is the lowercase Greek leƩer
delta, or δ, and the y-tolerance is denoted by lowercase epsilon, or ε. One more
rephrasing of 3′ nearly gets us to the actual definiƟon:

3′′. If x is within δ units of c, then the corresponding value of y is within ε units
of L.

We can write “x is within δ units of c” mathemaƟcally as

|x− c| < δ, which is equivalent to c− δ < x < c+ δ.

Leƫng the symbol “−→” represent the word “implies,” we can rewrite 3′′ as

|x− c| < δ −→ |y− L| < ε or c− δ < x < c+ δ −→ L− ε < y < L+ ε.

The point is that δ and ε, being tolerances, can be any posiƟve (but typically
small) values. Finally, we have the formal definiƟon of the limit with the notaƟon
seen in the previous secƟon.

Notes:
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Chapter 1 Limits

DefiniƟon 1.2.1 The Limit of a FuncƟon f

Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c. The limit of f(x), as x approaches c, is L, denoted
by

lim
x→c

f(x) = L,

means that given any ε > 0, there exists δ > 0 such that for all x in I,
where x ̸= c, if |x− c| < δ, then |f(x)− L| < ε.

(MathemaƟcians oŌen enjoy wriƟng ideas without using any words. Here is
the wordless definiƟon of the limit:

lim
x→c

f(x) = L ⇐⇒ ∀ ε > 0,∃ δ > 0 s.t. 0 < |x− c| < δ −→ |f(x)− L| < ε.)

Note the order in which ε and δ are given. In the definiƟon, the y-tolerance
ε is given first and then the limit will exist if we can find an x-tolerance δ that
works.

An example will help us understand this definiƟon. Note that the explana-
Ɵon is long, but it will take one through all steps necessary to understand the
ideas.

Example 1.2.1 EvaluaƟng a limit using the definiƟon
Show that lim

x→4

√
x = 2.

SÊ½çã®ÊÄ Beforeweuse the formal definiƟon, let’s try somenumerical
tolerances. What if the y tolerance is 0.5, or ε = 0.5? How close to 4 does x
have to be so that y is within 0.5 units of 2, i.e., 1.5 < y < 2.5? In this case, we
can proceed as follows:

1.5 < y < 2.5
1.5 <

√
x < 2.5

1.52 < x < 2.52

2.25 < x < 6.25.

So, what is the desired x tolerance? Remember, wewant to find a symmetric
interval of x values, namely 4− δ < x < 4+ δ. The lower bound of 2.25 is 1.75
units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller
of these two distances; we must have δ < 1.75. See Figure 1.2.1.

Notes:
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1.2 Epsilon-Delta DefiniƟon of a Limit

Given the y tolerance ε = 0.5, we have found an x tolerance, δ < 1.75, such
that whenever x is within δ units of 4, then y is within ε units of 2. That’s what
we were trying to find.

Let’s try another value of ε.

What if the y tolerance is 0.01, i.e., ε = 0.01? How close to 4 does x have to
be in order for y to be within 0.01 units of 2 (or 1.99 < y < 2.01)? Again, we
just square these values to get 1.992 < x < 2.012, or

3.9601 < x < 4.0401.

What is the desired x tolerance? In this case we must have δ < 0.0399, which
is the minimum distance from 4 of the two bounds given above.

What we have so far: if ε = 0.5, then δ < 1.75 and if ε = 0.01, then δ <
0.0399. A paƩern is not easy to see, so we switch to general ε try to determine
δ symbolically. We start by assuming y =

√
x is within ε units of 2:

|y− 2| < ε

−ε < y− 2 < ε (DefiniƟon of absolute value)
−ε <

√
x− 2 < ε (y =

√
x)

2− ε <
√
x < 2+ ε (Add 2)

(2− ε)2 < x < (2+ ε)2 (Square all)
4− 4ε+ ε2 < x < 4+ 4ε+ ε2 (Expand)

4− (4ε− ε2) < x < 4+ (4ε+ ε2). (Rewrite in the desired form)

The “desired form” in the last step is “4− something < x < 4+ something.”
Sincewewant this last interval to describe an x tolerance around 4, we have that
either δ < 4ε− ε2 or δ < 4ε+ ε2, whichever is smaller:

δ < min{4ε− ε2, 4ε+ ε2}.

Since ε > 0, the minimum is δ < 4ε − ε2. That’s the formula: given an ε, set
δ < 4ε− ε2.

We can check this for our previous values. If ε = 0.5, the formula gives
δ < 4(0.5)−(0.5)2 = 1.75 andwhen ε = 0.01, the formula gives δ < 4(0.01)−
(0.01)2 = 0.399.

So given any ε > 0, set δ < 4ε − ε2. Then if |x − 4| < δ (and x ̸= 4), then
|f(x) − 2| < ε, saƟsfying the definiƟon of the limit. We have shown formally
(and finally!) that lim

x→4

√
x = 2.

Notes:
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Chapter 1 Limits

The previous examplewas a liƩle long in thatwe sampled a few specific cases
of ε before handling the general case. Normally this is not done. The previous
example is also a bit unsaƟsfying in that

√
4 = 2; why work so hard to prove

something so obvious? Many ε-δ proofs are long and difficult to do. In this sec-
Ɵon, we will focus on examples where the answer is, frankly, obvious, because
the non–obvious examples are even harder. In the next secƟon we will learn
some theorems that allow us to evaluate limits analyƟcally, that is, without us-
ing the ε-δ definiƟon.

Example 1.2.2 EvaluaƟng a limit using the definiƟon
Show that lim

x→2
x2 = 4.

SÊ½çã®ÊÄ Let’s do this example symbolically from the start. Let ε > 0
be given; we want |y − 4| < ε, i.e., |x2 − 4| < ε. How do we find δ such that
when |x− 2| < δ, we are guaranteed that |x2 − 4| < ε?

This is a bit trickier than the previous example, but let’s start by noƟcing that
|x2 − 4| = |x− 2| · |x+ 2|. Consider:

|x2 − 4| < ε −→ |x− 2| · |x+ 2| < ε −→ |x− 2| < ε

|x+ 2|
. (1.1)

Could we not set δ =
ε

|x+ 2|
?

Weare close to an answer, but the catch is that δmust be a constant value (so
it can’t contain x). There is a way towork around this, but we do have tomake an
assumpƟon. Remember that ε is supposed to be a small number, which implies
that δ will also be a small value. In parƟcular, we can (probably) assume that
δ < 1. If this is true, then |x − 2| < δ would imply that |x − 2| < 1, giving
1 < x < 3.

Now, back to the fracƟon
ε

|x+ 2|
. If 1 < x < 3, then 3 < x + 2 < 5 (add 2

to all terms in the inequality). Taking reciprocals, we have

1
5
<

1
|x+ 2|

<
1
3

which implies

1
5
<

1
|x+ 2|

which implies

ε

5
<

ε

|x+ 2|
. (1.2)

This suggests that we set δ <
ε

5
. To see why, let consider what follows when

we assume |x− 2| < δ:

Notes:
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Figure 1.2.2: Choosing δ = ε/5 in Exam-
ple 1.2.2.

1.2 Epsilon-Delta DefiniƟon of a Limit

|x− 2| < δ

|x− 2| < ε

5
(Our choice of δ)

|x− 2| · |x+ 2| < |x+ 2| · ε
5

(MulƟply by |x+ 2|)

|x2 − 4| < |x+ 2| · ε
5

(Combine leŌ side)

|x2 − 4| < |x+ 2| · ε
5
< |x+ 2| · ε

|x+ 2| = ε (Using (1.2) as long as δ < 1)

We have arrived at |x2−4| < ε as desired. Note again, in order to make this
happen we needed δ to first be less than 1. That is a safe assumpƟon; we want
ε to be arbitrarily small, forcing δ to also be small.

We have also picked δ to be smaller than “necessary.” We could get by with
a slightly larger δ, as shown in Figure 1.2.2. The dashed outer lines show the
boundaries defined by our choice of ε. The doƩed inner lines show the bound-
aries defined by seƫng δ = ε/5. Note how these doƩed lines are within the
dashed lines. That is perfectly fine; by choosing xwithin the doƩed lines we are
guaranteed that f(x) will be within ε of 4.

In summary, given ε > 0, set δ = ε/5. Then |x− 2| < δ implies |x2 − 4| < ε
(i.e. |y − 4| < ε) as desired. This shows that lim

x→2
x2 = 4. Figure 1.2.2 gives a

visualizaƟon of this; by restricƟng x to values within δ = ε/5 of 2, we see that
f(x) is within ε of 4.

Make note of the general paƩern exhibited in these last two examples. In
some sense, each starts out “backwards.” That is, while we want to

1. start with |x− c| < δ and conclude that

2. |f(x)− L| < ε,

we actually start by assuming

1. |f(x) − L| < ε, then perform some algebraic manipulaƟons to give an
inequality of the form

2. |x− c| < something.

When we have properly done this, the something on the “greater than” side of
the inequality becomes our δ. We can refer to this as the “scratch–work” phase
of our proof. Once we have δ, we can formally start with |x − c| < δ and use
algebraic manipulaƟons to conclude that |f(x) − L| < ε, usually by using the
same steps of our “scratch–work” in reverse order.

Notes:

13



Chapter 1 Limits

We highlight this process in the following example.

Example 1.2.3 EvaluaƟng a limit using the definiƟon
Prove that lim

x→1
(x3 − 2x) = −1.

SÊ½çã®ÊÄ We start our scratch–work by considering |f(x)−(−1)| < ε:

|f(x)− (−1)| < ε

|x3 − 2x+ 1| < ε (Now factor)
|(x− 1)(x2 + x− 1)| < ε

|x− 1| < ε

|x2 + x− 1|
. (1.3)

We are at the phase of saying that |x − 1| < something, where something=
ε/|x2 + x− 1|. We want to turn that something into δ.

Since x is approaching 1, we are safe to assume that x is between 0 and 2.
So

0 < x < 2
0 < x2 < 4. (squared each term)

Since 0 < x < 2, we can add 0, x and 2, respecƟvely, to each part of the inequal-
ity and maintain the inequality.

0 < x2 + x < 6
−1 < x2 + x− 1 < 5. (subtracted 1 from each part)

In EquaƟon (1.3), we wanted |x−1| < ε/|x2+ x− 1|. The above shows that
given any x in [0, 2], we know that

x2 + x− 1 < 5 which implies that
1
5
<

1
x2 + x− 1

which implies that
ε

5
<

ε

x2 + x− 1
. (1.4)

So we set δ < ε/5. This ends our scratch–work, and we begin the formal proof
(which also helps us understand why this was a good choice of δ).

Given ε, let δ < ε/5. We want to show that when |x − 1| < δ, then |(x3 −

Notes:
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Note: Recall ln 1 = 0 and ln x < 0 when
0 < x < 1. So ln(1 − ε) < 0, hence we
consider its absolute value.

1.2 Epsilon-Delta DefiniƟon of a Limit

2x)− (−1)| < ε. We start with |x− 1| < δ:

|x− 1| < δ

|x− 1| < ε

5
|x− 1| < ε

5
<

ε

|x2 + x− 1|
(for x near 1, from EquaƟon (1.4))

|x− 1| · |x2 + x− 1| < ε

|x3 − 2x+ 1| < ε

|(x3 − 2x)− (−1)| < ε,

which is what we wanted to show. Thus lim
x→1

(x3 − 2x) = −1.

We illustrate evaluaƟng limits once more.

Example 1.2.4 EvaluaƟng a limit using the definiƟon
Prove that lim

x→0
ex = 1.

SÊ½çã®ÊÄ Symbolically, we want to take the equaƟon |ex − 1| < ε and
unravel it to the form |x− 0| < δ. Here is our scratch–work:

|ex − 1| < ε

−ε < ex − 1 < ε (DefiniƟon of absolute value)
1− ε < ex < 1+ ε (Add 1)

ln(1− ε) < x < ln(1+ ε) (Take natural logs)

Making the safe assumpƟon that ε < 1 ensures the last inequality is valid (i.e.,
so that ln(1−ε) is defined). We can then set δ to be the minimum of | ln(1−ε)|
and ln(1+ ε); i.e.,

δ = min{| ln(1− ε)|, ln(1+ ε)} = ln(1+ ε).

Now, we work through the actual the proof:

|x− 0| < δ

−δ < x < δ (DefiniƟon of absolute value)
− ln(1+ ε) < x < ln(1+ ε).

ln(1− ε) < x < ln(1+ ε). (since ln(1− ε) < − ln(1+ ε))

Notes:
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Chapter 1 Limits

The above line is true by our choice of δ and by the fact that since | ln(1− ε)| >
ln(1+ ε) and ln(1− ε) < 0, we know ln(1− ε) < − ln(1+ ε).

1− ε < ex < 1+ ε (ExponenƟate)
−ε < ex − 1 < ε (Subtract 1)

In summary, given ε > 0, let δ = ln(1 + ε). Then |x − 0| < δ implies
|ex − 1| < ε as desired. We have shown that lim

x→0
ex = 1.

We note that we could actually show that limx→c ex = ec for any constant c.
We do this by factoring out ec from both sides, leaving us to show limx→c ex−c =
1 instead. By using the subsƟtuƟonu = x−c, this reduces to showing limu→0 eu =
1 which we just did in the last example. As an added benefit, this shows that in
fact the funcƟon f(x) = ex is conƟnuous at all values of x, an important concept
we will define in SecƟon 1.5.

This formal definiƟon of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” funcƟons like polynomials, square–
roots and exponenƟals. It is very difficult to prove, using the techniques given
above, that lim

x→0
(sin x)/x = 1, as we approximated in the previous secƟon.

There is hope. The next secƟon shows how one can evaluate complicated
limits using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathemaƟcs), rarely are
limits evaluated using the definiƟon. Rather, the techniques of the following
secƟon are employed.

Notes:
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Exercises 1.2
Terms and Concepts
1. What is wrong with the following “definiƟon” of a limit?

“The limit of f(x), as x approaches a, is K”
means that given any δ > 0 there exists ε > 0
such that whenever |f(x) − K| < ε, we have
|x− a| < δ.

2. Which is given first in establishing a limit, the x–tolerance
or the y–tolerance?

3. T/F: εmust always be posiƟve.

4. T/F: δ must always be posiƟve.

Problems
In Exercises 5 – 14, prove the given limit using an ε− δ proof.

5. lim
x→4

(2x+ 5) = 13

6. lim
x→5

(3− x) = −2

7. lim
x→3

(
x2 − 3

)
= 6

8. lim
x→4

(
x2 + x− 5

)
= 15

9. lim
x→1

(
2x2 + 3x+ 1

)
= 6

10. lim
x→2

(
x3 − 1

)
= 7

11. lim
x→2

5 = 5

12. lim
x→0

(
e2x − 1

)
= 0

13. lim
x→1

1
x
= 1

14. lim
x→0

sin x = 0 (Hint: use the fact that | sin x| ≤ |x|, with
equality only when x = 0.)

17



Chapter 1 Limits

1.3 Finding Limits AnalyƟcally

In SecƟon 1.1 we explored the concept of the limit without a strict definiƟon,
meaning we could only make approximaƟons. In the previous secƟon we gave
the definiƟon of the limit and demonstrated how to use it to verify our approxi-
maƟons were correct. Thus far, our method of finding a limit is 1) make a really
good approximaƟon either graphically or numerically, and 2) verify our approx-
imaƟon is correct using a ε-δ proof.

Recognizing that ε-δ proofs are cumbersome, this secƟon gives a series of
theorems which allow us to find limits much more quickly and intuiƟvely.

Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What is limx→2(f(x) +
g(x))? IntuiƟon tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

Theorem 1.3.1 Basic Limit ProperƟes
Let b, c, L and K be real numbers, let n be a posiƟve integer, and let f and g be
funcƟons defined on an open interval I containing c with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.
1. Constants: lim

x→c
b = b

2. IdenƟty lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar MulƟples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. QuoƟents: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

f(x)n = Ln

8. Roots: lim
x→c

n
√

f(x) = n√L
(If n is even then require f(x) ≥ 0 on I.)

9. ComposiƟons: Adjust our previously given limit situaƟon to:

lim
x→c

f(x) = L, lim
x→L

g(x) = K and g(L) = K.

Then lim
x→c

g(f(x)) = K.

Notes:
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1.3 Finding Limits AnalyƟcally

We make a note about Property #8: when n is even, Lmust be greater than
0. If n is odd, then the statement is true for all L.

We apply the theorem to an example.

Example 1.3.1 Using basic limit properƟes
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

) 3. lim
x→2

p(x)

SÊ½çã®ÊÄ

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+3 =

5.

2. Using the ScalarMulƟple and Sum/Difference rules, wefind that lim
x→2

(
5f(x)+

g(x)2
)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar MulƟple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9

Part 3 of the previous example demonstrates how the limit of a quadraƟc
polynomial can be determined using the properƟes of Theorem 1.3.1. Not only
that, recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the funcƟon. This holds
true for all polynomials, and also for raƟonal funcƟons (which are quoƟents of
polynomials), as stated in the following theorem.

Notes:
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Chapter 1 Limits

Theorem 1.3.2 Limits of Polynomial and RaƟonal FuncƟons

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

Example 1.3.2 Finding a limit of a raƟonal funcƟon
Using Theorem 1.3.2, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

SÊ½çã®ÊÄ Using Theorem 1.3.2, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3.

It was likely frustraƟng in SecƟon 1.2 to do a lot of work to prove that

lim
x→2

x2 = 4

as it seemed fairly obvious. The previous theorems state that many funcƟons
behave in such an “obvious” fashion, as demonstrated by the raƟonal funcƟon
in Example 1.3.2.

Polynomial and raƟonal funcƟons are not the only funcƟons to behave in
such a predictable way. The following theorem gives a list of funcƟons whose
behavior is parƟcularly “nice” in terms of limits. In the next secƟon, we will give
a formal name to these funcƟons that behave “nicely.”

Theorem 1.3.3 Special Limits

Let c be a real number in the domain of the given funcƟon and let n be a posiƟve integer. The
following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n

√
c

Notes:
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1.3 Finding Limits AnalyƟcally

Example 1.3.3 EvaluaƟng limits analyƟcally
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→π/2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

SÊ½çã®ÊÄ

1. This is a straighƞorward applicaƟonof Theorem1.3.3. lim
x→π

cos x = cos π =

−1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 1.3.3, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 1.3.1 and Theorem 1.3.3 gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.

4. Again, we can approach this in two ways. First, we can use the exponen-
Ɵal/logarithmic idenƟty that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

We can also use the limit ComposiƟon Rule of Theorem 1.3.1. Using The-
orem 1.3.3, we have lim

x→1
ln x = ln 1 = 0 and lim

x→0
ex = e0 = 1, saƟsfying

the condiƟons of the ComposiƟon Rule. Applying this rule,

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.

Notes:
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Chapter 1 Limits

5. We encountered this limit in SecƟon 1.1. Applying our theorems, we at-
tempt to find the limit as

lim
x→0

sin x
x

→ sin 0
0

→
“ 0
0
”
.

This, of course, violates a condiƟon of Theorem 1.3.1, as the limit of the
denominator is not allowed to be 0. Therefore, we are sƟll unable to eval-
uate this limit with tools we currently have at hand.

The secƟon could have been Ɵtled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of funcƟons, we can find limits involving sums,
products, powers, etc., of these funcƟons. We further the development of such
comparaƟve tools with the Squeeze Theorem, a clever and intuiƟve way to find
the value of some limits.

Before staƟng this theorem formally, suppose we have funcƟons f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem 1.3.4 Squeeze Theorem

Let f, g and h be funcƟons on an open interval I containing c such that
for all x in I,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate funcƟons bywhich to “squeeze”
a given funcƟon. However, that is generally the only place where work is neces-
sary; the theorem makes the “evaluaƟng the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
lim
x→0

sin x
x

= 1.

Notes:
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.. θ.

(1, tan θ)

.

(cos θ, sin θ)

.
(1, 0)

Figure 1.3.1: The unit circle and related
triangles.

1.3 Finding Limits AnalyƟcally

Example 1.3.4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

SÊ½çã®ÊÄ We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure
1.3.1. Using similar triangles, we can extend the line from the origin through the
point to the point (1, tan θ), as shown. (Hereweare assuming that 0 ≤ θ ≤ π/2.
Later we will show that we can also consider θ ≤ 0.)

Figure 1.3.1 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is 1

2 tan θ; the area of the sector is θ/2; the area of the triangle
contained inside the sector is 1

2 sin θ. It is then clear from the diagram that

.. θ.

tan θ

.
1

.. θ.
1

.. θ.

sin θ

.
1

tan θ
2

≥ θ

2
≥ sin θ

2

MulƟply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequaliƟes, giving

cos θ ≤ sin θ
θ

≤ 1.

(These inequaliƟes hold for all values of θ near 0, even negaƟve values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ

≤ lim
θ→0

1

Notes:
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Chapter 1 Limits

cos 0 ≤ lim
θ→0

sin θ
θ

≤ 1

1 ≤ lim
θ→0

sin θ
θ

≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.

Two notes about the previous example are worth menƟoning. First, one
might be discouraged by this applicaƟon, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this text we
will guide you in your use of the Squeeze Theorem. As one gains mathemaƟcal
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the raƟo of x and sin x
approaches 1, meaning that they are approaching 0 in essenƟally the same way.
Another way of viewing this is: for small x, the funcƟons y = x and y = sin x are
essenƟally indisƟnguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 1.3.5 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the laƩer three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is sƟll 1. At the same Ɵme, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this parƟcular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resulƟng in a limit of 1.

Notes:
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Figure 1.3.2: Graphing f in Example 1.3.5
to understand a limit.

1.3 Finding Limits AnalyƟcally

Our final theorem for this secƟon will be moƟvated by the following exam-
ple.

Example 1.3.5 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

SÊ½çã®ÊÄ We begin by aƩempƟng to apply Theorem 1.3.2 and subsƟ-
tuƟng 1 for x in the quoƟent. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0
0
”
,

an indeterminate form. We cannot apply the theorem.
By graphing the funcƟon, as in Figure 1.3.2, we see that the funcƟon seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quoƟent can be factored:

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.

The funcƟon is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

x+1 = 2. Recall that when considering limits, we are not concerned
with the value of the funcƟon at 1, only the value the funcƟon approaches as x
approaches 1. Since (x2− 1)/(x− 1) and x+ 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that

lim
x→1

x2 − 1
x− 1

= 2.

The key to the above example is that the funcƟons y = (x2− 1)/(x− 1) and
y = x+1 are idenƟcal except at x = 1. Since limits describe a value the funcƟon
is approaching, not the value the funcƟon actually aƩains, the limits of the two
funcƟons are always equal.

Notes:
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Chapter 1 Limits

Theorem 1.3.6 Limits of FuncƟons Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

Ɵonal funcƟon of the form g(x)/f(x) and directly evaluaƟng the limit lim
x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 1.3.6. We demon-
strate this once more.

Example 1.3.6 EvaluaƟng a limit using Theorem 1.3.6

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.

SÊ½çã®ÊÄ We aƩempt to apply Theorem 1.3.2 by subsƟtuƟng 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numerator and
denominator are each polynomials, we know that (x−3) is factor of each. Using
whatevermethod ismost comfortable to you, factor out (x−3) from each (using
polynomial division, syntheƟc division, a computer algebra system, etc.). We
find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

We can cancel the (x − 3) terms as long as x ̸= 3. Using Theorem 1.3.6 we
conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.

We end this secƟon by revisiƟng a limit first seen in SecƟon 1.1, a limit of
a difference quoƟent. Let f(x) = −1.5x2 + 11.5x; we approximated the limit

lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following ex-
ample.

Notes:
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1.3 Finding Limits AnalyƟcally

Example 1.3.7 EvaluaƟng the limit of a difference quoƟent
Let f(x) = −1.5x2 + 11.5x; find lim

h→0

f(1+ h)− f(1)
h

.

SÊ½çã®ÊÄ Since f is a polynomial, our first aƩempt should be to em-
ploy Theorem 1.3.2 and subsƟtute 0 for h. However, we see that this gives us
“0/0.” Knowing that we have a raƟonal funcƟon hints that some algebra will
help. Consider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

= lim
h→0

h(−1.5h+ 8.5)
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 1.3.6, as h ̸= 0)

= 8.5 (using Theorem 1.3.3)

This matches our previous approximaƟon.

This secƟon contains several valuable tools for evaluaƟng limits. One of the
main results of this secƟon is Theorem 1.3.3; it states that many funcƟons that
we use regularly behave in a very nice, predictable way. In SecƟon 1.5 we give a
name to this nice behavior; we label such funcƟons as conƟnuous. Defining that
term will require us to look again at what a limit is and what causes limits to not
exist.

Notes:
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Exercises 1.3
Terms and Concepts
1. Explain in your ownwords, without using ε-δ formality, why

lim
x→c

b = b.

2. Explain in your ownwords, without using ε-δ formality, why
lim
x→c

x = c.

3. What does the text mean when it says that certain func-
Ɵons’ “behavior is ‘nice’ in terms of limits”? What, in par-
Ɵcular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze The-
orem.

5. You are given the following informaƟon:

(a) lim
x→1

f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the relaƟve sizes of f(x) and g(x)
as x approaches 1?

6. T/F: lim
x→1

ln x = 0. Use a theorem to defend your answer.

Problems
In Exercises 7 – 14, use the following informaƟon to evaluate
the given limit, when possible. If it is not possible to deter-
mine the limit, state why not.

• lim
x→9

f(x) = 6, lim
x→6

f(x) = 9, f(9) = 6

• lim
x→9

g(x) = 3, lim
x→6

g(x) = 3, g(6) = 9

7. lim
x→9

(f(x) + g(x))

8. lim
x→9

(3f(x)/g(x))

9. lim
x→9

(
f(x)− 2g(x)

g(x)

)

10. lim
x→6

(
f(x)

3− g(x)

)
11. lim

x→9
g
(
f(x)

)
12. lim

x→6
f
(
g(x)

)
13. lim

x→6
g
(
f(f(x))

)
14. lim

x→6
f(x)g(x)− f 2(x) + g2(x)

In Exercises 15 – 18, use the following informaƟon to eval-
uate the given limit, when possible. If it is not possible to
determine the limit, state why not.

• lim
x→1

f(x) = 2, lim
x→10

f(x) = 1, f(1) = 1/5

• lim
x→1

g(x) = 0, lim
x→10

g(x) = π, g(10) = π

15. lim
x→1

f(x)g(x)

16. lim
x→10

cos
(
g(x)

)
17. lim

x→1
f(x)g(x)

18. lim
x→1

g
(
5f(x)

)
In Exercises 19 – 34, evaluate the given limit.

19. lim
x→3

x2 − 3x+ 7

20. lim
x→π

(
x− 3
x− 5

)7

21. lim
x→π/4

cos x sin x

22. lim
x→1

2x− 2
x+ 4

23. lim
x→0

ln x

24. lim
x→3

4x
3−8x

25. lim
x→π/6

csc x

26. lim
x→0

ln(1+ x)

27. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

28. lim
x→π

3x+ 1
1− x

29. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

30. lim
x→0

x2 + 2x
x2 − 2x

31. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

32. lim
x→2

x2 − 10x+ 16
x2 − x− 2

33. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16
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34. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7

Use the Squeeze Theorem in Exercises 35 – 38, where appro-
priate, to evaluate the given limit.

35. lim
x→0

x sin
(
1
x

)

36. lim
x→0

sin x cos
(

1
x2

)
37. lim

x→1
f(x), where 3x− 2 ≤ f(x) ≤ x3.

38. lim
x→3

f(x), where 6x− 9 ≤ f(x) ≤ x2.

Exercises 39 – 43 challenge your understanding of limits but
can be evaluated using the knowledge gained in this secƟon.

39. lim
x→0

sin 3x
x

40. lim
x→0

sin 5x
8x

41. lim
x→0

ln(1+ x)
x

42. lim
x→0

sin x
x

, where x is measured in degrees, not radians.

43. Let f(x) = 0 and g(x) = x
x
.

(a) Show why lim
x→2

f(x) = 0.

(b) Show why lim
x→0

g(x) = 1.

(c) Show why lim
x→2

g
(
f(x)

)
does not exist.

(d) Show why the answer to part (c) does not violate the
ComposiƟon Rule of Theorem 1.3.1.

29



Chapter 1 Limits

1.4 One Sided Limits
We introduced the concept of a limit gently, approximaƟng their values graphi-
cally and numerically. Next came the rigorous definiƟon of the limit, along with
an admiƩedly tediousmethod for evaluaƟng them. The previous secƟon gave us
tools (whichwe call theorems) that allow us to compute limits with greater ease.
Chief among the results were the facts that polynomials and raƟonal, trigono-
metric, exponenƟal and logarithmic funcƟons (and their sums, products, etc.) all
behave “nicely.” In this secƟon we rigorously define what we mean by “nicely.”

In SecƟon 1.1 we saw three ways in which limits of funcƟons failed to exist:

1. The funcƟon approached different values from the leŌ and right,

2. The funcƟon grows without bound, and

3. The funcƟon oscillates.

In this secƟon we explore in depth the concepts behind #1 by introducing
the one-sided limit. We begin with formal definiƟons that are very similar to the
definiƟon of the limit given in SecƟon 1.2, but the notaƟon is slightly different
and “x ̸= c” is replaced with either “x < c” or “x > c.”

DefiniƟon 1.4.1 One Sided Limits: LeŌ- and Right-Hand Limits

LeŌ-Hand Limit
Let f be a funcƟon defined on (a, c) for some a < c and let L be a real
number.
The limit of f(x), as x approaches c from the leŌ, is L, or, the leŌ-hand
limit of f at c is L, denoted by

lim
x→c−

f(x) = L,

means given any ε > 0, there exists δ > 0 such that for all a < x < c, if
|x− c| < δ, then |f(x)− L| < ε.

Right-Hand Limit
Let f be a funcƟon defined on (c, b) for some b > c and let L be a real
number.
The limit of f(x), as x approaches c from the right, is L, or, the right-hand
limit of f at c is L, denoted by

lim
x→c+

f(x) = L,

means given any ε > 0, there exists δ > 0 such that for all c < x < b, if
|x− c| < δ, then |f(x)− L| < ε.

Notes:
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Figure 1.4.1: A graphof f in Example 1.4.1.

1.4 One Sided Limits

PracƟcally speaking, when evaluaƟng a leŌ-hand limit, we consider only val-
ues of x “to the leŌ of c,” i.e., where x < c. The admiƩedly imperfect notaƟon
x → c− is used to imply that we look at values of x to the leŌ of c. The nota-
Ɵon has nothing to do with posiƟve or negaƟve values of either x or c. A similar
statement holds for evaluaƟng right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous secƟons
to help us evaluate these limits; we just restrict our view to one side of c.

We pracƟce evaluaƟng leŌ- and right-hand limits through a series of exam-
ples.

Example 1.4.1 EvaluaƟng one sided limits
Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2 , as shown in Figure 1.4.1. Find each of the

following:

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SÊ½çã®ÊÄ For these problems, the visual aid of the graph is likely more
effecƟve in evaluaƟng the limits than using f itself. Therefore we will refer oŌen
to the graph.

1. As x goes to 1 from the leŌ, we see that f(x) is approaching the value of 1.
Therefore lim

x→1−
f(x) = 1.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 2.
Recall that it does not maƩer that there is an “open circle” there; we are
evaluaƟng a limit, not the value of the funcƟon. Therefore lim

x→1+
f(x) = 2.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
secƟon. The funcƟon does not approach one parƟcular value, but two
different values from the leŌ and the right.

4. Using the definiƟon and by looking at the graph we see that f(1) = 1.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore lim

x→0+
f(x) = 0. Note we cannot consider a leŌ-hand limit at 0 as f is

not defined for values of x < 0.

Notes:
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Chapter 1 Limits

6. Using the definiƟon and the graph, f(0) = 0.

7. As x goes to 2 from the leŌ, we see that f(x) is approaching the value of
1. Therefore lim

x→2−
f(x) = 1.

8. The graph and the definiƟon of the funcƟon show that f(2) is not defined.

Note how the leŌ and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuiƟve: the limit exists precisely when the leŌ and right-hand limits are equal.

Theorem 1.4.1 Limits and One Sided Limits

Let f be a funcƟon defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the leŌ and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
leŌ and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1.4.1 – 1.4.4 is that the value of the func-
Ɵonmay/may not be equal to the value(s) of its leŌ/right-hand limits, evenwhen
these limits agree.

Example 1.4.2 EvaluaƟng limits of a piecewise–defined funcƟon
Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2 , as shown in Figure 1.4.2. Evaluate the

following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

Notes:
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Figure 1.4.3: Graphing f in Example 1.4.3

1.4 One Sided Limits

SÊ½çã®ÊÄ Againwewill evaluate each using both the definiƟon of f and
its graph.

1. As x approaches 1 from the leŌ, we see that f(x) approaches 1. Therefore
lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we see that again f(x) approaches 1.
Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and leŌ. Therefore lim

x→1
f(x) = 1.

4. f(1) is not defined. Note that 1 is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = 1.

5. As x goes to 0 from the right, f(x) approaches 2. So lim
x→0+

f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x goes to 2 from the leŌ, f(x) approaches 0. So lim
x→2−

f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.

Example 1.4.3 EvaluaƟng limits of a piecewise–defined funcƟon
Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1

1 x = 1 , as shown in Figure 1.4.3. Evaluate

the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ It is clear by looking at the graph that both the leŌ and right-
hand limits of f, as x approaches 1, are 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

Example 1.4.4 EvaluaƟng limits of a piecewise–defined funcƟon
Let f(x) =

{
x2 0 ≤ x ≤ 1

2− x 1 < x ≤ 2 , as shown in Figure 1.4.4. Evaluate the fol-

lowing.

Notes:

33



.....
1

.
2

.

0.5

.

1

.

x

.

y

Figure 1.4.4: Graphing f in Example 1.4.4

Chapter 1 Limits

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ It is clear from the definiƟon of the funcƟon and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

In Examples 1.4.1 – 1.4.4 we were asked to find both lim
x→1

f(x) and f(1). Con-
sider the following table:

lim
x→1

f(x) f(1)

Example 1.4.1 does not exist 1
Example 1.4.2 1 not defined
Example 1.4.3 0 1
Example 1.4.4 1 1

Only in Example 1.4.4 do both the funcƟon and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situaƟon
which we explore in the next secƟon, enƟtled “ConƟnuity.” In short, a conƟnu-
ous funcƟon is one in which when a funcƟon approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually aƩains that value at c. Such funcƟons behave

nicely as they are very predictable.

Notes:
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Exercises 1.4
Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5 – 12, evaluate each expression using the given
graph of f(x).

5.
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1

.
1.5

.
2

.

0.5

.
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.

1.5

.

2

. x.

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→0−
f(x)

(f) lim
x→0+

f(x)

6.
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.
1

.
1.5

.
2

.

0.5

.

1

.

1.5

.

2

. x.

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→2−
f(x)

(f) lim
x→2+

f(x)

7.
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
(e) lim

x→2−
f(x)

(f) lim
x→0+

f(x)

8.

.....
0.5

.
1

.
1.5

.
2

.

0.5

.

1

.

1.5

.

2

. x.
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

10.
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x
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y

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)
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(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)

12.
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y

Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 13 – 21, evaluate the given limits of the piecewise
defined funcƟons f.

13. f(x) =
{

x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

14. f(x) =
{

2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

15. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

16. f(x) =
{

cos x x < π
sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =
{

1− cos2 x x < a
sin2 x x ≥ a ,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

18. f(x) =


x+ 1 x < 1
1 x = 1

x− 1 x > 1
(a) lim

x→1−
f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

19. f(x) =


x2 x < 2

x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

20. f(x) =
{

a(x− b)2 + c x < b
a(x− b) + c x ≥ b ,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =
{ |x|

x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

Review

22. Evaluate the limit: lim
x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

23. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

24. Evaluate the limit: lim
x→−6

x2 − 15x+ 54
x2 − 6x

.

25. Approximate the limit numerically: lim
x→0.4

x2 − 4.4x+ 1.6
x2 − 0.4x

.

26. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.
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Figure 1.5.1: A graphof f in Example 1.5.1.

1.5 ConƟnuity

1.5 ConƟnuity
As we have studied limits, we have gained the intuiƟon that limits measure
“where a funcƟon is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to 1,

f(x) is close to 3. We have seen, though, that this is not necessarily a good indi-
cator of what f(1) actually is. This can be problemaƟc; funcƟons can tend to one
value but aƩain another. This secƟon focuses on funcƟons that do not exhibit
such behavior.

DefiniƟon 1.5.1 ConƟnuous FuncƟon

Let f be a funcƟon defined on an open interval I containing c.

1. f is conƟnuous at c if lim
x→c

f(x) = f(c).

2. f is conƟnuous on I if f is conƟnuous at c for all values of c in I. If f
is conƟnuous on (−∞,∞), we say f is conƟnuous everywhere.

A useful way to establish whether or not a funcƟon f is conƟnuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

Example 1.5.1 Finding intervals of conƟnuity
Let f be defined as shown in Figure 1.5.1. Give the interval(s) on which f is con-
Ɵnuous.

SÊ½çã®ÊÄ We proceed by examining the three criteria for conƟnuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be conƟnuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is conƟnuous at every point of (0, 3) except at x = 1.
Therefore f is conƟnuous on (0, 1) and (1, 3).

Our definiƟon of conƟnuity (currently) only applies to open intervals. AŌer
DefiniƟon 1.5.2, we’ll be able to say that f is conƟnuous on [0, 1) and (1, 3].

Notes:
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Figure 1.5.2: A graph of the step funcƟon
in Example 1.5.2.

Chapter 1 Limits

Example 1.5.2 Finding intervals of conƟnuity
The floor funcƟon, f(x) = ⌊x⌋, returns the largest integer smaller than, or equal
to, the input x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 1.5.2
demonstrates why this is oŌen called a “step funcƟon.”

Give the intervals on which f is conƟnuous.

SÊ½çã®ÊÄ We examine the three criteria for conƟnuity.

1. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The funcƟon is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is conƟnuous everywhere except at integer values of c. So
the intervals on which f is conƟnuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .

Our definiƟon of conƟnuity on an interval specifies the interval is an open
interval. We can extend the definiƟon of conƟnuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

DefiniƟon 1.5.2 ConƟnuity on Closed Intervals

Let f be defined on the closed interval [a, b] for some real numbers a < b.
f is conƟnuous on [a, b] if:

1. f is conƟnuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about conƟnuity on half–
open intervals such as [a, b) or (a, b] if necessary.

Using this new definiƟon, we can adjust our answer in Example 1.5.1 by stat-
ing that f is conƟnuous on [0, 1) and (1, 3], as menƟoned in that example. We

Notes:
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1.5 ConƟnuity

can also revisit Example 1.5.2 and state that the floor funcƟon is conƟnuous on
the following half–open intervals

. . . , [−2,−1), [−1, 0), [0, 1), [1, 2), . . . .

This can tempt us to conclude that f is conƟnuous everywhere; aŌer all, if f is
conƟnuous on [0, 1) and [1, 2), isn’t f also conƟnuous on [0, 2)? Of course, the
answer is no, and the graph of the floor funcƟon immediately confirms this.

ConƟnuous funcƟons are important as they behave in a predictable fashion:
funcƟons aƩain the value they approach. Because conƟnuity is so important,
most of the funcƟons you have likely seen in the past are conƟnuous on their
domains. This is demonstrated in the following example where we examine the
intervals of conƟnuity of a variety of common funcƟons.

Example 1.5.3 Determining intervals on which a funcƟon is conƟnuous
For each of the following funcƟons, give the domain of the funcƟon and the
interval(s) on which it is conƟnuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|

SÊ½çã®ÊÄ We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0) ∪ (0,∞). As it is a raƟonal func-
Ɵon, we apply Theorem 1.3.2 to recognize that f is conƟnuous on all of its
domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 1.3.3 shows that sin x is conƟnuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem 1.3.3 shows that

f(x) =
√
x is conƟnuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 1.3.1 and

1.3.3 shows that f is conƟnuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

funcƟon as f(x) =
{

−x x < 0
x x ≥ 0 . Each “piece” of this piecewise defined

funcƟon is conƟnuous on all of its domain, giving that f is conƟnuous on
(−∞, 0) and [0,∞). We cannot assume this implies that f is conƟnuous
on (−∞,∞); we need to check that lim

x→0
f(x) = f(0), as x = 0 is the point

where f transiƟons from one “piece” of its definiƟon to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is conƟnuous everywhere.

Notes:
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Chapter 1 Limits

ConƟnuity is inherently Ɵed to the properƟes of limits. Because of this, the
properƟes of limits found in Theorems 1.3.1 and 1.3.2 apply to conƟnuity aswell.
Further, now knowing the definiƟon of conƟnuity we can re–read Theorem 1.3.3
as giving a list of funcƟons that are conƟnuous on their domains. The following
theorem states how conƟnuous funcƟons can be combined to form other con-
Ɵnuous funcƟons, followed by a theorem which formally lists funcƟons that we
know are conƟnuous on their domains.

Theorem 1.5.1 ProperƟes of ConƟnuous FuncƟons

Let f and g be conƟnuous funcƟons on an interval I, let c be a real number
and let n be a posiƟve integer. The following funcƟons are conƟnuous on
I.

1. Sums/Differences: f± g

2. Constant MulƟples: c · f

3. Products: f · g

4. QuoƟents: f/g (as long as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (If n is even then require f(x) ≥ 0 on I.)

7. ComposiƟons: Adjust the definiƟons of f and g to: Let f be
conƟnuous on I, where the range of f on I is J,
and let g be conƟnuous on J. Then g ◦ f, i.e.,
g(f(x)), is conƟnuous on I.

Theorem 1.5.2 ConƟnuous FuncƟons

Let n be a posiƟve integer. The following funcƟons are conƟnuous on their domains.

1. f(x) = sin x

2. f(x) = cos x

3. f(x) = tan x

4. f(x) = csc x

5. f(x) = sec x

6. f(x) = cot x

7. f(x) = ax (a > 0)

8. f(x) = ln x

9. f(x) = n
√
x

We apply these theorems in the following Example.

Notes:
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Figure 1.5.3: A graph of f in Example
1.5.4(1).

1.5 ConƟnuity

Example 1.5.4 Determining intervals on which a funcƟon is conƟnuous
State the interval(s) on which each of the following funcƟons is conƟnuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

SÊ½çã®ÊÄ Weexamine each in turn, applying Theorems 1.5.1 and 1.5.2
as appropriate.

1. The square–root terms are conƟnuous on the intervals [1,∞) and (−∞, 5],
respecƟvely. As f is conƟnuous only where each term is conƟnuous, f is
conƟnuous on [1, 5], the intersecƟon of these two intervals. A graph of f
is given in Figure 1.5.3.

2. The funcƟons y = x and y = sin x are each conƟnuous everywhere, hence
their product is, too.

3. Theorem 1.5.2 states that f(x) = tan x is conƟnuous “on its domain.” Its
domain includes all real numbers except odd mulƟples of π/2. Thus the
intervals on which f(x) = tan x is conƟnuous are

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . . , .

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restricƟng y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

A common way of thinking of a conƟnuous funcƟon is that “its graph can
be sketched without liŌing your pencil.” That is, its graph forms a “conƟnuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–definiƟon glosses over some of the finer points of conƟnuity. Very
strange funcƟons are conƟnuous that one would be hard pressed to actually
sketch by hand.

This intuiƟve noƟon of conƟnuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is conƟnuous on [1, 2] (i.e., its graph can be sketched as a conƟnu-
ous curve from (1,−10) to (2, 5)) then we know intuiƟvely that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f
takes on all intermediate values between −10 and 5. It may take on more val-
ues; fmay actually equal 6 at some Ɵme, for instance, but we are guaranteed all
values between−10 and 5.

Notes:
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Chapter 1 Limits

While this noƟon seems intuiƟve, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 1.5.3 Intermediate Value Theorem

Let f be a conƟnuous funcƟon on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is
at least one value c in (a, b) such that f(c) = y.

One important applicaƟon of the Intermediate Value Theorem is root find-
ing. Given a funcƟon f, we are oŌen interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
Ɵons can be found through successive applicaƟons of this theorem. Suppose
through direct computaƟon we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one c in (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such a
value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approximaƟon of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibiliƟes:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approximaƟon
of the root.

3. f(d) > 0: Thenwe know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
maƟon of the root.

Successively applying this technique is called the BisecƟon Method of root
finding. We conƟnue unƟl the interval is sufficiently small. We demonstrate this
in the following example.

Example 1.5.5 Using the BisecƟon Method
Approximate the root of f(x) = x − cos x, accurate to three places aŌer the
decimal.

SÊ½çã®ÊÄ Consider the graph of f(x) = x−cos x, shown in Figure 1.5.4.
It is clear that the graph crosses the x-axis somewhere near x = 0.8. To start the
BisecƟonMethod, pick an interval that contains 0.8. We choose [0.7, 0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

Notes:
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IteraƟon # Interval Midpoint Sign
1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 1.5.5: IteraƟons of the BisecƟon
Method of Root Finding

1.5 ConƟnuity

IteraƟon 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

IteraƟon 2: f(0.7) < 0, f(0.8) > 0, and at themidpoint, 0.75, wehave f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
Ɵnue to check the endpoints, just the midpoint. Thus we put the rest of
the iteraƟons in Figure 1.5.5.

NoƟce that in the 12th iteraƟon we have the endpoints of the interval each
starƟng with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places aŌer the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximaƟon of where f is 0. The
IntermediateValue Theoremstates that the actual zero is sƟllwithin this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places aŌer the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a
second for the program to run the necessary 35 iteraƟons. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 iteraƟons).

It is a simplemaƩer to extend theBisecƟonMethod to solve problems similar
to “Find x, where f(x) = 0.” For instance, we can find x, where f(x) = 1. It
actually works very well to define a new funcƟon gwhere g(x) = f(x)−1. Then
use the BisecƟon Method to solve g(x) = 0.

Similarly, given two funcƟons f and g, we can use the BisecƟon Method to
solve f(x) = g(x). Once again, create a new funcƟon hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

In SecƟon 4.1 another equaƟon solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathemaƟcs, though, so we will wait before introducing it.

This secƟon formally defined what it means to be a conƟnuous funcƟon.
“Most” funcƟons that we deal with are conƟnuous, so oŌen it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

In the next secƟon we examine onemore aspect of limits: limits that involve
infinity.

Notes:
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Exercises 1.5
Terms and Concepts
1. In your own words, describe what it means for a funcƟon

to be conƟnuous.

2. In your own words, describe what the Intermediate Value
Theorem states.

3. What is a “root” of a funcƟon?

4. Given funcƟons f and g on an interval I, how can the Bisec-
Ɵon Method be used to find a value c where f(c) = g(c)?

5. T/F: If f is defined on an open interval containing c, and
lim
x→c

f(x) exists, then f is conƟnuous at c.

6. T/F: If f is conƟnuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is conƟnuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is conƟnuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is conƟnuous on [0, 1) and [1, 2), then f is conƟnu-
ous on [0, 2).

10. T/F: The sum of conƟnuous funcƟons is also conƟnuous.

Problems
In Exercises 11 – 18, a graph of a funcƟon f is given along with
a value a. Determine if f is conƟnuous at a; if it is not, state
why it is not.
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16. a = 4
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17. (a) a = −2

(b) a = 0

(c) a = 2
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18. a = 3π/2
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π/2 π 3π/2 2π
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y

In Exercises 19 – 22, determine if f is conƟnuous at the indi-
cated values. If not, explain why.

19. f(x) =
{

1 x = 0
sin x
x x > 0

(a) x = 0

(b) x = π

20. f(x) =
{

x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0

(b) x = 1

21. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1

3 x = −1

(a) x = −1

(b) x = 10

22. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0

(b) x = 8

In Exercises 23 – 34, give the intervals on which the given
funcƟon is conƟnuous.

23. f(x) = x2 − 3x+ 9

24. g(x) =
√
x2 − 4

25. g(x) =
√
4− x2

26. h(k) =
√
1− k+

√
k+ 1

27. f(t) =
√
5t2 − 30

28. g(t) = 1√
1− t2

29. g(x) = 1
1+ x2

30. f(x) = ex

31. g(s) = ln s

32. h(t) = cos t

33. f(k) =
√

1− ek

34. f(x) = sin(ex + x2)

Exercises 35 – 38 test your understanding of the Intermediate
Value Theorem.

35. Let f be conƟnuous on [1, 5] where f(1) = −2 and f(5) =
−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

36. Let g be conƟnuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

37. Let f be conƟnuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

38. Let h be a funcƟon on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 39 – 42, use the BisecƟon Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given funcƟon in the given interval.

39. f(x) = x2 + 2x− 4 on [1, 1.5].

40. f(x) = sin x− 1/2 on [0.5, 0.55]

41. f(x) = ex − 2 on [0.65, 0.7].

42. f(x) = cos x− sin x on [0.7, 0.8].

Review

43. Let f(x) =
{

x2 − 5 x < 5
5x x ≥ 5 .

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

44. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

45. Give an example of funcƟon f(x) forwhich lim
x→0

f(x) does not
exist.
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Figure 1.6.1: Graphing f(x) = 1/x2 for
values of x near 0.

Chapter 1 Limits

1.6 Limits Involving Infinity
In DefiniƟon 1.2.1 we stated that in the equaƟon limx→c f(x) = L, both c and
L were numbers. In this secƟon we relax that definiƟon a bit by considering
situaƟons when it makes sense to let c and/or L be “infinity.”

As a moƟvaƟng example, consider f(x) = 1/x2, as shown in Figure 1.6.1.
Note how, as x approaches 0, f(x) grows very, very large – in fact, it growswithout
bound. It seems appropriate, and descripƟve, to state that

lim
x→0

1
x2

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notaƟon such as

lim
x→∞

1
x2

= 0.

We explore both types of use of∞ in turn.

DefiniƟon 1.6.1 Limit of Infinity,∞

Let I be an open interval containing c, and let f be a funcƟon defined on
I, except possibly at c.

• The limit of f(x), as x approaches c, is infinity, denoted by

lim
x→c

f(x) = ∞,

means that given any N > 0, there exists δ > 0 such that for all x
in I, where x ̸= c, if |x− c| < δ, then f(x) > N.

• The limit of f(x), as x approaches c, is negaƟve infinity, denoted
by

lim
x→c

f(x) = −∞,

means that given any N < 0, there exists δ > 0 such that for all x
in I, where x ̸= c, if |x− c| < δ, then f(x) < N.

The first definiƟon is similar to the ε–δ definiƟon from SecƟon 1.2. In that
definiƟon, given any (small) value ε, if we let x get close enough to c (within δ
units of c) then f(x) is guaranteed to be within ε of L. Here, given any (large)
value N, if we let x get close enough to c (within δ units of c), then f(x) will be

Notes:
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Figure 1.6.2: Observing infinite limit as
x → 1 in Example 1.6.1.

1.6 Limits Involving Infinity

at least as large as N. In other words, if we get close enough to c, then we can
make f(x) as large as we want. We define limits equal to−∞ in a similar way.

It is important to note that by saying limx→c f(x) = ∞ we are implicitly stat-
ing that the limit of f(x), as x approaches c, does not exist. A limit only exists
when f(x) approaches an actual numeric value. We use the concept of limits
that approach infinity because it is helpful and descripƟve.

We define one-sided limits that approach infinity in a similar way.

DefiniƟon 1.6.2 One-Sided Limits of Infinity

• Let f be a funcƟon defined on (a, c) for some a < c.
The limit of f(x), as x approaches c from the leŌ, is infinity, or, the
leŌ-hand limit of f at c is infinity, denoted by

lim
x→c−

f(x) = ∞,

means given any N > 0, there exists δ > 0 such that for all
a < x < c, if |x− c| < δ, then f(x) > N.

• Let f be a funcƟon defined on (c, b) for some b > c.
The limit of f(x), as x approaches c from the right, is infinity, or,
the right-hand limit of f at c is infinity, denoted by

lim
x→c+

f(x) = ∞,

means given any N > 0, there exists δ > 0 such that for all
c < x < b, if |x− c| < δ, then f(x) > N.

• The term leŌ- (or, right-) hand limit of f at c is negaƟve infinity is
defined in a manner similar to DefiniƟon 1.6.1.

Example 1.6.1 EvaluaƟng limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 1.6.2.

SÊ½çã®ÊÄ In Example 1.1.4 of SecƟon 1.1, by inspecƟng values of x
close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the funcƟon
does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,
f(.9999) = 108. A similar thing happens on the other side of 1. In general,
let a “large” value N be given. Let δ = 1/

√
N. If x is within δ of 1, i.e., if

Notes:
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1
x
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Chapter 1 Limits

|x− 1| < 1/
√
N, then:

|x− 1| < 1√
N

(x− 1)2 <
1
N

1
(x− 1)2

> N,

which is what we wanted to show. So we may say lim
x→1

1/(x− 1)2 = ∞.

Example 1.6.2 EvaluaƟng limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 1.6.3.

SÊ½çã®ÊÄ It is easy to see that the funcƟon grows without bound near
0, but it does so in different ways on different sides of 0. Since its behavior is not
consistent, we cannot say that lim

x→0

1
x
= ∞. However, we can make a statement

about one–sided limits. We can state that lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞.

The graphs in the two previous examples demonstrate that if a funcƟon f has
a limit (or, leŌ- or right-hand limit) of infinity at x = c, then the graph of f looks
similar to a verƟcal line near x = c. This observaƟon leads to a definiƟon.

DefiniƟon 1.6.3 VerƟcal Asymptote

Let I be an interval that either contains c or has c as an endpoint, and let
f be a funcƟon defined on I, except possibly at c.
If the limit of f(x) as x approaches c from either the leŌ or right (or both)
is∞ or−∞, then the line x = c is a verƟcal asymptote of f.

Example 1.6.3 Finding verƟcal asymptotes
Find the verƟcal asymptotes of f(x) =

3x
x2 − 4

.

SÊ½çã®ÊÄ VerƟcal asymptotes occur where the funcƟon grows with-
out bound; this can occur at values of c where the denominator is 0. When x is
near c, the denominator is small, which in turn can make the funcƟon take on
large values. In the case of the given funcƟon, the denominator is 0 at x = ±2.
SubsƟtuƟng in values of x close to 2 and−2 seems to indicate that the funcƟon
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1.6 Limits Involving Infinity

tends toward∞ or−∞ at those points. We can graphically confirm this by look-
ing at Figure 1.6.4. Thus the verƟcal asymptotes are at x = ±2.

When a raƟonal funcƟon has a verƟcal asymptote at x = c, we can conclude
that the denominator is 0 at x = c. However, just because the denominator
is 0 at a certain point does not mean there is a verƟcal asymptote there. For
instance, f(x) = (x2 − 1)/(x − 1) does not have a verƟcal asymptote at x = 1,
as shown in Figure 1.6.5. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Canceling the common term, we get that f(x) = x + 1 for x ̸= 1. So there is
clearly no asymptote; rather, a hole exists in the graph at x = 1.

The above example may seem a liƩle contrived. Another example demon-
straƟng this important concept is f(x) = (sin x)/x. We have considered this
funcƟon several Ɵmes in the previous secƟons. We found that limx→0

sin x
x = 1;

i.e., there is no verƟcal asymptote. No simple algebraic cancellaƟon makes this
fact obvious; we used the Squeeze Theorem in SecƟon 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a verƟcal asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a verƟcal asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respecƟvely. However, 0/0 is not a valid arithmeƟcal expression. It gives
no indicaƟon that the respecƟve limits are 1 and 2.

With a liƩle cleverness, one can come up with 0/0 expressions which have
a limit of ∞, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that

Notes:
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Chapter 1 Limits

the numerator is shrinking to 0 while the denominator is also shrinking to 0.
The respecƟve rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That work may be algebraic (such as factoring and canceling)
or it may require a tool such as the Squeeze Theorem. In a later secƟon we will
learn a technique called l’Hôspital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evaluaƟng a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quanƟty
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞.

Note that 1/0 and ∞/0 are not indeterminate forms, though they are not
exactly valid mathemaƟcal expressions, either. In each, the funcƟon is growing
without bound, indicaƟng that the limit will be∞,−∞, or simply not exist if the
leŌ- and right-hand limits do not match.

Limits at Infinity and Horizontal Asymptotes

At the beginning of this secƟonwebriefly consideredwhat happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behavior of the funcƟon to
the “far right” of the graph. We make this noƟon more explicit in the following
definiƟon.

DefiniƟon 1.6.4 Limits at Infinity and Horizontal Asymptotes

Let L be a real number.

1. Let f be a funcƟon defined on (a,∞) for some number a. The
limit of f at infinity is L, or lim

x→∞
f(x) = L, means for every ε > 0

there existsM > a such that if x > M, then |f(x)− L| < ε.

2. Let f be a funcƟon defined on (−∞, b) for some number b. The
limit of f at negaƟve infinity is L, or lim

x→−∞
f(x) = L, means

for every ε > 0 there exists M < b such that if x < M, then
|f(x)− L| < ε.

3. If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say the line y = L is a
horizontal asymptote of f.

Notes:
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Figure 1.6.6: Using a graph and a table
to approximate a horizontal asymptote in
Example 1.6.4.

1.6 Limits Involving Infinity

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this definiƟon
with DefiniƟon 1.6.1.

Example 1.6.4 ApproximaƟng horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

SÊ½çã®ÊÄ We will approximate the horizontal asymptotes by approxi-
maƟng the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 1.6.6(a) shows a sketch of f, and part (b) gives values of f(x) for largemag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1.

Later, we will show how to determine this analyƟcally.

Horizontal asymptotes can take on a variety of forms. Figure 1.6.7(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 1.6.7(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymptotes;

one at y = 1 and the other at y = −1.
Figure 1.6.7(c) shows that f(x) = (sin x)/x has even more interesƟng behav-

ior than at just x = 0; as x approaches±∞, f(x) approaches 0, but oscillates as
it does this.
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Figure 1.6.7: Considering different types of horizontal asymptotes.
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Chapter 1 Limits

We can analyƟcally evaluate limits at infinity for raƟonal funcƟons once we
understand limx→∞ 1/x. As x gets larger and larger, 1/x gets smaller and smaller,
approaching 0. We can, in fact, make 1/x as small as wewant by choosing a large
enough value of x. Given ε, we can make 1/x < ε by choosing x > 1/ε. Thus
we have limx→∞ 1/x = 0.

It is now not much of a jump to conclude the following:

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.

A good way of approaching this is to divide through the numerator and denom-
inator by x3 (hence mulƟplying by 1), which is the largest power of x to appear
in the funcƟon. Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

1/x3

1/x3
· x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/xn, we see that the limit becomes

1+ 0+ 0
4− 0+ 0

=
1
4
.

This procedure works for any raƟonal funcƟon. In fact, it gives us the follow-
ing theorem.
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1.6 Limits Involving Infinity

Theorem 1.6.1 Limits of RaƟonal FuncƟons at Infinity

Let f(x) be a raƟonal funcƟon of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then lim
x→∞

f(x) = lim
x→−∞

f(x) =
an
bm

.

2. If n < m, then lim
x→∞

f(x) = lim
x→−∞

f(x) = 0.

3. If n > m, then lim
x→∞

f(x) and lim
x→−∞

f(x) are both infinite.

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situaƟon like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxm/xn. Since n = m, this will leave us with
the limit an/bm. If n < m, then aŌer dividing through by xm, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/bm or 0. If n > m, and
we try dividing through by xn, we end up with all the terms in the denominator
tending toward 0, while the xn term in the numerator does not approach 0. This
is indicaƟve of some sort of infinite limit.

IntuiƟvely, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the funcƟon behaves
like an/(bmxm−n), which tends toward 0. If n > m, the funcƟon behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

With care, we can quickly evaluate limits at infinity for a large number of
funcƟons by considering the largest powers of x. For instance, consider again
lim

x→±∞

x√
x2 + 1

, graphed in Figure 1.6.7(b). When x is very large, x2 + 1 ≈ x2.

Thus √
x2 + 1 ≈

√
x2 = |x|, and

x√
x2 + 1

≈ x
|x|

.

This expression is 1 when x is posiƟve and−1 when x is negaƟve. Hence we get
asymptotes of y = 1 and y = −1, respecƟvely.
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Figure 1.6.8: Visualizing the funcƟons in
Example 1.6.6.

Chapter 1 Limits

Example 1.6.5 Finding a limit of a raƟonal funcƟon

Confirm analyƟcally that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 1.6.4.

SÊ½çã®ÊÄ Before using Theorem 1.6.1, let’s use the technique of eval-
uaƟng limits at infinity of raƟonal funcƟons that led to that theorem. The largest
power of x in f is 2, so divide the numerator and denominator of f by x2, then
take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

We can also use Theorem 1.6.1 directly; in this case n = m so the limit is the
raƟo of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1.

Example 1.6.6 Finding limits of raƟonal funcƟons
Use Theorem 1.6.1 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

SÊ½çã®ÊÄ

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 1.6.8(a).

2. The highest power of x is x2, which occurs in both the numerator and de-
nominator. The limit is therefore the raƟo of the coefficients of x2, which
is−1/3. See Figure 1.6.8(b).

3. The highest power of x is in the numerator so the limit will be∞ or−∞.
To see which, consider only the dominant terms from the numerator and
denominator, which are x2 and−x. The expression in the limit will behave
like x2/(−x) = −x for large values of x. Therefore, the limit is −∞. See
Figure 1.6.8(c).
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Chapter Summary
In this chapter we:

• defined the limit,

• found accessible ways to approximate the value of limits numerically and
graphically,

• developed anot–so–easymethodof proving the value of a limit (ε-δ proofs),

• explored when limits do not exist,

• defined conƟnuity and explored properƟes of conƟnuous funcƟons, and

• considered limits that involved infinity.

Why? MathemaƟcs is famous for building on itself and calculus proves to
be no excepƟon. In the next chapter we will be interested in “dividing by 0.”
That is, we will want to divide a quanƟty by smaller and smaller numbers and
see what value the quoƟent approaches. In other words, we will want to find a
limit. These limits will enable us to, among other things, determine exactly how
fast something is moving when we are only given posiƟon informaƟon.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum oŌen is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over Ɵme an
appreciaƟon is oŌen formed based on the scope of its applicability.
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Exercises 1.6
Terms and Concepts

1. T/F: If lim
x→5

f(x) = ∞, then we are implicitly staƟng that the
limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly staƟng that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a verƟcal asymptote at
x = 5.

5. T/F:∞/0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a funcƟon with a verƟcal asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is/is not
conƟnuous at x = 7.

Problems

In Exercises 9 – 14, evaluate the given limits using the graph
of the funcƟon.

9. f(x) = 1
(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

.....
−2

.
−1

.

50

.

100

. x.

y

10. f(x) = 1
(x− 3)(x− 5)2

.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

...

..

2

.

4

.

6

.

−50

.

50

.

x

.

y

11. f(x) = 1
ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)

.....

−10

.

−5

.

5

.

10

. −1.

−0.5

.

0.5

.

1

.

x

.

y

12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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14. f(x) = 2x + 10

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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In Exercises 15 – 18, numerically approximate the following
limits:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) = x2 − 1
x2 − x− 6

16. f(x) = x2 + 5x− 36
x3 − 5x2 + 3x+ 9

17. f(x) = x2 − 11x+ 30
x3 − 4x2 − 3x+ 18

18. f(x) = x2 − 9x+ 18
x2 − x− 6

In Exercises 19 – 24, idenƟfy the horizontal and verƟcal
asymptotes, if any, of the given funcƟon.

19. f(x) = 2x2 − 2x− 4
x2 + x− 20

20. f(x) = −3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) = x2 + x− 12
7x3 − 14x2 − 21x

22. f(x) = x2 − 9
9x− 9

23. f(x) = x2 − 9
9x+ 27

24. f(x) = x2 − 1
−x2 − 1

In Exercises 25 – 28, evaluate the given limit.

25. lim
x→∞

x3 + 2x2 + 1
x− 5

26. lim
x→∞

x3 + 2x2 + 1
5− x

27. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

28. lim
x→−∞

x3 + 2x2 + 1
5− x2

Review
29. Use an ε− δ proof to show that

lim
x→1

5x− 2 = 3.

30. Let lim
x→2

f(x) = 3 and lim
x→2

g(x) = −1. Evaluate the following
limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(c) lim
x→2

(f/g)(x)

(d) lim
x→2

f(x)g(x)

31. Let f(x) =
{

x2 − 1 x < 3
x+ 5 x ≥ 3 .

Is f conƟnuous everywhere?

32. Evaluate the limit: lim
x→e

ln x.
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2: D�Ù®ò�ã®ò�Ý
The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivaƟve. Limits describe where a funcƟon is going; derivaƟves describe
how fast the funcƟon is going.

2.1 Instantaneous Rates of Change: The DerivaƟve
A common amusement park ride liŌs riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Students of physics may recall that the
height (in feet) of the riders, t seconds aŌer freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without intervenƟon, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slowing the riders’ fall aŌer 2 seconds (corresponding
to a height of 86 Ō.). How fast will the riders be traveling at that Ɵme?

We have been given a posiƟon funcƟon, but what we want to compute is a
velocity at a specific point in Ɵme, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in SecƟon 1.1 when we introduced the
difference quoƟent. We have

change in distance
change in Ɵme

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some Ɵme period containing t = 2. If we make the Ɵme
interval small, we will get a good approximaƟon. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approximaƟon of the velocity.)

Consider the interval from t = 2 to t = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(2)

1
= −80 Ō/s,



h
Average Velocity

Ō/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 2.1.1: ApproximaƟng the instan-
taneous velocity with average velociƟes
over a small Ɵme period h.

Chapter 2 DerivaƟves

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a beƩer approximaƟon of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 Ō/s.

We can do this for smaller and smaller intervals of Ɵme. For instance, over
a Ɵme span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 Ō/s.

Over a Ɵme span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 Ō/s.

Whatwe are really compuƟng is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are compuƟng

f(2+ h)− f(2)
h

where h is small.
We really want to use h = 0, but this, of course, returns the familiar “0/0”

indeterminate form. So we employ a limit, as we did in SecƟon 1.1.
We can approximate the value of this limit numerically with small values of

h as seen in Figure 2.1.1. It looks as though the velocity is approaching−64 Ō/s.
CompuƟng the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
(−64− 16h)

= −64.

Graphically, we can view the average velociƟes we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2))
and (2+ h, f(2+ h)). In Figure 2.1.2, the secant line corresponding to h = 1 is
shown in three contexts. Figure 2.1.2(a) shows a “zoomed out” version of fwith
its secant line. In (b), we zoom in around the points of intersecƟon between
f and the secant line. NoƟce how well this secant line approximates f between

Notes:
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2.1 Instantaneous Rates of Change: The DerivaƟve

those twopoints – it is a commonpracƟce to approximate funcƟonswith straight
lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 2.1.2, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).
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Figure 2.1.2: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this secƟon. First, we formally define two of them.

Notes:
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Chapter 2 DerivaƟves

DefiniƟon 2.1.1 DerivaƟve at a Point

Let f be a conƟnuous funcƟon on an open interval I and let c be in I. The
derivaƟve of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists. If the limit exists, we say that f is differenƟable
at c; if the limit does not exist, then f is not differenƟable at c. If f is
differenƟable at every point in I, then f is differenƟable on I.

DefiniƟon 2.1.2 Tangent Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The line with equaƟon ℓ(x) = f ′(c)(x−c)+ f(c) is the tangent line
to the graph of f at c; that is, it is the line through (c, f(c)) whose slope
is the derivaƟve of f at c.

Some examples will help us understand these definiƟons.

Example 2.1.1 Finding derivaƟves and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equaƟon of the tangent line
to the graph of f at x = 1.

3. f ′(3)

4. The equaƟon of the tangent line
to the graph f at x = 3.

SÊ½çã®ÊÄ

1. We compute this directly using DefiniƟon 2.1.1.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

(3h+ 11) = 11.

Notes:
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Figure 2.1.3: A graph of f(x) = 3x2+5x−
7 and its tangent lines at x = 1 and x = 3.

2.1 Instantaneous Rates of Change: The DerivaƟve

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equaƟon, in point-slope form,
y = 11(x− 1) + 1. In slope-intercept form we have y = 11x− 10.

3. Again, using the definiƟon,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

(3h+ 23)

= 23.

4. The tangent line at x = 3has slope 23 and goes through thepoint (3, f(3)) =
(3, 35). Thus the tangent line has equaƟon y = 23(x−3)+35 = 23x−34.

A graph of f is given in Figure 2.1.3 along with the tangent lines at x = 1 and
x = 3.

Another important line that canbe createdusing informaƟon from thederiva-
Ɵve is the normal line. It is perpendicular to the tangent line, hence its slope is
the opposite–reciprocal of the tangent line’s slope.

DefiniƟon 2.1.3 Normal Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The normal line to the graph of f at c is the line with equaƟon

n(x) =
−1
f ′(c)

(x− c) + f(c),

where f ′(c) ̸= 0. When f ′(c) = 0, the normal line is the verƟcal line
through

(
c, f(c)

)
; that is, x = c.

Example 2.1.2 Finding equaƟons of normal lines
Let f(x) = 3x2 + 5x − 7, as in Example 2.1.1. Find the equaƟons of the normal
lines to the graph of f at x = 1 and x = 3.

SÊ½çã®ÊÄ In Example 2.1.1, we found that f ′(1) = 11. Hence at x = 1,

Notes:
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the normal line will have slope−1/11. An equaƟon for the normal line is

n(x) =
−1
11

(x− 1) + 1.

The normal line is ploƩed with y = f(x) in Figure 2.1.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” MathemaƟcally, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite–reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect raƟo of the picture of the graph plays
a big role in this.)

We also found that f ′(3) = 23, so the normal line to the graph of f at x = 3
will have slope−1/23. An equaƟon for the normal line is

n(x) =
−1
23

(x− 3) + 35.

Linear funcƟons are easy to work with; many funcƟons that arise in the
course of solving real problems are not easy to work with. A common pracƟce
in mathemaƟcal problem solving is to approximate difficult funcƟons with not–
so–difficult funcƟons. Lines are a common choice. It turns out that at any given
point on the graph of a differenƟable funcƟon f, the best linear approximaƟon
to f is its tangent line. That is one reason we’ll spend considerable Ɵme finding
tangent lines to funcƟons.

One type of funcƟon that does not benefit from a tangent–line approxima-
Ɵon is a line; it is rather simple to recognize that the tangent line to a line is the
line itself. We look at this in the following example.

Example 2.1.3 Finding the derivaƟve of a linear funcƟon
Consider f(x) = 3x + 5. Find the equaƟon of the tangent line to f at x = 1 and
x = 7.

SÊ½çã®ÊÄ We find the slope of the tangent line by using DefiniƟon
2.1.1.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

Notes:
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Figure 2.1.5: f(x) = sin x graphed with an
approximaƟon to its tangent line at x = 0.

2.1 Instantaneous Rates of Change: The DerivaƟve

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only funcƟons with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivaƟve at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7.

We oŌen desire to find the tangent line to the graph of a funcƟon without
knowing the actual derivaƟve of the funcƟon. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 2.1.4 Numerical approximaƟon of the tangent line
Approximate the equaƟon of the tangent line to the graph of f(x) = sin x at
x = 0.

SÊ½çã®ÊÄ In order to find the equaƟon of the tangent line, we need a
slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute the
slope, we need the derivaƟve. This is where we will make an approximaƟon.
Recall that

f ′(0) ≈ sin(0+ h)− sin 0
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approximaƟon of the equaƟon of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 2.1.5. The graph seems to imply the
approximaƟon is rather good.

Recall from SecƟon 1.3 that limx→0
sin x
x = 1, meaning for values of x near

0, sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem
reasonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 2.1.1. To find the derivaƟve of f at x = 1, we needed
to evaluate a limit. To find the derivaƟve of f at x = 3, we needed to again
evaluate a limit. We have this process:

Notes:
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input specific
number c

do something
to f and c

return
number f ′(c)

This process describes a funcƟon; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this funcƟon occurs.

Instead of applying this funcƟon repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

input variable x
do something
to f and x

return
funcƟon f ′(x)

The output is the “derivaƟve funcƟon,” f ′(x). The f ′(x) funcƟon will take a
number c as input and return the derivaƟve of f at c. This calls for a definiƟon.

DefiniƟon 2.1.4 DerivaƟve FuncƟon

Let f be a differenƟable funcƟon on an open interval I. The funcƟon

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the derivaƟve of f.

NotaƟon:
Let y = f(x). The following notaƟons all represent the derivaƟve of f:

f ′(x) = y′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The notaƟon
dy
dx

is one symbol; it is not the fracƟon “dy/dx”. The
notaƟon, while somewhat confusing at first, was chosen with care. A fracƟon–
looking symbol was chosen because the derivaƟve has many fracƟon–like prop-
erƟes. Among other places, we see these properƟes atworkwhenwe talk about
the units of the derivaƟve, when we discuss the Chain Rule, and when we learn
about integraƟon (topics that appear in later secƟons and chapters).

Examples will help us understand this definiƟon.

Example 2.1.5 Finding the derivaƟve of a funcƟon
Let f(x) = 3x2 + 5x− 7 as in Example 2.1.1. Find f ′(x).

Notes:
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2.1 Instantaneous Rates of Change: The DerivaƟve

SÊ½çã®ÊÄ We apply DefiniƟon 2.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
h→0

3h2 + 6xh+ 5h
h

= lim
h→0

(3h+ 6x+ 5)

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computaƟon of f ′(x) affirm these facts.

Example 2.1.6 Finding the derivaƟve of a funcƟon
Let f(x) =

1
x+ 1

. Find f ′(x).

SÊ½çã®ÊÄ We apply DefiniƟon 2.1.4.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find common denominator then subtract; pull 1/h out front to facilitate
reading.

= lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2
.

Notes:
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So f ′(x) =
−1

(x+ 1)2
. To pracƟce using our notaƟon, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

.

Example 2.1.7 Finding the derivaƟve of a funcƟon
Find the derivaƟve of f(x) = sin x.

SÊ½çã®ÊÄ Before applyingDefiniƟon 2.1.4, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = 0, whereas we seƩled
for an approximaƟon in Example 2.1.4.

f ′(x) = lim
h→0

sin(x+ h)− sin x
h

(
Use trig idenƟty

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two fracƟons)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x !

We have found that when f(x) = sin x, f ′(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine funcƟon is a nice
funcƟon. Then again, perhaps this is not enƟrely surprising. The sine funcƟon
is periodic – it repeats itself on regular intervals. Therefore its rate of change
also repeats itself on the same regular intervals. We should have known the
derivaƟve would be periodic; we now know exactly which periodic funcƟon it is.

Thinking back to Example 2.1.4, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our derivaƟve. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1.

Example 2.1.8 Finding the derivaƟve of a piecewise defined funcƟon
Find the derivaƟve of the absolute value funcƟon,

f(x) = |x| =
{

−x x < 0
x x ≥ 0 .

See Figure 2.1.6.

SÊ½çã®ÊÄ We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise–
defined, we need to consider separately the limits when x < 0 and when x > 0.

Notes:
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Figure 2.1.7: A graph of the derivaƟve of
f(x) = |x|.
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When x < 0:

d
dx
(
− x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0

−1

= −1.

When x > 0, a similar computaƟon shows that
d
dx
(
x
)
= 1.

We need to also find the derivaƟve at x = 0. By the definiƟon of the deriva-
Ɵve at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our funcƟon’s definiƟon switches from one piece
to the other, we need to consider leŌ and right-hand limits. Consider the fol-
lowing, where we compute the leŌ and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1

The last lines of each column tell the story: the leŌ and right hand limits are not
equal. Therefore the limit does not exist at 0, and f is not differenƟable at 0. So
we have

f ′(x) =
{

−1 x < 0
1 x > 0 .

At x = 0, f ′(x) does not exist; there is a jump disconƟnuity at 0; see Figure 2.1.7.
So f(x) = |x| is differenƟable everywhere except at 0.

The point of non-differenƟability came where the piecewise defined func-
Ɵon switched from one piece to the other. Our next example shows that this
does not always cause trouble.

Example 2.1.9 Finding the derivaƟve of a piecewise defined funcƟon
Find the derivaƟve of f(x), where f(x) =

{
sin x x ≤ π/2
1 x > π/2 . See Figure 2.1.8.

Notes:
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SÊ½çã®ÊÄ Using Example 2.1.7, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1− 1
h

= lim
h→0

0 = 0.

So far we have
f ′(x) =

{
cos x x < π/2
0 x > π/2 .

We sƟll need to find f ′(π/2). NoƟce at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quoƟent limit at
x = π/2, uƟlizing again leŌ and right–hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0.

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0.

Since both the leŌ and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =
{

cos x x ≤ π/2
0 x > π/2 .

See Figure 2.1.9 for a graph of this funcƟon.

Recall we pseudo–defined a conƟnuous funcƟon as one in which we could
sketch its graph without liŌing our pencil. We can give a pseudo–definiƟon for
differenƟability as well: it is a conƟnuous funcƟon that does not have any “sharp
corners.” One such sharp corner is shown in Figure 2.1.6. Even though the func-
Ɵon f in Example 2.1.9 is piecewise–defined, the transiƟon is “smooth” hence it
is differenƟable. Note how in the graph of f in Figure 2.1.8 it is difficult to tell
when f switches from one piece to the other; there is no “corner.”

Notes:
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DifferenƟablity on Closed Intervals

When we defined the derivaƟve at a point in DefiniƟon 2.1.1, we specified
that the interval I over which a funcƟon f was defined needed to be an open
interval. Open intervals are required so that we can take a limit at any point c in
I, meaning we want to approach c from both the leŌ and right.

Recall we also required open intervals in DefiniƟon 1.5.1 when we defined
what it meant for a funcƟon to be conƟnuous. Later, we used one-sided limits to
extend conƟnuity to closed intervals. We now extend differenƟability to closed
intervals by again considering one-sided limits.

OurmoƟvaƟon is three-fold. First, we consider “common sense.” In Example
2.1.5 we found that when f(x) = 3x2+5x−7, f ′(x) = 6x+5, and this derivaƟve
is defined for all real numbers, hence f is differenƟable everywhere. It seems
appropriate to also conclude that f is differenƟable on closed intervals, like [0, 1],
as well. AŌer all, f ′(x) is defined at both x = 0 and x = 1.

Secondly, consider f(x) =
√
x. The domain of f is [0,∞). Is f differenƟable

on its domain – specifically, is f differenƟable at 0? (We’ll consider this in the
next example.)

Finally, in later secƟons, having the derivaƟve defined on closed intervals will
prove useful. One such place is SecƟon 7.4 where the derivaƟve plays a role in
measuring the length of a curve.

AŌer a formal definiƟon of differenƟability on a closed interval, we explore
the concept in an example.

DefiniƟon 2.1.5 DifferenƟability on a Closed Interval

Let f be conƟnuous on [a, b] and differenƟable on (a, b), and let the one-
sided limits

lim
h→0+

f(a+ h)− f(a)
h

and lim
h→0−

f(b+ h)− f(b)
h

exist. Then we say f is differenƟable on [a, b].

For all the funcƟons f in this text, we can determine differenƟability on [a, b]
by considering the limits limx→a+ f ′(x) and limx→b− f ′(x). This is oŌen easier to
evaluate than the limit of the difference quoƟent.

Example 2.1.10 DifferenƟability at an endpoint
Consider f(x) =

√
x = x1/2 and g(x) =

√
x3 = x3/2. The domain of each func-

Ɵon is [0,∞). It can be shown that each is differenƟable on (0,∞); determine
the differenƟability of each at x = 0.

Notes:
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SÊ½çã®ÊÄ We start by considering f and take the right-hand limit of the
difference quoƟent:

lim
h→0+

f(a+ h)− f(a)
h

= lim
h→0+

√
0+ h−

√
0

h

= lim
h→0+

√
h
h

= lim
h→0+

1
h1/2

= ∞.

The one-sided limit of the difference quoƟent does not exist at x = 0 for f;
therefore f is differenƟable on (0,∞) and not differenƟable on [0,∞).

We state (without proof) that f ′(x) = 1/
(
2
√
x
)
. Note that limx→0+ f ′(x) =

∞; this limit was easier to evaluate than the limit of the difference quoƟent,
though it required us to already know the derivaƟve of f.

Now consider g:

lim
h→0+

g(a+ h)− g(a)
h

= lim
h→0+

√
(0+ h)3 −

√
0

h

= lim
h→0+

h3/2

h
= lim

h→0+
h1/2 = 0.

As the one-sided limit exists at x = 0, we conclude g is differenƟable on its
domain of [0,∞).

We state (without proof) that g ′(x) = 3
√
x/2. Note that limx→0+ g ′(x) = 0;

again, this limit is easier to evaluate than the limit of the difference quoƟent.
The two funcƟons are graphed in Figure 2.1.10. Note how f(x) =

√
x seems

to “go verƟcal” as x approaches 0, implying the slopes of its tangent lines are
growing toward infinity. Also note how the slopes of the tangent lines to g(x) =√
x3 approach 0 as x approaches 0.

Most calculus textbooks omit this topic and simply avoid specific caseswhere
it could be applied. We choose in this text to not make use of the topic unless
it is “needed.” Many theorems in later secƟons require a funcƟon f to be differ-
enƟable on an open interval I; we could remove the word “open” and just use
“. . . on an interval I,” but choose to not do so in keeping with the current math-
emaƟcal tradiƟon. Our first use of differenƟability on closed intervals comes in
Chapter 7, where we measure the lengths of curves.

This secƟon defined the derivaƟve; in some sense, it answers the quesƟon of
“What is the derivaƟve?” The next secƟon addresses the quesƟon “What does
the derivaƟvemean?”

Notes:
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Exercises 2.1
Terms and Concepts
1. T/F: Let f be a posiƟon funcƟon. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The definiƟon of the derivaƟve of a funcƟon at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
Ɵons 2.1.1 and 2.1.4.

5. Let y = f(x). Give three different notaƟons equivalent to
“f ′(x).”

6. If two lines are perpendicular, what is true of their slopes?

Problems
In Exercises 7 – 14, use the definiƟon of the derivaƟve to com-
pute the derivaƟve of the given funcƟon.

7. f(x) = 6

8. f(x) = 2x

9. f(t) = 4− 3t

10. g(x) = x2

11. h(x) = x3

12. f(x) = 3x2 − x+ 4

13. r(x) = 1
x

14. r(s) = 1
s− 2

In Exercises 15 – 22, a funcƟon and an x–value c are given.
(Note: these funcƟons are the same as those given in Exer-
cises 7 through 14.)

(a) Give the equaƟon of the tangent line at x = c.
(b) Give the equaƟon of the normal line at x = c.

15. f(x) = 6, at x = −2.

16. f(x) = 2x, at x = 3.

17. f(x) = 4− 3x, at x = 7.

18. g(x) = x2, at x = 2.

19. h(x) = x3, at x = 4.

20. f(x) = 3x2 − x+ 4, at x = −1.

21. r(x) = 1
x
, at x = −2.

22. r(x) = 1
x− 2

, at x = 3.

In Exercises 23 – 26, a funcƟon f and an x–value a are given.
Approximate the equaƟon of the tangent line to the graph of
f at x = a by numerically approximaƟng f ′(a), using h = 0.1.

23. f(x) = x2 + 2x+ 1, x = 3

24. f(x) = 10
x+ 1

, x = 9

25. f(x) = ex, x = 2

26. f(x) = cos x, x = 0

27. The graph of f(x) = x2 − 1 is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the definiƟon, find f ′(x).
(c) Find the slope of the tangent line at the points

(−1, 0), (0,−1) and (2, 3).
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28. The graph of f(x) = 1
x+ 1

is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the definiƟon, find f ′(x).
(c) Find the slope of the tangent line at the points (0, 1)

and (1, 0.5).
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In Exercises 29 – 32, a graph of a funcƟon f(x) is given. Using
the graph, sketch f ′(x).
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In Exercises 33 – 34, a graph of a funcƟon g(x) is given. Using
the graph, answer the following quesƟons.

1. Where is g(x) > 0?
2. Where is g(x) < 0?
3. Where is g(x) = 0?

1. Where is g′(x) < 0?
2. Where is g′(x) > 0?
3. Where is g′(x) = 0?
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In Exercises 35 – 36, a funcƟon f(x) is given, along with its do-
main and derivaƟve. Determine if f(x) is differenƟable on its
domain.

35. f(x) =
√

x5(1− x), domain = [0, 1], f ′(x) = (5− 6x)x3/2

2
√
1− x

36. f(x) = cos
(√

x
)
, domain = [0,∞), f ′(x) = −

sin
(√

x
)

2
√
x

Review

37. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

38. Use the BisecƟon Method to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

39. Give intervals on which each of the following funcƟons are
conƟnuous.

(a) 1
ex + 1

(b) 1
x2 − 1

(c)
√
5− x

(d)
√
5− x2

40. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f conƟnu-
ous?
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2.2 InterpretaƟons of the DerivaƟve

2.2 InterpretaƟons of the DerivaƟve
The previous secƟon defined the derivaƟve of a funcƟon and gave examples of
how to compute it using its definiƟon (i.e., using limits). The secƟon also started
with a brief moƟvaƟon for this definiƟon, that is, finding the instantaneous ve-
locity of a falling object given its posiƟon funcƟon. The next secƟon will give us
more accessible tools for compuƟng the derivaƟve, tools that are easier to use
than repeated use of limits.

This secƟon falls in between the “What is the definiƟon of the derivaƟve?”
and “How do I compute the derivaƟve?” secƟons. Here we are concerned with
“What does the derivaƟve mean?”, or perhaps, when read with the right em-
phasis, “What is the derivaƟve?” We offer two interconnected interpretaƟons
of the derivaƟve, hopefully explaining why we care about it and why it is worthy
of study.

InterpretaƟonof theDerivaƟve #1: Instantaneous Rate of Change

The previous secƟon started with an example of using the posiƟon of an
object (in this case, a falling amusement–park rider) to find the object’s veloc-
ity. This type of example is oŌen used when introducing the derivaƟve because
we tend to readily recognize that velocity is the instantaneous rate of change
of posiƟon. In general, if f is a funcƟon of x, then f ′(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
Ɵve answers “When x changes, at what rate does f change?” Thinking back to
the amusement–park ride, we asked “When Ɵme changed, at what rate did the
height change?” and found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “60
mph.” Five minutes later, you wonder how far you have traveled. Certainly, lots
of things could have happened in those 5 minutes; you could have intenƟonally
sped up significantly, you might have come to a complete stop, you might have
slowed to 20 mph as you passed through construcƟon. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approximaƟon of
the distance traveled?

One could argue the only good approximaƟon, given the informaƟon pro-
vided, would be based on “distance = rate × Ɵme.” In this case, we assume a
constant rate of 60 mph with a Ɵme of 5/60 hours. Hence we would approxi-
mate the distance traveled as 5 miles.

Referring back to the falling amusement–park ride, knowing that at t = 2 the
velocity was −64 Ō/s, we could reasonably assume that 1 second later the rid-

Notes:

75



Chapter 2 DerivaƟves

ers’ height would have dropped by about 64 feet. Knowing that the riders were
acceleraƟng as they fell would inform us that this is an under–approximaƟon. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground.

Units of the DerivaƟve

It is useful to recognize the units of the derivaƟve funcƟon. If y is a funcƟon
of x, i.e., y = f(x) for some funcƟon f, and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly wriƩen as “Ō/s.” In
general, if y is measured in units P and x is measured in units Q, then y′ will be
measured in units “P per Q”, or “P/Q.” Here we see the fracƟon–like behavior
of the derivaƟve in the notaƟon:

the units of
dy
dx

are
units of y
units of x

.

Example 2.2.1 The meaning of the derivaƟve: World PopulaƟon
Let P(t) represent the world populaƟon t minutes aŌer 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org). It
is also fairly accurate to state that P ′(0) = 156; that is, at midnight on January 1,
2012, the populaƟon of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the populaƟon grew by about 28, 800 ·156 = 4, 492, 800 people.

Example 2.2.2 The meaning of the derivaƟve: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
iƟve) profit making just one widget; the start–up costs will likely exceed $10.
MathemaƟcally, we would write this as P(1) < 0.

What doP(1000) = 500 andP ′(1000) = 0.25mean? ApproximateP(1100).

SÊ½çã®ÊÄ The equaƟon P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P ′(1000) = 0.25 as meaning that
the profit is increasing at rate of $0.25 per widget (the units are “dollars per
widget.”) Since we have no other informaƟon to use, our best approximaƟon
for P(1100) is:

P(1100) ≈ P(1000) + P ′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.

Notes:
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2.2 InterpretaƟons of the DerivaƟve

The previous examples made use of an important approximaƟon tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this secƟon. Five minutes aŌer looking at the speedometer, our best
approximaƟon for distance traveled assumed the rate of change was constant.
In Examples 2.2.1 and 2.2.2 we made similar approximaƟons. We were given
rate of change informaƟon which we used to approximate total change. Nota-
Ɵonally, we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approximaƟon is best when h is “small.” “Small” is a relaƟve term; when
dealing with the world populaƟon, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The DerivaƟve and MoƟon

One of the most fundamental applicaƟons of the derivaƟve is the study of
moƟon. Let s(t) be a posiƟon funcƟon, where t is Ɵme and s(t) is distance. For
instance, s couldmeasure the height of a projecƟle or the distance an object has
traveled.

Let’s let s(t) measure the distance traveled, in feet, of an object aŌer t sec-
onds of travel. Then s ′(t) has units “feet per second,” and s ′(t) measures the
instantaneous rate of distance change – it measures velocity.

Now consider v(t), a velocity funcƟon. That is, at Ɵme t, v(t) gives the ve-
locity of an object. The derivaƟve of v, v ′(t), gives the instantaneous rate of
velocity change – acceleraƟon. (We oŌen think of acceleraƟon in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average acceleraƟon, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and Ɵme is measured in seconds, then the units of acceleraƟon
(i.e., the units of v ′(t)) are “feet per second per second,” or (Ō/s)/s. We oŌen
shorten this to “feet per second squared,” or Ō/s2, but this tends to obscure the
meaning of the units.

Perhaps the most well known acceleraƟon is that of gravity. In this text, we
use g = 32Ō/s2 or g = 9.8m/s2. What do these numbers mean?

A constant acceleraƟon of 32(Ō/s)/s means that the velocity changes by
32Ō/s each second. For instance, let v(t)measures the velocity of a ball thrown
straight up into the air, where v has units Ō/s and t is measured in seconds. The
ball will have a posiƟve velocity while traveling upwards and a negaƟve velocity
while falling down. The acceleraƟon is thus −32Ō/s2. If v(1) = 20Ō/s, then
when t = 2, the velocity will have decreased by 32Ō/s; that is, v(2) = −12Ō/s.
We can conƟnue: v(3) = −44Ō/s, and we can also figure that v(0) = 52Ō/s.

These ideas are so important we write them out as a Key Idea.

Notes:

77



.....
1

.
2

.
3

.
4

.

4

.

8

.

12

.

16

. x.

y

Figure 2.2.1: A graph of f(x) = x2.
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Figure 2.2.2: A graph of f(x) = x2 and tan-
gent lines.

Chapter 2 DerivaƟves

Key Idea 2.2.1 The DerivaƟve and MoƟon

1. Let s(t) be the posiƟon funcƟon of an object. Then s ′(t) is the
velocity funcƟon of the object.

2. Let v(t) be the velocity funcƟon of an object. Then v ′(t) is the
acceleraƟon funcƟon of the object.

We now consider the second interpretaƟon of the derivaƟve given in this
secƟon. This interpretaƟon is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
specƟve.

InterpretaƟon of the DerivaƟve #2: The Slope of the Tangent Line

Given a funcƟon y = f(x), the difference quoƟent
f(c+ h)− f(c)

h
gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f:

(
c, f(c)

)
and

(
c+h, f(c+h)

)
. As h shrinks to 0, these two points come close

together; in the limit we find f ′(c), the slope of a special line called the tangent
line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear funcƟons do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by compuƟng f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Example 2.2.3 Understanding the derivaƟve: the rate of change
Consider f(x) = x2 as shown in Figure 2.2.1. It is clear that at x = 3 the funcƟon
is growing faster than at x = 1, as it is steeper at x = 3. How much faster is it
growing?

SÊ½çã®ÊÄ Wecananswer this directly aŌer the following secƟon, where
we learn to quickly compute derivaƟves. For now, we will answer graphically,
by considering the slopes of the respecƟve tangent lines.

With pracƟce, one can fairly effecƟvely sketch tangent lines to a curve at a
parƟcular point. In Figure 2.2.2, we have sketched the tangent lines to f at x = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At

Notes:
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Figure 2.2.3: Graphs of f and f ′ in Example
2.2.4, along with tangent lines in (b).
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Figure 2.2.4: Zooming in on f and its tan-
gent line at x = 3 for the funcƟon given
in Examples 2.2.4 and 2.2.5.

2.2 InterpretaƟons of the DerivaƟve

x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three Ɵmes as fast.

Example 2.2.4 Understanding the graph of the derivaƟve
Consider the graph of f(x) and its derivaƟve, f ′(x), in Figure 2.2.3(a). Use these
graphs to find the slopes of the tangent lines to the graph of f at x = 1, x = 2,
and x = 3.

SÊ½çã®ÊÄ To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 2.2.3(b). In-

cluded on the graph of f ′ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help beƩer visualize the y value of f ′ at those points.

Example 2.2.5 ApproximaƟon with the derivaƟve
Consider again the graph of f(x) and its derivaƟve f ′(x) in Example 2.2.4. Use
the tangent line to f at x = 3 to approximate the value of f(3.1).

SÊ½çã®ÊÄ Figure 2.2.4 shows the graph of f along with its tangent line,
zoomed in at x = 3. NoƟce that near x = 3, the tangent line makes an excellent
approximaƟon of f. Since lines are easy to deal with, oŌen it works well to ap-
proximate a funcƟonwith its tangent line. (This is especially truewhen you don’t
actually know much about the funcƟon at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 2.2.4, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f ′(3) = 3, we can compute the tangent line to be approximately y = 3(x−3)+4.
It is oŌen useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3.

To demonstrate the accuracy of the tangent line approximaƟon, we now
state that in Example 2.2.5, f(x) = −x3 + 7x2 − 12x + 4. We can evaluate
f(3.1) = 4.279. Had we known f all along, certainly we could have just made
this computaƟon. In reality, we oŌen only know two things:

Notes:
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1. what f(c) is, for some value of c, and

2. what f ′(c) is.

For instance, we can easily observe the locaƟon of an object and its instan-
taneous velocity at a parƟcular point in Ɵme. We do not have a “funcƟon f ”
for the locaƟon, just an observaƟon. This is enough to create an approximaƟng
funcƟon for f.

This last example has a direct connecƟon to our approximaƟon method ex-
plained above aŌer Example 2.2.2. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then compuƟng the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 2.2.5, we used
the tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approximaƟonmethod used above! Not only does itmake
intuiƟve sense, as explained above, it makes analyƟcal sense, as this approxima-
Ɵon method is simply using a tangent line to approximate a funcƟon’s value.

The importanceof understanding thederivaƟve cannot beunderstated. When
f is a funcƟon of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.

Notes:
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Exercises 2.2
Terms and Concepts

1. What is the instantaneous rate of change of posiƟon
called?

2. Given a funcƟon y = f(x), in your own words describe how
to find the units of f ′(x).

3. What funcƟons have a constant rate of change?

Problems

4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).

5. Given P(100) = −67 and P ′(100) = 5, approximate
P(110).

6. Given z(25) = 187 and z′(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de-
scribed in this secƟon, which approximaƟon is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).

9. Given H(0) = 17 and H(2) = 29, approximate H ′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV ′(x)?

11. Let v(t) measure the velocity, in Ō/s, of a car moving in a
straight line t seconds aŌer starƟng. What are the units of
v ′(t)?

12. The heightH, in feet, of a river is recorded t hours aŌermid-
night, April 1. What are the units of H ′(t)?

13. P is the profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P ′(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours aŌer
midnight on July 4 in Sidney, NE.

(a) What are the units of T ′(h)?

(b) Is T ′(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15 – 18, graphs of funcƟons f(x) and g(x) are
given. IdenƟfy which funcƟon is the derivaƟve of the other.
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Review
In Exercises 19 – 20, use the definiƟon to compute the deriva-
Ɵves of the following funcƟons.

19. f(x) = 5x2

20. f(x) = (x− 2)3

In Exercises 21 – 22, numerically approximate the value of
f ′(x) at the indicated x value.

21. f(x) = cos x at x = π.

22. f(x) =
√
x at x = 9.
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Chapter 2 DerivaƟves

2.3 Basic DifferenƟaƟon Rules
The derivaƟve is a powerful tool but is admiƩedly awkward given its reliance on
limits. Fortunately, one thing mathemaƟcians are good at is abstracƟon. For
instance, instead of conƟnually finding derivaƟves at a point, we abstracted and
found the derivaƟve funcƟon.

Let’s pracƟce abstracƟon on linear funcƟons, y = mx+b. What is y ′? With-
out limits, recognize that linear funcƟon are characterized by being funcƟons
with a constant rate of change (the slope). The derivaƟve, y ′, gives the instan-
taneous rate of change; with a linear funcƟon, this is constant,m. Thus y ′ = m.

Let’s abstract once more. Let’s find the derivaƟve of the general quadraƟc
funcƟon, f(x) = ax2 + bx+ c. Using the definiƟon of the derivaƟve, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

ah+ 2ax+ b

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y ′ = 12x+ 11.

In this secƟon (and in some secƟons to follow) we will learn some of what
mathemaƟcians have already discovered about the derivaƟves of certain func-
Ɵons and how derivaƟves interact with arithmeƟc operaƟons. We start with a
theorem.

Theorem 2.3.1 DerivaƟves of Common FuncƟons

1. Constant Rule:
d
dx
(
c
)
= 0, where c is a constant.

2. Power Rule:
d
dx
(
xn
)
= nxn−1, where n is an

integer, n > 0.

5.
d
dx

(sin x) = cos x

6.
d
dx

(cos x) = − sin x

7.
d
dx

(ex) = ex

8.
d
dx

(ln x) =
1
x

Notes:
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Figure 2.3.1: A graph of f(x) = x3, along
with its derivaƟve f ′(x) = 3x2 and its tan-
gent line at x = −1.

2.3 Basic DifferenƟaƟon Rules

This theorem starts by staƟng an intuiƟve fact: constant funcƟons have no
rate of change as they are constant. Therefore their derivaƟve is 0 (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivaƟves of Power FuncƟons (of the form y = xn) are very
straighƞorward: mulƟply by the power, then subtract 1 from the power. We see
something incredible about the funcƟon y = ex: it is its own derivaƟve. We also
see a new connecƟon between the sine and cosine funcƟons.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f ′(x)? According to the Power Rule,

f ′(x) =
d
dx
(
x
)
=

d
dx
(
x1
)
= 1 · x0 = 1.

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: 1. They change at the same rate.

Let’s pracƟce using this theorem.

Example 2.3.1 Using Theorem 2.3.1 to find, and use, derivaƟves
Let f(x) = x3.

1. Find f ′(x).

2. Find the equaƟon of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

SÊ½çã®ÊÄ

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equaƟon of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equaƟon y = 3(x−(−1))+
(−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.

We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 2.3.1.

Notes:
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Chapter 2 DerivaƟves

Theorem 2.3.1 gives useful informaƟon, but we will need much more. For
instance, using the theorem, we can easily find the derivaƟve of y = x3, but
it does not tell how to compute the derivaƟve of y = 2x3, y = x3 + sin x nor
y = x3 sin x. The following theorem helps with the first two of these examples
(the third is answered in the next secƟon).

Theorem 2.3.2 ProperƟes of the DerivaƟve

Let f and g be differenƟable on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g ′(x)

2. Constant MulƟple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Theorem 2.3.2 allows us to find the derivaƟves of awide variety of funcƟons.
It can be used in conjuncƟon with the Power Rule to find the derivaƟves of any
polynomial. Recall in Example 2.1.5 that we found, using the limit definiƟon,
the derivaƟve of f(x) = 3x2 + 5x − 7. We can now find its derivaƟve without
expressly using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.

We were a bit pedanƟc here, showing every step. Normally we would do all
the arithmeƟc and steps in our head and readily find

d
dx

(
3x2+5x+7

)
= 6x+5.

Example 2.3.2 Using the tangent line to approximate a funcƟon value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

SÊ½çã®ÊÄ This problem is intenƟonally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximaƟon are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all Ɵme.
One must make a judgment using whatever seems reasonable. In this example,
the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Notes:
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Note: The second derivaƟve notaƟon
could be wriƩen as

d2y
dx2

=
d2y
(dx)2

=
d2

(dx)2
(
y
)
.

That is, we take the derivaƟve of y twice
(hence d2), both Ɵmes with respect to x
(hence (dx)2 = dx2).

2.3 Basic DifferenƟaƟon Rules

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do beƩer? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 2.3.1 we find f ′(x) = cos x+2. The slope of the tangent line
is thus f ′(π) = cos π + 2 = 1. Also, f(π) = 2π + 1 ≈ 7.28. So the tangent line
to the graph of f at x = π is y = 1(x − π) + 2π + 1 = x + π + 1 ≈ x + 4.14.
Evaluated at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the
tangent line, our final approximaƟon is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places aŌer the decimal:
f(3) = 7.1411. Our iniƟal guesswas 7; our tangent line approximaƟonwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy someƟme, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approximaƟng, and many scienƟsts, engineers and mathemaƟcians oŌen face
problems too hard to solve directly. So they approximate.

Higher Order DerivaƟves

The derivaƟve of a funcƟon f is itself a funcƟon, therefore we can take its
derivaƟve. The following definiƟon gives a name to this concept and introduces
its notaƟon.

DefiniƟon 2.3.1 Higher Order DerivaƟves

Let y = f(x) be a differenƟable funcƟon on I. The following are defined,
provided the corresponding limits exist.

1. The second derivaƟve of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y ′′.

2. The third derivaƟve of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y ′′′.

3. The nth derivaƟve of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
dn−1y
dxn−1

)
=

dny
dxn

= y(n).

In general, when finding the fourth derivaƟve and on, we resort to the f (4)(x)

Notes:
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Chapter 2 DerivaƟves

notaƟon, not f ′′′′(x); aŌer a while, too many Ɵcks is confusing.

Let’s pracƟce using this new concept.

Example 2.3.3 Finding higher order derivaƟves
Find the first four derivaƟves of the following funcƟons:

1. f(x) = 4x2

2. f(x) = sin x

3. f(x) = 5ex

SÊ½çã®ÊÄ

1. Using the Power and Constant MulƟple Rules, we have: f ′(x) = 8x. Con-
Ɵnuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

NoƟce how all successive derivaƟves will also be 0.

2. We employ Theorem 2.3.1 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 2.3.1 and the ConstantMulƟple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.

InterpreƟng Higher Order DerivaƟves

What do higher order derivaƟves mean? What is the pracƟcal interpreta-
Ɵon?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivaƟve of a funcƟon f is the rate of change of the rate
of change of f.

One way to grasp this concept is to let f describe a posiƟon funcƟon. Then,
as stated in Key Idea 2.2.1, f ′ describes the rate of posiƟon change: velocity.
We now consider f ′′, which describes the rate of velocity change. Sports car

Notes:
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2.3 Basic DifferenƟaƟon Rules

enthusiasts talk of how fast a car can go from 0 to 60 mph; they are bragging
about the acceleraƟon of the car.

We started this chapter with amusement–park riders free–falling with posi-
Ɵon funcƟon f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t Ō/s and
f ′′(t) = −32 (Ō/s)/s. We may recognize this laƩer constant; it is the accelera-
Ɵon due to gravity. In keeping with the unit notaƟon introduced in the previous
secƟon, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” wriƩen as “Ō/s2.”

It can be difficult to consider the meaning of the third, and higher order,
derivaƟves. The third derivaƟve is “the rate of change of the rate of change of
the rate of change of f.” That is essenƟally meaningless to the uniniƟated. In
the context of our posiƟon/velocity/acceleraƟon example, the third derivaƟve
is the “rate of change of acceleraƟon,” commonly referred to as “jerk.”

Make no mistake: higher order derivaƟves have great importance even if
their pracƟcal interpretaƟons are hard (or “impossible”) to understand. The
mathemaƟcal topic of seriesmakes extensive use of higher order derivaƟves.

Notes:
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Exercises 2.3
Terms and Concepts

1. What is the name of the rule which states that d
dx

(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is d
dx

(
ln x

)
?

3. Give an example of a funcƟon f(x) where f ′(x) = f(x).

4. Give an example of a funcƟon f(x) where f ′(x) = 0.

5. The derivaƟve rules introduced in this secƟon explain how
to compute the derivaƟve of which of the following func-
Ɵons?

• f(x) = 3
x2

• g(x) = 3x2 − x+ 17
• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third derivaƟve
of a funcƟon f(x).

7. Give an example of a funcƟonwhere f ′(x) ̸= 0 and f ′′(x) =
0.

8. Explain in your own words what the second derivaƟve
“means.”

9. If f(x) describes a posiƟon funcƟon, then f ′(x) describes
what kind of funcƟon? What kind of funcƟon is f ′′(x)?

10. Let f(x) be a funcƟon measured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11 – 26, compute the derivaƟve of the given func-
Ɵon.

11. f(x) = 7x2 − 5x+ 7

12. g(x) = 14x3 + 7x2 + 11x− 29

13. m(t) = 9t5 − 1
8 t

3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ

15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t

17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1

19. h(t) = et − sin t− cos t

20. f(x) = ln(5x2)

21. f(t) = ln(17) + e2 + sin π/2

22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

26. A property of logarithms is that loga x =
logb x
logb a

, for all

bases a, b > 0, ̸= 1.

(a) Rewrite this idenƟty when b = e, i.e., using loge x =
ln x, with a = 10.

(b) Use part (a) to find the derivaƟve of y = log10 x.
(c) Use part (b) to find the derivaƟve of y = loga x, for

any a > 0, ̸= 1.

In Exercises 27 – 32, compute the first four derivaƟves of the
given funcƟon.

27. f(x) = x6

28. g(x) = 2 cos x

29. h(t) = t2 − et

30. p(θ) = θ4 − θ3

31. f(θ) = sin θ − cos θ

32. f(x) = 1, 100

In Exercises 33 – 38, find the equaƟons of the tangent and
normal lines to the graph of the funcƟon at the given point.

33. f(x) = x3 − x at x = 1

34. f(t) = et + 3 at t = 0

35. g(x) = ln x at x = 1

36. f(x) = 4 sin x at x = π/2

37. f(x) = −2 cos x at x = π/4

38. f(x) = 2x+ 3 at x = 5

Review
39. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.
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Figure 2.4.1: A graph of y = 5x2 sin x and
its tangent line at x = π/2.

2.4 The Product and QuoƟent Rules

2.4 The Product and QuoƟent Rules
The previous secƟon showed that, in some ways, derivaƟves behave nicely. The
Constant MulƟple and Sum/Difference Rules established that the derivaƟve of
f(x) = 5x2 + sin xwas not complicated. We neglected compuƟng the derivaƟve
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their derivaƟves are
not as straighƞorward. (If you had to guesswhat their respecƟve derivaƟves are,
youwould probably guess wrong.) For these, we need the Product andQuoƟent
Rules, respecƟvely, which are defined in this secƟon.

We begin with the Product Rule.

Theorem 2.4.1 Product Rule

Let f and g be differenƟable funcƟons on an open interval I. Then fg is a
differenƟable funcƟon on I, and

d
dx

(
f(x)g(x)

)
= f(x)g ′(x) + f ′(x)g(x).

Important: d
dx

(
f(x)g(x)

)
̸= f ′(x)g ′(x)! While this answer is simpler than

the Product Rule, it is wrong.
We pracƟce using this new rule in an example, followed by an example that

demonstrates why this theorem is true.

Example 2.4.1 Using the Product Rule
Use the Product Rule to compute the derivaƟve of y = 5x2 sin x. Evaluate the
derivaƟve at x = π/2.

SÊ½çã®ÊÄ To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g ′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 5x2 cos x+ 10x sin x.

At x = π/2, we have

y ′(π/2) = 5
(π
2

)2
cos
(π
2

)
+ 10

π

2
sin
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Figure
2.4.1. While this does not prove that the Product Rule is the correct way to han-
dle derivaƟves of products, it helps validate its truth.

Notes:
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We now invesƟgate why the Product Rule is true.

Example 2.4.2 A proof of the Product Rule
Use the definiƟon of the derivaƟve to prove Theorem 2.4.1.

SÊ½çã®ÊÄ By the limit definiƟon, we have

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of−f(x+h)g(x)+f(x+h)g(x), then do some regrouping
as shown.

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)
h

(regroup)

= lim
h→0

(
f(x+ h)g(x+ h)− f(x+ h)g(x)

)
+

(
f(x+ h)g(x)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)
h

+ lim
h→0

f(x+ h)g(x)− f(x)g(x)
h

(factor)

= lim
h→0

f(x+ h)g(x+ h)− g(x)
h

+ lim
h→0

f(x+ h)− f(x)
h

g(x) (apply limits)

= f(x)g ′(x) + f ′(x)g(x).

It is oŌen true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivaƟve of a product of funcƟons in two ways to verify that
the Product Rule is indeed “right.”

Example 2.4.3 Exploring alternate derivaƟve methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y ′ two ways: first, by expanding
the given product and then taking the derivaƟve, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SÊ½çã®ÊÄ We first expand the expression for y; a liƩle algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y ′:

y ′ = 8x3 + 9x2 − 12x.

Notes:
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Now apply the Product Rule.

y ′ = (x2 + 3x+ 1)(4x− 3) + (2x+ 3)(2x2 − 3x+ 1)
=
(
4x3 + 9x2 − 5x− 3

)
+
(
4x3 − 7x+ 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the derivaƟve of the product is the
product of the derivaƟves.” Thus we are tempted to say that y ′ = (2x+3)(4x−
3) = 8x2 + 6x− 9. Obviously this is not correct.

Example 2.4.4 Using the Product Rule with a product of three funcƟons
Let y = x3 ln x cos x. Find y ′.

SÊ½çã®ÊÄ Wehave a product of three funcƟonswhile the Product Rule
only specifies how to handle a product of two funcƟons. Ourmethod of handling
this problem is to simply group the laƩer two funcƟons together, and consider
y = x3

(
ln x cos x

)
. Following the Product Rule, we have

y ′ = (x3)
(
ln x cos x

)′
+ 3x2

(
ln x cos x

)
To evaluate

(
ln x cos x

)′, we apply the Product Rule again:
= (x3)

(
ln x(− sin x) +

1
x
cos x

)
+ 3x2

(
ln x cos x

)
= x3 ln x(− sin x) + x3

1
x
cos x+ 3x2 ln x cos x

Recognize the paƩern in our answer above: when applying the Product Rule to
a product of three funcƟons, there are three terms added together in the final
derivaƟve. Each term contains only one derivaƟve of one of the original func-
Ɵons, and each funcƟon’s derivaƟve shows up in only one term. It is straighƞor-
ward to extend this paƩern to finding the derivaƟve of a product of 4 or more
funcƟons.

We consider one more example before discussing another derivaƟve rule.

Example 2.4.5 Using the Product Rule
Find the derivaƟves of the following funcƟons.

1. f(x) = x ln x

2. g(x) = x ln x− x.

Notes:
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SÊ½çã®ÊÄ Recalling that the derivaƟve of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= x · 1/x+ 1 · ln x = 1+ ln x.

2. Using the result from above, we compute
d
dx

(
x ln x− x

)
= 1+ ln x− 1 = ln x.

This seems significant; if the natural log funcƟon ln x is an important funcƟon (it
is), it seems worthwhile to know a funcƟon whose derivaƟve is ln x. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.)

We have learned how to compute the derivaƟves of sums, differences, and
products of funcƟons. We now learn how to find the derivaƟve of a quoƟent of
funcƟons.

Theorem 2.4.2 QuoƟent Rule

Let f and g be differenƟable funcƟons defined on an open interval I,
where g(x) ̸= 0 on I. Then f/g is differenƟable on I, and

d
dx

(
f(x)
g(x)

)
=

g(x)f ′(x)− f(x)g ′(x)
g(x)2

.

The QuoƟent Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a fracƟon’s numerator
and denominator as “HI” and “LO”, respecƟvely. Then

d
dx

(
HI
LO

)
=

LO· dHI – HI· dLO
LOLO

,

read “low dee high minus high dee low, over low low.” Said fast, that phrase can
roll off the tongue, making it easy to memorize. The “dee high” and “dee low”
parts refer to the derivaƟves of the numerator and denominator, respecƟvely.

Let’s pracƟce using the QuoƟent Rule.

Example 2.4.6 Using the QuoƟent Rule

Let f(x) =
5x2

sin x
. Find f ′(x).

Notes:
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Figure 2.4.2: A graph of y = tan x along
with its tangent line at x = π/4.

2.4 The Product and QuoƟent Rules

SÊ½çã®ÊÄ Directly applying the QuoƟent Rule gives:

d
dx

(
5x2

sin x

)
=

sin x · 10x− 5x2 · cos x
sin2 x

=
10x sin x− 5x2 cos x

sin2 x
.

TheQuoƟent Rule allows us to fill in holes in our understanding of derivaƟves
of the common trigonometric funcƟons. We start with finding the derivaƟve of
the tangent funcƟon.

Example 2.4.7 Using the QuoƟent Rule to find d
dx

(
tan x

)
.

Find the derivaƟve of y = tan x.

SÊ½çã®ÊÄ At first, one might feel unequipped to answer this quesƟon.
But recall that tan x = sin x/ cos x, so we can apply the QuoƟent Rule.

d
dx

(
tan x

)
=

d
dx

(
sin x
cos x

)
=

cos x cos x− sin x(− sin x)
cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

This is a beauƟful result. To confirm its truth, we can find the equaƟon of the
tangent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x,
along with its tangent line, is graphed in Figure 2.4.2.

We include this result in the following theorem about the derivaƟves of the
trigonometric funcƟons. Recall we found the derivaƟve of y = sin x in Example
2.1.7 and stated the derivaƟve of the cosine funcƟon in Theorem 2.3.1. The
derivaƟves of the cotangent, cosecant and secant funcƟons can all be computed
directly using Theorem 2.3.1 and the QuoƟent Rule.

Notes:
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Theorem 2.4.3 DerivaƟves of Trigonometric FuncƟons

1.
d
dx
(
sin x

)
= cos x

3.
d
dx
(
tan x

)
= sec2 x

5.
d
dx
(
sec x

)
= sec x tan x

2.
d
dx
(
cos x

)
= − sin x

4.
d
dx
(
cot x

)
= − csc2 x

6.
d
dx
(
csc x

)
= − csc x cot x

To remember the above, it may be helpful to keep in mind that the deriva-
Ɵves of the trigonometric funcƟons that start with “c” have aminus sign in them.

Example 2.4.8 Exploring alternate derivaƟve methods

In Example 2.4.6 the derivaƟve of f(x) =
5x2

sin x
was found using the QuoƟent

Rule. RewriƟng f as f(x) = 5x2 csc x, find f ′ using Theorem 2.4.3 and verify the
two answers are the same.

SÊ½çã®ÊÄ We found in Example 2.4.6 that the f ′(x) =
10x sin x− 5x2 cos x

sin2 x
.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 5x2(− csc x cot x) + 10x csc x (now rewrite trig funcƟons)

= 5x2 · −1
sin x

· cos x
sin x

+
10x
sin x

=
−5x2 cos x

sin2 x
+

10x
sin x

(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule
is fine. Work to “simplify” your results into a form that is most readable and
useful to you.

The QuoƟent Rule gives other useful results, as shown in the next example.

Notes:
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Example 2.4.9 Using the QuoƟent Rule to expand the Power Rule
Find the derivaƟves of the following funcƟons.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

SÊ½çã®ÊÄ We employ the QuoƟent Rule.

1. f ′(x) =
x · 0− 1 · 1

x2
= − 1

x2
.

2. f ′(x) =
xn · 0− 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

The derivaƟve of y =
1
xn

turned out to be rather nice. It gets beƩer. Con-
sider:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 2.4.9)

= − n
xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.

This is reminiscent of the Power Rule: mulƟply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
stricƟon of n > 0.

Theorem 2.4.4 Power Rule with Integer Exponents

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the derivaƟve of many funcƟons is relaƟvely straighƞorward. It is
clear (with pracƟce) what rules apply and in what order they should be applied.
Other funcƟons present mulƟple paths; different rules may be applied depend-
ing on how the funcƟon is treated. One of the beauƟful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to

Notes:
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Chapter 2 DerivaƟves

the same result, the derivaƟve. We demonstrate this concept in an example.

Example 2.4.10 Exploring alternate derivaƟve methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the QuoƟent Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

SÊ½çã®ÊÄ

1. Applying the QuoƟent Rule gives:

f ′(x) =
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.

2. By rewriƟng f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1

= −x2 − 3x+ 1
x2

+
2x− 3

x

= −x2 − 3x+ 1
x2

+
2x2 − 3x

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ≠ 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule.
f ′(x) = 1− 1

x2
,

the same result as before.

Example 2.4.10 demonstrates threemethods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
UlƟmately, the important principle to take away from this is: reduce the answer

Notes:
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to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1
x2

=
x ·

(
2x− 3

)
−

(
x2 − 3x+ 1

)
· 1

x2
=

(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

In the next secƟon we conƟnue to learn rules that allow us to more easily
compute derivaƟves than using the limit definiƟon directly. We have to memo-
rize the derivaƟves of a certain set of funcƟons, such as “the derivaƟve of sin x
is cos x.” The Sum/Difference, Constant MulƟple, Power, Product and QuoƟent
Rules show us how to find the derivaƟves of certain combinaƟons of these func-
Ɵons. The next secƟon shows how to find the derivaƟves when we compose
these funcƟons together.

Notes:
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Exercises 2.4
Terms and Concepts

1. T/F: The Product Rule states that d
dx

(
x2 sin x

)
= 2x cos x.

2. T/F: The QuoƟent Rule states that d
dx

(
x2

sin x

)
=

cos x
2x

.

3. T/F: The derivaƟves of the trigonometric funcƟons that
start with “c” have minus signs in them.

4. What derivaƟve rule is used to extend the Power Rule to
include negaƟve integer exponents?

5. T/F: Regardless of the funcƟon, there is always exactly one
right way of compuƟng its derivaƟve.

6. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises 7 – 10:

(a) Use the Product Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

7. f(x) = x(x2 + 3x)

8. g(x) = 2x2(5x3)

9. h(s) = (2s− 1)(s+ 4)

10. f(x) = (x2 + 5)(3− x3)

In Exercises 11 – 14:

(a) Use the QuoƟent Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the QuoƟent Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) = x2 + 3
x

12. g(x) = x3 − 2x2

2x2

13. h(s) = 3
4s3

14. f(t) = t2 − 1
t+ 1

In Exercises 15 – 36, compute the derivaƟve of the given func-
Ɵon.

15. f(x) = x sin x

16. f(x) = x2 cos x

17. f(x) = ex ln x

18. f(t) = 1
t2
(csc t− 4)

19. g(x) = x+ 7
x− 5

20. g(t) = t5

cos t− 2t2

21. h(x) = cot x− ex

22. f(x) =
(
tan x

)
ln x

23. h(t) = 7t2 + 6t− 2

24. f(x) = x4 + 2x3

x+ 2

25. f(x) =
(
3x2 + 8x+ 7

)
ex

26. g(t) = t5 − t3

et

27. f(x) = (16x3 + 24x2 + 3x) 7x− 1
16x3 + 24x2 + 3x

28. f(t) = t5(sec t+ et)

29. f(x) = sin x
cos x+ 3

30. f(θ) = θ3 sin θ + sin θ
θ3

31. f(x) = cos x
x

+
x

tan x

32. g(x) = e2
(
sin(π/4)− 1

)
33. g(t) = 4t3et − sin t cos t

34. h(t) = t2 sin t+ 3
t2 cos t+ 2

35. f(x) = x2ex tan x

36. g(x) = 2x sin x sec x
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In Exercises 37 – 40, find the equaƟons of the tangent and
normal lines to the graph of g at the indicated point.

37. g(s) = es(s2 + 2) at (0, 2).

38. g(t) = t sin t at ( 3π2 ,−
3π
2 )

39. g(x) = x2

x− 1
at (2, 4)

40. g(θ) = cos θ − 8θ
θ + 1

at (0, 1)

In Exercises 41 – 44, find the x–values where the graph of the
funcƟon has a horizontal tangent line.

41. f(x) = 6x2 − 18x− 24

42. f(x) = x sin x on [−1, 1]

43. f(x) = x
x+ 1

44. f(x) = x2

x+ 1

In Exercises 45 – 48, find the requested derivaƟve.

45. f(x) = x sin x; find f ′′(x).

46. f(x) = x sin x; find f (4)(x).

47. f(x) = csc x; find f ′′(x).

48. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

Review
In Exercises 49 – 52, use the graph of f(x) to sketch f ′(x).
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Chapter 2 DerivaƟves

2.5 The Chain Rule
We have covered almost all of the derivaƟve rules that deal with combinaƟons
of two (or more) funcƟons. The operaƟons of addiƟon, subtracƟon, mulƟplica-
Ɵon (including by a constant) and division led to the Sum and Difference rules,
the Constant MulƟple Rule, the Power Rule, the Product Rule and the QuoƟent
Rule. To complete the list of differenƟaƟon rules, we look at the last way two (or
more) funcƟons can be combined: the process of composiƟon (i.e. one funcƟon
“inside” another).

One example of a composiƟon of funcƟons is f(x) = cos(x2). We currently
do not know how to compute this derivaƟve. If forced to guess, one would likely
guess f ′(x) = − sin(2x), where we recognize − sin x as the derivaƟve of cos x
and 2x as the derivaƟve of x2. However, this is not the case; f ′(x) ̸= − sin(2x).
In Example 2.5.4 we’ll see the correct answer, which employs the new rule this
secƟon introduces, the Chain Rule.

Before we define this new rule, recall the notaƟon for composiƟon of func-
Ɵons. We write (f ◦ g)(x) or f(g(x)), read as “f of g of x,” to denote composing f
with g. In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before
giving the corresponding differenƟaƟon rule, we note that the rule extends to
mulƟple composiƟons like f(g(h(x))) or f(g(h(j(x)))), etc.

To moƟvate the rule, let’s look at three derivaƟves we can already compute.

Example 2.5.1 Exploring similar derivaƟves
Find the derivaƟves of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different funcƟons and an
uppercase F.)

SÊ½çã®ÊÄ In order to use the rules we already have, we must first ex-
pand each funcƟon as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F′1(x) = −2+ 2x,
F′2(x) = −3+ 6x− 3x2 and
F′3(x) = −4+ 12x− 12x2 + 4x3.

An interesƟng fact is that these can be rewriƩen as

F′1(x) = −2(1− x), F′2(x) = −3(1− x)2 and F′3(x) = −4(1− x)3.

A paƩernmight jump out at you; note how the we end upmulƟplying by the old
power and the new power is reduced by 1. We also always mulƟply by (−1).

Notes:
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2.5 The Chain Rule

Recognize that each of these funcƟons is a composiƟon, leƫng g(x) = 1−x:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example aŌer giving the formal statements of the
Chain Rule; for now, we are just illustraƟng a paƩern.

When composing funcƟons, we need to make sure that the new funcƟon is
actually defined. For instance, consider f(x) =

√
x and g(x) = −x2 − 1. The

domain of f excludes all negaƟve numbers, but the range of g is only negaƟve
numbers. Therefore the composiƟon f

(
g(x)

)
=

√
−x2 − 1 is not defined for

any x, and hence is not differenƟable.
The following definiƟon takes care to ensure this problem does not arise.

We’ll focus more on the derivaƟve result than on the domain/range condiƟons.

Theorem 2.5.1 The Chain Rule

Let g be a differenƟable funcƟon on an interval I, let the range of g be a
subset of the interval J, and let f be a differenƟable funcƟon on J. Then
y = f(g(x)) is a differenƟable funcƟon on I, and

y ′ = f ′(g(x)) · g ′(x).

To help understand the Chain Rule, we return to Example 2.5.1.

Example 2.5.2 Using the Chain Rule
Use the Chain Rule to find the derivaƟves of the following funcƟons, as given in
Example 2.5.1.

SÊ½çã®ÊÄ Example 2.5.1 ended with the recogniƟon that each of the
given funcƟons was actually a composiƟon of funcƟons. To avoid confusion, we
ignore most of the subscripts here.

F1(x) = (1− x)2:

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y ′, we apply the Chain Rule. We need f ′(x) = 2x and g ′(x) = −1.

Notes:
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Part of the Chain Rule uses f ′(g(x)). This means subsƟtute g(x) for x in the
equaƟon for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y ′ = f ′(g(x)) · g ′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:

Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have
f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y ′ = f ′(g(x)) · g ′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

F3(x) = (1− x)4:

Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus
f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y ′ = f ′(g(x)) · g ′(x) = 4(1− x)3 · (−1) = −4(1− x)3.

Example 2.5.2 demonstrated a parƟcular paƩern: when f(x) = xn, then
y ′ = n · (g(x))n−1 · g ′(x). This is called the Generalized Power Rule.

Theorem 2.5.2 Generalized Power Rule

Let g(x) be a differenƟable funcƟon and let n ̸= 0 be an integer. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g ′(x).

This allows us to quickly find the derivaƟve of funcƟons like y = (3x2 − 5x+
7 + sin x)20. While it may look inƟmidaƟng, the Generalized Power Rule states
that

y ′ = 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the derivaƟve–taking process step–by–step. In the example just given,
first mulƟply by 20, then rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivaƟve of the expression inside the
parentheses, and mulƟply by that.

We now consider more examples that employ the Chain Rule.

Notes:
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Figure 2.5.1: f(x) = cos x2 sketched along
with its tangent line at x = 1.

2.5 The Chain Rule

Example 2.5.3 Using the Chain Rule
Find the derivaƟves of the following funcƟons:

1. y = sin 2x 2. y = ln(4x3− 2x2) 3. y = e−x2

SÊ½çã®ÊÄ

1. Consider y = sin 2x. Recognize that this is a composiƟon of funcƟons,
where f(x) = sin x and g(x) = 2x. Thus

y ′ = f ′(g(x)) · g ′(x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composiƟon of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y ′ =
1

4x3 − 2x2
· (12x2 − 4x) =

12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

3. Recognize that y = e−x2 is the composiƟon of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y ′ = e−x2 · (−2x) = (−2x)e−x2 .

Example 2.5.4 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equaƟon of the line tangent to the graph of f at x = 1.

SÊ½çã®ÊÄ The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equaƟon of the tangent line is

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.5.1.

The Chain Rule is used oŌen in taking derivaƟves. Because of this, one can
become familiar with the basic process and learn paƩerns that facilitate finding
derivaƟves quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· (anything)′ = (anything)′

anything
.
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A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the derivaƟve may look inƟmidaƟng at first, look for the paƩern. The
denominator is the same as what was inside the natural log funcƟon; the nu-
merator is simply its derivaƟve.

This paƩern recogniƟon process can be applied to lots of funcƟons. In gen-
eral, instead of wriƟng “anything”, we use u as a generic funcƟon of x. We then
say

d
dx

(
ln u
)
=

u ′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar funcƟons.

1.
d
dx

(
un
)
= n · un−1 · u ′.

2.
d
dx

(
eu
)
= u ′ · eu.

3.
d
dx

(
sin u

)
= u ′ · cos u.

4.
d
dx

(
cos u

)
= −u ′ · sin u.

5.
d
dx

(
tan u

)
= u ′ · sec2 u.

Of course, the Chain Rule can be applied in conjuncƟonwith any of the other
rules we have already learned. We pracƟce this next.

Example 2.5.5 Using the Product, QuoƟent and Chain Rules
Find the derivaƟves of the following funcƟons.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

SÊ½çã®ÊÄ

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = x5
(
6x2 cos 2x3

)
+ 5x4

(
sin 2x3

)
= 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the QuoƟent Rule along with the Chain Rule. Again, pro-
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ceed step–by–step.

f ′(x) =
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2 =

e−x2(10x4 + 15x2
)

e−2x2

= ex
2(
10x4 + 15x2

)
.

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g ′(x). Just rewrite f(x), then find g ′(x). Then move on to the f ′(x)g(x) part.
Don’t aƩempt to figure out both parts at once.

Likewise, using the QuoƟent Rule, approach the numerator in two steps and
handle the denominator aŌer compleƟng that. Only simplify aŌerward.

We can also employ the Chain Rule itself several Ɵmes, as shown in the next
example.

Example 2.5.6 Using the Chain Rule mulƟple Ɵmes
Find the derivaƟve of y = tan5(6x3 − 7x).

SÊ½çã®ÊÄ Recognize that we have the g(x) = tan(6x3 − 7x) funcƟon
“inside” the f(x) = x5 funcƟon; that is, we have y =

(
tan(6x3−7x)

)5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
derivaƟve. Rather, we are approaching this step–by–step.

y ′ = 5
(
tan(6x3 − 7x)

)4 · g ′(x).

We now find g ′(x). We again need the Chain Rule;

g ′(x) = sec2(6x3 − 7x) · (18x2 − 7).

Combine this with what we found above to give

y ′ = 5
(
tan(6x3 − 7x)

)4 · sec2(6x3 − 7x) · (18x2 − 7)
= (90x2 − 35) sec2(6x3 − 7x) tan4(6x3 − 7x).

This funcƟon is frankly a ridiculous funcƟon, possessing no real pracƟcal
value. It is very difficult to graph, as the tangent funcƟon has many verƟcal
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the derivaƟve can be found. In fact, it is not “hard;” one can take
several simple steps and should be careful to keep track of how to apply each of
these steps.
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It is a tradiƟonal mathemaƟcal exercise to find the derivaƟves of arbitrarily
complicated funcƟons just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 2.5.7 Using the Product, QuoƟent and Chain Rules

Find the derivaƟve of f(x) =
x cos(x−2)− sin2(e4x)

ln(x2 + 5x4)
.

SÊ½çã®ÊÄ This funcƟon likely has no pracƟcal use outside of demon-
straƟng derivaƟve skills. The answer is given below without simplificaƟon. It
employs the QuoƟent Rule, the Product Rule, and the Chain Rule three Ɵmes.

f ′(x) = ln(x2 + 5x4) ·
[(

x · (− sin(x−2)) · (−2x−3) + 1 · cos(x−2)
)
− 2 sin(e4x) · cos(e4x) · (4e4x)

]
−
(
x cos(x−2) − sin2(e4x)

)
· 2x+20x3

x2+5x4


(
ln(x2 + 5x4)

)2 .

The reader is highly encouraged to look at each term and recognize why it
is there. (I.e., the QuoƟent Rule is used; in the numerator, idenƟfy the “LOdHI”
term, etc.) This example demonstrates that derivaƟves can be computed sys-
temaƟcally, no maƩer how arbitrarily complicated the funcƟon is.

The Chain Rule also has theoreƟc value. That is, it can be used to find the
derivaƟves of funcƟons that we have not yet learned as we do in the following
example.

Example 2.5.8 The Chain Rule and exponenƟal funcƟons
Use the Chain Rule to find the derivaƟve of y = 2x.

SÊ½çã®ÊÄ We only know how to find the derivaƟve of one exponenƟal
funcƟon, y = ex. We can accomplish our goal by rewriƟng 2 in terms of e.
Recalling that ex and ln x are inverse funcƟons, we can write

2 = eln 2 and so y = 2x =
(
eln 2
)x

= ex(ln 2).

The funcƟon is now the composiƟon y = f(g(x)), with f(x) = ex and g(x) =
x(ln 2). Since f ′(x) = ex and g ′(x) = ln 2, the Chain Rule gives

y ′ = ex(ln 2) · ln 2.
Recall that the ex(ln 2) term on the right hand side is just 2x, our original funcƟon.
Thus, the derivaƟve contains the original funcƟon itself. We have

y ′ = y · ln 2 = 2x · ln 2.
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We can extend this process to use any base a, where a > 0 and a ̸= 1. All we
need to do is replace each “2” in our work with “a.” The Chain Rule, coupled
with the derivaƟve rule of ex, allows us to find the derivaƟves of all exponenƟal
funcƟons.

The comment at the end of previous example is important and is restated
formally as a theorem.

Theorem 2.5.3 DerivaƟves of ExponenƟal FuncƟons

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differenƟable for all real
numbers (i.e., differenƟable everywhere) and

f ′(x) = ln a · ax.

Alternate Chain Rule NotaƟon

It is instrucƟve to understand what the Chain Rule “looks like” using “ dy
dx” no-

taƟon instead of y ′ notaƟon. Suppose that y = f(u) is a funcƟon of u, where
u = g(x) is a funcƟon of x, as stated in Theorem 2.5.1. Then, through the com-
posiƟon f ◦ g, we can think of y as a funcƟon of x, as y = f(g(x)). Thus the
derivaƟve of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interesƟng progression of notaƟon:

y ′ = f ′(g(x)) · g ′(x)
dy
dx

= y ′(u) · u ′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “fracƟonal” notaƟon for the derivaƟve)

Here the “fracƟonal” aspect of the derivaƟve notaƟon stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not canceling these terms; the derivaƟve
notaƟon of dy

du is one symbol. It is equally important to realize that this notaƟon
was chosen precisely because of this behavior. It makes applying the Chain Rule
easy with mulƟple variables. For instance,
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dy
dt

=
dy
d⃝

· d⃝
d△

· d△
dt

.

where⃝ and△ are any variables you’d like to use.
One of the most common ways of “visualizing” the Chain Rule is to consider

a set of gears, as shown in Figure 2.5.2. The gears have 36, 18, and 6 teeth,
respecƟvely. That means for every revoluƟon of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revoluƟon is twice as fast
as the rate at which the x gear makes a revoluƟon. Using the terminology of
calculus, the rate of u-change, with respect to x, is du

dx = 2.
Likewise, every revoluƟon of u causes 3 revoluƟons of y: dy

du = 3. How does
y change with respect to x? For each revoluƟon of x, y revolves 6 Ɵmes; that is,

dy
dx

=
dy
du

· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So oŌen the
funcƟons that we deal with are composiƟons of two or more funcƟons, requir-
ing us to use this rule to compute derivaƟves. It is also oŌen used in real life
when actual funcƟons are unknown. Through measurement, we can calculate
(or, approximate) dy

du and
du
dx . With our knowledge of the Chain Rule, we can find

dy
dx .

In the next secƟon, we use the Chain Rule to jusƟfy another differenƟaƟon
technique. There are many curves that we can draw in the plane that fail the
“verƟcal line test.” For instance, consider x2 + y2 = 1, which describes the unit
circle. Wemay sƟll be interested in finding slopes of tangent lines to the circle at
various points. The next secƟon shows howwe can find dy

dx without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situaƟons, implicit differenƟaƟon is indispensable.
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Exercises 2.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

Ɵve of a composiƟon of funcƟons.

2. T/F: The Generalized Power Rule states that d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F: d
dx

(
ln(x2)

)
=

1
x2
.

4. T/F: d
dx

(
3x
)
≈ 1.1 · 3x.

5. T/F: dx
dy

=
dx
dt

· dt
dy

6. f(x) =
(
ln x+ x2

)3
Problems
In Exercises 7 – 36, compute the derivaƟve of the given func-
Ɵon.

7. f(x) = (4x3 − x)10

8. f(t) = (3t− 2)5

9. g(θ) = (sin θ + cos θ)3

10. h(t) = e3t
2+t−1

11. f(x) =
(
ln x+ x2

)3
12. f(x) = 2x

3+3x

13. f(x) =
(
x+ 1

x

)4
14. f(x) = cos(3x)

15. g(x) = tan(5x)

16. h(θ) = tan
(
θ2 + 4θ

)
17. g(t) = sin

(
t5 + 1

t

)
18. h(t) = sin4(2t)

19. p(t) = cos3(t2 + 3t+ 1)

20. f(x) = ln(cos x)

21. f(x) = ln(x2)

22. f(x) = 2 ln(x)

23. g(r) = 4r

24. g(t) = 5cos t

25. g(t) = 152

26. m(w) = 3w

2w

27. h(t) = 2t + 3
3t + 2

28. m(w) = 3w + 1
2w

29. f(x) = 3x
2
+ x

2x2

30. f(x) = x2 sin(5x)

31. f(x) = (x2 + x)5(3x4 + 2x)3

32. g(t) = cos(t2 + 3t) sin(5t− 7)

33. f(x) = sin(3x+ 4) cos(5− 2x)

34. g(t) = cos( 1t )e
5t2

35. f(x) =
sin

(
4x+ 1

)
(5x− 9)3

36. f(x) = (4x+ 1)2

tan(5x)

In Exercises 37 – 40, find the equaƟons of tangent and normal
lines to the graph of the funcƟon at the given point. Note: the
funcƟons here are the same as in Exercises 7 through 10.

37. f(x) = (4x3 − x)10 at x = 0

38. f(t) = (3t− 2)5 at t = 1

39. g(θ) = (sin θ + cos θ)3 at θ = π/2

40. h(t) = e3t
2+t−1 at t = −1

41. Compute d
dx

(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the derivaƟve.
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42. Compute d
dx

(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and
(b) by first using the logarithm rule ln(ap) = p ln a, then

taking the derivaƟve.

Review
43. The “wind chill factor” is a measurement of how cold it

“feels” during cold, windy weather. Let W(w) be the wind

chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.

(a) What are the units ofW ′(w)?

(b) What would you expect the sign ofW ′(10) to be?

44. Find the derivaƟves of the following funcƟons.

(a) f(x) = x2ex cot x

(b) g(x) = 2x3x4x
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Figure 2.6.1: A graph of the implicit func-
Ɵon sin(y) + y3 = 6− x3.

2.6 Implicit DifferenƟaƟon

2.6 Implicit DifferenƟaƟon
In the previous secƟons we learned to find the derivaƟve, dy

dx , or y
′, when y is

given explicitly as a funcƟon of x. That is, if we know y = f(x) for some funcƟon
f, we can find y ′. For example, given y = 3x2 − 7, we can easily find y ′ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

SomeƟmes the relaƟonship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x2 − y = 4. This equality defines a
relaƟonship between x and y; if we know x, we could figure out y. Can we sƟll
find y ′? In this case, sure; we solve for y to get y = x2 − 4 (hence we now know
y explicitly) and then differenƟate to get y ′ = 2x.

SomeƟmes the implicit relaƟonship between x and y is complicated. Sup-
pose we are given sin(y)+ y3 = 6− x3. A graph of this implicit funcƟon is given
in Figure 2.6.1. In this case there is absolutely no way to solve for y in terms of
elementary funcƟons. The surprising thing is, however, that we can sƟll find y ′
via a process known as implicit differenƟaƟon.

Implicit differenƟaƟon is a technique based on the Chain Rule that is used to
find a derivaƟve when the relaƟonship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be funcƟons of x. Then

d
dx

(
f(g(x))

)
= f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d
dx

(
f(y)
)
= f ′(y) · y ′, or

d
dx

(
f(y)
)
= f ′(y) · dy

dx
. (2.1)

These equaƟons look strange; the key concept to learn here is that we can find
y ′ even if we don’t exactly know how y and x relate.

We demonstrate this process in the following example.

Example 2.6.1 Using Implicit DifferenƟaƟon
Find y ′ given that sin(y) + y3 = 6− x3.

SÊ½çã®ÊÄ We start by taking the derivaƟve of both sides (thus main-
taining the equality.) We have :

d
dx

(
sin(y) + y3

)
=

d
dx

(
6− x3

)
.

Notes:
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The right hand side is easy; it returns−3x2.
The leŌhand side requiresmore consideraƟon. We take the derivaƟve term–

by–term. Using the technique derived from EquaƟon 2.1 above, we can see that

d
dx

(
sin y

)
= cos y · y ′.

We apply the same process to the y3 term.

d
dx

(
y3
)
=

d
dx

(
(y)3

)
= 3(y)2 · y ′.

Puƫng this together with the right hand side, we have

cos(y)y ′ + 3y2y ′ = −3x2.

Now solve for y ′.

cos(y)y ′ + 3y2y ′ = −3x2.(
cos y+ 3y2

)
y ′ = −3x2

y ′ =
−3x2

cos y+ 3y2

This equaƟon for y ′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next.

Implicit funcƟons are generally harder to deal with than explicit funcƟons.
With an explicit funcƟon, given an x value, we have an explicit formula for com-
puƟng the corresponding y value. With an implicit funcƟon, one oŌen has to
find x and y values at the same Ɵme that saƟsfy the equaƟon. It is much eas-
ier to demonstrate that a given point saƟsfies the equaƟon than to actually find
such a point.

For instance, we can affirm easily that the point ( 3
√
6, 0) lies on the graph of

the implicit funcƟon sin y+ y3 = 6− x3. Plugging in 0 for y, we see the leŌ hand
side is 0. Seƫng x = 3

√
6, we see the right hand side is also 0; the equaƟon is

saƟsfied. The following example finds the equaƟon of the tangent line to this
funcƟon at this point.

Example 2.6.2 Using Implicit DifferenƟaƟon to find a tangent line
Find the equaƟon of the line tangent to the curve of the implicitly defined func-
Ɵon sin y+ y3 = 6− x3 at the point ( 3

√
6, 0).

SÊ½çã®ÊÄ In Example 2.6.1 we found that

y ′ =
−3x2

cos y+ 3y2
.

Notes:
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Figure 2.6.2: The funcƟon sin y + y3 =
6 − x3 and its tangent line at the point
( 3√6, 0).

2.6 Implicit DifferenƟaƟon

We find the slope of the tangent line at the point ( 3
√
6, 0) by subsƟtuƟng 3

√
6 for

x and 0 for y. Thus at the point ( 3
√
6, 0), we have the slope as

y ′ =
−3( 3

√
6)2

cos 0+ 3 · 02
=

−3 3
√
36

1
≈ −9.91.

Therefore the equaƟon of the tangent line to the implicitly defined funcƟon
sin y+ y3 = 6− x3 at the point ( 3

√
6, 0) is

y = −3 3
√
36(x− 3

√
6) + 0 ≈ −9.91x+ 18.

The curve and this tangent line are shown in Figure 2.6.2.

This suggests a general method for implicit differenƟaƟon. For the steps be-
low assume y is a funcƟon of x.

1. Take the derivaƟve of each term in the equaƟon. Treat the x terms like
normal. When taking the derivaƟves of y terms, the usual rules apply
except that, because of the Chain Rule, we need to mulƟply each term
by y ′.

2. Get all the y ′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y ′; solve for y ′ by dividing.

PracƟcal Note: When working by hand, it may be beneficial to use the symbol
dy
dx instead of y

′, as the laƩer can be easily confused for y or y1.

Example 2.6.3 Using Implicit DifferenƟaƟon
Given the implicitly defined funcƟon y3 + x2y4 = 1+ 2x, find y ′.

SÊ½çã®ÊÄ Wewill take the implicit derivaƟves termby term. Thederiva-
Ɵve of y3 is 3y2y ′.

The second term, x2y4, is a liƩle tricky. It requires the Product Rule as it is the
product of two funcƟons of x: x2 and y4. Its derivaƟve is x2(4y3y ′) + 2xy4. The
first part of this expression requires a y ′ becausewe are taking the derivaƟve of a
y term. The second part does not require it because we are taking the derivaƟve
of x2.

The derivaƟve of the right hand side is easily found to be 2. In all, we get:

3y2y ′ + 4x2y3y ′ + 2xy4 = 2.

Move terms around so that the leŌ side consists only of the y ′ terms and the
right side consists of all the other terms:

3y2y ′ + 4x2y3y ′ = 2− 2xy4.

Notes:
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Figure 2.6.3: A graph of the implicitly de-
fined funcƟon y3 + x2y4 = 1 + 2x along
with its tangent line at the point (0, 1).
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Figure 2.6.4: A graph of the implicitly de-
fined funcƟon sin(x2y2) + y3 = x+ y.

Chapter 2 DerivaƟves

Factor out y ′ from the leŌ side and solve to get

y ′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equaƟon of a tangent line
to this funcƟon at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this funcƟon. At this point, y ′ = 2/3. So the equaƟon of the tangent
line is y = 2/3(x−0)+1. The funcƟon and its tangent line are graphed in Figure
2.6.3.

NoƟce how our funcƟon looks much different than other funcƟons we have
seen. For one, it fails the verƟcal line test. Such funcƟons are important in many
areas of mathemaƟcs, so developing tools to deal with them is also important.

Example 2.6.4 Using Implicit DifferenƟaƟon
Given the implicitly defined funcƟon sin(x2y2) + y3 = x+ y, find y ′.

SÊ½çã®ÊÄ DifferenƟaƟng term by term, we find the most difficulty in
the first term. It requires both the Chain and Product Rules.

d
dx

(
sin(x2y2)

)
= cos(x2y2) · d

dx

(
x2y2

)
= cos(x2y2) ·

(
x2(2yy ′) + 2xy2

)
= 2(x2yy ′ + xy2) cos(x2y2).

We leave the derivaƟves of the other terms to the reader. AŌer taking the
derivaƟves of both sides, we have

2(x2yy ′ + xy2) cos(x2y2) + 3y2y ′ = 1+ y ′.

We now have to be careful to properly solve for y ′, parƟcularly because of
the product on the leŌ. It is best to mulƟply out the product. Doing this, we get

2x2y cos(x2y2)y ′ + 2xy2 cos(x2y2) + 3y2y ′ = 1+ y ′.

From here we can safely move around terms to get the following:

2x2y cos(x2y2)y ′ + 3y2y ′ − y ′ = 1− 2xy2 cos(x2y2).

Then we can solve for y ′ to get

y ′ =
1− 2xy2 cos(x2y2)

2x2y cos(x2y2) + 3y2 − 1
.

Notes:
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Figure 2.6.5: A graph of the implicitly de-
fined funcƟon sin(x2y2) + y3 = x+ y and
certain tangent lines.
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Figure 2.6.6: The unit circle with its tan-
gent line at (1/2,

√
3/2).

2.6 Implicit DifferenƟaƟon

A graph of this implicit funcƟon is given in Figure 2.6.4. It is easy to verify
that the points (0, 0), (0, 1) and (0,−1) all lie on the graph. We can find the
slopes of the tangent lines at each of these points using our formula for y ′.

At (0, 0), the slope is−1.
At (0, 1), the slope is 1/2.
At (0,−1), the slope is also 1/2.
The tangent lines have been added to the graph of the funcƟon in Figure

2.6.5.

Quite a few “famous” curves have equaƟons that are given implicitly. We can
use implicit differenƟaƟon to find the slope at various points on those curves.
We invesƟgate two such curves in the next examples.

Example 2.6.5 Finding slopes of tangent lines to a circle
Find the slopeof the tangent line to the circle x2+y2 = 1 at the point (1/2,

√
3/2).

SÊ½çã®ÊÄ Taking derivaƟves, we get 2x+2yy ′ = 0. Solving for y ′ gives:

y ′ =
−x
y
.

This is a clever formula. Recall that the slope of the line through the origin and
the point (x, y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
−x/y. Hence these two lines are always perpendicular.

At the point (1/2,
√
3/2), we have the tangent line’s slope as

y ′ =
−1/2√
3/2

=
−1√
3
≈ −0.577.

A graph of the circle and its tangent line at (1/2,
√
3/2) is given in Figure

2.6.6, along with a thin dashed line from the origin that is perpendicular to the
tangent line. (It turns out that all normal lines to a circle pass through the center
of the circle.)

This secƟon has shown how to find the derivaƟves of implicitly defined func-
Ɵons, whose graphs include a wide variety of interesƟng and unusual shapes.
Implicit differenƟaƟon can also be used to further our understanding of “regu-
lar” differenƟaƟon.

One hole in our current understanding of derivaƟves is this: what is the
derivaƟve of the square root funcƟon? That is,

d
dx
(√

x
)
=

d
dx
(
x1/2

)
= ?

Notes:
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Chapter 2 DerivaƟves

We allude to a possible soluƟon, as we can write the square root funcƟon as
a power funcƟon with a raƟonal (or, fracƟonal) power. We are then tempted to
apply the Power Rule and obtain

d
dx
(
x1/2

)
=

1
2
x−1/2 =

1
2
√
x
.

The trouble with this is that the Power Rule was iniƟally defined only for
posiƟve integer powers, n > 0. While we did not jusƟfy this at the Ɵme, gen-
erally the Power Rule is proved using something called the Binomial Theorem,
which deals only with posiƟve integers. The QuoƟent Rule allowed us to extend
the Power Rule to negaƟve integer powers. Implicit DifferenƟaƟon allows us to
extend the Power Rule to raƟonal powers, as shown below.

Let y = xm/n, wherem and n are integers with no common factors (som = 2
and n = 5 is fine, but m = 2 and n = 4 is not). We can rewrite this explicit
funcƟon implicitly as yn = xm. Now apply implicit differenƟaƟon.

y = xm/n

yn = xm

d
dx
(
yn
)
=

d
dx
(
xm
)

n · yn−1 · y ′ = m · xm−1

y ′ =
m
n
xm−1

yn−1 (now subsƟtute xm/n for y)

=
m
n

xm−1

(xm/n)n−1 (apply lots of algebra)

=
m
n
x(m−n)/n

=
m
n
xm/n−1.

The above derivaƟon is the key to the proof extending the Power Rule to ra-
Ɵonal powers. Using limits, we can extend this once more to include all powers,
including irraƟonal (even transcendental!) powers, giving the following theo-
rem.

Theorem 2.6.1 Power Rule for DifferenƟaƟon

Let f(x) = xn, where n ̸= 0 is a real number. Then f is differenƟable on
its domain, except possibly at x = 0, and f ′(x) = n · xn−1.

Notes:
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Figure 2.6.7: An astroid, traced out by a
point on the smaller circle as it rolls inside
the larger circle.
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Figure 2.6.8: An astroid with a tangent
line.

2.6 Implicit DifferenƟaƟon

This theorem allows us to say the derivaƟve of xπ is πxπ−1.
We now apply this final version of the Power Rule in the next example, the

second invesƟgaƟon of a “famous” curve.

Example 2.6.6 Using the Power Rule
Find the slope of x2/3 + y2/3 = 8 at the point (8, 8).

SÊ½çã®ÊÄ This is a parƟcularly interesƟng curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling around
inside of a larger circle, as shown in Figure 2.6.7.

To find the slope of the astroid at the point (8, 8), we take the derivaƟve
implicitly.

2
3
x−1/3 +

2
3
y−1/3y ′ = 0

2
3
y−1/3y ′ = −2

3
x−1/3

y ′ = −x−1/3

y−1/3

y ′ = −y1/3

x1/3
= − 3

√
y
x
.

Plugging in x = 8 and y = 8, we get a slope of −1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.6.8.

Implicit DifferenƟaƟon and the Second DerivaƟve

Wecan use implicit differenƟaƟon to find higher order derivaƟves. In theory,
this is simple: first find dy

dx , then take its derivaƟve with respect to x. In pracƟce,
it is not hard, but it oŌen requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.7 Finding the second derivaƟve

Given x2 + y2 = 1, find
d2y
dx2

= y ′′.

SÊ½çã®ÊÄ We found that y ′ = dy
dx = −x/y in Example 2.6.5. To find y ′′,

Notes:
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Figure 2.6.9: A plot of y = xx.

Chapter 2 DerivaƟves

we apply implicit differenƟaƟon to y ′.

y ′′ =
d
dx
(
y ′
)

=
d
dx

(
−x
y

)
(Now use the QuoƟent Rule.)

= −y(1)− x(y ′)
y2

replace y ′ with−x/y:

= −y− x(−x/y)
y2

= −y+ x2/y
y2

.

While this is not a parƟcularly simple expression, it is usable. We can see that
y ′′ > 0 when y < 0 and y ′′ < 0 when y > 0. In SecƟon 3.4, we will see how
this relates to the shape of the graph.

Logarithmic DifferenƟaƟon

Consider the funcƟon y = xx; it is graphed in Figure 2.6.9. It is well–defined
for x > 0 and we might be interested in finding equaƟons of lines tangent and
normal to its graph. How do we take its derivaƟve?

The funcƟon is not a power funcƟon: it has a “power” of x, not a constant.
It is not an exponenƟal funcƟon: it has a “base” of x, not a constant.

A differenƟaƟon technique known as logarithmic differenƟaƟon becomes
useful here. The basic principle is this: take the natural log of both sides of an
equaƟon y = f(x), then use implicit differenƟaƟon to find y ′. We demonstrate
this in the following example.

Example 2.6.8 Using Logarithmic DifferenƟaƟon
Given y = xx, use logarithmic differenƟaƟon to find y ′.

SÊ½çã®ÊÄ As suggested above, we start by taking the natural log of

Notes:
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Figure 2.6.10: A graph of y = xx and its
tangent line at x = 1.5.

2.6 Implicit DifferenƟaƟon

both sides then applying implicit differenƟaƟon.

y = xx

ln(y) = ln(xx) (apply logarithm rule)
ln(y) = x ln x (now use implicit differenƟaƟon)

d
dx

(
ln(y)

)
=

d
dx

(
x ln x

)
y ′

y
= ln x+ x · 1

x
y ′

y
= ln x+ 1

y ′ = y
(
ln x+ 1

)
(subsƟtute y = xx)

y ′ = xx
(
ln x+ 1

)
.

To “test” our answer, let’s use it to find the equaƟonof the tangent line at x =
1.5. The point on the graph our tangent linemust pass through is (1.5, 1.51.5) ≈
(1.5, 1.837). Using the equaƟon for y ′, we find the slope as

y ′ = 1.51.5
(
ln 1.5+ 1

)
≈ 1.837(1.405) ≈ 2.582.

Thus the equaƟon of the tangent line is y = 1.6833(x − 1.5) + 1.837. Figure
2.6.10 graphs y = xx along with this tangent line.

Implicit differenƟaƟon proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of funcƟons. In parƟcular, it extended the
Power Rule to raƟonal exponents, which we then extended to all real numbers.
In the next secƟon, implicit differenƟaƟon will be used to find the derivaƟves of
inverse funcƟons, such as y = sin−1 x.

Notes:
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Exercises 2.6
Terms and Concepts
1. In your own words, explain the difference between implicit

funcƟons and explicit funcƟons.

2. Implicit differenƟaƟon is based on what other differenƟa-
Ɵon rule?

3. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y =

√
x.

4. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y = x3/4.

Problems
In Exercises 5 – 12, compute the derivaƟve of the given func-
Ɵon.

5. f(x) =
√
x+ 1√

x

6. f(x) = 3√x+ x2/3

7. f(t) =
√
1− t2

8. g(t) =
√
t sin t

9. h(x) = x1.5

10. f(x) = xπ + x1.9 + π1.9

11. g(x) = x+ 7√
x

12. f(t) = 5√t(sec t+ et)

In Exercises 13 – 25, find dy
dx

using implicit differenƟaƟon.

13. x4 + y2 + y = 7

14. x2/5 + y2/5 = 1

15. cos(x) + sin(y) = 1

16. x
y
= 10

17. y
x
= 10

18. x2e2 + 2y = 5

19. x2 tan y = 50

20. (3x2 + 2y3)4 = 2

21. (y2 + 2y− x)2 = 200

22. x2 + y
x+ y2

= 17

23. sin(x) + y
cos(y) + x

= 1

24. ln(x2 + y2) = e

25. ln(x2 + xy+ y2) = 1

26. Show that dy
dx

is the same for each of the following implicitly
defined funcƟons.

(a) xy = 1

(b) x2y2 = 1

(c) sin(xy) = 1

(d) ln(xy) = 1

In Exercises 27 – 32, find the equaƟon of the tangent line to
the graph of the implicitly defined funcƟon at the indicated
points. As a visual aid, each funcƟon is graphed.

27. x2/5 + y2/5 = 1

(a) At (1, 0).

(b) At (0.1, 0.281) (which does not exactly lie on the
curve, but is very close).
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28. x4 + y4 = 1

(a) At (1, 0).

(b) At (
√
0.6,

√
0.8).

(c) At (0, 1).
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29. (x2 + y2 − 4)3 = 108y2

(a) At (0, 4).

(b) At (2,− 4√108).
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30. (x2 + y2 + x)2 = x2 + y2

(a) At (0, 1).

(b) At
(
−3
4
,
3
√
3

4

)
.

.....

−2

.

−1

.

−1

.

1

.

(
− 3

4 ,
3
√

3
4

)

.

x

.

y

31. (x− 2)2 + (y− 3)2 = 9

(a) At
(
7
2
,
6+ 3

√
3

2

)
.

(b) At
(
4+ 3

√
3

2
,
3
2

)
.

..... 2. 4. 6.

2

.

4

.

6

.

(
4+3

√
3

2 , 1.5
)

.

(
3.5, 6+3

√
3

2

)

.
x

.

y

32. x2 + y3 + 2xy = 0

(a) At (−1, 1).

(b) At
(
−1, 1

2
(−1+

√
5)
)
.

(c) At
(
−1, 1

2
(−1−

√
5)
)
.

−2 2

−2

2

(−1, 1)

(
−1, −1−

√
5

2

)

(
−1, −1+

√
5

2

)
x

y

In Exercises 33 – 36, an implicitly defined funcƟon is given.

Find d2y
dx2

. Note: these are the same problems used in Exer-
cises 13 through 16.

33. x4 + y2 + y = 7

34. x2/5 + y2/5 = 1

35. cos x+ sin y = 1

36. x
y
= 10

In Exercises 37 – 42, use logarithmic differenƟaƟon to find
dy
dx

, then find the equaƟon of the tangent line at the indicated
x–value.

37. y = (1+ x)1/x, x = 1

38. y = (2x)x
2
, x = 1

39. y = xx

x+ 1
, x = 1

40. y = xsin(x)+2, x = π/2

41. y = x+ 1
x+ 2

, x = 1

42. y = (x+ 1)(x+ 2)
(x+ 3)(x+ 4)

, x = 0
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Figure 2.7.1: A funcƟon f alongwith its in-
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is f−1.)
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Figure 2.7.2: Corresponding tangent lines
drawn to f and f−1.

Chapter 2 DerivaƟves

2.7 DerivaƟves of Inverse FuncƟons
Recall that a funcƟon y = f(x) is said to be one to one if it passes the horizontal
line test; that is, for twodifferent x values x1 and x2, we do not have f(x1) = f(x2).
In some cases the domain of f must be restricted so that it is one to one. For
instance, consider f(x) = x2. Clearly, f(−1) = f(1), so f is not one to one on its
regular domain, but by restricƟng f to (0,∞), f is one to one.

Now recall that one to one funcƟons have inverses. That is, if f is one to
one, it has an inverse funcƟon, denoted by f−1, such that if f(a) = b, then
f−1(b) = a. The domain of f−1 is the range of f, and vice-versa. For ease of
notaƟon, we set g = f−1 and treat g as a funcƟon of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f
(
g(b)

)
= f(a) = b.

In general, f
(
g(x)

)
= x and g

(
f(x)
)
= x. This gives us a convenient way to check

if two funcƟons are inverses of each other: compose them and if the result is x,
then they are inverses (on the appropriate domains.)

When the point (a, b) lies on the graph of f, the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflecƟon of f across the
line y = x. In Figure 2.7.1 we see a funcƟon graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this relaƟonship, whatever we know about f can quickly be transferred
into knowledge about g.

For example, consider Figure 2.7.2 where the tangent line to f at the point
(a, b) is drawn. That line has slope f ′(a). Through reflecƟon across y = x, we
can see that the tangent line to g at the point (b, a) should have slope

1
f ′(a)

.

This then tells us that g ′(b) =
1

f ′(a)
.

Consider:

InformaƟon about f InformaƟon about g = f−1

(−0.5, 0.375) lies on f (0.375,−0.5) lies on g

Slope of tangent line to f
at x = −0.5 is 3/4

Slope of tangent line to
g at x = 0.375 is 4/3

f ′(−0.5) = 3/4 g ′(0.375) = 4/3

We have discovered a relaƟonship between f ′ and g ′ in a mostly graphical
way. We can realize this relaƟonship analyƟcally as well. Let y = g(x), where
again g = f−1. Wewant to find y ′. Since y = g(x), we know that f(y) = x. Using
the Chain Rule and Implicit DifferenƟaƟon, take the derivaƟve of both sides of

Notes:
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2.7 DerivaƟves of Inverse FuncƟons

this last equality.

d
dx

(
f(y)
)
=

d
dx

(
x
)

f ′(y) · y ′ = 1

y ′ =
1

f ′(y)

y ′ =
1

f ′(g(x))
.

This leads us to the following theorem.

Theorem 2.7.1 DerivaƟves of Inverse FuncƟons

Let fbe differenƟable and one to one on an open interval I, where f ′(x) ̸=
0 for all x in I, let J be the range of f on I, let g be the inverse funcƟon of
f, and let f(a) = b for some a in I. Then g is a differenƟable funcƟon on
J, and in parƟcular,
1.
(
f−1)′ (b) = g ′(b) =

1
f ′(a)

and 2.
(
f−1)′ (x) = g ′(x) =

1
f ′(g(x))

The results of Theorem2.7.1 are not trivial; the notaƟonmay seemconfusing
at first. Careful consideraƟon, along with examples, should earn understanding.

In the next example we apply Theorem 2.7.1 to the arcsine funcƟon.

Example 2.7.1 Finding the derivaƟve of an inverse trigonometric funcƟon
Let y = arcsin x = sin−1 x. Find y ′ using Theorem 2.7.1.

SÊ½çã®ÊÄ AdopƟngour previously definednotaƟon, letg(x) = arcsin x
and f(x) = sin x. Thus f ′(x) = cos x. Applying the theorem, we have

g ′(x) =
1

f ′(g(x))

=
1

cos(arcsin x)
.

This last expression is not immediately illuminaƟng. Drawing a figure will
help, as shown in Figure 2.7.4. Recall that the sine funcƟon can be viewed as
taking in an angle and returning a raƟo of sides of a right triangle, specifically,
the raƟo “opposite over hypotenuse.” Thismeans that the arcsine funcƟon takes
as input a raƟo of sides and returns an angle. The equaƟon y = arcsin x can
be rewriƩen as y = arcsin(x/1); that is, consider a right triangle where the

Notes:
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Chapter 2 DerivaƟves

hypotenuse has length 1 and the side opposite of the angle with measure y has
length x. This means the final side has length

√
1− x2, using the Pythagorean

Theorem.

Therefore cos(sin−1 x) = cos y =
√
1− x2/1 =

√
1− x2, resulƟng in

d
dx
(
arcsin x

)
= g ′(x) =

1√
1− x2

.

Remember that the input x of the arcsine funcƟon is a raƟo of a side of a right
triangle to its hypotenuse; the absolute value of this raƟo will never be greater
than 1. Therefore the inside of the square root will never be negaƟve.

In order tomake y = sin x one to one, we restrict its domain to [−π/2, π/2];
on this domain, the range is [−1, 1]. Therefore the domain of y = arcsin x is
[−1, 1] and the range is [−π/2, π/2]. When x = ±1, note how the derivaƟve of
the arcsine funcƟon is undefined; this corresponds to the fact that as x → ±1,
the tangent lines to arcsine approach verƟcal lines with undefined slopes.

In Figure 2.7.5 we see f(x) = sin x and f−1(x) = sin−1 x graphed on their re-
specƟve domains. The line tangent to sin x at the point (π/3,

√
3/2) has slope

cos π/3 = 1/2. The slope of the corresponding point on sin−1 x, the point
(
√
3/2, π/3), is

1√
1− (

√
3/2)2

=
1√

1− 3/4
=

1√
1/4

=
1

1/2
= 2,

verifying yet again that at corresponding points, a funcƟon and its inverse have
reciprocal slopes.

Using similar techniques, we canfind thederivaƟves of all the inverse trigono-
metric funcƟons. In Figure 2.7.3 we show the restricƟons of the domains of the
standard trigonometric funcƟons that allow them to be inverƟble.

Notes:
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2.7 DerivaƟves of Inverse FuncƟons

FuncƟon Domain Range
Inverse
FuncƟon Domain Range

sin x [−π/2, π/2] [−1, 1] sin−1 x [−1, 1] [−π/2, π/2]

cos x [0, π] [−1, 1] cos−1 x [−1, 1] [0, π]

tan x (−π/2, π/2) (−∞,∞) tan−1 x (−∞,∞) (−π/2, π/2)

csc x [−π/2, 0) ∪ (0, π/2] (−∞,−1] ∪ [1,∞) csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]

sec x [0, π/2) ∪ (π/2, π] (−∞,−1] ∪ [1,∞) sec−1 x (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]

cot x (0, π) (−∞,∞) cot−1 x (−∞,∞) (0, π)

Figure 2.7.3: Domains and ranges of the trigonometric and inverse trigonometric funcƟons.

Theorem 2.7.2 DerivaƟves of Inverse Trigonometric FuncƟons

The inverse trigonometric funcƟons are differenƟable on all open sets
contained in their domains (as listed in Figure 2.7.3) and their derivaƟves
are as follows:

1. d
dx

(
sin−1 x

)
=

1√
1− x2

2. d
dx

(
sec−1 x

)
=

1
|x|

√
x2 − 1

3. d
dx

(
tan−1 x

)
=

1
1+ x2

4. d
dx

(
cos−1 x

)
= − 1√

1− x2

5. d
dx

(
csc−1 x

)
= − 1

|x|
√
x2 − 1

6. d
dx

(
cot−1 x

)
= − 1

1+ x2

Note how the last three derivaƟves are merely the opposites of the first
three, respecƟvely. Because of this, the first three are used almost exclusively
throughout this text.

In SecƟon 2.3, we stated without proof or explanaƟon that
d
dx
(
ln x
)
=

1
x
.

We can jusƟfy that now using Theorem 2.7.1, as shown in the example.

Example 2.7.2 Finding the derivaƟve of y = ln x
Use Theorem 2.7.1 to compute

d
dx
(
ln x
)
.

SÊ½çã®ÊÄ View y = ln x as the inverse of y = ex. Therefore, using our
standard notaƟon, let f(x) = ex and g(x) = ln x. Wewish to find g ′(x). Theorem

Notes:
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Chapter 2 DerivaƟves

2.7.1 gives:

g ′(x) =
1

f ′(g(x))

=
1

eln x

=
1
x
.

In this chapter we have defined the derivaƟve, given rules to facilitate its
computaƟon, and given the derivaƟves of a number of standard funcƟons. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Theorem 2.7.3 Glossary of DerivaƟves of Elementary FuncƟons

Let u and v be differenƟable funcƟons, and let a, c and n be real
numbers, a > 0, n ̸= 0.

1. d
dx

(
cu
)
= cu′

3. d
dx

(
u · v

)
= uv′ + u′v

5. d
dx

(
u(v)

)
= u′(v)v′

7. d
dx

(
x
)
= 1

9. d
dx

(
ex
)
= ex

11. d
dx

(
ln x
)
= 1

x

13. d
dx

(
sin x

)
= cos x

15. d
dx

(
sec x

)
= sec x tan x

17. d
dx

(
tan x

)
= sec2 x

19. d
dx

(
sin−1 x

)
= 1√

1−x2

21. d
dx

(
sec−1 x

)
= 1

|x|
√
x2−1

23. d
dx

(
tan−1 x

)
= 1

1+x2

2. d
dx

(
u± v

)
= u′ ± v′

4. d
dx

( u
v

)
= u′v−uv′

v2

6. d
dx

(
c
)
= 0

8. d
dx

(
xn
)
= nxn−1

10. d
dx

(
ax
)
= ln a · ax

12. d
dx

(
loga x

)
= 1

ln a ·
1
x

14. d
dx

(
cos x

)
= − sin x

16. d
dx

(
csc x

)
= − csc x cot x

18. d
dx

(
cot x

)
= − csc2 x

20. d
dx

(
cos−1 x

)
= − 1√

1−x2

22. d
dx

(
csc−1 x

)
= − 1

|x|
√
x2−1

24. d
dx

(
cot−1 x

)
= − 1

1+x2

Notes:
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Exercises 2.7
Terms and Concepts

1. T/F: Every funcƟon has an inverse.

2. In your own words explain what it means for a funcƟon to
be “one to one.”

3. If (1, 10) lies on the graph of y = f(x), what can be said
about the graph of y = f−1(x)?

4. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what
can be said about y = f−1(x)?

Problems
In Exercises 5 – 8, verify that the given funcƟons are inverses.

5. f(x) = 2x+ 6 and g(x) = 1
2 x− 3

6. f(x) = x2 + 6x+ 11, x ≥ 3 and
g(x) =

√
x− 2− 3, x ≥ 2

7. f(x) = 3
x− 5

, x ̸= 5 and

g(x) = 3+ 5x
x

, x ̸= 0

8. f(x) = x+ 1
x− 1

, x ̸= 1 and g(x) = f(x)

In Exercises 9 – 14, an inverƟble funcƟon f(x) is given along
with a point that lies on its graph. Using Theorem 2.7.1, eval-
uate

(
f−1)′ (x) at the indicated value.

9. f(x) = 5x+ 10
Point= (2, 20)
Evaluate

(
f−1)′ (20)

10. f(x) = x2 − 2x+ 4, x ≥ 1
Point= (3, 7)
Evaluate

(
f−1)′ (7)

11. f(x) = sin 2x,−π/4 ≤ x ≤ π/4
Point= (π/6,

√
3/2)

Evaluate
(
f−1)′ (√3/2)

12. f(x) = x3 − 6x2 + 15x− 2
Point= (1, 8)
Evaluate

(
f−1)′ (8)

13. f(x) = 1
1+ x2

, x ≥ 0

Point= (1, 1/2)
Evaluate

(
f−1)′ (1/2)

14. f(x) = 6e3x

Point= (0, 6)
Evaluate

(
f−1)′ (6)

In Exercises 15 – 24, compute the derivaƟve of the given func-
Ɵon.

15. h(t) = sin−1(2t)

16. f(t) = sec−1(2t)

17. g(x) = tan−1(2x)

18. f(x) = x sin−1 x

19. g(t) = sin t cos−1 t

20. f(t) = ln tet

21. h(x) = sin−1 x
cos−1 x

22. g(x) = tan−1(
√
x)

23. f(x) = sec−1(1/x)

24. f(x) = sin(sin−1 x)

In Exercises 25 – 26, compute the derivaƟve of the given func-
Ɵon in two ways:

(a) By simplifying first, then taking the derivaƟve, and
(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

25. f(x) = sin(sin−1 x)

26. f(x) = tan−1(tan x)

In Exercises 27 – 28, find the equaƟon of the line tangent to
the graph of f at the indicated x value.

27. f(x) = sin−1 x at x =
√
2
2

28. f(x) = cos−1(2x) at x =
√
3
4

Review
29. Find dy

dx , where x
2y− y2x = 1.

30. Find the equaƟon of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

31. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Note: The extreme values of a funcƟon
are “y” values, values the funcƟon aƩains,
not the input values.
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Figure 3.1.1: Graphs of funcƟonswith and
without extreme values.
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Our study of limits led to conƟnuous funcƟons, a certain class of funcƟons that
behave in a parƟcularly nice way. Limits then gave us an even nicer class of
funcƟons, funcƟons that are differenƟable.

This chapter explores many of the ways we can take advantage of the infor-
maƟon that conƟnuous and differenƟable funcƟons provide.

3.1 Extreme Values
Given any quanƟty described by a funcƟon, we are oŌen interested in the largest
and/or smallest values that quanƟty aƩains. For instance, if a funcƟon describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a funcƟon describes the value of a stock, we might want
to know the highest/lowest values the stock aƩained over the past year. We call
such values extreme values.

DefiniƟon 3.1.1 Extreme Values

Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.

Consider Figure 3.1.1. The funcƟon displayed in (a) has a maximum, but
no minimum, as the interval over which the funcƟon is defined is open. In (b),
the funcƟon has a minimum, but no maximum; there is a disconƟnuity in the
“natural” place for the maximum to occur. Finally, the funcƟon shown in (c) has
both a maximum and a minimum; note that the funcƟon is conƟnuous and the
interval on which it is defined is closed.

It is possible for disconƟnuous funcƟons defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, conƟnuous funcƟons on a closed interval al-
ways have a maximum and minimum value.
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Figure 3.1.2: A graph of f(x) = 2x3 − 9x2
as in Example 3.1.1.

Note: The terms local minimum and local
maximum are oŌen used as synonyms for
relaƟve minimum and relaƟve maximum.

As it makes intuiƟve sense that an ab-
solute maximum is also a relaƟve max-
imum, DefiniƟon 3.1.2 allows a relaƟve
maximum to occur at an interval’s end-
point.

Chapter 3 The Graphical Behavior of FuncƟons

Theorem 3.1.1 The Extreme Value Theorem

Let f be a conƟnuous funcƟon defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. AŌer the example, we will draw on lessons
learned to formamore general and powerfulmethod for finding extreme values.

Example 3.1.1 ApproximaƟng extreme values
Consider f(x) = 2x3 − 9x2 on I = [−1, 5], as graphed in Figure 3.1.2. Approxi-
mate the extreme values of f.

SÊ½çã®ÊÄ The graph is drawn in such away to draw aƩenƟon to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approximaƟon, we
approximate the extreme values to be 25 and−27.

NoƟce how theminimum value came at “the boƩom of a hill,” and themaxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the locaƟon of an extreme value for some interval is important, leading us to
a definiƟon of a relaƟve maximum. In short, a “relaƟve max” is a y-value that’s
the largest y-value “nearby.”

DefiniƟon 3.1.2 RelaƟve Minimum and RelaƟve Maximum

Let f be defined on an interval I containing c.

1. If there is a δ > 0 such that f(c) ≤ f(x) for all x in Iwhere |x− c| <
δ, then f(c) is a relaƟve minimum of f. We also say that f has a
relaƟve minimum at (c, f(c)).

2. If there is a δ > 0 such that f(c) ≥ f(x) for all x in Iwhere |x− c| <
δ, then f(c) is a relaƟve maximum of f. We also say that f has a
relaƟve maximum at (c, f(c)).

The relaƟve maximum and minimum values comprise the relaƟve ex-
trema of f.

Notes:
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Figure 3.1.3: A graph of f(x) = (3x4 −
4x3 − 12x2 + 5)/5 as in Example 3.1.2.

..... 1. 2.

1

.

2

.

3

.
x

.

y

Figure 3.1.4: A graph of f(x) = (x −
1)2/3 + 2 as in Example 3.1.3.

3.1 Extreme Values

We briefly pracƟce using these definiƟons.

Example 3.1.2 ApproximaƟng relaƟve extrema
Consider f(x) = (3x4−4x3−12x2+5)/5, as shown in Figure 3.1.3. Approximate
the relaƟve extrema of f. At each of these points, evaluate f ′.

SÊ½çã®ÊÄ We sƟll do not have the tools to exactly find the relaƟve
extrema, but the graph does allow us to make reasonable approximaƟons. It
seems f has relaƟve minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a relaƟve maximum at the point (0, 1).

We approximate the relaƟve minima to be 0 and−5.4; we approximate the
relaƟve maximum to be 1.

It is straighƞorward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0.

Example 3.1.3 ApproximaƟng relaƟve extrema
Approximate the relaƟve extrema of f(x) = (x−1)2/3+2, shown in Figure 3.1.4.
At each of these points, evaluate f ′.

SÊ½çã®ÊÄ The figure implies that f does not have any relaƟve maxima,
but has a relaƟve minimum at (1, 2). In fact, the graph suggests that not only
is this point a relaƟve minimum, y = f(1) = 2 is the minimum value of the
funcƟon.

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relaƟve extrema, and at each such point, the derivaƟve was
either 0 or it was not defined. This observaƟon holds for all funcƟons, leading
to a definiƟon and a theorem.

DefiniƟon 3.1.3 CriƟcal Numbers and CriƟcal Points

Let f be defined at c. The value c is a criƟcal number (or criƟcal value)
of f if f ′(c) = 0 or f ′(c) is not defined.

If c is a criƟcal number of f, then the point (c, f(c)) is a criƟcal point of f.

Notes:
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Ɵve extrema.

Chapter 3 The Graphical Behavior of FuncƟons

Theorem 3.1.2 RelaƟve Extrema and CriƟcal Points

Let a funcƟon f be defined on an open interval I containing c, and let f
have a relaƟve extremumat the point (c, f(c)). Then c is a criƟcal number
of f.

Be careful to understand that this theorem states “RelaƟve extrema on open
intervals occur at criƟcal points.” It does not say “All criƟcal numbers produce
relaƟve extrema.” For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is
straighƞorward to determine that x = 0 is a criƟcal number of f. However, f has
no relaƟve extrema, as illustrated in Figure 3.1.5.

Theorem3.1.1 states that a conƟnuous funcƟonon a closed intervalwill have
both an absolute maximum and an absolute minimum. Common sense tells us
“extrema occur either at the endpoints or somewhere in between.” It is easy
to check for extrema at endpoints, but there are infinitely many points to check
that are “in between.” Our theory tells us we need only check at the criƟcal
points that are in between the endpoints. We combine these concepts to offer
a strategy for finding extrema.

Key Idea 3.1.1 Finding Extrema on a Closed Interval

Let f be a conƟnuous funcƟon defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the criƟcal numbers of f in [a, b].

3. Evaluate f at each criƟcal number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We pracƟce these ideas in the next examples.

Example 3.1.4 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Figure
3.1.6(a).

SÊ½çã®ÊÄ We follow the steps outlined in Key Idea 3.1.1. We first eval-

Notes:
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Figure 3.1.6: Finding the extreme values
of f(x) = 2x3+3x2−12x in Example 3.1.4.
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Figure 3.1.7: Finding the extreme values
of a piecewise–defined funcƟon in Exam-
ple 3.1.5.

3.1 Extreme Values

uate f at the endpoints:

f(0) = 0 and f(3) = 45.

Next, we find the criƟcal values of f on [0, 3]. f ′(x) = 6x2 + 6x − 12 = 6(x +
2)(x− 1); therefore the criƟcal values of f are x = −2 and x = 1. Since x = −2
does not lie in the interval [0, 3], we ignore it. EvaluaƟng f at the only criƟcal
number in our interval gives: f(1) = −7.

The table in Figure 3.1.6(b) gives f evaluated at the “important” x values in
[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is−7.

Note that all this was done without the aid of a graph; this work followed an
analyƟc algorithm and did not depend on any visualizaƟon. Figure 3.1.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We pracƟce again.

Example 3.1.5 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =
{

(x− 1)2 x ≤ 0
x+ 1 x > 0 ,

graphed in Figure 3.1.7(a).

SÊ½çã®ÊÄ Here f is piecewise–defined, but we can sƟll apply Key Idea
3.1.1 as it is conƟnuous on [−4, 2] (one should check to verify that lim

x→0
f(x) =

f(0)). EvaluaƟng f at the endpoints gives:

f(−4) = 25 and f(2) = 3.

We now find the criƟcal numbers of f. We have to define f ′ in a piecewise
manner; it is

f ′(x) =
{

2(x− 1) x < 0
1 x > 0 .

Note that while f is defined for all of [−4, 2], f ′ is not, as the derivaƟve of f does
not exist when x = 0. (From the leŌ, the derivaƟve approaches −2; from the
right the derivaƟve is 1.) Thus one criƟcal number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0, so we find no criƟcal values from seƫng f ′(x) = 0.

So we have three important x values to consider: x = −4, 2 and 0. Evaluat-
ing f at each gives, respecƟvely, 25, 3 and 1, shown in Figure 3.1.7(b). Thus the

Notes:
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Figure 3.1.9: Finding the extrema of the
half–circle in Example 3.1.7.

Note: We implicitly found the derivaƟve
of x2 + y2 = 1, the unit circle, in Ex-
ample 2.6.5 as dy

dx = −x/y. In Exam-
ple 3.1.7, half of the unit circle is given as
y = f(x) =

√
1− x2. We found f ′(x) =

−x√
1−x2

. Recognize that the denominator
of this fracƟon is y; that is, we again found
f ′(x) = dy

dx = −x/y.
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absolute minimum of f is 1, the absolute maximum of f is 25, confirmed by the
graph of f.

Example 3.1.6 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2], graphed in Figure 3.1.8(a).

SÊ½çã®ÊÄ We again use Key Idea 3.1.1. EvaluaƟng f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the criƟcal
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the criƟcal values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t = . . .− 2π,−π, 0, π, . . . Thus sin(x2) = 0 when x2 = 0, π, 2π, . . . (x2 is
always posiƟve sowe ignore−π, etc.) So sin(x2) = 0when x = 0,±

√
π,±

√
2π,

etc. The only values to fall in the given interval of [−2, 2] are 0 and±
√
π, where√

π ≈ 1.77.
We again construct a table of important values in Figure 3.1.8(b). In this

example we have 5 values to consider: x = 0,±2,±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph of f confirms our results.

We consider one more example.

Example 3.1.7 Finding extreme values
Find the extreme values of f(x) =

√
1− x2, graphed in Figure 3.1.9(a).

SÊ½çã®ÊÄ A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 − x2 ≥ 0; thus the domain of f is
[−1, 1]. EvaluaƟng f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The criƟcal points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straighƞorward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 3.1.9(b). The maximum
value is 1, and the minimum value is 0. (See also the marginal note.)

We have seen that conƟnuous funcƟons on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next secƟon, we further our study of the informaƟonwe can
glean from “nice” funcƟons with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a funcƟon (as we did at the beginning
of Chapter 2). We will see that differenƟable funcƟons always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.

Notes:
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Exercises 3.1
Terms and Concepts

1. Describe what an “extreme value” of a funcƟon is in your
own words.

2. Sketch the graph of a funcƟon f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between absolute and relaƟve
maxima in your own words.

4. Sketch the graph of a funcƟon f where f has a relaƟve max-
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a criƟcal value of a funcƟon f, then f has either a
relaƟve maximum or relaƟve minimum at x = c.

6. Fill in the blanks: The criƟcal points of a funcƟon f are
found where f ′(x) is equal to or where f ′(x) is

.

Problems

In Exercises 7 – 8, idenƟfy each of the marked points as being
an absolute maximum or minimum, a relaƟve maximum or
minimum, or none of the above.
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In Exercises 9 – 16, evaluate f ′(x) at the points indicated in
the graph.

9. f(x) = 2
x2 + 1
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√
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14. f(x) = 3√x4 − 2x+ 1
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16. f(x) =
{

x2 x ≤ 0
x x > 0
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In Exercises 17 – 26, find the extreme values of the funcƟon
on the given interval.

17. f(x) = x2 + x+ 4 on [−1, 2].

18. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

19. f(x) = 3 sin x on [π/4, 2π/3].

20. f(x) = x2
√
4− x2 on [−2, 2].

21. f(x) = x+ 3
x

on [1, 5].

22. f(x) = x2

x2 + 5
on [−3, 5].

23. f(x) = ex cos x on [0, π].

24. f(x) = ex sin x on [0, π].

25. f(x) = ln x
x

on [1, 4].

26. f(x) = x2/3 − x on [0, 2].

Review
27. Find dy

dx , where x
2y− y2x = 1.

28. Find the equaƟon of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

29. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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3.2 The Mean Value Theorem

3.2 The Mean Value Theorem
We moƟvate this secƟon with the following quesƟon: Suppose you leave your
house and drive to your friend’s house in a city 100 miles away, compleƟng the
trip in two hours. At any point during the trip do you necessarily have to be going
50 miles per hour?

In answering this quesƟon, it is clear that the average speed for the enƟre
trip is 50mph (i.e. 100miles in 2 hours), but the quesƟon is whether or not your
instantaneous speed is ever exactly 50mph. More simply, does your speedome-
ter ever read exactly 50 mph?. The answer, under some very reasonable as-
sumpƟons, is “yes.”

Let’s now see why this situaƟon is in a calculus text by translaƟng it into
mathemaƟcal symbols.

First assume that the funcƟon y = f(t) gives the distance (in miles) traveled
from your home at Ɵme t (in hours) where 0 ≤ t ≤ 2. In parƟcular, this gives
f(0) = 0 and f(2) = 100. The slope of the secant line connecƟng the starƟng
and ending points (0, f(0)) and (2, f(2)) is therefore

∆f
∆t

=
f(2)− f(0)

2− 0
=

100− 0
2

= 50mph.

The slope at any point on the graph itself is given by the derivaƟve f ′(t). So,
since the answer to the quesƟon above is “yes,” this means that at some Ɵme
during the trip, the derivaƟve takes on the value of 50 mph. Symbolically,

f ′(c) =
f(2)− f(0)

2− 0
= 50

for some Ɵme 0 ≤ c ≤ 2.

How about more generally? Given any funcƟon y = f(x) and a range a ≤
x ≤ b does the value of the derivaƟve at some point between a and b have to
match the slope of the secant line connecƟng the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equaƟon f ′(c) = f(b)−f(a)

b−a have to hold for some a <
c < b?

Let’s look at two funcƟons in an example.

Example 3.2.1 Comparing average and instantaneous rates of change
Consider funcƟons

f1(x) =
1
x2

and f2(x) = |x|

with a = −1 and b = 1 as shown in Figure 3.2.1(a) and (b), respecƟvely. Both
funcƟons have a value of 1 at a and b. Therefore the slope of the secant line

Notes:
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Figure 3.2.1: A graph of f1(x) = 1/x2 and
f2(x) = |x| in Example 3.2.1.
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3x + 5, where f(a) = f(b). Note the ex-
istence of c, where a < c < b, where
f ′(c) = 0.

Chapter 3 The Graphical Behavior of FuncƟons

connecƟng the end points is 0 in each case. But if you look at the plots of each,
you can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no c in [−1, 1] such that

f ′(c) =
f(1)− f(−1)
1− (−1)

= 0.

Sowhatwent “wrong”? Itmaynot be surprising to find that the disconƟnuity
of f1 and the corner of f2 play a role. If our funcƟons had been conƟnuous and
differenƟable, would we have been able to find that special value c? This is our
moƟvaƟon for the following theorem.

Theorem 3.2.1 The Mean Value Theorem of DifferenƟaƟon

Let y = f(x) be a conƟnuous funcƟon on the closed interval [a, b] and
differenƟable on the open interval (a, b). There exists a value c, a < c <
b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b)where the instantaneous rate of change
of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the funcƟons in Example 3.2.1 fail are indeed that
f1 has a disconƟnuity on the interval [−1, 1] and f2 is not differenƟable at the ori-
gin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

Theorem 3.2.2 Rolle’s Theorem

Let f be conƟnuous on [a, b] and differenƟable on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = 0.

Consider Figure 3.2.2 where the graph of a funcƟon f is given, where f(a) =
f(b). It shouldmake intuiƟve sense that if f is differenƟable (and hence, conƟnu-
ous) that there would be a value c in (a, b)where f ′(c) = 0; that is, there would
be a relaƟve maximum or minimum of f in (a, b). Rolle’s Theorem guarantees at
least one; there may be more.

Notes:
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3.2 The Mean Value Theorem

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some c where f ′(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem
Let f be differenƟable on (a, b) where f(a) = f(b). We consider two cases.

Case 1: Consider the case when f is constant on [a, b]; that is, f(x) = f(a) = f(b)
for all x in [a, b]. Then f ′(x) = 0 for all x in [a, b], showing there is at least one
value c in (a, b) where f ′(c) = 0.
Case 2: Now assume that f is not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at the
endpoints or at a criƟcal value in (a, b). Since f(a) = f(b) and f is not constant, it
is clear that themaximum andminimum cannot both be found at the endpoints.
Assume, without loss of generality, that the maximum of f is not found at the
endpoints. Therefore there is a c in (a, b) such that f(c) is the maximum value
of f. By Theorem 3.1.2, cmust be a criƟcal number of f; since f is differenƟable,
we have that f ′(c) = 0, compleƟng the proof of the theorem. □

We can now prove the Mean Value Theorem.

Proof of the Mean Value Theorem
Define the funcƟon

g(x) = f(x)− f(b)− f(a)
b− a

x.

We know g is differenƟable on (a, b) and conƟnuous on [a, b] since f is. We can
show g(a) = g(b) (it is actually easier to show g(b)−g(a) = 0, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of c in (a, b) such
that g ′(c) = 0. But note that

0 = g ′(c) = f ′(c)− f(b)− f(a)
b− a

;

hence
f ′(c) =

f(b)− f(a)
b− a

,

which is what we sought to prove. □

Going back to the very beginning of the secƟon, we see that the only as-
sumpƟon we would need about our distance funcƟon f(t) is that it be conƟnu-
ous and differenƟable for t from 0 to 2 hours (both reasonable assumpƟons). By
the Mean Value Theorem, we are guaranteed a Ɵme during the trip where our

Notes:
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Chapter 3 The Graphical Behavior of FuncƟons

instantaneous speed is 50 mph. This fact is used in pracƟce. Some law enforce-
ment agencies monitor traffic speeds while in aircraŌ. They do not measure
speed with radar, but rather by Ɵming individual cars as they pass over lines
painted on the highway whose distances apart are known. The officer is able
to measure the average speed of a car between the painted lines; if that aver-
age speed is greater than the posted speed limit, the officer is assured that the
driver exceeded the speed limit at some Ɵme.

Note that the Mean Value Theorem is an existence theorem. It states that a
special value c exists, but it does not give any indicaƟon about how to find it. It
turns out that whenwe need theMean Value Theorem, existence is all we need.

Example 3.2.2 Using the Mean Value Theorem
Consider f(x) = x3 + 5x+ 5 on [−3, 3]. Find c in [−3, 3] that saƟsfies the Mean
Value Theorem.

SÊ½çã®ÊÄ The average rate of change of f on [−3, 3] is:

f(3)− f(−3)
3− (−3)

=
84
6

= 14.

Wewant to find c such that f ′(c) = 14. We find f ′(x) = 3x2+5. We set this
equal to 14 and solve for x.

f ′(x) = 14
3x2 + 5 = 14

x2 = 3

x = ±
√
3 ≈ ±1.732

We have found 2 values c in [−3, 3] where the instantaneous rate of change
is equal to the average rate of change; the Mean Value Theorem guaranteed at
least one. In Figure 3.2.3 f is graphed with a dashed line represenƟng the aver-
age rate of change; the lines tangent to f at x = ±

√
3 are also given. Note how

these lines are parallel (i.e., have the same slope) with the dashed line.

While the Mean Value Theorem has pracƟcal use (for instance, the speed
monitoring applicaƟon menƟoned before), it is mostly used to advance other
theory. We will use it in the next secƟon to relate the shape of a graph to its
derivaƟve.

Notes:
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Exercises 3.2
Terms and Concepts

1. Explain in your own words what the Mean Value Theorem
states.

2. Explain in your own words what Rolle’s Theorem states.

Problems

In Exercises 3 – 10, a funcƟon f(x) and interval [a, b] are given.
Check if Rolle’s Theoremcanbe applied to fon [a, b]; if so, find
c in [a, b] such that f ′(c) = 0.

3. f(x) = 6 on [−1, 1].

4. f(x) = 6x on [−1, 1].

5. f(x) = x2 + x− 6 on [−3, 2].

6. f(x) = x2 + x− 2 on [−3, 2].

7. f(x) = x2 + x on [−2, 2].

8. f(x) = sin x on [π/6, 5π/6].

9. f(x) = cos x on [0, π].

10. f(x) = 1
x2 − 2x+ 1

on [0, 2].

In Exercises 11 – 20, a funcƟon f(x) and interval [a, b] are
given. Check if the Mean Value Theorem can be applied to f
on [a, b]; if so, find a value c in [a, b] guaranteed by the Mean
Value Theorem.

11. f(x) = x2 + 3x− 1 on [−2, 2].

12. f(x) = 5x2 − 6x+ 8 on [0, 5].

13. f(x) =
√
9− x2 on [0, 3].

14. f(x) =
√
25− x on [0, 9].

15. f(x) = x2 − 9
x2 − 1

on [0, 2].

16. f(x) = ln x on [1, 5].

17. f(x) = tan x on [−π/4, π/4].

18. f(x) = x3 − 2x2 + x+ 1 on [−2, 2].

19. f(x) = 2x3 − 5x2 + 6x+ 1 on [−5, 2].

20. f(x) = sin−1 x on [−1, 1].

Review
21. Find the extreme values of f(x) = x2 − 3x+ 9 on [−2, 5].

22. Describe the criƟcal points of f(x) = cos x.

23. Describe the criƟcal points of f(x) = tan x.
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3.3 Increasing and Decreasing FuncƟons
Our study of “nice” funcƟons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points c where f ′(c) is the average rate of change of f on some
interval.

In this secƟon we begin to study how funcƟons behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuiƟve concept. Given the graph in Figure 3.3.1, where
would you say the funcƟon is increasing? Decreasing? Even though we have
not defined these terms mathemaƟcally, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

DefiniƟon 3.3.1 Increasing and Decreasing FuncƟons

Let f be a funcƟon defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) < f(b).

2. f is decreasing on I if for every a < b in I, f(a) > f(b).

Informally, a funcƟon is increasing if as x gets larger (i.e., looking leŌ to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informaƟon should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was acceleraƟng vs. decelerat-
ing). If f describes the populaƟon of a city, we should be interested in when the
populaƟon is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differenƟable funcƟon on an open interval I, such as the one shown in Figure
3.3.2, and let a < b be given in I. The secant line on the graph of f from x = a
to x = b is drawn; it has a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

We have shownmathemaƟcally whatmay have already been obvious: when
f is increasing, its secant lines will have a posiƟve slope. Now recall the Mean
Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

Notes:
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Note: Parts 1 & 2 of Theorem 3.3.1 also
hold if f ′(c) = 0 for a finite number of
values of c in I.

3.3 Increasing and Decreasing FuncƟons

By considering all such secant lines in I, we strongly imply that f ′(x) > 0 on I. A
similar statement can be made for decreasing funcƟons.

Our above logic can be summarized as “If f is increasing, then f ′ is probably
posiƟve.” Theorem 3.3.1 below turns this around by staƟng “If f ′ is posiƟve,
then f is increasing.” This leads us to a method for finding when funcƟons are
increasing and decreasing.

Theorem 3.3.1 Test For Increasing/Decreasing FuncƟons

Let f be a conƟnuous funcƟon on [a, b] and differenƟable on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let f be differenƟable on an interval I and let a and b be in Iwhere f ′(a) > 0
and f ′(b) < 0. If f ′ is conƟnuous on [a, b], it follows from the Intermediate Value
Theorem that there must be some value c between a and bwhere f ′(c) = 0. (It
turns out that this is sƟll true even if f ′ is not conƟnuous on [a, b].) This leads us
to the following method for finding intervals on which a funcƟon is increasing or
decreasing.

Key Idea 3.3.1 Finding Intervals on Which f is Increasing or
Decreasing

Let f be a differenƟable funcƟon on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the criƟcal values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the criƟcal values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.
(b) If f ′(p) < 0, then f is decreasing on that subinterval.

We demonstrate using this process in the following example.

Notes:
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Example 3.3.1 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

SÊ½çã®ÊÄ Using Key Idea 3.3.1, we first find the criƟcal values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
Ɵre domain of f which is (−∞,∞). We thus break the whole real line into
three subintervals based on the two criƟcal values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 3.3.3.

..

−1

.

1/3

..
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ > 0 incr

Figure 3.3.3: Number line for f in Example 3.3.1.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1).

Note we can arrive at the same conclusion without computaƟon. For in-
stance, we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is
clearly posiƟve and very large. The other terms are small in comparison, so we
know f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with. f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p− 1 > 0. We conclude that f is increasing on (1/3,∞).

We can verify our calculaƟons by considering Figure 3.3.4, where f is graphed.
The graph also presents f ′; note how f ′ > 0 when f is increasing and f ′ < 0
when f is decreasing.

One is jusƟfied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

Notes:
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One could argue that just finding criƟcal values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relaƟonship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the criƟcal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straighƞorward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has opƟons for finding needed informaƟon. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. SoluƟons are tractable only through the use of computers to do many
calculaƟons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a funcƟon to a computer and have it return maximum and
minimum values, intervals on which the funcƟon is increasing and decreasing,
the locaƟons of relaƟve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In SecƟon 3.1 we learned the definiƟon of relaƟve maxima and minima and
found that they occur at criƟcal points. We are now learning that funcƟons can
switch from increasing to decreasing (and vice–versa) at criƟcal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a criƟcal point corresponds to a maximum, minimum, or neither.
Imagine a funcƟon increasing unƟl a criƟcal point at x = c, aŌer which it de-
creases. A quick sketch helps confirm that f(c) must be a relaƟve maximum. A
similar statement can be made for relaƟve minimums. We formalize this con-
cept in a theorem.

Theorem 3.3.2 First DerivaƟve Test

Let f be differenƟable on an interval I and let c be a criƟcal number in I.

1. If the sign of f ′ switches from posiƟve to negaƟve at c, then f(c) is
a relaƟve maximum of f.

2. If the sign of f ′ switches from negaƟve to posiƟve at c, then f(c) is
a relaƟve minimum of f.

3. If f ′ is posiƟve (or, negaƟve) before and aŌer c, then f(c) is not a
relaƟve extrema of f.

Notes:
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Figure 3.3.5: A graph of f(x) in Example
3.3.2, showing where f is increasing and
decreasing.
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Example 3.3.2 Using the First DerivaƟve Test
Find the intervals on which f is increasing and decreasing, and use the First
DerivaƟve Test to determine the relaƟve extrema of f, where

f(x) =
x2 + 3
x− 1

.

SÊ½çã®ÊÄ We start by noƟng the domain of f: (−∞, 1) ∪ (1,∞). Key
Idea 3.3.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 3.3.1 to both
intervals of the domain of f.

Since f is not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a criƟcal value of
f, but we will include it in our list of criƟcal values that we find next.

Using the QuoƟent Rule, we find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the criƟcal values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That laƩer is straighƞorward: when the denominator
of f ′(x) is 0, f ′ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f ′(x) = 0 when the numerator of f ′(x) is 0. That occurs when x2− 2x− 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has two criƟcal numbers, x = −1, 3, and at x = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computaƟons; noƟce that the denominator of f ′ is always posiƟve
so we can ignore it during our work.
Interval 1, (−∞,−1): Choosing a very small number (i.e., a negaƟve number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be posiƟve. Hence f is increasing on (−∞,−1).
Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).
Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.

Notes:
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Interval 4, (3,∞): Choosing an very large number p from this subinterval will
give a posiƟve numerator and (of course) a posiƟve denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on the intervals (−∞,−1) and (3,∞) and is de-
creasing on the intervals (−1, 1) and (1, 3). Since at x = −1, the sign of f ′
switched from posiƟve to negaƟve, Theorem 3.3.2 states that f(−1) is a relaƟve
maximum of f. At x = 3, the sign of f ′ switched from negaƟve to posiƟve, mean-
ing f(3) is a relaƟve minimum. At x = 1, f is not defined, so there is no relaƟve
extrema at x = 1.
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Figure 3.3.6: Number line for f in Example 3.3.2.

This is summarized in the number line shown in Figure 3.3.6. Also, Figure
3.3.5 shows a graph of f, confirming our calculaƟons. This figure also shows
f ′, again demonstraƟng that f is increasing when f ′ > 0 and decreasing when
f ′ < 0.

One is oŌen tempted to think that funcƟons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around criƟcal values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a criƟcal value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 3.3.3 Using the First DerivaƟve Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
idenƟfy the relaƟve extrema.

SÊ½çã®ÊÄ We again start with taking a derivaƟve. Since we know we
want to solve f ′(x) = 0, we will do some algebra aŌer taking the derivaƟve.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)

Notes:
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=
8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1).

This derivaƟon of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not de-
fined when x = 0. Thus we have 3 criƟcal values, breaking the number line into
4 subintervals as shown in Figure 3.3.7.

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) <
0. So f is decreasing on (−∞,−1).
Interval 2, (−1, 0): Choose p = −1/2. Once more we pracƟce finding the sign
of f ′(p) without compuƟng an actual value. We have f ′(p) = (8/3)p−1/3(p −
1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negaƟve × negaƟve × posiƟve” giving a posiƟve number; f is in-
creasing on (−1, 0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 posiƟve factors and one negaƟve factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).
Interval 4, (1,∞): Similar work to that done for the other three intervals shows
that f ′(x) > 0 on (1,∞), so f is increasing on this interval.
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Figure 3.3.7: Number line for f in Example 3.3.3.

Weconcludeby staƟng that f is increasing on the intervals (−1, 0) and (1,∞)
and decreasing on the intervals (−∞,−1) and (0, 1). The sign of f ′ changes
from negaƟve to posiƟve around x = −1 and x = 1, meaning by Theorem 3.3.2
that f(−1) and f(1) are relaƟve minima of f. As the sign of f ′ changes from pos-
iƟve to negaƟve at x = 0, we have a relaƟve maximum at f(0). Figure 3.3.8

Notes:
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shows a graph of f, confirming our result. We also graph f ′, highlighƟng once
more that f is increasing when f ′ > 0 and is decreasing when f ′ < 0.

We have seen how the first derivaƟve of a funcƟon helps determine when
the funcƟon is going “up” or “down.” In the next secƟon, we will see how the
second derivaƟve helps determine how the graph of a funcƟon curves.

Notes:
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Exercises 3.3
Terms and Concepts

1. In your own words describe what it means for a funcƟon to
be increasing.

2. What does a decreasing funcƟon “look like”?

3. Sketch a graph of a funcƟon on [0, 2] that is increasing,
where it is increasing “quickly” near x = 0 and increasing
“slowly” near x = 2.

4. Give an example of a funcƟon describing a situaƟon where
it is “bad” to be increasing and “good” to be decreasing.

5. T/F: FuncƟons always switch from increasing to decreasing,
or decreasing to increasing, at criƟcal points.

6. A funcƟon f has derivaƟve f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we not
tell from the given informaƟon?

Problems
In Exercises 7 – 14, a funcƟon f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permiƩed) and verify Theorem 3.3.1.

7. f(x) = 2x+ 3

8. f(x) = x2 − 3x+ 5

9. f(x) = cos x

10. f(x) = tan x

11. f(x) = x3 − 5x2 + 7x− 1

12. f(x) = 2x3 − x2 + x− 1

13. f(x) = x4 − 5x2 + 4

14. f(x) = 1
x2 + 1

In Exercises 15 – 24, a funcƟon f(x) is given.
(a) Give the domain of f.
(b) Find the criƟcal numbers of f.
(c) Create a number line to determine the intervals on

which f is increasing and decreasing.
(d) Use the First DerivaƟve Test to determine whether

each criƟcal point is a relaƟve maximum, minimum,
or neither.

15. f(x) = x2 + 2x− 3

16. f(x) = x3 + 3x2 + 3

17. f(x) = 2x3 + x2 − x+ 3

18. f(x) = x3 − 3x2 + 3x− 1

19. f(x) = 1
x2 − 2x+ 2

20. f(x) = x2 − 4
x2 − 1

21. f(x) = x
x2 − 2x− 8

22. f(x) = (x− 2)2/3

x

23. f(x) = sin x cos x on (−π, π).

24. f(x) = x5 − 5x

Review
25. Consider f(x) = x2 − 3x + 5 on [−1, 2]; find c guaranteed

by the Mean Value Theorem.

26. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed by
the Mean Value Theorem.
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Note: We oŌen state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure 3.4.1: A funcƟon f with a concave
up graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are increasing.
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Figure 3.4.2: A funcƟon f with a concave
down graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are decreasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admiƩedly terrible, but it
works.

3.4 Concavity and the Second DerivaƟve

3.4 Concavity and the Second DerivaƟve
Our study of “nice” funcƟons conƟnues. The previous secƟon showed how the
first derivaƟve of a funcƟon, f ′, can relay important informaƟon about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its derivaƟve, namely f ′′, which is the
second derivaƟve of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. f ′ has relaƟve maxima and minima where f ′′ = 0 or is undefined.

This secƟon explores how knowing informaƟon about f ′′ gives informaƟon
about f.

Concavity

We begin with a definiƟon, then explore its meaning.

DefiniƟon 3.4.1 Concave Up and Concave Down

Let f be differenƟable on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a funcƟon f is concave up when f ′ is increasing. That means as
one looks at a concave up graph from leŌ to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.1, where a concave up graph is shown
along with some tangent lines. NoƟce how the tangent line on the leŌ is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a funcƟon is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the funcƟon is increasing and concave up, then the rate
of increase is increasing. The funcƟon is increasing at a faster and faster rate.

Now consider a funcƟon which is concave down. We essenƟally repeat the
above paragraphs with slight variaƟon.

The graph of a funcƟon f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from leŌ to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.4.2, where a concave down graph is
shown along with some tangent lines. NoƟce how the tangent line on the leŌ
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a funcƟon is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the funcƟon is decreasing and concave down, then the
rate of decrease is decreasing. The funcƟon is decreasing at a faster and faster
rate.

Notes:
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Figure 3.4.3: DemonstraƟng the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the relaƟon-
ships with the first and second deriva-
Ɵves.

Note: Geometrically speaking, a funcƟon
is concave up if its graph lies above its tan-
gent lines. A funcƟon is concave down if
its graph lies below its tangent lines.
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Figure 3.4.4: A graph of a funcƟon with
its inflecƟon points marked. The inter-
vals where concave up/down are also in-
dicated.
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Our definiƟon of concave up and concave down is given in terms of when
the first derivaƟve is increasing or decreasing. We can apply the results of the
previous secƟon and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

Theorem 3.4.1 Test for Concavity

Let f be twice differenƟable on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a definiƟon.

DefiniƟon 3.4.2 Point of InflecƟon

A point of inflecƟon is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.4 shows a graph of a funcƟon with inflecƟon points labeled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posiƟve to negaƟve (or, negaƟve to posiƟve) at
x = c. This leads to the following theorem.

Theorem 3.4.2 Points of InflecƟon

If (c, f(c)) is a point of inflecƟon on the graph of f, then either f ′′(c) = 0
or f ′′ is not defined at c.

We have idenƟfied the concepts of concavity and points of inflecƟon. It is
now Ɵme to pracƟce using these concepts; given a funcƟon, we should be able
to find its points of inflecƟon and idenƟfy intervals on which it is concave up or
down. We do so in the following examples.

Example 3.4.1 Finding intervals of concave up/down, inflecƟon points
Let f(x) = x3 − 3x+ 1. Find the inflecƟon points of f and the intervals on which
it is concave up/down.

Notes:
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3.4 Concavity and the Second DerivaƟve

SÊ½çã®ÊÄ We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflecƟon points, we use Theorem 3.4.2 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflecƟon.

This possible inflecƟon point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous secƟon to
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflecƟon point.

The number line in Figure 3.4.5 illustrates the process of determining con-
cavity; Figure 3.4.6 shows a graph of f and f ′′, confirming our results. NoƟce how
f is concave down precisely when f ′′(x) < 0 and concave up when f ′′(x) > 0.

Example 3.4.2 Finding intervals of concave up/down, inflecƟon points
Let f(x) = x/(x2 − 1). Find the inflecƟon points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We need to find f ′ and f ′′. Using the QuoƟent Rule and sim-
plifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.

To find the possible points of inflecƟon, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2 + 3) = 0;
we find x = 0. We find that f ′′ is not defined when x = ±1, for then the
denominator of f ′′ is 0. We also note that f itself is not defined at x = ±1,
having a domain of (−∞,−1) ∪ (−1, 1) ∪ (1,∞). Since the domain of f is the
unionof three intervals, itmakes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflecƟon at x = ±1 as
they are not part of the domain, but we must sƟll consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switch are x = −1, x = 0
and x = 1, which split the number line into four intervals as shown in Figure
3.4.7. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f ′′ on the interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator of f ′′(x) will be posiƟve. In the
numerator, the (c2 + 3) will be posiƟve and the 2c term will be negaƟve. Thus
the numerator is negaƟve and f ′′(c) is negaƟve. We conclude f is concave down
on (−∞,−1).

Notes:
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Figure 3.4.8: A graph of f(x) and f ′′(x) in
Example 3.4.2.
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Interval 2, (−1, 0): For any number c in this interval, the term 2c in the numer-
ator will be negaƟve, the term (c2 + 3) in the numerator will be posiƟve, and
the term (c2 − 1)3 in the denominator will be negaƟve. Thus f ′′(c) > 0 and f is
concave up on this interval.
Interval 3, (0, 1): Any number c in this interval will be posiƟve and “small.” Thus
the numerator is posiƟve while the denominator is negaƟve. Thus f ′′(c) < 0
and f is concave down on this interval.
Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so we
conclude that f is concave up on (1,∞).

..

−1

.

0

.

1

.
f ′′ < 0 c. down

.
f ′′ > 0 c. up

.
f ′′ < 0 c. down

.
f ′′ > 0 c. up

Figure 3.4.7: Number line for f in Example 3.4.2.

We conclude that f is concave up on (−1, 0) and (1,∞) and concave down
on (−∞,−1) and (0, 1). There is only one point of inflecƟon, (0, 0), as f is not
defined at x = ±1. Our work is confirmed by the graph of f in Figure 3.4.8. No-
Ɵce how f is concave up whenever f ′′ is posiƟve, and concave down when f ′′ is
negaƟve.

Recall that relaƟve maxima and minima of f are found at criƟcal points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the relaƟve maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflecƟon points of f.

What does a “relaƟve maximum of f ′ ”mean? The derivaƟve measures the
rate of change of f; maximizing f ′ means finding where f is increasing the most –
where f has the steepest tangent line. A similar statement can be made for min-
imizing f ′; it corresponds to where f has the steepest negaƟvely–sloped tangent
line.

We uƟlize this concept in the next example.

Example 3.4.3 Understanding inflecƟon points
The sales of a certain product over a three-year span are modeled by S(t) =
t4 − 8t2 + 20, where t is the Ɵme in years, shown in Figure 3.4.9. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

SÊ½çã®ÊÄ We want to maximize the rate of decrease, which is to say,
we want to find where S ′ has a minimum. To do this, we find where S ′′ is 0. We
find S ′(t) = 4t3− 16t and S ′′(t) = 12t2− 16. Seƫng S ′′(t) = 0 and solving, we
get t =

√
4/3 ≈ 1.16 (we ignore the negaƟve value of t since it does not lie in

Notes:
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Figure 3.4.11: A graph of f(x) = x4.
Clearly f is always concave up, despite the
fact that f ′′(x) = 0 when x = 0. It this
example, the possible point of inflecƟon
(0, 0) is not a point of inflecƟon.
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Figure 3.4.12: DemonstraƟng the fact
that relaƟve maxima occur when the
graph is concave down and relaƟve min-
ima occur when the graph is concave up.

3.4 Concavity and the Second DerivaƟve

the domain of our funcƟon S).
This is both the inflecƟon point and the point of maximum decrease. This

is the point at which things first start looking up for the company. AŌer the
inflecƟon point, it will sƟll take some Ɵme before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S ′(t) is given in Figure 3.4.10. When S ′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S ′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “leveling off.”

Not every criƟcal point corresponds to a relaƟve extrema; f(x) = x3 has a
criƟcal point at (0, 0) but no relaƟve maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflecƟon” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 3.4.11.

The Second DerivaƟve Test

The first derivaƟve of a funcƟon gave us a test to find if a criƟcal value cor-
responded to a relaƟve maximum, minimum, or neither. The second derivaƟve
gives us another way to test if a criƟcal point is a local maximum or minimum.
The following theorem officially states something that is intuiƟve: if a criƟcal
value occurs in a region where a funcƟon f is concave up, then that criƟcal value
must correspond to a relaƟve minimum of f, etc. See Figure 3.4.12 for a visual-
izaƟon of this.

Theorem 3.4.3 The Second DerivaƟve Test

Let c be a criƟcal value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second DerivaƟve Test relates to the First DerivaƟve Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a criƟcal point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negaƟve
to posiƟve at c. This means the funcƟon goes from decreasing to increasing, in-
dicaƟng a local minimum at c.

Notes:
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Chapter 3 The Graphical Behavior of FuncƟons

Example 3.4.4 Using the Second DerivaƟve Test
Let f(x) = 100/x+ x. Find the criƟcal points of f and use the Second DerivaƟve
Test to label them as relaƟve maxima or minima.

SÊ½çã®ÊÄ We find f ′(x) = −100/x2 + 1 and f ′′(x) = 200/x3.We set
f ′(x) = 0 and solve for x to find the criƟcal values (note that f ′ is not defined at
x = 0, but neither is f so this is not a criƟcal value.) We find the criƟcal values
are x = ±10. EvaluaƟng f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. EvaluaƟng f ′′(−10) = −0.1 < 0, determining a relaƟve maximum
at x = −10. These results are confirmed in Figure 3.4.13.

We have been learning how the first and second derivaƟves of a funcƟon
relate informaƟon about the graph of that funcƟon. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locaƟons of relaƟve extrema and inflecƟon points. In Chapter 1
we saw how limits explained asymptoƟc behavior. In the next secƟon we com-
bine all of this informaƟon to produce accurate sketches of funcƟons.

Notes:
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Exercises 3.4
Terms and Concepts

1. Sketch a graph of a funcƟon f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a funcƟon f(x) that is:

(a) Increasing, concave up on (0, 1),

(b) increasing, concave down on (1, 2),

(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a funcƟon to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a funcƟon.

4. Is is possible for a funcƟon to be increasing and concave up
on (0,∞)with a horizontal asymptote of y = 1? If so, give
a sketch of such a funcƟon.

Problems

In Exercises 5 – 14, a funcƟon f(x) is given.

(a) Compute f ′′(x).

(b) Graph f and f ′′ on the same axes (using technology is
permiƩed) and verify Theorem 3.4.1.

5. f(x) = −7x+ 3

6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8

8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5

10. f(x) = sin x

11. f(x) = tan x

12. f(x) = 1
x2 + 1

13. f(x) = 1
x

14. f(x) = 1
x2

In Exercises 15 – 28, a funcƟon f(x) is given.
(a) Find the possible points of inflecƟon of f.
(b) Create a number line to determine the intervals on

which f is concave up or concave down.

15. f(x) = x2 − 2x+ 1

16. f(x) = −x2 − 5x+ 7

17. f(x) = x3 − x+ 1

18. f(x) = 2x3 − 3x2 + 9x+ 5

19. f(x) = x4

4
+

x3

3
− 2x+ 3

20. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

21. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

22. f(x) = sec x on (−3π/2, 3π/2)

23. f(x) = 1
x2 + 1

24. f(x) = x
x2 − 1

25. f(x) = sin x+ cos x on (−π, π)

26. f(x) = x2ex

27. f(x) = x2 ln x

28. f(x) = e−x2

In Exercises 29 – 42, a funcƟon f(x) is given. Find the criƟcal
points of f and use the Second DerivaƟve Test, when possi-
ble, to determine the relaƟve extrema. (Note: these are the
same funcƟons as in Exercises 15 – 28.)

29. f(x) = x2 − 2x+ 1

30. f(x) = −x2 − 5x+ 7

31. f(x) = x3 − x+ 1

32. f(x) = 2x3 − 3x2 + 9x+ 5

33. f(x) = x4

4
+

x3

3
− 2x+ 3

34. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

35. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

36. f(x) = sec x on (−3π/2, 3π/2)
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37. f(x) = 1
x2 + 1

38. f(x) = x
x2 − 1

39. f(x) = sin x+ cos x on (−π, π)

40. f(x) = x2ex

41. f(x) = x2 ln x

42. f(x) = e−x2

In Exercises 43 – 56, a funcƟon f(x) is given. Find the x val-
ues where f ′(x) has a relaƟve maximum or minimum. (Note:
these are the same funcƟons as in Exercises 15 – 28.)

43. f(x) = x2 − 2x+ 1

44. f(x) = −x2 − 5x+ 7

45. f(x) = x3 − x+ 1

46. f(x) = 2x3 − 3x2 + 9x+ 5

47. f(x) = x4

4
+

x3

3
− 2x+ 3

48. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

49. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

50. f(x) = sec x on (−3π/2, 3π/2)

51. f(x) = 1
x2 + 1

52. f(x) = x
x2 − 1

53. f(x) = sin x+ cos x on (−π, π)

54. f(x) = x2ex

55. f(x) = x2 ln x

56. f(x) = e−x2
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3.5 Curve Sketching

3.5 Curve Sketching

Wehave been learning howwe can understand the behavior of a funcƟon based
on its first and second derivaƟves. While we have been treaƟng the properƟes
of a funcƟon separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the funcƟon
without ploƫng lots of extraneous points.

Why bother? Graphing uƟliƟes are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not parƟcularly fast – it will require
Ɵme (but it is not hard). So again: why bother?

We are aƩempƟng to understand the behavior of a funcƟon f based on the
informaƟon given by its derivaƟves. While all of a funcƟon’s derivaƟves relay
informaƟon about it, it turns out that “most” of the behavior we care about is
explained by f ′ and f ′′. Understanding the interacƟons between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to staƟng that one understands howan engineworks aŌer looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands–on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of funcƟons and gives a framework for puƫng that
informaƟon together. It is followed by several examples.

Key Idea 3.5.1 Curve Sketching

To produce an accurate sketch a given funcƟon f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
enƟre real line then find restricƟons, such aswhere a denominator
is 0 or where negaƟves appear under the radical.

2. Find the criƟcal values of f.

3. Find the possible points of inflecƟon of f.

4. Find the locaƟon of any verƟcal asymptotes of f (usually done in
conjuncƟon with item 1 above).

5. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behavior of the funcƟon.

(conƟnued)

Notes:
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Chapter 3 The Graphical Behavior of FuncƟons

Key Idea 3.5.1 Curve Sketching – ConƟnued

6. Create a number line that includes all criƟcal points, possible
points of inflecƟon, and locaƟons of verƟcal asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each criƟcal point and possible point of inflecƟon.
Plot these points on a set of axes. Connect these pointswith curves
exhibiƟng the proper concavity. Sketch asymptotes and x and y
intercepts where applicable.

Example 3.5.1 Curve sketching
Use Key Idea 3.5.1 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.

SÊ½çã®ÊÄ We follow the steps outlined in the Key Idea.

1. The domain of f is the enƟre real line; there are no values x for which f(x)
is not defined.

2. Find the criƟcal values of f. We compute f ′(x) = 9x2 − 20x+ 7. Use the
QuadraƟc Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)
=

1
9

(
10±

√
37
)
⇒ x ≈ 0.435, 1.787.

3. Find the possible points of inflecƟon of f. Compute f ′′(x) = 18x−20. We
have

f ′′(x) = 0 ⇒ x = 10/9 ≈ 1.111.

4. There are no verƟcal asymptotes.

5. We determine the end behavior using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

6. We place the values x = (10 ±
√
37)/9 and x = 10/9 on a number

line, as shown in Figure 3.5.1. We mark each subinterval as increasing or

Notes:
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Figure 3.5.2: Sketching f in Example 3.5.1.

3.5 Curve Sketching

decreasing, concave up or down, using the techniques used in SecƟons
3.3 and 3.4.

..

1
9 (10−

√
37)

≈ 0.435

.

10
9 ≈ 1.111

.

1
9 (10+

√
37)

≈ 1.787

.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. up

Figure 3.5.1: Number line for f in Example 3.5.1.

7. We plot the appropriate points on axes as shown in Figure 3.5.2(a) and
connect the points with straight lines. In Figure 3.5.2(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = −0.424. In Figure 3.5.2(c) we show
a graph of f drawnwith a computer program, verifying the accuracy of our
sketch.

Example 3.5.2 Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

SÊ½çã®ÊÄ We again follow the steps outlined in Key Idea 3.5.1.

1. In determining the domain, we assume it is all real numbers and look for
restricƟons. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. To find the criƟcal values of f, we first find f ′(x). Using the QuoƟent Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

.

f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not criƟcal values. The only criƟcal
value is x = 1/2.

3. To find the possible points of inflecƟon, we find f ′′(x), again employing
the QuoƟent Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

Wefind that f ′′(x) is never 0 (seƫng the numerator equal to 0 and solving
for x, we find the only roots to this quadraƟc are imaginary) and f ′′ is

Notes:
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Figure 3.5.4: Sketching f in Example 3.5.2.
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undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3.

4. The verƟcal asymptotes of f are at x = −2 and x = 3, the places where f
is undefined.

5. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

6. We place the values x = 1/2, x = −2 and x = 3 on a number line as
shown in Figure 3.5.3. Wemark in each interval whether f is increasing or
decreasing, concave up or down. We see that f has a relaƟve maximum at
x = 1/2; concavity changes only at the verƟcal asymptotes.

..
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.

1
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.

3

.

f ′ > 0 incr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up

Figure 3.5.3: Number line for f in Example 3.5.2.

7. In Figure 3.5.4(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the funcƟon looks like (these lines effecƟvely only convey increas-
ing/decreasing informaƟon). In Figure 3.5.4(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −1
and x = 2.

Figure 3.5.4(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

Example 3.5.3 Curve sketching
Sketch f(x) =

5(x− 2)(x+ 1)
x2 + 2x+ 4

.

SÊ½çã®ÊÄ We again follow Key Idea 3.5.1.

1. We assume that the domain of f is all real numbers and consider restric-
Ɵons. The only restricƟons come when the denominator is 0, but this
never occurs. Therefore the domain of f is all real numbers, R.

2. We find the criƟcal values of f by seƫng f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

Notes:
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Figure 3.5.6: Sketching f in Example 3.5.3.

3.5 Curve Sketching

3. We find the possible points of inflecƟon by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = −5.759, x = −1.305 and x = 1.064.

4. There are no verƟcal asymptotes.

5. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) = lim
x→∞

f(x) = 5.

6. We place the criƟcal points and possible points on a number line as shown
in Figure 3.5.5 and mark each interval as increasing/decreasing, concave
up/down appropriately.
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Figure 3.5.5: Number line for f in Example 3.5.3.

7. In Figure 3.5.6(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
3.5.6(b), we add concavity. Figure 3.5.6(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puƟng than we are. In general, computers graph funcƟons much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecƟng lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noƟceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as

Notes:
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MathemaƟca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 3.5.7, a graph of y = sin x is given, generated by MathemaƟca.
The small points represent each of the places MathemaƟca sampled the func-
Ɵon. NoƟce how at the “bends” of sin x, lots of points are used; where sin x is
relaƟvely straight, fewer points are used. (Many points are also used at the end-
points to ensure the “end behavior” is accurate.) In fact, in the interval of length
0.2 centered around π/2,MathemaƟca plots 72 of the 431 points ploƩed; that
is, it plots about 17% of its points in a subinterval that accounts for about 3% of
the total interval length.

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 3.5.7: A graph of y = sin x generated byMathemaƟca.

How doesMathemaƟca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivaƟves of a funcƟon work together to provide a measurement of “curvi-
ness.” MathemaƟca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this secƟon is not “How to graph a funcƟon when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a funcƟon is largely determined by understanding the behavior of the
funcƟon at a fewkey places.” In Example 3.5.3, wewere able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There aremany applicaƟons of our understanding of derivaƟves beyond curve
sketching. The next chapter explores some of these applicaƟons, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differenƟaƟon.

Notes:
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Exercises 3.5
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of funcƟons, it is useful to find
the criƟcal points.

4. T/F: When sketching graphs of funcƟons, it is useful to find
the possible points of inflecƟon.

5. T/F: When sketching graphs of funcƟons, it is useful to find
the horizontal and verƟcal asymptotes.

6. T/F: When sketching graphs of funcƟons, one need not plot
any points at all.

Problems
In Exercises 7 – 12, pracƟce using Key Idea 3.5.1 by applying
the principles to the given funcƟons with familiar graphs.

7. f(x) = 2x+ 4

8. f(x) = −x2 + 1

9. f(x) = sin x

10. f(x) = ex

11. f(x) = 1
x

12. f(x) = 1
x2

In Exercises 13 – 26, sketch a graph of the given funcƟon us-
ing Key Idea 3.5.1. Show all work; check your answer with
technology.

13. f(x) = x3 − 2x2 + 4x+ 1

14. f(x) = −x3 + 5x2 − 3x+ 2

15. f(x) = x3 + 3x2 + 3x+ 1

16. f(x) = x3 − x2 − x+ 1

17. f(x) = (x− 2) ln(x− 2)

18. f(x) = (x− 2)2 ln(x− 2)

19. f(x) = x2 − 4
x2

20. f(x) = x2 − 4x+ 3
x2 − 6x+ 8

21. f(x) = x2 − 2x+ 1
x2 − 6x+ 8

22. f(x) = x
√
x+ 1

23. f(x) = x2ex

24. f(x) = sin x cos x on [−π, π]

25. f(x) = (x− 3)2/3 + 2

26. f(x) = (x− 1)2/3

x

In Exercises 27 – 30, a funcƟon with the parameters a and b
are given. Describe the criƟcal points and possible points of
inflecƟon of f in terms of a and b.

27. f(x) = a
x2 + b2

28. f(x) = ax2 + bx+ 1

29. f(x) = sin(ax+ b)

30. f(x) = (x− a)(x− b)

31. Given x2 + y2 = 1, use implicit differenƟaƟon to find dy
dx

and d2y
dx2 . Use this informaƟon to jusƟfy the sketch of the

unit circle.
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Figure 4.1.1: DemonstraƟng the geo-
metric concept behindNewton’sMethod.
Note how x3 is very close to a soluƟon to
f(x) = 0.

4: AÖÖ½®��ã®ÊÄÝ Ê¥ ã«�
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In Chapter 3, we learned how the first and second derivaƟves of a funcƟon influ-
ence its graph. In this chapter we explore other applicaƟons of the derivaƟve.

4.1 Newton’s Method
Solving equaƟons is one of the most important things we do in mathemaƟcs,
yet we are surprisingly limited in what we can solve analyƟcally. For instance,
equaƟons as simple as x5+ x+1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar funcƟons. Fortunately, there are methods that
can give us approximate soluƟons to equaƟons like these. These methods can
usually give an approximaƟon correct to as many decimal places as we like. In
SecƟon 1.5 we learned about the BisecƟon Method. This secƟon focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an iniƟal guess about roughly where the
root is. Call this x0. (See Figure 4.1.1(a).) Draw the tangent line to the graph at
(x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then repeat the
process – draw the tangent line to the graph at (x1, f(x1)) and seewhere itmeets
the x-axis. (See Figure 4.1.1(b).) Call this point x2. Repeat the process again to
get x3, x4, etc. This sequence of points will oŌen converge rather quickly to a
root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x1. We started with the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equaƟon of the line is

y = f ′(x0)(x− x0) + f(x0).

This line crosses the x-axis when y = 0, and the x–value where it crosses is what
we called x1. So let y = 0 and replace x with x1, giving the equaƟon:

0 = f ′(x0)(x1 − x0) + f(x0).

Now solve for x1:

x1 = x0 −
f(x0)
f ′(x0)

.



Note: Newton’s Method is not infalli-
ble. The sequence of approximate values
may not converge, or it may converge so
slowly that one is “tricked” into thinking a
certain approximaƟon is beƩer than it ac-
tually is. These issues will be discussed at
the end of the secƟon.

Chapter 4 ApplicaƟons of the DerivaƟve

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)
f ′(x1)

.

In general, given an approximaƟon xn, we can find the next approximaƟon, xn+1
as follows:

xn+1 = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.

Key Idea 4.1.1 Newton’s Method

Let f be a differenƟable funcƟon on an interval I with a root in I. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an iniƟal approximaƟon of the root. (This is
oŌen done by looking at a graph of f.)

2. Create successive approximaƟons iteraƟvely; given an approxima-
Ɵon xn, compute the next approximaƟon xn+1 as

xn+1 = xn −
f(xn)
f ′(xn)

.

3. Stop the iteraƟons when successive approximaƟons do not differ
in the first d places aŌer the decimal point.

Let’s pracƟce Newton’s Method with a concrete example.

Example 4.1.1 Using Newton’s Method
Approximate the real root of x3 − x2 − 1 = 0, accurate to the first 3 places aŌer
the decimal, using Newton’s Method and an iniƟal approximaƟon of x0 = 1.

SÊ½çã®ÊÄ To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the

Notes:
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Figure 4.1.2: A graph of f(x) = x3−x2−1
in Example 4.1.1.

4.1 Newton’s Method

Newton’s Method algorithm, outlined in Key Idea 4.1.1.

x1 = 1− f(1)
f ′(1)

= 1− 13 − 12 − 1
3 · 12 − 2 · 1

= 2,

x2 = 2− f(2)
f ′(2)

= 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625,

x3 = 1.625− f(1.625)
f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1
3 · 1.6252 − 2 · 1.625

≈ 1.48579.

x4 = 1.48579− f(1.48579)
f ′(1.48579)

≈ 1.46596

x5 = 1.46596− f(1.46596)
f ′(1.46596)

≈ 1.46557

We performed 5 iteraƟons of Newton’s Method to find a root accurate to the
first 3 places aŌer the decimal; our final approximaƟon is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our x5 is accurate
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.1.2. We can see from the graph that our
iniƟal approximaƟon of x0 = 1 was not parƟcularly accurate; a closer guess
would have been x0 = 1.5. Our choice was based on ease of iniƟal calculaƟon,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate iniƟal approximaƟon.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculaƟon. Start by pressing 1 and then Enter.
(We have just entered our iniƟal guess, x0 = 1.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:

Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each Ɵmewepress the Enter key, we are finding the successive approximaƟons,
x1, x2, …, and each one is geƫng closer to the root. In fact, once we get past
around x7 or so, the approximaƟons don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
preƩy confident that we have found an accurate approximaƟon.

Using a calculator in this manner makes the calculaƟons simple; many iter-
aƟons can be computed very quickly.

Notes:
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Figure 4.1.3: A graph of f(x) = cos x − x
used to find an iniƟal approximaƟon of its
root.

Chapter 4 ApplicaƟons of the DerivaƟve

Example 4.1.2 Using Newton’s Method to find where funcƟons intersect
Use Newton’s Method to approximate a soluƟon to cos x = x, accurate to 5
places aŌer the decimal.

SÊ½çã®ÊÄ Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equaƟons like f(x) = g(x). However, this is
not a problem; we can rewrite the laƩer equaƟon as f(x) − g(x) = 0 and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = 0. WriƩen this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − 1. Next we need a
starƟng value, x0. Consider Figure 4.1.3, where f(x) = cos x − x is graphed. It
seems that x0 = 0.75 is preƩy close to the root, so we will use that as our x0.
(The figure also shows the graphs of y = cos x and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75
− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388
− sin(0.7391111388)− 1

≈ 0.7390851334.

We can conƟnue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inpuƫng
our iniƟal approximaƟon. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approximaƟons. We
quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approximaƟons x2 and x3 did not differ for at least the first 5 places aŌer the
decimal, so we could have stopped. However, using our calculator in the man-
ner described is easy, so finding x4 was not hard. It is interesƟng to see how we
found an approximaƟon, accurate to as many decimal places as our calculator
displays, in just 4 iteraƟons.

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computaƟon in this problem.

Notes:
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showing why an iniƟal approximaƟon of
x0 = 0 with Newton’s Method fails.
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Figure 4.1.5: Newton’s Method fails to
find a root of f(x) = x1/3, regardless of
the choice of x0.

4.1 Newton’s Method

x = .75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001

break

This code calculates x1, x2, etc., storing each result in the variable x. The pre-
vious approximaƟon is stored in the variable oldx. We conƟnue looping unƟl
the difference between two successive approximaƟons, abs(x-oldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method

What should one use for the iniƟal guess, x0? Generally, the closer to the
actual root the iniƟal guess is, the beƩer. However, some iniƟal guesses should
be avoided. For instance, consider Example 4.1.1 where we sought the root to
f(x) = x3− x2−1. Choosing x0 = 0 would have been a parƟcularly poor choice.
Consider Figure 4.1.4, where f(x) is graphed along with its tangent line at x = 0.
Since f ′(0) = 0, the tangent line is horizontal and does not intersect the x–axis.
Graphically, we see that Newton’s Method fails.

We can also see analyƟcally that it fails. Since

x1 = 0− f(0)
f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

AdjusƟng the iniƟal approximaƟon x0 by a very small amount will likely fix the
problem.

It is also possible forNewton’sMethod to not convergewhile each successive
approximaƟon is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.5. It
is clear that the root is x = 0, but let’s approximate this with x0 = 0.1. Figure
4.1.5(a) shows graphically the calculaƟon of x1; noƟce how it is farther from the
root than x0. Figures 4.1.5(b) and (c) show the calculaƟon of x2 and x3, which are
even farther away; our successive approximaƟons are geƫng worse. (It turns
out that in this parƟcular example, each successive approximaƟon is twice as far
from the true answer as the previous approximaƟon.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
Ɵme,” and it is generally very fast. Once the approximaƟons get close to the root,

Notes:
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Newton’s Method can as much as double the number of correct decimal places
with each successive approximaƟon. A course in Numerical Analysis will intro-
duce the reader to more iteraƟve root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.
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Exercises 4.1
Terms and Concepts
1. T/F: Given a funcƟon f(x), Newton’s Method produces an

exact soluƟon to f(x) = 0.

2. T/F: In order to get a soluƟon to f(x) = 0 accurate to d
places aŌer the decimal, at least d + 1 iteraƟons of New-
tons’ Method must be used.

Problems
In Exercises 3 – 8, the roots of f(x) are known or are easily
found. Use 5 iteraƟons of Newton’s Method with the given
iniƟal approximaƟon to approximate the root. Compare it to
the known value of the root.

3. f(x) = cos x, x0 = 1.5

4. f(x) = sin x, x0 = 1

5. f(x) = x2 + x− 2, x0 = 0

6. f(x) = x2 − 2, x0 = 1.5

7. f(x) = ln x, x0 = 2

8. f(x) = x3 − x2 + x− 1, x0 = 1

In Exercises 9 – 12, use Newton’s Method to approximate all
roots of the given funcƟons accurate to 3 places aŌer the dec-

imal. If an interval is given, find only the roots that lie in
that interval. Use technology to obtain good iniƟal approx-
imaƟons.

9. f(x) = x3 + 5x2 − x− 1

10. f(x) = x4 + 2x3 − 7x2 − x+ 5

11. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)

12. f(x) = x2 cos x+ (x− 1) sin x on (−3, 3)

In Exercises 13 – 16, use Newton’s Method to approximate
when the given funcƟons are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good iniƟal approx-
imaƟons.

13. f(x) = x2, g(x) = cos x

14. f(x) = x2 − 1, g(x) = sin x

15. f(x) = ex
2
, g(x) = cos x

16. f(x) = x, g(x) = tan x on [−6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) =
x3 − 3x2 + x+ 3 when x0 = 1?

18. Why does Newton’s Method fail in finding a root of f(x) =
−17x4 + 130x3 − 301x2 + 156x+ 156 when x0 = 1?
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Note: This secƟon relies heavily on im-
plicit differenƟaƟon, so referring back to
SecƟon 2.6 may help.

Chapter 4 ApplicaƟons of the DerivaƟve

4.2 Related Rates
When two quanƟƟes are related by an equaƟon, knowing the value of one quan-
Ɵty can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 2πr; knowing that C = 6πin determines the
radius must be 3in.

The topic of related rates takes this one step further: knowing the rate
at which one quanƟty is changing can determine the rate at which another
changes.

We demonstrate the concepts of related rates through examples.

Example 4.2.1 Understanding related rates
The radius of a circle is growing at a rate of 5in/hr. At what rate is the circumfer-
ence growing?

SÊ½çã®ÊÄ The circumference and radius of a circle are related by C =
2πr. We are given informaƟon about how the length of r changes with respect
to Ɵme; that is, we are told dr

dt = 5in/hr. We want to know how the length of C
changes with respect to Ɵme, i.e., we want to know dC

dt .
Implicitly differenƟate both sides of C = 2πr with respect to t:

C = 2πr
d
dt
(
C
)
=

d
dt
(
2πr
)

dC
dt

= 2π
dr
dt
.

As we know dr
dt = 5in/hr, we know

dC
dt

= 2π5 = 10π ≈ 31.4in/hr.

Consider another, similar example.

Example 4.2.2 Finding related rates
Water streams out of a faucet at a rate of 2in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Notes:
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4.2 Related Rates

SÊ½çã®ÊÄ

1. We can answer this quesƟon two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2in3/s, where

volume of puddle= area of circle× depth.

Since the depth is constant at 1/8in, the area must be growing by 16in2/s.
This approach reveals the underlying related–rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× 1

8 . Take
the derivaƟve of both sides with respect to t, employing implicit differen-
ƟaƟon.

V =
1
8
A

d
dt
(
V
)
=

d
dt

(
1
8
A
)

dV
dt

=
1
8
dA
dt

As dV
dt = 2, we know 2 = 1

8
dA
dt , and hence dA

dt = 16. Thus the area is
growing by 16in2/s.

2. To start, we need an equaƟon that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = πr2. We should be able to learn about the rate at which
the radius is growing with this informaƟon.
Implicitly derive both sides of A = πr2 with respect to t:

A = πr2

d
dt
(
A
)
=

d
dt
(
πr2
)

dA
dt

= 2πr
dr
dt

Our work above told us that dA
dt = 16in2/s. Solving for dr

dt , we have

dr
dt

=
8
πr

.

Note how our answer is not a number, but rather a funcƟon of r. In other
words, the rate at which the radius is growing depends on how big the

Notes:
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circle already is. If the circle is very large, adding 2in3 of water will not
make the circle much bigger at all. If the circle is dime–sized, adding the
sameamount ofwaterwillmake a radical change in the radius of the circle.

In someways, our problemwas (intenƟonally) ill–posed. Weneed to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10in, the radius is growing at a rate of

dr
dt

=
8

10π
=

4
5π

≈ 0.25in/s.

Example 4.2.3 Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“−25mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, aƩached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75mph. (This straight–line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at 30 mph and sees a car moving due
east, as shown in Figure 4.2.1. Using his radar gun, he measures a reading of
20mph. By using landmarks, he believes both he and the other car are about
1/2 mile from the intersecƟon of their two roads.

If the speed limit on the other road is 55mph, is the other driver speeding?

SÊ½çã®ÊÄ Using the diagram in Figure 4.2.1, let’s label what we know
about the situaƟon. As both the police officer and other driver are 1/2mile from
the intersecƟon, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/

√
2 ≈ 0.707.

We know the police officer is traveling at 30mph; that is, dA
dt = −30. The

reason this rate of change is negaƟve is that A is geƫng smaller; the distance
between the officer and the intersecƟon is shrinking. The radar measurement
is dC

dt = 20. We want to find dB
dt .

We need an equaƟon that relatesB toA and/or C. The Pythagorean Theorem

Notes:
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Note: Example 4.2.3 is both interesƟng
and impracƟcal. It highlights the difficulty
in using radar in a non–linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.
The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances, radar–like
measurements and the concepts of
related rates.

..

θ

.

10Ō

.
x

.
100mph

Figure 4.2.2: Tracking a speeding car (at
leŌ) with a rotaƟng camera.

4.2 Related Rates

is a good choice: A2 + B2 = C2. DifferenƟate both sides with respect to t:

A2 + B2 = C2

d
dt
(
A2 + B2

)
=

d
dt
(
C2
)

2A
dA
dt

+ 2B
dB
dt

= 2C
dC
dt

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B
≈ 58.28mph.

The other driver appears to be speeding slightly.

Example 4.2.4 Studying related rates
A camera is placed on a tripod 10Ō from the side of a road. The camera is to turn
to track a car that is to drive by at 100mph for a promoƟonal video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.2.2 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

SÊ½çã®ÊÄ We seek informaƟon about how fast the camera is to turn;
therefore, we need an equaƟon that will relate an angle θ to the posiƟon of the
camera and the speed and posiƟon of the car.

Figure 4.2.2 suggests we use a trigonometric equaƟon. Leƫng x represent
the distance the car is from the point on the road directly in front of the camera,
we have

tan θ =
x
10

. (4.1)

As the car is moving at 100mph, we have dx
dt = −100mph (as in the last example,

since x is geƫng smaller as the car travels, dx
dt is negaƟve). We need to convert

the measurements so they use the same units; rewrite −100mph in terms of
Ō/s:

dx
dt

= −100
m
hr

= −100
m
hr

· 5280 Ō
m

· 1
3600

hr
s

= −146.6Ō/s.

Now take the derivaƟve of both sides of EquaƟon (4.1) using implicit differenƟ-

Notes:
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aƟon:

tan θ =
x
10

d
dt
(
tan θ

)
=

d
dt

( x
10

)
sec2 θ

dθ
dt

=
1
10

dx
dt

dθ
dt

=
cos2 θ
10

dx
dt

(4.2)

Wewant to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when θ = 0). Our mathe-
maƟcs bears this out. In EquaƟon (4.2) we see this is when cos2 θ is largest; this
is when cos θ = 1, or when θ = 0.

With dx
dt ≈ −146.67Ō/s, we have

dθ
dt

= −1rad
10Ō

146.67Ō/s = −14.667radians/s.

We find that dθ
dt is negaƟve; this matches our diagram in Figure 4.2.2 for θ is

geƫng smaller as the car approaches the camera.
What is the pracƟcal meaning of −14.667radians/s? Recall that 1 circular

revoluƟon goes through 2π radians, thus 14.667rad/s means 14.667/(2π) ≈
2.33 revoluƟons per second. The negaƟve sign indicates the camera is rotaƟng
in a clockwise fashion.

We introduced the derivaƟve as a funcƟon that gives the slopes of tangent
lines of funcƟons. This chapter emphasizes using the derivaƟve in other ways.
Newton’s Method uses the derivaƟve to approximate roots of funcƟons; this
secƟon stresses the “rate of change” aspect of the derivaƟve to find a relaƟon-
ship between the rates of change of two related quanƟƟes.

In the next secƟon we use Extreme Value concepts to opƟmize quanƟƟes.

Notes:
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Exercises 4.2
Terms and Concepts
1. T/F: Implicit differenƟaƟon is oŌen used when solving “re-

lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems
3. Water flows onto a flat surface at a rate of 5cm3/s forming a

circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm3/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm?
(b) 10 cm?
(c) 100 cm?

5. Consider the traffic situaƟon introduced in Example 4.2.3.
How fast is the “other car” traveling if the officer and the
other car are each 1/2mile from the intersecƟon, the other
car is traveling due west, the officer is traveling north at
50mph, and the radar reading is−80mph?

6. Consider the traffic situaƟon introduced in Example 4.2.3.
Calculate how fast the “other car” is traveling in each of the
following situaƟons.

(a) The officer is traveling due north at 50mph and is
1/2 mile from the intersecƟon, while the other car
is 1 mile from the intersecƟon traveling west and the
radar reading is−80mph?

(b) The officer is traveling due north at 50mph and is
1 mile from the intersecƟon, while the other car is
1/2 mile from the intersecƟon traveling west and the
radar reading is−80mph?

7. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
10,000Ō on a straight–line path thatwill take it directly over
an anƟ–aircraŌ gun.

.

.

.

. θ.

x

.

10,000 Ō

How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1 mile away?

(b) 1/5 mile away?

(c) Directly overhead?

8. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
100Ō on a straight–line path that will take it directly over
an anƟ–aircraŌ gun as in Exercise 7 (note the lower eleva-
Ɵon here).
How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1000 feet away?

(b) 100 feet away?

(c) Directly overhead?

9. A 24Ō. ladder is leaning against a house while the base is
pulled away at a constant rate of 1Ō/s.

.

.

.

24
Ō

.
1 Ō/s

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?

10. A boat is being pulled into a dock at a constant rate of
30Ō/min by a winch located 10Ō above the deck of the
boat.

. .

.

.

10Ō

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

11. An inverted cylindrical cone, 20Ō deep and 10Ō across at
the top, is being filled with water at a rate of 10Ō3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1 foot?

(b) 10 feet?

(c) 19 feet?

How long will the tank take to fill when starƟng at empty?
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12. A rope, aƩached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connecƟon point between
rope and weight.

..
30

Ō
.

2 Ō/s

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 Ō) and begins to walk away at a rate
of 2Ō/s. How fast is the weight rising when the man has
walked:

(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

13. Consider the situaƟon described in Exercise 12. Suppose
the man starts 40Ō from the weight and begins to walk
away at a rate of 2Ō/s.

(a) How long is the rope?

(b) How fast is theweight rising aŌer theman haswalked
10 feet?

(c) How fast is theweight rising aŌer theman haswalked
30 feet?

(d) How far must themanwalk to raise the weight all the
way to the pulley?

14. A hot air balloon liŌs off from ground rising verƟcally. From
100 feet away, a 5’ woman tracks the path of the balloon.
When her sightlinewith the balloonmakes a 45◦ anglewith
the horizontal, she notes the angle is increasing at about
5◦/min.

(a) What is the elevaƟon of the balloon?

(b) How fast is it rising?

15. A company that produces landscapingmaterials is dumping
sand into a conical pile. The sand is being poured at a rate
of 5Ō3/sec; the physical properƟes of the sand, in conjunc-
Ɵon with gravity, ensure that the cone’s height is roughly
2/3 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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Figure 4.3.1: A sketch of the enclosure in
Example 4.3.1.

4.3 OpƟmizaƟon

4.3 OpƟmizaƟon
In SecƟon 3.1 we learned about extreme values – the largest and smallest values
a funcƟon aƩains on an interval. We moƟvated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this secƟon we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situaƟons that require us to create the appropriate mathemaƟcal
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of opƟmizaƟon.

Example 4.3.1 OpƟmizaƟon: perimeter and area
A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

SÊ½çã®ÊÄ One can likely guess the correct answer – that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situaƟon. Our enclosure is sketched twice
in Figure 4.3.1, either with green grass and nice fence boards or as a simple
rectangle. Either way, drawing a rectangle forces us to realize that we need to
know the dimensions of this rectangle so we can create an area funcƟon – aŌer
all, we are trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle funcƟons with 2 variables; we need to
reduce this down to a single variable. We know more about the situaƟon: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equaƟon:

Perimeter = 100 = 2x+ 2y.

We now have 2 equaƟons and 2 unknowns. In the laƩer equaƟon, we solve
for y:

y = 50− x.

Now subsƟtute this expression for y in the area equaƟon:

Area = A(x) = x(50− x).

Note we now have an equaƟon of one variable; we can truly call the Area a
funcƟon of x.

Notes:

181
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This funcƟon onlymakes sensewhen 0 ≤ x ≤ 50, otherwisewe get negaƟve
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the criƟcal points, we take the derivaƟve of A(x) and set it equal to
0, then solve for x.

A(x) = x(50− x)
= 50x− x2

A′(x) = 50− 2x

We solve 50− 2x = 0 to find x = 25; this is the only criƟcal point. We evaluate
A(x) at the endpoints of our interval and at this criƟcal point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625Ō2. This is the max-
imum. Since we earlier found y = 50 − x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 Ō. with maxi-
mum area is a square, with sides of length 25 Ō.

This example is very simplisƟc and a bit contrived. (AŌer all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equaƟons that de-
scribe a situaƟon, reduce an equaƟon to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equaƟons are oŌen
not reducible to a single variable (hence mulƟ–variable calculus is needed) and
the equaƟons themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundaƟon for the mathemaƟcs you will likely en-
counter later.

We outline here the basic process of solving these opƟmizaƟon problems.

Key Idea 4.3.1 Solving OpƟmizaƟon Problems

1. Understand the problem. Clearly idenƟfy what quanƟty is to be
maximized or minimized. Make a sketch if helpful.

2. Create equaƟons relevant to the context of the problem, using the
informaƟon given. (One of these should describe the quanƟty to
be opƟmized. We’ll call this the fundamental equaƟon.)

3. If the fundamental equaƟon defines the quanƟty to be opƟmized
as a funcƟon of more than one variable, reduce it to a single vari-
able funcƟon using subsƟtuƟons derived from the other equa-
Ɵons.

(conƟnued). . .

Notes:
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Figure 4.3.2: A sketch of the enclosure in
Example 4.3.2.

4.3 OpƟmizaƟon

Key Idea 4.3.1 Solving OpƟmizaƟon Problems – ConƟnued

4. IdenƟfy the domain of this funcƟon, keeping in mind the context
of the problem.

5. Find the extreme values of this funcƟon on the determined do-
main.

6. IdenƟfy the values of all relevant quanƟƟes of the problem.

We will use Key Idea 4.3.1 in a variety of examples.

Example 4.3.2 OpƟmizaƟon: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SÊ½çã®ÊÄ We will follow the steps outlined by Key Idea 4.3.1.

1. We are maximizing area. A sketch of the region will help; Figure 4.3.2
gives two sketches of the proposed enclosed area. A key feature of the
sketches is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equaƟon. This defines area as a funcƟon of two
variables, so we need another equaƟon to reduce it to one variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

Note how this is different than in our previous example.

3. We now reduce the fundamental equaƟon to a single variable. In the
perimeter equaƟon, solve for y: y = 50− x/2. We can now write Area as

Area = A(x) = x(50− x/2) = 50x− 1
2
x2.

Area is now defined as a funcƟon of one variable.

Notes:
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Figure 4.3.3: Running a power line from
the power staƟon to an offshore facility
with minimal cost in Example 4.3.3.
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Figure 4.3.4: Labeling unknown distances
in Example 4.3.3.

Chapter 4 ApplicaƟons of the DerivaƟve

4. We want the area to be nonnegaƟve. Since A(x) = x(50− x/2), we want
x ≥ 0 and 50 − x/2 ≥ 0. The laƩer inequality implies that x ≤ 100, so
0 ≤ x ≤ 100.

5. We nowfind the extreme values. At the endpoints, theminimum is found,
giving an area of 0.
Find the criƟcal points. We have A′(x) = 50 − x; seƫng this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 − x/2; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
Ō2.

Keep in mind as we do these problems that we are pracƟcing a process; that
is, we are learning to turn a situaƟon into a system of equaƟons. These equa-
Ɵons allow us to write a certain quanƟty as a funcƟon of one variable, which we
then opƟmize.

Example 4.3.3 OpƟmizaƟon: minimizing cost
A power line needs to be run from a power staƟon located on the beach to an
offshore facility. Figure 4.3.3 shows the distances between the power staƟon to
the facility.

It costs $50/Ō. to run a power line along the land, and $130/Ō. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

SÊ½çã®ÊÄ Wewill follow the strategy of Key Idea 4.3.1 implicitly, with-
out specifically numbering steps.

There are two immediate soluƟons that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecƟng the two locaƟons with a straight line. However, this requires
that all the wire be laid underwater, the most costly opƟon. Second, we could
minimize the underwater length by running a wire all 5000 Ō. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non–minimal cost.

The opƟmal soluƟon likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances – the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.3.4.

Notes:
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4.3 OpƟmizaƟon

By choosing x as we did, wemake the expression under the square root sim-
ple. We now create the cost funcƟon.

Cost = land cost + water cost
$50× land distance + $130× water distance

50(5000− x) + 130
√
x2 + 10002.

So we have c(x) = 50(5000 − x) + 130
√
x2 + 10002. This funcƟon only

makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we sƟll evaluate c(x) at each to verify.

c(0) = 380, 000 c(5000) ≈ 662, 873.

We now find the criƟcal values of c(x). We compute c ′(x) as

c ′(x) = −50+
130x√

x2 + 10002
.

Recognize that this is never undefined. Seƫng c ′(x) = 0 and solving for x,
we have:

−50+
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)
1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000
120

=
1250
3

≈ 416.67.

EvaluaƟng c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000− 416.67 = 4583.33 Ō., and the under-
water distance is

√
416.672 + 10002 ≈ 1083 Ō.

Notes:
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In the exercises you will see a variety of situaƟons that require you to com-
bine problem–solving skills with calculus. Focus on the process; learn how to
form equaƟons from situaƟons that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

The next secƟon introduces our final applicaƟon of the derivaƟve: differen-
Ɵals. Given y = f(x), they offer a method of approximaƟng the change in y aŌer
x changes by a small amount.

Notes:
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Exercises 4.3
Terms and Concepts

1. T/F: An “opƟmizaƟon problem” is essenƟally an “extreme
values” problem in a “story problem” seƫng.

2. T/F: This secƟon teaches one to find the extreme values of
a funcƟon that has more than one variable.

Problems

3. Find the maximum product of two numbers (not necessar-
ily integers) that have a sum of 100.

4. Find the minimum sum of two posiƟve numbers whose
product is 500.

5. Find the maximum sum of two posiƟve numbers whose
product is 500.

6. Find the maximum sum of two numbers, each of which is
in [0, 300] whose product is 500.

7. Find the maximal area of a right triangle with hypotenuse
of length 1.

8. A rancher has 1000 feet of fencing in which to construct
adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

9. A standard soda can is roughly cylindrical and holds 355cm3

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of
206in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in3 with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
were chosen with minimizaƟon in mind?

11. The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross secƟon, i.e., 2w+ 2h).

What is the maximum volume of a package with a square
cross secƟon (w = h) that does not exceed the 108” stan-
dard?

12. The strength S of a wooden beam is directly proporƟonal
to its cross secƟonal widthw and the square of its height h;
that is, S = kwh2 for some constant k.

12 h

w

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

13. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 2
miles at sea and 5miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

14. A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 5
miles at sea and 2miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

15. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run to minimize
the Ɵme it takes to get to the sƟck? (Hint: the figure from
Example 4.3.3 can be useful.)

16. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run tominimize the
Ɵme it takes to get to the sƟck? (Google “calculus dog” to learn
more about a dog’s ability to minimize Ɵmes.)

17. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Figure 4.4.1: Graphing f(x) = sin x and its
tangent line at x = π/3 in order to esƟ-
mate sin 1.1.
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4.4 DifferenƟals
In SecƟon 2.2 we explored the meaning and use of the derivaƟve. This secƟon
starts by revisiƟng some of those ideas.

Recall that the derivaƟve of a funcƟon f can be used to find the slopes of
lines tangent to the graph of f. At x = c, the tangent line to the graph of f has
equaƟon

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approximaƟons of f(x) for values of x
near c.

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sin x at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866, and

cos(π/3) = 1/2. Thus the tangent line to f(x) = sin x at x = π/3 is:

ℓ(x) =
1
2
(x− π/3) + 0.866.

In Figure 4.4.1(a), we see a graph of f(x) = sin x graphed along with its tan-
gent line at x = π/3. The small rectangle shows the region that is displayed in
Figure 4.4.1(b). In this figure, we see how we are approximaƟng sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

ℓ(1.1) =
1
2
(1.1− π/3) + 0.866

=
1
2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approximaƟon this is.)

We now generalize this concept. Given f(x) and an x–value c, the tangent
line is ℓ(x) = f ′(c)(x− c)+ f(c). Clearly, f(c) = ℓ(c). Let∆x be a small number,
represenƟng a small change in x value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a funcƟon approximates well the values of that funcƟon
near x = c.

As the x-value changes from c to c +∆x, the y-value of f changes from f(c)
to f(c+∆x). We call this change of y value∆y. That is:

∆y = f(c+∆x)− f(c).

Notes:
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Replacing f(c+∆x) with its tangent line approximaƟon, we have

∆y ≈ ℓ(c+∆x)− f(c)
= f ′(c)

(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x (4.3)

This final equaƟon is important; it becomes the basis of the upcoming Def-
iniƟon and Key Idea. In short, it says that when the x-value changes from c to
c+∆x, the y value of a funcƟon f changes by about f ′(c)∆x.

We introduce two new variables, dx and dy in the context of a formal defini-
Ɵon.

DefiniƟon 4.4.1 DifferenƟals of x and y.

Let y = f(x) be differenƟable. The differenƟal of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
enƟal of y, denoted dy, is

dy = f ′(x)dx.

We can solve for f ′(x) in the above equaƟon: f ′(x) = dy/dx. This states that
the derivaƟve of f with respect to x is the differenƟal of y divided by the differ-
enƟal of x; this is not the alternate notaƟon for the derivaƟve, dy

dx . This laƩer
notaƟon was chosen because of the fracƟon–like qualiƟes of the derivaƟve, but
again, it is one symbol and not a fracƟon.

It is helpful to organize our new concepts and notaƟons in one place.

Key Idea 4.4.1 DifferenƟal NotaƟon

Let y = f(x) be a differenƟable funcƟon.

1. Let∆x represent a small, nonzero change in x value.

2. Let dx represent a small, nonzero change in x value (i.e.,∆x = dx).

3. Let∆y be the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. Let dy = f ′(x)dx which, by EquaƟon (4.3), is an approximaƟon of
the change in y value as x changes by∆x; dy ≈ ∆y.

Notes:
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What is the value of differenƟals? Like many mathemaƟcal concepts, differ-
enƟals provide both pracƟcal and theoreƟcal benefits. We explore both here.

Example 4.4.1 Finding and using differenƟals
Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).

SÊ½çã®ÊÄ The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know howmuch the y value changes from f(3) to f(3.1)
(i.e., if we know∆y), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate∆y with dy.

∆y ≈ dy
= f ′(3)dx
= 2 · 3 · 0.1 = 0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) ≈
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differenƟal to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximaƟon is really good!)

So why bother?
In “most” real life situaƟons, we do not know the funcƟon that describes

a parƟcular behavior. Instead, we can only take measurements of how things
change – measurements of the derivaƟve.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direcƟon (i.e., the velocity) of water at any locaƟon. It is very hard
to create a funcƟon that describes the overall flow, hence it is hard to predict
where a floaƟng object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differenƟals. Over small
intervals, the path taken by a floaƟng object is essenƟally linear. DifferenƟals
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
Ɵal EquaƟons courses.

We use differenƟals once more to approximate the value of a funcƟon. Even
though calculators are very accessible, it is neat to see how these techniques can
someƟmes be used to easily compute something that looks rather hard.

Notes:
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Example 4.4.2 Using differenƟals to approximate a funcƟon value
Approximate

√
4.5.

SÊ½çã®ÊÄ We expect
√
4.5 ≈ 2, yet we can do beƩer. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so f ′(4) =

1/4.
We approximate the difference between f(4.5) and f(4) using differenƟals,

with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy = f ′(4) · dx = 1/4 · 1/2 = 1/8 = 0.125.

The approximate change in f from x = 4 to x = 4.5 is 0.125, so we approximate√
4.5 ≈ 2.125.

DifferenƟals are important when we discuss integraƟon. When we study
that topic, we will use notaƟon such as∫

f(x) dx

quite oŌen. While we don’t discuss here what all of that notaƟon means, note
the existence of the differenƟal dx. Proper handling of integrals comes with
proper handling of differenƟals.

In light of that, we pracƟce finding differenƟals in general.

Example 4.4.3 Finding differenƟals
In each of the following, find the differenƟal dy.

1. y = sin x 2. y = ex(x2 + 2) 3. y =
√
x2 + 3x− 1

SÊ½çã®ÊÄ

1. y = sin x: As f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x)dx.

2. y = ex(x2 + 2): Let f(x) = ex(x2 + 2). We need f ′(x), requiring the
Product Rule.

We have f ′(x) = ex(x2 + 2) + 2xex, so

dy =
(
ex(x2 + 2) + 2xex

)
dx.

Notes:
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3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
1
2
(x2 + 3x− 1)−

1
2 (2x+ 3) =

2x+ 3
2
√
x2 + 3x− 1

. Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

Finding the differenƟal dy of y = f(x) is really no harder than finding the
derivaƟve of f; we justmulƟply f ′(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a pracƟcal use of differenƟals as they offer a good method of
making certain approximaƟons. Another use is error propagaƟon. Suppose a
length is measured to be x, although the actual value is x+∆x (where∆x is the
error, which we hope is small). This measurement of xmay be used to compute
some other value; we can think of this laƩer value as f(x) for some funcƟon f.
As the true length is x + ∆x, one really should have computed f(x + ∆x). The
difference between f(x) and f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values:

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differenƟals.

Example 4.4.4 Using differenƟals to approximate propagated error
A steel ball bearing is to be manufactured with a diameter of 2cm. The manu-
facturing process has a tolerance of ±0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm3, esƟmate the propagated error in the mass
of the ball bearing.

SÊ½çã®ÊÄ Themass of a ball bearing is found using the equaƟon “mass
= volume× density.” In this situaƟon themass funcƟon is a product of the radius
of the ball bearing, hence it ism = 7.85 4

3πr
3. The differenƟal of the mass is

dm = 31.4πr2dr.

The radius is to be 1cm; the manufacturing tolerance in the radius is±0.05mm,
or±0.005cm. The propagated error is approximately:

∆m ≈ dm
= 31.4π(1)2(±0.005)
= ±0.493g

Notes:
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Is this error significant? It certainly depends on the applicaƟon, but we can get
an idea by compuƟng the relaƟve error. The raƟo between amount of error to
the total mass is

dm
m

= ± 0.493
7.85 4

3π

= ±0.493
32.88

= ±0.015,

or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was

supposed to be 10cm, the same manufacturing tolerance would give a propa-
gated error inmass of±12.33g, which corresponds to apercent error of±0.188%.
While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower.

We first learned of the derivaƟve in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivaƟve by studying how it relates to the graph of a funcƟon
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivaƟve to yet more uses:

• EquaƟon solving (Newton’s Method),

• Related Rates (furthering our use of the derivaƟve to find instantaneous
rates of change),

• OpƟmizaƟon (applied extreme values), and

• DifferenƟals (useful for various approximaƟons and for something called
integraƟon).

In the next chapters, we will consider the “reverse” problem to compuƟng
the derivaƟve: given a funcƟon f, can we find a funcƟon whose derivaƟve is f?
Being able to do so opens up an incredible world of mathemaƟcs and applica-
Ɵons.

Notes:
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Exercises 4.4
Terms and Concepts
1. T/F: Given a differenƟable funcƟon y = f(x), we are gen-

erally free to choose a value for dx, which then determines
the value of dy.

2. T/F: The symbols “dx” and “∆x” represent the same con-
cept.

3. T/F: The symbols “dy” and “∆y” represent the same con-
cept.

4. T/F: DifferenƟals are important in the study of integraƟon.

5. How are differenƟals and tangent lines related?

6. T/F: In real life, differenƟals are used to approximate func-
Ɵon values when the funcƟon itself is not known.

Problems
In Exercises 7 – 16, use differenƟals to approximate the given
value by hand.

7. 2.052

8. 5.932

9. 5.13

10. 6.83

11.
√
16.5

12.
√
24

13. 3√63

14. 3√8.5

15. sin 3

16. e0.1

In Exercises 17 – 30, compute the differenƟal dy.

17. y = x2 + 3x− 5

18. y = x7 − x5

19. y = 1
4x2

20. y = (2x+ sin x)2

21. y = x2e3x

22. y = 4
x4

23. y = 2x
tan x+ 1

24. y = ln(5x)

25. y = ex sin x

26. y = cos(sin x)

27. y = x+ 1
x+ 2

28. y = 3x ln x

29. y = x ln x− x

30. f(x) = ln
(
sec x

)
Exercises 31 – 34 use differenƟals to approximate propagated
error.

31. A set of plasƟc spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

32. The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t2. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the boƩom. What
is the propagated error if the Ɵmemeasurement is accurate
to 2/10ths of a second and the measured Ɵme is:

(a) 2 seconds?

(b) 5 seconds?

33. What is the propagated error in the measurement of the
cross secƟonal area of a circular log if the diameter is mea-
sured at 15′′, accurate to 1/4′′?

34. A wall is to be painted that is 8′ high and is measured to
be 10′, 7′′ long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rate to 1/2′′.

Exercises 35 – 39 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before compuƟng.)

35. The length l of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to be
85.2◦, accurate to 1◦. Assume that the triangle formed is a
right triangle.
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l =?

θ

25′

(a) What is the measured length l of the wall?
(b) What is the propagated error?
(c) What is the percent error?

36. Answer the quesƟons of Exercise 35, but with a measured
angle of 71.5◦, accurate to 1◦, measured from a point 100′
from the wall.

37. The length l of a long wall is to be calculated by measuring
the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143◦, accurate to 1◦.

l =?θ 50′

(a) What is the measured length of the wall?

(b) What is the propagated error?

(c) What is the percent error?

38. The length of the walls in Exercises 35 – 37 are essenƟally
the same. Which setup gives the most accurate result?

39. Consider the setup in Exercise 37. This Ɵme, assume the
angle measurement of 143◦ is exact but the measured 50′
from the wall is accurate to 6′′. What is the approximate
percent error?
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5: IÄã�¦Ù�ã®ÊÄ
We have spent considerable Ɵme considering the derivaƟves of a funcƟon and
their applicaƟons. In the following chapters, we are going to starƟng thinking
in “the other direcƟon.” That is, given a funcƟon f(x), we are going to consider
funcƟons F(x) such that F ′(x) = f(x). There are numerous reasons this will
prove to be useful: these funcƟons will help us compute area, volume, mass,
force, pressure, work, and much more.

5.1 AnƟderivaƟves and Indefinite IntegraƟon
Given a funcƟon y = f(x), a differenƟal equaƟon is one that incorporates y, x,
and the derivaƟves of y. For instance, a simple differenƟal equaƟon is:

y ′ = 2x.

Solving a differenƟal equaƟon amounts to finding a funcƟon y that saƟsfies
the given equaƟon. Take a moment and consider that equaƟon; can you find a
funcƟon y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one soluƟon: y = x2. “Find-

ing another” may have seemed impossible unƟl one realizes that a funcƟon like
y = x2 + 1 also has a derivaƟve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the funcƟon y = x2 + 123, 456, 789 also has a deriva-
Ɵve of 2x. The differenƟal equaƟon y ′ = 2x has many soluƟons. This leads us
to some definiƟons.

DefiniƟon 5.1.1 AnƟderivaƟves and Indefinite Integrals

Let a funcƟon f(x) be given. An anƟderivaƟve of f(x) is a funcƟon F(x)
such that F ′(x) = f(x).

The set of all anƟderivaƟves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.

Make a note about our definiƟon: we refer to an anƟderivaƟve of f, as op-
posed to the anƟderivaƟve of f, since there is always an infinite number of them.



Chapter 5 IntegraƟon

We oŌen use upper-case leƩers to denote anƟderivaƟves.
Knowing one anƟderivaƟve of f allows us to find infinitely more, simply by

adding a constant. Not only does this give usmore anƟderivaƟves, it gives us all
of them.

Theorem 5.1.1 AnƟderivaƟve Forms

Let F(x) and G(x) be anƟderivaƟves of f(x) on an interval I. Then there
exists a constant C such that, on I,

G(x) = F(x) + C.

Given a funcƟon f defined on an interval I and one of its anƟderivaƟves F,
we know all anƟderivaƟves of f on I have the form F(x) + C for some constant
C. Using DefiniƟon 5.1.1, we can say that∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notaƟon.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

IntegraƟon
symbol

.

DifferenƟal
of x

.

One
anƟderivaƟve

.

Constant of
integraƟon

Figure 5.1.1: Understanding the indefinite integral notaƟon.

Figure 5.1.1 shows the typical notaƟon of the indefinite integral. The inte-
graƟon symbol,

∫
, is in reality an “elongated S,” represenƟng “take the sum.”

We will later see how sums and anƟderivaƟves are related.
The funcƟon we want to find an anƟderivaƟve of is called the integrand. It

contains the differenƟal of the variable we are integraƟngwith respect to. The
∫

symbol and the differenƟal dx are not “bookends” with a funcƟon sandwiched in
between; rather, the symbol

∫
means “find all anƟderivaƟves of what follows,”

and the funcƟon f(x) and dx are mulƟplied together; the dx does not “just sit
there.”

Let’s pracƟce using this notaƟon.

Notes:
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Example 5.1.1 EvaluaƟng indefinite integrals
Evaluate

∫
sin x dx.

SÊ½çã®ÊÄ We are asked to find all funcƟons F(x) such that F ′(x) =
sin x. Some thoughtwill leadus to one soluƟon: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integraƟon.
So: ∫

sin x dx = − cos x+ C.

A commonly asked quesƟon is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of anƟdifferenƟaƟon is really solving a differenƟal quesƟon. The
integral ∫

sin x dx

presents us with a differenƟal, dy = sin x dx. It is asking: “What is y?” We found
lots of soluƟons, all of the form y = − cos x+ C.

Leƫng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What funcƟons have a differenƟal of the form dy?” The answer
is “FuncƟons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find anƟderiva-
Ɵves of more complicated funcƟons. In this secƟon, we will simply explore the
rules of indefinite integraƟon, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s pracƟce once more before staƟng integraƟon rules.

Example 5.1.2 EvaluaƟng indefinite integrals
Evaluate

∫
(3x2 + 4x+ 5) dx.

SÊ½çã®ÊÄ We seek a funcƟon F(x) whose derivaƟve is 3x2 + 4x + 5.
When taking derivaƟves, we can consider funcƟons term–by–term, so we can
likely do that here.

What funcƟons have a derivaƟve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

Notes:
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What funcƟons have a derivaƟve of 4x? Here the x term is raised to the first
power, so we likely seek a quadraƟc. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what funcƟons have a derivaƟve of 5? FuncƟons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integraƟon; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivaƟve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5.

This final step of “verifying our answer” is important both pracƟcally and
theoreƟcally. In general, taking derivaƟves is easier than finding anƟderivaƟves
so checking our work is easy and vital as we learn.

We also see that taking the derivaƟve of our answer returns the funcƟon in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

DifferenƟaƟon “undoes” the work done by anƟdifferenƟaƟon.

Theorem 2.7.3 gave a list of the derivaƟves of common funcƟons we had
learned at that point. We restate part of that list here to stress the relaƟonship
between derivaƟves and anƟderivaƟves. This list will also be useful as a glossary
of common anƟderivaƟves as we learn.

Notes:
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Theorem 5.1.2 DerivaƟves and AnƟderivaƟves

Common DifferenƟaƟon Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 5.1.2:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant MulƟple

Rule: we can temporarily ignore constants when finding anƟderivaƟves,
just as we did when compuƟng derivaƟves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mulƟplied by

Notes:
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5, but “5 Ɵmes a constant” is sƟll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
5.1.2. So:∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In pracƟce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integraƟon. There are two impor-
tant things to keep in mind:

1. NoƟce the restricƟon that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presenƟng anƟdifferenƟaƟon as the “inverse operaƟon” of

differenƟaƟon. Here is a useful quote to remember:
“Inverse operaƟons do the opposite things in the opposite
order.”

When taking a derivaƟve using the Power Rule, we first mulƟply by
the power, then second subtract 1 from the power. To find the an-
ƟderivaƟve, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

IniƟal Value Problems

In SecƟon 2.3we saw that the derivaƟve of a posiƟon funcƟon gave a velocity
funcƟon, and the derivaƟve of a velocity funcƟon describes acceleraƟon. We
can now go “the other way:” the anƟderivaƟve of an acceleraƟon funcƟon gives
a velocity funcƟon, etc. While there is just one derivaƟve of a given funcƟon,
there are infinitely many anƟderivaƟves. Therefore we cannot ask “What is the
velocity of an object whose acceleraƟon is−32Ō/s2?”, since there is more than
one answer.

Notes:
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5.1 AnƟderivaƟves and Indefinite IntegraƟon

We can find the answer if we provide more informaƟon with the quesƟon,
as done in the following example. OŌen the addiƟonal informaƟon comes in the
form of an iniƟal value, a value of the funcƟon that one knows beforehand.

Example 5.1.3 Solving iniƟal value problems
The acceleraƟon due to gravity of a falling object is −32 Ō/s2. At Ɵme t = 3,
a falling object had a velocity of −10 Ō/s. Find the equaƟon of the object’s
velocity.

SÊ½çã®ÊÄ We want to know a velocity funcƟon, v(t). We know two
things:

• The acceleraƟon, i.e., v ′(t) = −32, and

• the velocity at a specific Ɵme, i.e., v(3) = −10.

Using the first piece of informaƟon, we know that v(t) is an anƟderivaƟve of
v ′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86

Thus v(t) = −32t+ 86. We can use this equaƟon to understand the moƟon
of the object: when t = 0, the object had a velocity of v(0) = 86 Ō/s. Since the
velocity is posiƟve, the object was moving upward.

When did the object begin moving down? Immediately aŌer v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleraƟon and its velocity at a single point in Ɵme.

Example 5.1.4 Solving iniƟal value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an anƟderivaƟve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

Notes:
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Chapter 5 IntegraƟon

So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the iniƟal value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integraƟng again.

f(t) =
∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6.

This secƟon introduced anƟderivaƟves and the indefinite integral. We found
they are needed when finding a funcƟon given informaƟon about its deriva-
Ɵve(s). For instance, we found a velocity funcƟon given an acceleraƟon func-
Ɵon.

In the next secƟon, we will see how posiƟon and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity funcƟon. Then,
in SecƟon 5.4, wewill see howareas and anƟderivaƟves are closely Ɵed together.
This connecƟon is incredibly important, as indicated by the nameof the theorem
that describes it: The Fundamental Theorem of Calculus.

Notes:
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Exercises 5.1
Terms and Concepts
1. Define the term “anƟderivaƟve” in your own words.

2. Is it more accurate to refer to “the” anƟderivaƟve of f(x) or
“an” anƟderivaƟve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse operaƟons do the
things in the order.”

5. What is an “iniƟal value problem”?

6. The derivaƟve of a posiƟon funcƟon is a func-
Ɵon.

7. The anƟderivaƟve of an acceleraƟon funcƟon is a
funcƟon.

8. If F(x) is an anƟderivaƟve of f(x), and G(x) is an anƟderiva-
Ɵve of g(x), give an anƟderivaƟve of f(x) + g(x).

Problems
In Exercises 9 – 27, evaluate the given indefinite integral.

9.
∫

3x3 dx

10.
∫

x8 dx

11.
∫

(10x2 − 2) dx

12.
∫

dt

13.
∫

1 ds

14.
∫

1
3t2

dt

15.
∫

3
t2

dt

16.
∫

1√
x
dx

17.
∫

sec2 θ dθ

18.
∫

sin θ dθ

19.
∫

(sec x tan x+ csc x cot x) dx

20.
∫

5eθ dθ

21.
∫

3t dt

22.
∫

5t

2
dt

23.
∫

(2t+ 3)2 dt

24.
∫

(t2 + 3)(t3 − 2t) dt

25.
∫

x2x3 dx

26.
∫

eπ dx

27.
∫

a dx

28. This problem invesƟgates why Theorem 5.1.2 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?
(b) Find d

dx

(
ln x

)
.

(c) What is the domain of y = ln(−x)?
(d) Find d

dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of anƟderiva-
Ɵves, depending on whether x > 0 or x < 0. In
one expression, give a formula for

∫
1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 – 39, find f(x) described by the given iniƟal
value problem.

29. f ′(x) = sin x and f(0) = 2

30. f ′(x) = 5ex and f(0) = 10

31. f ′(x) = 4x3 − 3x2 and f(−1) = 9

32. f ′(x) = sec2 x and f(π/4) = 5

33. f ′(x) = 7x and f(2) = 1

34. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

35. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10

205



36. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

37. f ′′(θ) = sin θ and f ′(π) = 2, f(π) = 4

38. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

39. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review

40. Use informaƟon gained from the first and second deriva-
Ɵves to sketch f(x) = 1

ex + 1
.

41. Given y = x2ex cos x, find dy.
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5.2 The Definite Integral

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5Ō/s for 10 seconds. How far away from its starƟng point is the ob-
ject?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
Ɵon. In this case, Distance = 5Ō/s× 10s= 50 feet.

It is interesƟng to note that this soluƟon of 50 feet can be represented graph-
ically. Consider Figure 5.2.1, where the constant velocity of 5Ō/s is graphed on
the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 Ō.

Now consider a slightly harder situaƟon (and not parƟcularly realisƟc): an
object travels in a straight line with a constant velocity of 5Ō/s for 10 seconds,
then instantly reverses course at a rate of 2Ō/s for 4 seconds. (Since the object
is traveling in the opposite direcƟon when reversing course, we say the velocity
is a constant−2Ō/s.) How far away from the starƟng point is the object – what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 Ō.

Hence the object is 42 feet from its starƟng locaƟon.
We can again depict this situaƟon graphically. In Figure 5.2.2 we have the

velociƟes graphed as straight lines on [0, 10] and [10, 14], respecƟvely. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as 50− 8 = 42 feet.
Now consider a more difficult problem.

Example 5.2.1 Finding posiƟon using velocity
The velocity of an object moving straight up/down under the acceleraƟon of
gravity is given as v(t) = −32t+48, where Ɵme t is given in seconds and velocity
is in Ō/s. When t = 0, the object had a height of 0 Ō.

1. What was the iniƟal velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at Ɵme t = 2?

SÊ½çã®ÊÄ It is straighƞorward to find the iniƟal velocity; at Ɵme t = 0,
v(0) = −32 · 0+ 48 = 48 Ō/s.

Notes:
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To answer quesƟons about the height of the object, we need to find the
object’s posiƟon funcƟon s(t). This is an iniƟal value problem, which we studied
in the previous secƟon. We are told the iniƟal height is 0, i.e., s(0) = 0. We
know s ′(t) = v(t) = −32t+ 48. To find s, we find the indefinite integral of v(t):∫

v(t) dt =
∫
(−32t+ 48) dt = −16t2 + 48t+ C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the criƟcal points of s by
seƫng its derivaƟve equal to 0 and solving for t:

s ′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.

(NoƟce how we ended up just finding when the velocity was 0Ō/s!) The first
derivaƟve test shows this is a maximum, so the maximum height of the object
is found at

s(1.5) = −16(1.5)2 + 48(1.5) = 36Ō.

The height at Ɵme t = 2 is now straighƞorward to compute: it is s(2) = 32Ō.

While we have answered all three quesƟons, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.2.3 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straighƞorward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “negaƟve” area. That is, it represents the object coming back
toward its starƟng posiƟon. So to find the maximum distance from the starƟng
point – the maximum height – we find the area under the velocity line that is
above the t–axis, i.e., from t = 0 to t = 1.5. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48Ō/s = 36Ō,

which matches our previous calculaƟon of the maximum height.
Finally, to find the height of the object at Ɵme t = 2 we calculate the total

“signed area” (where some area is negaƟve) under the velocity funcƟon from
t = 0 to t = 2. This signed area is equal to s(2), the displacement (i.e., signed
distance) from the starƟng posiƟon at t = 0 to the posiƟon at Ɵme t = 2. That
is,

Displacement = Area above the t–axis− Area below t–axis.

Notes:
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5.2 The Definite Integral

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48Ō/s)− 1

2
(.5s)(16Ō/s) = 32Ō.

This also matches our previous calculaƟon of the height at t = 2.
NoƟce howweanswered each quesƟon in this example in twoways. Our first

methodwas tomanipulate equaƟons using our understanding of anƟderivaƟves
and derivaƟves. Our second method was geometric: we answered quesƟons
looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a relaƟonship between area under a ve-
locity funcƟon and displacement, but it does imply a relaƟonship exists. SecƟon
5.4 will fully establish fact that the area under a velocity funcƟon is displace-
ment.

Given a graph of a funcƟon y = f(x), we will find that there is great use in
compuƟng the area between the curve y = f(x) and the x-axis. Because of this,
we need to define some terms.

DefiniƟon 5.2.1 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:
(area under f and above the x–axis on [a, b])− (area above f and under

the x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a
f(x) dx,

where a and b are the bounds of integraƟon.

By our definiƟon, the definite integral gives the “signed area under f.” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f ” or, more commonly,
“the area under the curve.”

The previous secƟon introduced the indefinite integral, which related to an-
ƟderivaƟves. We have now defined the definite integral, which relates to areas
under a funcƟon. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in SecƟon 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notaƟon makes a bit more sense, as we
are adding up areas under the funcƟon f.

Notes:
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We pracƟce using this notaƟon.

Example 5.2.2 EvaluaƟng definite integrals
Consider the funcƟon f given in Figure 5.2.4.

Find:

1.
∫ 3

0
f(x) dx

2.
∫ 5

3
f(x) dx

3.
∫ 5

0
f(x) dx

4.
∫ 3

0
5f(x) dx

5.
∫ 1

1
f(x) dx

SÊ½çã®ÊÄ

1.
∫ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is

∫ 3
0 f(x) dx = 1

2 (3)(1) = 1.5.

2.
∫ 5
3 f(x) dx represents the area of the triangle found under the x–axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x–axis, this is
“negaƟve area.” Therefore

∫ 5
3 f(x) dx = −1.

3.
∫ 5
0 f(x) dx is the total signed area under fon [0, 5]. This is 1.5+(−1) = 0.5.

4.
∫ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.2.5.
Again, the region is a triangle, with height 5 Ɵmes that of the height of the
original triangle. Thus the area is

∫ 3
0 5f(x) dx = 1

2 (15)(1) = 7.5.

5.
∫ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0.

This example illustrates some of the properƟes of the definite integral, given
here.

Notes:

210



5.2 The Definite Integral

Theorem 5.2.1 ProperƟes of the Definite Integral

Let f and g be defined on a closed interval I that contains the values a, b
and c, and let k be a constant. The following hold:

1.
∫ a

a
f(x) dx = 0

2.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

3.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

5.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We give a brief jusƟficaƟon of Theorem 5.2.1 here.

1. As demonstrated in Example 5.2.2, there is no “area under the curve”
when the region has no width; hence this definite integral is 0.

2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, c] into
two subintervals, [a, b] and [b, c]. The total area over [a, c] is the area over
[a, b] plus the area over [b, c].
It is important to note that this sƟll holds true even if a < b < c is not
true. We discuss this in the next point.

3. This property can be viewed a merely a convenƟon to make other proper-
Ɵesworkwell. (Later wewill see how this property has a jusƟficaƟon all its
own, not necessarily in support of other properƟes.) Suppose b < a < c.
The discussion from the previous point clearly jusƟfies∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx. (5.1)

However, we sƟll claim that, as originally stated,∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx. (5.2)

Notes:
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How do EquaƟons (5.1) and (5.2) relate? Start with EquaƟon (5.1):∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx∫ c

a
f(x) dx = −

∫ a

b
f(x) dx+

∫ c

b
f(x) dx

Property (3) jusƟfies changing the sign and switching the bounds of inte-

graƟon on the −
∫ a

b
f(x) dx term; when this is done, EquaƟons (5.1) and

(5.2) are equivalent.
The conclusion is this: by adopƟng the convenƟon of Property (3), Prop-
erty (2) holds no maƩer the order of a, b and c. Again, in the next secƟon
we will see another jusƟficaƟon for this property.

4,5. Each of these may be non–intuiƟve. Property (5) states that when one
scales a funcƟon by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both ProperƟes (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Example 5.2.3 EvaluaƟng definite integrals using Theorem 5.2.1.
Consider the graph of a funcƟon f(x) shown in Figure 5.2.6. Answer the follow-
ing:

1. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

2. Is
∫ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

SÊ½çã®ÊÄ

1.
∫ b
a f(x) dx has a posiƟve value (since the area is above the x–axis) whereas∫ c
b f(x) dx has a negaƟve value. Hence

∫ b
a f(x) dx is bigger.

2.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore
∫ b
c f(x)dx

represents a posiƟve number, greater than the area described by the first
definite integral. Hence

∫ b
c f(x) dx is greater.

Notes:
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Figure 5.2.7: A graph of f(x) = 2x − 4 in
(a) and f(x) =

√
9− x2 in (b), from Exam-

ple 5.2.4.
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Figure 5.2.8: A graph of a velocity in Ex-
ample 5.2.5.

5.2 The Definite Integral

The area definiƟon of the definite integral allows us to use geometry to com-
pute the definite integral of some simple funcƟons.

Example 5.2.4 EvaluaƟng definite integrals using geometry
Evaluate the following definite integrals:

1.
∫ 5

−2
(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ

1. It is useful to sketch the funcƟon in the integrand, as shown in Figure
5.2.7(a). We see we need to compute the areas of two regions, which
we have labeled R1 and R2. Both are triangles, so the area computaƟon is
straighƞorward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Region R1 lies under the x–axis, hence it is counted as negaƟve area (we
can think of the triangle’s height as being “−8”), so∫ 5

−2
(2x− 4) dx = −16+ 9 = −7.

2. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure 5.2.7(b), with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

Example 5.2.5 Understanding moƟon given velocity
Consider the graph of a velocity funcƟon of an object moving in a straight line,
given in Figure 5.2.8, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity funcƟon gives dis-
placement. Find the maximum speed of the object and its maximum displace-
ment from its starƟng posiƟon.

SÊ½çã®ÊÄ Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15Ō/s.

At Ɵme t = 0, the displacement is 0; the object is at its starƟng posiƟon. At
Ɵme t = a, the object has moved backward 11 feet. Between Ɵmes t = a and

Notes:
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Figure 5.2.9: What is the area below y =
x2 on [0, 3]? The region is not a usual ge-
ometric shape.

Chapter 5 IntegraƟon

t = b, the object moves forward 38 feet, bringing it into a posiƟon 27 feet for-
ward of its starƟng posiƟon. From t = b to t = c the object is moving backwards
again, hence its maximum displacement is 27 feet from its starƟng posiƟon.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.9, where a region below y = x2 is shaded. What
is its area? The funcƟon y = x2 is relaƟvely simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next secƟon we will explore how to find the areas of such regions.

Notes:
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Exercises 5.2
Terms and Concepts

1. What is “total signed area”?

2. What is “displacement”?

3. What is
∫ 3

3
sin x dx?

4. Give a single definite integral that has the same value as∫ 1

0
(2x+ 3) dx+

∫ 2

1
(2x+ 3) dx.

Problems

In Exercises 5 – 10, a graph of a funcƟon f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

5.

.....

y = −2x + 4

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) dx

6.

.....

y = f(x)

.

1

.

2

.

3

.

4

.

5

.−2.

−1

.

1

.

2

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx

7.

.....

y = f(x)

. 1. 2. 3. 4.

2

.

4

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

.....

y = x − 1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx

9.

.....

f(x) =
√

4 − (x − 2)2

. 1. 2. 3. 4.

1

.

2

.

3

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx
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10.

f(x) = 3

5 10

1

2

3

x

y

(a)
∫ 5

0
f(x) dx

(b)
∫ 7

3
f(x) dx

(c)
∫ 0

0
f(x) dx

(d)
∫ b

a
f(x) dx, where

0 ≤ a ≤ b ≤ 10

In Exercises 11 – 14, a graph of a funcƟon f(x) is given; the
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa-
Ɵon.

11.

.....

y = f(x)

.

59

.

11

.

21

.

1

.

2

.

3

.−100.

−50

.

50

.

x

.

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

12.

.....

f(x) = sin(πx/2)

.

4/π

.

4/π

.

1

.

2

.

3

.

4

.

−1

.

1

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

f(x) = 3x2 − 3

4 4

4−2 −1 1 2

−5

5

10

x

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

14.

.....

f(x) = x2

. 1/3. 7/3.
1

.
2

.

1

.

2

.

3

.

4

. x.

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 15 – 16, a graph of the velocity funcƟon of an ob-
ject moving in a straight line is given. Answer the quesƟons
based on that graph.

15.

.....

1

.

2

.

3

.−1.

1

.

2

.

t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 3]?

16.

..... 1. 2. 3. 4. 5.

1

.

2

.

3

.
t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) What is the object’s total displacement on [0, 5]?
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17. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 64, where t is in seconds, from a height
of 48 feet.

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) When does the maximum displacement occur?
(d) When will the object reach a height of 0? (Hint: find

when the displacement is−48Ō.)

18. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s iniƟal velocity?
(b) When is the object’s displacement 0?
(c) How long does it take for the object to return to its

iniƟal height?
(d) When will the object reach a height of 210 feet?

In Exercises 19 – 22, let

•
∫ 2

0
f(x) dx = 5,

•
∫ 3

0
f(x) dx = 7,

•
∫ 2

0
g(x) dx = −3, and

•
∫ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

19.
∫ 2

0

(
f(x) + g(x)

)
dx

20.
∫ 3

0

(
f(x)− g(x)

)
dx

21.
∫ 3

2

(
3f(x) + 2g(x)

)
dx

22. Find nonzero values for a and b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 23 – 26, let

•
∫ 3

0
s(t) dt = 10,

•
∫ 5

3
s(t) dt = 8,

•
∫ 5

3
r(t) dt = −1, and

•
∫ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

23.
∫ 3

0

(
s(t) + r(t)

)
dt

24.
∫ 0

5

(
s(t)− r(t)

)
dt

25.
∫ 3

3

(
πs(t)− 7r(t)

)
dt

26. Find nonzero values for a and b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0

Review
In Exercises 27 – 30, evaluate the given indefinite integral.

27.
∫ (

x3 − 2x2 + 7x− 9
)
dx

28.
∫ (

sin x− cos x+ sec2 x
)
dx

29.
∫ ( 3√t+ 1

t2
+ 2t

)
dt

30.
∫ (

1
x
− csc x cot x

)
dx
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Figure 5.3.1: A graph of f(x) = 4x − x2.
What is the area of the shaded region?
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Figure 5.3.2: ApproximaƟng
∫ 4
0 (4x −

x2) dx using rectangles. The heights of the
rectangles are determined using different
rules.

Chapter 5 IntegraƟon

5.3 Riemann Sums
In the previous secƟon we defined the definite integral of a funcƟon on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the secƟon with a region whose area was not simple to
compute. In this secƟon we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximaƟon, then refine that approximaƟon to make it beƩer, then use limits
in the refining process to find the exact answer. That is what we will do here.

Consider the region given in Figure 5.3.1, which is the area under y = 4x−x2
on [0, 4]. What is the signed area of this region – i.e., what is

∫ 4
0 (4x− x2) dx?

We start by approximaƟng. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over–approximaƟon; we are including area in the rectangle
that is not under the parabola.

We have an approximaƟon of the area, using one rectangle. How can we
refine our approximaƟon tomake it beƩer? The key to this secƟon is this answer:
use more rectangles.

Let’s use 4 rectangles with an equal width of 1. This parƟƟons the interval
[0, 4] into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we
will draw a rectangle.

There are three common ways to determine the height of these rectangles:
the LeŌ Hand Rule, the Right Hand Rule, and theMidpoint Rule. The LeŌ Hand
Rule says to evaluate the funcƟon at the leŌ–hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.2, the rectangle drawn on the
interval [2, 3] has height determined by the LeŌ Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
funcƟon at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the funcƟon at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proximaƟng rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4
0 (4x − x2) dx using

these rules.

Notes:
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Figure 5.3.3: ApproximaƟng
∫ 4
0 (4x −

x2) dx in Example 5.3.1. In (a), the LeŌ
Hand Rule is used; in (b), the Right Hand
Rule is used; in (c), the Midpoint Rule is
used.

5.3 Riemann Sums

Example 5.3.1 Using the LeŌ Hand, Right Hand and Midpoint Rules
Approximate the value of

∫ 4
0 (4x − x2) dx using the LeŌ Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SÊ½çã®ÊÄ We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.3(a) we see 4 rectangles drawn on f(x) = 4x − x2 using the LeŌ
Hand Rule. (The areas of the rectangles are given in each figure.)

Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0.
We add up the areas of each rectangle (height× width) for our LeŌ Hand Rule
approximaƟon:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.3.3(b) shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.

In this example, these rectangle seem to be the mirror image of those found
in part (a) of the Figure. This is because of the symmetry of our shaded region.
Our approximaƟon gives the same answer as before, though calculated a differ-
ent way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.3.3(c) shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approximaƟon of

∫ 4
0 (4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approximaƟons of
∫ 4
0 (4x− x2) dx: 10 and 11.

SummaƟon NotaƟon

It is hard to tell at this moment which is a beƩer approximaƟon: 10 or 11?
We can conƟnue to refine our approximaƟon by using more rectangles. The
notaƟon can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summaƟon notaƟon to ameliorate this problem.

Notes:
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Chapter 5 IntegraƟon

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
wriƟng

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summaƟon notaƟon and write

..

9∑
i=1

ai.

.i=index
of summaƟon

. lower
bound

.

upper
bound

.

summand

Figure 5.3.4: Understanding summaƟon notaƟon.

The upper case sigma represents the term “sum.” The index of summaƟon
in this example is i; any symbol can be used. By convenƟon, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s pracƟce using this notaƟon.

Example 5.3.2 Using summaƟon notaƟon
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the posiƟve odd integers). Evaluate
the following summaƟons:

1.
6∑

i=1
ai 2.

7∑
i=3

(3ai − 4) 3.
4∑

i=1
(ai)2

SÊ½çã®ÊÄ

1.
6∑

i=1
ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

2. Note the starƟng value is different than 1:

7∑
i=3

(3ai − 4) = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11+ 17+ 23+ 29+ 35
= 115.

Notes:
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5.3 Riemann Sums

3.
4∑

i=1
(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84.

It might seem odd to stress a new, concise way of wriƟng summaƟons only
to write each term out as we add them up. It is. The following theorem gives
some of the properƟes of summaƟons that allow us to work with them without
wriƟng individual terms. Examples will follow.

Theorem 5.3.1 ProperƟes of SummaƟons

1.
n∑

i=1
c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=m

c · ai = c ·
n∑

i=m

ai

4.
j∑

i=m

ai +
n∑

i=j+1
ai =

n∑
i=m

ai

5.
n∑

i=1
i =

n(n+ 1)
2

6.
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

7.
n∑

i=1
i3 =

(
n(n+ 1)

2

)2

Example 5.3.3 EvaluaƟng summaƟons using Theorem 5.3.1
Revisit Example 5.3.2 and, using Theorem 5.3.1, evaluate

6∑
i=1

ai =
6∑

i=1
(2i− 1).

Notes:
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Chapter 5 IntegraƟon

SÊ½çã®ÊÄ

6∑
i=1

(2i− 1) =
6∑

i=1
2i−

6∑
i=1

(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6+ 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without wriƟng out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 5.3.1 is incredibly important when dealing with large sums as we’ll
soon see.

Riemann Sums

Consider again
∫ 4
0 (4x − x2) dx. We will approximate this definite integral

using 16 equally spaced subintervals and the Right Hand Rule in Example 5.3.4.
Before doing so, it will pay to do some careful preparaƟon.

Figure 5.3.5 shows a number line of [0, 4] divided, or parƟƟoned, into 16
equally spaced subintervals. Wedenote 0 as x1; wehavemarked the values of x5,
x9, x13 and x17. We couldmark themall, but the figurewould get crowded. While
it is easy to figure that x10 = 2.25, in general, we want a method of determining
the value of xi without consulƟng the figure. Consider:

..

xi = x1 + (i− 1)∆x

. starƟng
value

.

number of
subintervals

between x1 and xi

. subinterval
size

So x10 = x1 + 9(4/16) = 2.25.
If we had parƟƟoned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x32 as

x32 = x1 + 31(4/100) = 1.24.

(That was far faster than creaƟng a sketch first.)

Notes:
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5.3 Riemann Sums

Given any subdivision of [0, 4], the first subinterval is [x1, x2]; the second is
[x2, x3]; the i th subinterval is [xi, xi+1].

When using the LeŌ Hand Rule, the height of the i th rectangle will be f(xi).
Whenusing theRightHandRule, the height of the i th rectanglewill be f(xi+1).

Whenusing theMidpoint Rule, the height of the i th rectanglewill be f
(
xi + xi+1

2

)
.

Thus approximaƟng
∫ 4
0 (4x− x2) dx with 16 equally spaced subintervals can

be expressed as follows, where∆x = 4/16 = 1/4:

LeŌ Hand Rule:
16∑
i=1

f(xi)∆x

Right Hand Rule:
16∑
i=1

f(xi+1)∆x

Midpoint Rule:
16∑
i=1

f
(
xi + xi+1

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us pracƟce using the Right Hand Rule and the summaƟon formulas introduced
in Theorem 5.3.1.

Example 5.3.4 ApproximaƟng definite integrals using sums
Approximate

∫ 4
0 (4x−x2) dx using the Right Hand Rule and summaƟon formulas

with 16 and 1000 equally spaced intervals.

SÊ½çã®ÊÄ Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi+1)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0+ (i− 1)∆x, we have

xi+1 = 0+
(
(i+ 1)− 1

)
∆x

= i∆x

Notes:
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Figure 5.3.6: ApproximaƟng
∫ 4
0 (4x −

x2) dx with the Right Hand Rule and 16
evenly spaced subintervals.

Chapter 5 IntegraƟon

Using the summaƟon formulas, consider:∫ 4

0
(4x− x2) dx ≈

16∑
i=1

f(xi+1)∆x

=

16∑
i=1

f(i∆x)∆x

=

16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)
16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3)

= (4∆x2)
16 · 17

2
−∆x3

16(17)(33)
6

(∆x = 0.25)

= 10.625

We were able to sum up the areas of 16 rectangles with very liƩle computaƟon.
In Figure 5.3.6 the funcƟon and the 16 rectangles are graphed. While some
rectangles over–approximate the area, other under–approximate the area (by
about the same amount). Thus our approximate area of 10.625 is likely a fairly
good approximaƟon.

NoƟce EquaƟon (5.3); by changing the 16’s to 1,000’s (and appropriately
changing the value of ∆x), we can use that equaƟon to sum up 1000 rectan-
gles! We do so here, skipping from the original summand to the equivalent of
EquaƟon (5.3) to save space. Note that∆x = 4/1000 = 0.004.∫ 4

0
(4x− x2) dx ≈

1000∑
i=1

f(xi+1)∆x

= (4∆x2)
1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3

1000(1001)(2001)
6

= 10.666656

Using many, many rectangles, we have a likely good approximaƟon of∫ 4
0 (4x− x2)∆x. That is,∫ 4

0
(4x− x2) dx ≈ 10.666656.

Notes:
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5.3 Riemann Sums

Before the above example, we statedwhat the summaƟons for the LeŌHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as∆x, and

2. each rectangle’s height is determined by evaluaƟng f at a parƟcular point
in each subinterval. For instance, the LeŌ Hand Rule states that each rect-
angle’s height is determined by evaluaƟng f at the leŌ hand endpoint of
the subinterval the rectangle lives on.

One could parƟƟon an interval [a, b]with subintervals that do not have the same
size. We refer to the length of the i th subinterval as∆xi. Also, one could deter-
mine each rectangle’s height by evaluaƟng f at any point ci in the i th subinterval.
Thus the height of the i th subinterval would be f(ci), and the area of the i th rect-
angle would be f(ci)∆xi. These ideas are formally defined below.

DefiniƟon 5.3.1 ParƟƟon

A parƟƟon ∆x of a closed interval [a, b] is a set of numbers x1, x2, . . .
xn+1 where

a = x1 < x2 < . . . < xn < xn+1 = b.

The length of the i th subinterval, [xi, xi+1], is ∆xi = xi+1 − xi. If [a, b] is
parƟƟoned into subintervals of equal length, we let ∆x represent the
length of each subinterval.

The size of the parƟƟon, denoted ||∆x||, is the length of the largest
subinterval of the parƟƟon.

SummaƟons of rectangleswith area f(ci)∆xi are named aŌermathemaƟcian
Georg Friedrich Bernhard Riemann, as given in the following definiƟon.

DefiniƟon 5.3.2 Riemann Sum

Let f be defined on a closed interval [a, b], let∆x be a parƟƟon of [a, b]
and let ci denote any value in the i th subinterval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

Notes:
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Figure 5.3.7: An example of a general Rie-
mann sum to approximate

∫ 4
0 (4x−x2) dx.

Chapter 5 IntegraƟon

Figure 5.3.7 shows the approximaƟng rectangles of a Riemann sumof
∫ 4
0 (4x−

x2) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of
the rectangles can be determined without following a parƟcular rule.

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construcƟon makes computaƟons easier.
Beforeworking another example, let’s summarize someofwhatwehave learned
in a convenient way.

Key Idea 5.3.1 Riemann Sum Concepts

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a
n

.

2. The i th term of an equally spaced parƟƟon is xi = a + (i − 1)∆x.
(Thus x1 = a and xn+1 = b.)

3. The LeŌ Hand Rule summaƟon is:
n∑

i=1
f(xi)∆x.

4. The Right Hand Rule summaƟon is:
n∑

i=1
f(xi+1)∆x.

5. The Midpoint Rule summaƟon is:
n∑

i=1
f
(
xi + xi+1

2

)
∆x.

Let’s do another example.

Example 5.3.5 ApproximaƟng definite integrals with sums
Approximate

∫ 3
−2(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

SÊ½çã®ÊÄ Following Key Idea 5.3.1, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i− 1) = i/2− 5/2.

Notes:

226



.....

−2

.

−1

.

1

.

2

.

3

.

10

.

17

. −8.

x

.

y

Figure 5.3.8: ApproximaƟng
∫ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
5.3.5.

5.3 Riemann Sums

As we are using the Midpoint Rule, we will also need xi+1 and
xi + xi+1

2
. Since

xi = i/2− 5/2, xi+1 = (i+ 1)/2− 5/2 = i/2− 2. This gives

xi + xi+1

2
=

(i/2− 5/2) + (i/2− 2)
2

=
i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using summaƟon
formulas. ∫ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi + xi+1

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=

10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x
10∑
i=1

[(
5
2

)
i− 37

4

]

= ∆x

(
5
2

10∑
i=1

(i)−
10∑
i=1

(
37
4

))

=
1
2

(
5
2
· 10(11)

2
− 10 · 37

4

)
=

45
2

= 22.5

Note the graph of f(x) = 5x + 2 in Figure 5.3.8. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summaƟon techniques. We find that the exact answer is indeed
22.5. One of the strengths of the Midpoint Rule is that oŌen each rectangle
includes area that should not be counted, but misses other area that should.
When the parƟƟon size is small, these two amounts are about equal and these
errors almost “cancel each other out.” In this example, since our funcƟon is a
line, these errors are exactly equal and they do cancel each other out, giving us
the exact answer.

Note too thatwhen the funcƟon is negaƟve, the rectangles have a “negaƟve”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
negaƟve, the area is counted as negaƟve.

NoƟce in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculaƟons unƟl the very end.

Notes:
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Chapter 5 IntegraƟon

MathemaƟcians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, wherewe do not specify a value of n unƟl the very end.

Example 5.3.6 ApproximaƟngdefinite integralswith a formula, using sums
Revisit

∫ 4
0 (4x−x2)dx yet again. Approximate this definite integral using theRight

Hand Rule with n equally spaced subintervals.

SÊ½çã®ÊÄ Using Key Idea 5.3.1, we know ∆x = 4−0
n = 4/n. We also

find xi = 0 +∆x(i − 1) = 4(i − 1)/n. The Right Hand Rule uses xi+1, which is
xi+1 = 4i/n.

We construct the Right Hand Rule Riemann sum as follows. Be sure to fol-
low each step carefully. If you get stuck, and do not understand how one line
proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.∫ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f
(
4i
n

)
∆x

=

n∑
i=1

[
4
4i
n
−
(
4i
n

)2
]
∆x

=

n∑
i=1

(
16∆x
n

)
i−

n∑
i=1

(
16∆x
n2

)
i2

=

(
16∆x
n

) n∑
i=1

i−
(
16∆x
n2

) n∑
i=1

i2

=

(
16∆x
n

)
· n(n+ 1)

2
−
(
16∆x
n2

)
n(n+ 1)(2n+ 1)

6

(
recall

∆x = 4/n

)
=

32(n+ 1)
n

− 32(n+ 1)(2n+ 1)
3n2

(now simplify)

=
32
3

(
1− 1

n2

)
The result is an amazing, easy to use formula. To approximate the definite

integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10
and compute ∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.
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5.3 Riemann Sums

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is noweasy to approximate the integralwith 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathemaƟcs has been
limited to geometry and algebra (finding areas and manipulaƟng expressions).
Now we apply calculus. For any finite n, we know that∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.

Both common sense and high–level mathemaƟcs tell us that as n gets large, the
approximaƟon gets beƩer. In fact, if we take the limit as n → ∞, we get the
exact area described by

∫ 4
0 (4x− x2) dx. That is,∫ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6

This is a fantasƟc result. By considering n equally–spaced subintervals, we ob-
tained a formula for an approximaƟon of the definite integral that involved our
variable n. As n grows large – without bound – the error shrinks to zero and we
obtain the exact area.

This secƟon started with a fundamental calculus technique: make an ap-
proximaƟon, refine the approximaƟon to make it beƩer, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s pracƟce this again.

Example 5.3.7 ApproximaƟngdefinite integralswith a formula, using sums
Find a formula that approximates

∫ 5
−1 x

3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

SÊ½çã®ÊÄ Following Key Idea 5.3.1, we have ∆x = 5−(−1)
n = 6/n.

We have xi = (−1) + (i − 1)∆x; as the Right Hand Rule uses xi+1, we have
xi+1 = (−1) + i∆x.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-

Notes:
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Figure 5.3.9: ApproximaƟng
∫ 5
−1 x

3 dx us-
ing the Right Hand Rule and 10 evenly
spaced subintervals.

Chapter 5 IntegraƟon

plificaƟons):∫ 5

−1
x3 dx ≈

n∑
i=1

f(xi+1)∆x

=

n∑
i=1

f(−1+ i∆x)∆x

=

n∑
i=1

(−1+ i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)

=

n∑
i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summaƟon)

= ∆x4
n∑

i=1
i3 − 3∆x3

n∑
i=1

i2 + 3∆x2
n∑

i=1
i−

n∑
i=1

∆x

= ∆x4
(
n(n+ 1)

2

)2

− 3∆x3
n(n+ 1)(2n+ 1)

6
+ 3∆x2

n(n+ 1)
2

− n∆x

(use∆x = 6/n)

=
1296
n4

· n
2(n+ 1)2

4
− 3

216
n3

· n(n+ 1)(2n+ 1)
6

+ 3
36
n2

n(n+ 1)
2

− 6

(now do a sizable amount of algebra to simplify)

= 156+
378
n

+
216
n2

Once again, we have found a compact formula for approximaƟng the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximaƟon of 195.96 (these rectangles are shown
in Figure 5.3.9). Using n = 100 gives an approximaƟon of 159.802.

Now find the exact answer using a limit:∫ 5

−1
x3 dx = lim

n→∞

(
156+

378
n

+
216
n2

)
= 156.

Limits of Riemann Sums

We have used limits to evaluate given definite integrals. Will this always
work? We will show, given not–very–restricƟve condiƟons, that yes, it will al-
ways work.
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5.3 Riemann Sums

The previous two examples demonstrated how an expression such as

n∑
i=1

f(xi+1)∆x

can be rewriƩen as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summaƟon as a funcƟon of n.

An n value is given (where n is a posiƟve integer), and the sum of areas of n
equally spaced rectangles is returned, using the LeŌ Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b
a f(x) dx, let:

• SL(n) =
n∑

i=1
f(xi)∆x, the sum of equally spaced rectangles formed using

the LeŌ Hand Rule,

• SR(n) =
n∑

i=1
f(xi+1)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi + xi+1

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definiƟon of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any ε > 0,
there exists N > 0 such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b
a f(x) dx. It also goes two steps further.

The theorem states that the height of each rectangle doesn’t have to be deter-
mined following a specific rule, but could be f(ci), where ci is any point in the i th
subinterval, as discussed before Riemann Sums were defined in DefiniƟon 5.3.2.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notaƟon of DefiniƟon 5.3.1, let ∆xi denote the length
of the i th subinterval in a parƟƟon of [a, b] and let ||∆x|| represent the length
of the largest subinterval in the parƟƟon: that is, ||∆x|| is the largest of all the
∆xi’s. If ||∆x|| is small, then [a, b] must be parƟƟoned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as ||∆x|| goes
to zero” implies that the number n of subintervals in the parƟƟon is growing to

Notes:
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infinity, as the largest subinterval length is becoming arbitrarily small. We then
interpret the expression

lim
||∆x||→0

n∑
i=1

f(ci)∆xi

as “the limit of the sum of the areas of rectangles, where the width of each
rectangle can be different but geƫng small, and the height of each rectangle is
not necessarily determined by a parƟcular rule.” The theorem states that this
Riemann Sum also gives the value of the definite integral of f over [a, b].

Theorem 5.3.2 Definite Integrals and the Limit of Riemann Sums

Let f be conƟnuous on the closed interval [a, b] and let SL(n), SR(n),
SM(n),∆x,∆xi and ci be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n) = lim
n→∞

n∑
i=1

f(ci)∆x,

2. lim
n→∞

n∑
i=1

f(ci)∆x =
∫ b

a
f(x) dx, and

3. lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi =
∫ b

a
f(x) dx.

We summarize what we have learned over the past few secƟons here.

• Knowing the “area under the curve” can be useful. One commonexample:
the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b
a f(x) dx, to be the signed area

under f on the interval [a, b].

• While we can approximate a definite integral manyways, we have focused
on using rectangles whose heights can be determined using the LeŌ Hand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

Notes:
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5.3 Riemann Sums

We first learned of derivaƟves through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next secƟonwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connecƟon between
the indefinite integral and the definite integral.

Notes:
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Exercises 5.3
Terms and Concepts
1. A fundamental calculus technique is to use to re-

fine approximaƟons to get an exact answer.

2. What is the upper bound in the summaƟon
14∑
i=7

(48i− 201)?

3. This secƟon approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems
In Exercises 5 – 12, write out each term of the summaƟon and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
10∑
i=1

5

9.
5∑

i=1

1
i

10.
6∑

i=1

(−1)ii

11.
4∑

i=1

(
1
i
− 1

i+ 1

)

12.
5∑

i=0

(−1)i cos(πi)

In Exercises 13 – 16, write each sum in summaƟon notaƟon.

13. 3+ 6+ 9+ 12+ 15

14. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

15. 1
2
+

2
3
+

3
4
+

4
5

16. 1− e+ e2 − e3 + e4

In Exercises 17 – 24, evaluate the summaƟon using Theorem
5.3.1.

17.
10∑
i=1

5

18.
25∑
i=1

i

19.
10∑
i=1

(3i2 − 2i)

20.
15∑
i=1

(2i3 − 10)

21.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

22.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

23. 1+ 2+ 3+ . . .+ 99+ 100

24. 1+ 4+ 9+ . . .+ 361+ 400

Theorem 5.3.1 states
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai , so

n∑
i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai .

Use this fact, alongwith other parts of Theorem5.3.1, to eval-
uate the summaƟons given in Exercises 25 – 28.

25.
20∑

i=11

i

26.
25∑

i=16

i3

27.
12∑
i=7

4

28.
10∑
i=5

4i3
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In Exercises 29 – 34, a definite integral∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

29.
∫ 3

−3
x2 dx, with 6 rectangles using the LeŌ Hand Rule.

30.
∫ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

31.
∫ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

32.
∫ 3

0
2x dx, with 5 rectangles using the LeŌ Hand Rule.

33.
∫ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

34.
∫ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 35 – 40, a definite integral∫ b

a
f(x) dx is given. As demonstrated in Examples 5.3.6

and 5.3.7, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n

subintervals and the provided rule.
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n → ∞, to find the

exact value of
∫ b

a
f(x) dx.

35.
∫ 1

0
x3 dx, using the Right Hand Rule.

36.
∫ 1

−1
3x2 dx, using the LeŌ Hand Rule.

37.
∫ 3

−1
(3x− 1) dx, using the Midpoint Rule.

38.
∫ 4

1
(2x2 − 3) dx, using the LeŌ Hand Rule.

39.
∫ 10

−10
(5− x) dx, using the Right Hand Rule.

40.
∫ 1

0
(x3 − x2) dx, using the Right Hand Rule.

Review
In Exercises 41 – 46, find an anƟderivaƟve of the given func-
Ɵon.

41. f(x) = 5 sec2 x

42. f(x) = 7
x

43. g(t) = 4t5 − 5t3 + 8

44. g(t) = 5 · 8t

45. g(t) = cos t+ sin t

46. f(x) = 1√
x
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Figure 5.4.1: The area of the shaded re-
gion is F(x) =

∫ x
a f(t) dt.

Chapter 5 IntegraƟon

5.4 The Fundamental Theorem of Calculus

Let f(t)be a conƟnuous funcƟondefinedon [a, b]. The definite integral
∫ b
a f(x)dx

is the “area under f ” on [a, b]. We can turn this concept into a funcƟon by leƫng
the upper (or lower) bound vary.

Let F(x) =
∫ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.4.1. We can study this funcƟon using our knowledge of the definite
integral. For instance, F(a) = 0 since

∫ a
a f(t) dt = 0.

We can also apply calculus ideas to F(x); in parƟcular, we can compute its
derivaƟve. While thismay seem like an innocuous thing to do, it has far–reaching
implicaƟons, as demonstrated by the fact that the result is given as an important
theorem.

Theorem 5.4.1 The Fundamental Theorem of Calculus, Part 1

Let f be conƟnuous on [a, b] and let F(x) =
∫ x
a f(t) dt. Then F is a differ-

enƟable funcƟon on (a, b), and

F ′(x) = f(x).

IniƟally this seems simple, as demonstrated in the following example.

Example 5.4.1 Using the Fundamental Theorem of Calculus, Part 1
Let F(x) =

∫ x

−5
(t2 + sin t) dt. What is F ′(x)?

SÊ½çã®ÊÄ Using the Fundamental Theoremof Calculus, wehave F ′(x) =
x2 + sin x.

This simple example reveals something incredible: F(x) is an anƟderivaƟve
of x2 + sin x! Therefore, F(x) = 1

3x
3 − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−5) = 0, which allows us
to compute C. In this case, C = cos(−5) + 125

3 .)

We have done more than found a complicated way of compuƟng an an-
ƟderivaƟve. Consider a funcƟon f defined on an open interval containing a, b
and c. Suppose we want to compute

∫ b
a f(t) dt. First, let F(x) =

∫ x
c f(t) dt. Using

Notes:
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5.4 The Fundamental Theorem of Calculus

the properƟes of the definite integral found in Theorem 5.2.1, we know∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

= −
∫ a

c
f(t) dt+

∫ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using anƟderivaƟves! This is the second part of the
Fundamental Theorem of Calculus.

Theorem 5.4.2 The Fundamental Theorem of Calculus, Part 2

Let f be conƟnuous on [a, b] and let F be any anƟderivaƟve of f. Then∫ b

a
f(x) dx = F(b)− F(a).

Example 5.4.2 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of Ɵme in the previous secƟon studying

∫ 4
0 (4x − x2) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SÊ½çã®ÊÄ We need an anƟderivaƟve of f(x) = 4x− x2. All anƟderiva-
Ɵves of f have the form F(x) = 2x2 − 1

3x
3 + C; for simplicity, choose C = 0.

The Fundamental Theorem of Calculus states∫ 4

0
(4x− x2) dx = F(4)− F(0) =

(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous secƟon, just
with much less work.

NotaƟon: A special notaƟon is oŌen used in the process of evaluaƟng definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-
ing F(b)− F(a), the notaƟon F(x)

∣∣∣b
a
is used. Thus the soluƟon to Example 5.4.2

would be wriƩen as:∫ 4

0
(4x− x2) dx =

(
2x2 − 1

3
x3
)∣∣∣∣4

0
=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.
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Chapter 5 IntegraƟon

The Constant C: Any anƟderivaƟve F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evaluaƟng F(b) − F(a), so it does not maƩer what value is picked. This being
the case, we might as well let C = 0.

Example 5.4.3 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

1.
∫ 2

−2
x3 dx 2.

∫ π

0
sin x dx 3.

∫ 5

0
et dt 4.

∫ 9

4

√
u du 5.

∫ 5

1
2 dx

SÊ½çã®ÊÄ

1.
∫ 2

−2
x3 dx =

1
4
x4
∣∣∣∣2
−2

=

(
1
4
24
)
−
(
1
4
(−2)4

)
= 0.

2.
∫ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π −

(
− cos 0

)
= 1+ 1 = 2.

(This is interesƟng; it says that the area under one “hump” of a sine curve
is 2.)

3.
∫ 5

0
et dt = et

∣∣∣5
0
= e5 − e0 = e5 − 1 ≈ 147.41.

4.
∫ 9

4

√
u du =

∫ 9

4
u

1
2 du =

2
3
u

3
2

∣∣∣∣9
4
=

2
3

(
9

3
2 − 4

3
2

)
=

2
3
(
27− 8

)
=

38
3
.

5.
∫ 5

1
2 dx = 2x

∣∣∣5
1
= 2(5)− 2 = 2(5− 1) = 8.

This integral is interesƟng; the integrand is a constant funcƟon, hence we
are finding the area of a rectangle with width (5 − 1) = 4 and height 2.
NoƟce how the evaluaƟon of the definite integral led to 2(4) = 8.

In general, if c is a constant, then
∫ b
a c dx = c(b− a).

Understanding MoƟon with the Fundamental Theorem of
Calculus

We established, starƟng with Key Idea 2.2.1, that the derivaƟve of a posiƟon
funcƟon is a velocity funcƟon, and the derivaƟve of a velocity funcƟon is an ac-
celeraƟon funcƟon. Now consider definite integrals of velocity and acceleraƟon

funcƟons. Specifically, if v(t) is a velocity funcƟon, what does
∫ b

a
v(t) dtmean?
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5.4 The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus states that∫ b

a
v(t) dt = V(b)− V(a),

where V(t) is any anƟderivaƟve of v(t). Since v(t) is a velocity funcƟon, V(t)
must be a posiƟon funcƟon, and V(b)− V(a)measures a change in posiƟon, or
displacement.

Example 5.4.4 Finding displacement
A ball is thrown straight up with velocity given by v(t) = −32t + 20Ō/s, where

t is measured in seconds. Find, and interpret,
∫ 1

0
v(t) dt.

SÊ½çã®ÊÄ Using the Fundamental Theorem of Calculus, we have∫ 1

0
v(t) dt =

∫ 1

0
(−32t+ 20) dt

= −16t2 + 20t
∣∣∣1
0

= 4.

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t + 20,
the height of the ball, 1 second later, will be 4 feet above the iniƟal height. (Note
that the ball has traveled much farther. It has gone up to its peak and is falling
down, but the difference between its height at t = 0 and t = 1 is 4Ō.)

IntegraƟng a rate of change funcƟon gives total change. Velocity is the rate
of posiƟon change; integraƟng velocity gives the total change of posiƟon, i.e.,
displacement.

IntegraƟng a speed funcƟon gives a similar, though different, result. Speed
is also the rate of posiƟon change, but does not account for direcƟon. So inte-
graƟng a speed funcƟon gives total change of posiƟon, without the possibility
of “negaƟve posiƟon change.” Hence the integral of a speed funcƟon gives dis-
tance traveled.

As acceleraƟon is the rate of velocity change, integraƟng an acceleraƟon
funcƟon gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = 5miles/h2 and t is measured in hours,
then ∫ 3

0
a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.

Notes:
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Chapter 5 IntegraƟon

The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theoremof Calculus (FTC) states that given F(x) =∫ x

a
f(t) dt, F ′(x) = f(x). Using other notaƟon,

d
dx
(
F(x)

)
= f(x). While we have

just pracƟced evaluaƟng definite integrals, someƟmes finding anƟderivaƟves is
impossible and we need to rely on other techniques to approximate the value
of a definite integral. FuncƟons wriƩen as F(x) =

∫ x
a f(t) dt are useful in such

situaƟons.
It may be of further use to compose such a funcƟon with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a
f(t) dt.

What is the derivaƟve of such a funcƟon? The Chain Rule can be employed to
state

d
dx

(
F
(
g(x)

))
= F ′

(
g(x)

)
g ′(x) = f

(
g(x)

)
g ′(x).

An example will help us understand this.

Example 5.4.5 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
∫ x2

2
ln t dt.

SÊ½çã®ÊÄ We can view F(x) as being the funcƟon G(x) =

∫ x

2
ln t dt

composed with g(x) = x2; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G ′(x) = ln x. The Chain Rule gives us

F ′(x) = G ′(g(x))g ′(x)
= ln(g(x))g ′(x)
= ln(x2)2x
= 2x ln x2

Normally, the steps defining G(x) and g(x) are skipped.

PracƟce this once more.

Example 5.4.6 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
∫ 5

cos x
t3 dt.
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Figure 5.4.2: Finding the area bounded by
two funcƟons on an interval; it is found
by subtracƟng the area under g from the
area under f.
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Figure 5.4.3: Sketching the region en-
closed by y = x2 + x− 5 and y = 3x− 2
in Example 5.4.7.

5.4 The Fundamental Theorem of Calculus

SÊ½çã®ÊÄ Note that F(x) = −
∫ cos x

5
t3 dt. Viewed this way, the deriva-

Ɵve of F is straighƞorward:

F ′(x) = sin x cos3 x.

Area Between Curves

Consider conƟnuous funcƟons f(x) and g(x) defined on [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure 5.4.2. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathemaƟcal notaƟon, the area is

∫ b

a
f(x) dx−

∫ b

a
g(x) dx.

ProperƟes of the definite integral allow us to simplify this expression to

∫ b

a

(
f(x)− g(x)

)
dx.

Theorem 5.4.3 Area Between Curves

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

Example 5.4.7 Finding area between curves
Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.

SÊ½çã®ÊÄ It will help to sketch these two funcƟons, as done in Figure
5.4.3. The region whose area we seek is completely bounded by these two
funcƟons; they seem to intersect at x = −1 and x = 3. To check, set x2+x−5 =

Notes:
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Figure 5.4.5: Differently sized rectan-
gles give upper and lower bounds on∫ 4
1 f(x) dx; the last rectangle matches the
area exactly.

Chapter 5 IntegraƟon

3x− 2 and solve for x:

x2 + x− 5 = 3x− 2
(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0
(x− 3)(x+ 1) = 0

x = −1, 3.

Following Theorem 5.4.3, the area is

∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1
(−x2 + 2x+ 3) dx

=

(
−1
3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1
3
(27) + 9+ 9−

(
1
3
+ 1− 3

)
= 10

2
3
= 10.6

The Mean Value Theorem and Average Value

Consider the graph of a funcƟon f in Figure 5.4.4 and the area defined by∫ 4
1 f(x) dx. Three rectangles are drawn in Figure 5.4.5; in (a), the height of the
rectangle is greater than f on [1, 4], hence the area of this rectangle is is greater
than

∫ 4
0 f(x) dx.

In (b), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than

∫ 4
1 f(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of

∫ 4
0 f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too liƩle,” as in (b), give areas greater/lesser than
∫ 4
1 f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

Notes:
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Mean Value Theorem. In (b), y = f(x) is
shiŌed down by f(c); the resulƟng “area
under the curve” is 0.

5.4 The Fundamental Theorem of Calculus

Theorem 5.4.4 The Mean Value Theorem of IntegraƟon

Let f be conƟnuous on [a, b]. There exists a value c in [a, b] such that∫ b

a
f(x) dx = f(c)(b− a).

This is an existenƟal statement; c exists, but we do not provide a method of
finding it. Theorem 5.4.4 is directly connected to the Mean Value Theorem of
DifferenƟaƟon, given as Theorem 3.2.1; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example 5.4.8 Using the Mean Value Theorem
Consider

∫ π

0 sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SÊ½çã®ÊÄ We first need to evaluate
∫ π

0 sin x dx. (This was previously
done in Example 5.4.3.) ∫ π

0
sin x dx = − cos x

∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin c = 2.

π sin c = 2 ⇒ sin c = 2/π ⇒ c = arcsin(2/π) ≈ 0.69.

In Figure 5.4.6 sin x is sketched along with a rectangle with height sin(0.69).
The area of the rectangle is the same as the area under sin x on [0, π].

Let f be a funcƟon on [a, b]with c such that f(c)(b−a) =
∫ b
a f(x) dx. Consider∫ b

a

(
f(x)− f(c)

)
dx:∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a
f(x)−

∫ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= 0.

When f(x) is shiŌed by −f(c), the amount of area under f above the x–axis on
[a, b] is the same as the amount of area below the x–axis above f; see Figure
5.4.7 for an illustraƟon of this. In this sense, we can say that f(c) is the average
value of f on [a, b].
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Chapter 5 IntegraƟon

The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewriƩen as

f(c) =
1

b− a

∫ b

a
f(x) dx,

for some value of c in [a, b]. Next, parƟƟon the interval [a, b] into n equally
spaced subintervals, a = x1 < x2 < . . . < xn+1 = b and choose any ci in
[xi, xi+1]. The average of the numbers f(c1), f(c2), …, f(cn) is:

1
n

(
f(c1) + f(c2) + . . .+ f(cn)

)
=

1
n

n∑
i=1

f(ci).

MulƟply this last expression by 1 in the form of (b−a)
(b−a) :

1
n

n∑
i=1

f(ci) =
n∑

i=1
f(ci)

1
n

=

n∑
i=1

f(ci)
1
n
(b− a)
(b− a)

=
1

b− a

n∑
i=1

f(ci)
b− a
n

=
1

b− a

n∑
i=1

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n → ∞:

lim
n→∞

1
b− a

n∑
i=1

f(ci)∆x =
1

b− a

∫ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n → ∞.

This leads us to a definiƟon.

DefiniƟon 5.4.1 The Average Value of f on [a, b]

Let f be conƟnuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. I.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a
f(x) dx.
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5.4 The Fundamental Theorem of Calculus

An applicaƟon of this definiƟon is given in the following example.

Example 5.4.9 Finding the average value of a funcƟon
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − 1)2 on [0, 3], where t is measured in seconds and v(t) is measured
in Ō/s.

What is the average velocity of the object?

SÊ½çã®ÊÄ By our definiƟon, the average velocity is:

1
3− 0

∫ 3

0
(t− 1)2 dt =

1
3

∫ 3

0

(
t2 − 2t+ 1

)
dt =

1
3

(
1
3
t3 − t2 + t

)∣∣∣∣3
0
= 1 Ō/s.

We can understand the above example through a simpler situaƟon. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/Ɵme = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 5.4.9? We calculate
this by integraƟng its velocity funcƟon:

∫ 3
0 (t − 1)2 dt = 3 Ō. Its final posiƟon

was 3 feet from its iniƟal posiƟon aŌer 3 seconds: its average velocity was 1 Ō/s.

This secƟon has laid the groundwork for a lot of great mathemaƟcs to fol-
low. The most important lesson is this: definite integrals can be evaluated using
anƟderivaƟves. Since the previous secƟon established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, compuƟng anƟderivaƟves is much
more difficult than compuƟng derivaƟves. The next chapter is devoted to tech-
niques of finding anƟderivaƟves so that a wide variety of definite integrals can
be evaluated. Before that, the next secƟon explores techniques of approximat-
ing the value of definite integrals beyond using the LeŌ Hand, Right Hand and
Midpoint Rules. These techniques are invaluable when anƟderivaƟves cannot
be computed, or when the actual funcƟon f is unknown and all we know is the
value of f at certain x-values.
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Exercises 5.4
Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integraƟon is most commonly used when
evaluaƟng definite integrals?

3. T/F: If f is a conƟnuous funcƟon, then F(x) =
∫ x

a
f(t) dt is

also a conƟnuous funcƟon.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems
In Exercises 5 – 28, evaluate the definite integral.

5.
∫ 3

1
(3x2 − 2x+ 1) dx

6.
∫ 4

0
(x− 1)2 dx

7.
∫ 1

−1
(x3 − x5) dx

8.
∫ π

π/2
cos x dx

9.
∫ π/4

0
sec2 x dx

10.
∫ e

1

1
x
dx

11.
∫ 1

−1
5x dx

12.
∫ −1

−2
(4− 2x3) dx

13.
∫ π

0
(2 cos x− 2 sin x) dx

14.
∫ 3

1
ex dx

15.
∫ 4

0

√
t dt

16.
∫ 25

9

1√
t
dt

17.
∫ 8

1

3√x dx

18.
∫ 2

1

1
x
dx

19.
∫ 2

1

1
x2

dx

20.
∫ 2

1

1
x3

dx

21.
∫ 1

0
x dx

22.
∫ 1

0
x2 dx

23.
∫ 1

0
x3 dx

24.
∫ 1

0
x100 dx

25.
∫ 4

−4
dx

26.
∫ −5

−10
3 dx

27.
∫ 2

−2
0 dx

28.
∫ π/3

π/6
csc x cot x dx

29. Explain why:

(a)
∫ 1

−1
xn dx = 0, when n is a posiƟve, odd integer, and

(b)
∫ 1

−1
xn dx = 2

∫ 1

0
xn dx when n is a posiƟve, even

integer.

30. Explain why
∫ a+2π

a
sin t dt = 0 for all values of a.
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In Exercises 31 – 34, find a value c guaranteed by the Mean
Value Theorem.

31.
∫ 2

0
x2 dx

32.
∫ 2

−2
x2 dx

33.
∫ 1

0
ex dx

34.
∫ 16

0

√
x dx

In Exercises 35 – 40, find the average value of the funcƟon on
the given interval.

35. f(x) = sin x on [0, π/2]

36. y = sin x on [0, π]

37. y = x on [0, 4]

38. y = x2 on [0, 4]

39. y = x3 on [0, 4]

40. g(t) = 1/t on [1, e]

In Exercises 41 – 46, a velocity funcƟon of an object moving
along a straight line is given. Find the displacement of the
object over the given Ɵme interval.

41. v(t) = −32t+ 20Ō/s on [0, 5]

42. v(t) = −32t+ 200Ō/s on [0, 10]

43. v(t) = 10Ō/s on [0, 3].

44. v(t) = 2tmph on [−1, 1]

45. v(t) = cos t Ō/s on [0, 3π/2]

46. v(t) = 4√t Ō/s on [0, 16]

In Exercises 47 – 50, an acceleraƟon funcƟon of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given Ɵme interval.

47. a(t) = −32Ō/s2 on [0, 2]

48. a(t) = 10Ō/s2 on [0, 5]

49. a(t) = t Ō/s2 on [0, 2]

50. a(t) = cos t Ō/s2 on [0, π]

In Exercises 51 – 54, sketch the given funcƟons and find the
area of the enclosed region.

51. y = 2x, y = 5x, and x = 3.

52. y = −x+ 1, y = 3x+ 6, x = 2 and x = −1.

53. y = x2 − 2x+ 5, y = 5x− 5.

54. y = 2x2 + 2x− 5, y = x2 + 3x+ 7.

In Exercises 55 – 58, find F ′(x).

55. F(x) =
∫ x3+x

2

1
t
dt

56. F(x) =
∫ 0

x3
t3 dt

57. F(x) =
∫ x2

x
(t+ 2) dt

58. F(x) =
∫ ex

ln x
sin t dt
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Figure 5.5.1: Graphically represenƟng
three definite integrals that cannot be
evaluated using anƟderivaƟves.

Chapter 5 IntegraƟon

5.5 Numerical IntegraƟon
The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on compuƟng an-
ƟderivaƟves. Despite the power of this theorem, there are sƟll situaƟons where
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situaƟon we explore is where we cannot compute the an-
ƟderivaƟve of the integrand. The second case is when we actually do not know
the funcƟon in the integrand, but only its valuewhen evaluated at certain points.

An elementary funcƟon is any funcƟon that is a combinaƟon of polynomial,
nth root, raƟonal, exponenƟal, logarithmic and trigonometric funcƟons. We can
compute the derivaƟve of any elementary funcƟon, but there aremany elemen-
tary funcƟons of which we cannot compute an anƟderivaƟve. For example, the
following funcƟons do not have anƟderivaƟves that we can express with ele-
mentary funcƟons:

e−x2 , sin(x3) and
sin x
x

.

The simplest way to refer to the anƟderivaƟves of e−x2 is to simply write∫
e−x2 dx.
This secƟon outlines three common methods of approximaƟng the value of

definite integrals. We describe each as a systemaƟc method of approximaƟng
area under a curve. By approximaƟng this area accurately, we find an accurate
approximaƟon of the corresponding definite integral.

We will apply the methods we learn in this secƟon to the following definite
integrals: ∫ 1

0
e−x2 dx,

∫ π
2

− π
4

sin(x3) dx, and
∫ 4π

0.5

sin(x)
x

dx,

as pictured in Figure 5.5.1.

The LeŌ and Right Hand Rule Methods

In SecƟon 5.3 we addressed the problem of evaluaƟng definite integrals by
approximaƟng the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximaƟng definite integrals.

We start with a review of notaƟon. Let f be a conƟnuous funcƟon on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We parƟƟon [a, b] into n

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these

Notes:
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Figure 5.5.2: ApproximaƟng
∫ 1
0 e−x2 dx in

Example 5.5.1.

5.5 Numerical IntegraƟon

subintervals are labeled as

x1 = a, x2 = a+∆x, x3 = a+ 2∆x, . . . , xi = a+ (i− 1)∆x, . . . , xn+1 = b.

Key Idea 5.3.1 states that to use the LeŌ Hand Rule we use the summaƟon
n∑

i=1
f(xi)∆x and to use the Right Hand Rule we use

n∑
i=1

f(xi+1)∆x. We review

the use of these rules in the context of examples.

Example 5.5.1 ApproximaƟng definite integrals with rectangles

Approximate
∫ 1

0
e−x2 dx using the LeŌ and Right Hand Rules with 5 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by parƟƟoning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x1 = 0, x2 = 0.2, x3 = 0.4, x4 = 0.6, x5 = 0.8, and x6 = 1.

Using the LeŌ Hand Rule, we have:

n∑
i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈
(
1+ 0.961+ 0.852+ 0.698+ 0.527)(0.2)

≈ 0.808.

Using the Right Hand Rule, we have:

n∑
i=1

f(xi+1)∆x =
(
f(x2) + f(x3) + f(x4) + f(x5) + f(x6)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈
(
0.961+ 0.852+ 0.698+ 0.527+ 0.368)(0.2)

≈ 0.681.

Figure 5.5.2 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this parƟcular case, the LeŌ Hand
Rule is an over approximaƟon and the Right Hand Rule is an under approxima-
Ɵon. To get a beƩer approximaƟon, we could use more rectangles, as we did in

Notes:
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xi Exact Approx. sin(x3i )
x1 −π/4 −0.785 −0.466
x2 −7π/40 −0.550 −0.165
x3 −π/10 −0.314 −0.031
x4 −π/40 −0.0785 0
x5 π/20 0.157 0.004
x6 π/8 0.393 0.061
x7 π/5 0.628 0.246
x8 11π/40 0.864 0.601
x9 7π/20 1.10 0.971
x10 17π/40 1.34 0.690
x11 π/2 1.57 −0.670

Figure 5.5.3: Table of values used to
approximate

∫ π
2

− π
4
sin(x3) dx in Example

5.5.2.
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Figure 5.5.4: ApproximaƟng∫ π
2

− π
4
sin(x3) dx in Example 5.5.2.

Chapter 5 IntegraƟon

SecƟon 5.3. We could also average the LeŌ and Right Hand Rule results together,
giving

0.808+ 0.681
2

= 0.7445.

The actual answer, accurate to 4 places aŌer the decimal, is 0.7468, showing
our average is a good approximaƟon.

Example 5.5.2 ApproximaƟng definite integrals with rectangles

Approximate
∫ π

2

− π
4

sin(x3) dx using the LeŌ and Right Hand Rules with 10 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by finding∆x:

b− a
n

=
π/2− (−π/4)

10
=

3π
40

≈ 0.236.

It is useful to write out the endpoints of the subintervals in a table; in Figure
5.5.3, we give the exact values of the endpoints, their decimal approximaƟons,
and decimal approximaƟons of sin(x3) evaluated at these points.

Once this table is created, it is straighƞorward to approximate the definite
integral using the LeŌ and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The LeŌHand Rule sums the first 10 values
of sin(x3i ) and mulƟplies the sum by ∆x; the Right Hand Rule sums the last 10
values of sin(x3i ) and mulƟplies by∆x. Therefore we have:

LeŌ Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.91)(0.236) = 0.451.

Right Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.71)(0.236) = 0.404.

Average of the LeŌ and Right Hand Rules: 0.4275.
The actual answer, accurate to 3 places aŌer the decimal, is 0.460. Our ap-

proximaƟons were once again fairly good. The rectangles used in each approx-
imaƟon are shown in Figure 5.5.4. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approximaƟon.

The Trapezoidal Rule

In Example 5.5.1 we approximated the value of
∫ 1

0
e−x2 dxwith 5 rectangles

of equal width. Figure 5.5.2 shows the rectangles used in the LeŌ and Right

Notes:
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Figure 5.5.6: The area of a trapezoid.

xi e−x2i

0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

Figure 5.5.7: A table of values of e−x2 .

5.5 Numerical IntegraƟon

Hand Rules. These graphs clearly show that rectangles do not match the shape
of the graph all that well, and that accurate approximaƟons will only come by
using lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.5.5, we show the region under f(x) = e−x2 on [0, 1]
approximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a beƩer
approximaƟon of

∫ 1
0 e−x2 dx. (In fact, these trapezoids seem to give a great ap-

proximaƟon of the area!)
The formula for the area of a trapezoid is given in Figure 5.5.6. We approxi-

mate
∫ 1
0 e−x2 dx with these trapezoids in the following example.

Example 5.5.3 ApproximaƟng definite integrals using trapezoids

Use 5 trapezoids of equal width to approximate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ To compute the areas of the 5 trapezoids in Figure 5.5.5, it
will again be useful to create a table of values as shown in Figure 5.5.7.

The leŌmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leŌmost trapezoid is:

1+ 0.961
2

(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:

0.961+ 0.852
2

(0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1+ 0.961
2

(0.2) +
0.961+ 0.852

2
(0.2) +

0.852+ 0.698
2

(0.2)+

0.698+ 0.527
2

(0.2) +
0.527+ 0.368

2
(0.2) = 0.7445.

We approximate
∫ 1

0
e−x2 dx ≈ 0.7445.

There are many things to observe in this example. Note how each term in
the final summaƟonwasmulƟplied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summaƟon as:
1
2
(0.2)

[
(1+0.961)+(0.961+0.852)+(0.852+0.698)+(0.698+0.527)+(0.527+0.368)

]
.

Notes:
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Now noƟce that all numbers except for the first and the last are added twice.
Therefore we can write the summaƟon even more concisely as

0.2
2

[
1+ 2(0.961+ 0.852+ 0.698+ 0.527) + 0.368

]
.

This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x1,
x2, . . ., xn+1, we again have∆x =

b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑
i=1

f(xi) + f(xi+1)

2
∆x

=
∆x
2

n∑
i=1

(
f(xi) + f(xi+1)

)
=

∆x
2

[
f(x1) + 2

n∑
i=2

f(xi) + f(xn+1)
]
.

Example 5.5.4 Using the Trapezoidal Rule

Revisit Example 5.5.2 and approximate
∫ π

2

− π
4

sin(x3) dx using the Trapezoidal Rule

and 10 equally spaced subintervals.

SÊ½çã®ÊÄ Werefer back to Figure 5.5.3 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

− π
4

sin(x3) dx ≈ 0.236
2

[
− 0.466+ 2

(
− 0.165+ (−0.031) + . . .+ 0.69

)
+ (−0.67)

]
= 0.4275.

NoƟce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this secƟon;
the real work is creaƟng a table of xi and f(xi) values. Once this is completed, ap-
proximaƟng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computaƟons and make using lots
of subintervals easy.

Also noƟce the approximaƟons the Trapezoidal Rule gives. It is the average
of the approximaƟons given by the LeŌ and Right Hand Rules! This effecƟvely

Notes:
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Figure 5.5.8: A graph of a funcƟon f and
a parabola that approximates it well on
[1, 3].

5.5 Numerical IntegraƟon

renders the LeŌ and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximaƟon is needed, one is gener-
ally beƩer off using the Trapezoidal Rule instead of either the LeŌ or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The LeŌ Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a funcƟon f with constant funcƟons
on small subintervals and then computes the definite integral of these constant
funcƟons. The Trapezoidal Rule is really approximaƟng a funcƟon fwith a linear
funcƟon on a small subinterval, then computes the definite integral of this linear
funcƟon. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximaƟng fwith a constant func-
Ɵon and then with a linear funcƟon. What is next? A quadraƟc funcƟon. By
approximaƟng the curve of a funcƟon with lots of parabolas, we generally get
an even beƩer approximaƟon of the definite integral. We call this process Simp-
son’s Rule, named aŌer Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant funcƟon that goes through that
point. Given two points, we can create a linear funcƟon that goes through those
points. Given three points, we can create a quadraƟc funcƟon that goes through
those three points (given that no two have the same x–value).

Consider three points (x1, y1), (x2, y2) and (x3, y3)whose x–values are equally
spaced and x1 < x2 < x3. Let fbe the quadraƟc funcƟon that goes through these
three points. It is not hard to show that∫ x3

x1
f(x) dx =

x3 − x1
6

(
y1 + 4y2 + y3

)
. (5.4)

Consider Figure 5.5.8. A funcƟon f goes through the 3 points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equaƟon from above, we know exactly that∫ 3

1
g(x) dx =

3− 1
6
(
3+ 4(1) + 2

)
= 3.

Since g is a good approximaƟon for f on [1, 3], we can state that∫ 3

1
f(x) dx ≈ 3.
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xi e−x2i

0 1
0.25 0.939
0.5 0.779
0.75 0.570
1 0.368
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Figure 5.5.9: A table of values to approxi-
mate

∫ 1
0 e−x2 dx, alongwith a graph of the

funcƟon.

xi sin(x3i )
−0.785 −0.466
−0.550 −0.165
−0.314 −0.031
−0.0785 0
0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 −0.670

Figure 5.5.10: Table of values used to
approximate

∫ π
2

− π
4
sin(x3) dx in Example

5.5.6.

Chapter 5 IntegraƟon

NoƟce how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/2 parabolic curves, using EquaƟon (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:∫ b

a
f(x)dx ≈ ∆x

3

[
f(x1)+4f(x2)+2f(x3)+4f(x4)+. . .+2f(xn−1)+4f(xn)+f(xn+1)

]
.

Note how the coefficients of the terms in the summaƟon have the paƩern 1, 4,
2, 4, 2, 4, . . ., 2, 4, 1.

Let’s demonstrate Simpson’s Rule with a concrete example.

Example 5.5.5 Using Simpson’s Rule

Approximate
∫ 1

0
e−x2 dxusing Simpson’s Rule and 4 equally spaced subintervals.

SÊ½çã®ÊÄ We begin bymaking a table of values as we have in the past,
as shown in Figure 5.5.9(a). Simpson’s Rule states that∫ 1

0
e−x2 dx ≈ 0.25

3

[
1+ 4(0.939) + 2(0.779) + 4(0.570) + 0.368

]
= 0.74683.

Recall in Example 5.5.1 we stated that the correct answer, accurate to 4
places aŌer the decimal, was 0.7468. Our approximaƟon with Simpson’s Rule,
with 4 subintervals, is beƩer than our approximaƟon with the Trapezoidal Rule
using 5!

Figure 5.5.9(b) shows f(x) = e−x2 along with its approximaƟng parabolas,
demonstraƟng how good our approximaƟon is. The approximaƟng curves are
nearly indisƟnguishable from the actual funcƟon.

Example 5.5.6 Using Simpson’s Rule

Approximate
∫ π

2

− π
4

sin(x3) dx using Simpson’s Rule and 10 equally spaced inter-

vals.

SÊ½çã®ÊÄ Figure 5.5.10 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x = (π/2 +
π/4)/10 ≈ 0.236.
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Figure 5.5.11: ApproximaƟng∫ π
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sin(x3) dx in Example 5.5.6 with

Simpson’s Rule and 10 equally spaced
intervals.
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Simpson’s Rule states that∫ π
2

− π
4

sin(x3) dx ≈ 0.236
3

[
(−0.466) + 4(−0.165) + 2(−0.031) + . . .

. . .+ 2(0.971) + 4(0.69) + (−0.67)
]

= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap-
proximaƟon iswithin one 1/100th of the correct value. The graph in Figure 5.5.11
shows how closely the parabolas match the shape of the graph.

Summary and Error Analysis

We summarize the key concepts of this secƟon thus far in the following Key
Idea.

Key Idea 5.5.1 Numerical IntegraƟon

Let f be a conƟnuous funcƟon on [a, b], let n be a posiƟve integer, and let∆x =
b− a
n

.
Set x1 = a, x2 = a+∆x, . . ., xi = a+ (i− 1)∆x, xn+1 = b.

Consider
∫ b

a
f(x) dx.

LeŌ Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x1) + f(x2) + . . .+ f(xn)

]
.

Right Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x2) + f(x3) + . . .+ f(xn+1)

]
.

Trapezoidal Rule:
∫ b

a
f(x) dx ≈ ∆x

2

[
f(x1) + 2f(x2) + 2f(x3) + . . .+ 2f(xn) + f(xn+1)

]
.

Simpson’s Rule:
∫ b

a
f(x) dx ≈ ∆x

3

[
f(x1) + 4f(x2) + 2f(x3) + . . .+ 4f(xn) + f(xn+1)

]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several quesƟons in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approximaƟng?

3. If there is value to approximaƟng, how are we supposed to know if the
approximaƟon is any good?
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These are good quesƟons, and their answers are educaƟonal. In the exam-
ples, the right answer was never computed. Rather, an approximaƟon accurate
to a certain number of places aŌer the decimal was given. In Example 5.5.1, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximaƟons were computed using numerical integraƟon but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximaƟon sƟll has its place.
How are we to tell if the approximaƟon is any good?

“Trial and error” provides one way. Using technology, make an approxima-
Ɵon with, say, 10, 100, and 200 subintervals. This likely will not take much Ɵme
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximaƟon will be. For instance, the formula might state that the approx-
imaƟon is within 0.1 of the correct answer. If the approximaƟon is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approximaƟon as accurate as one likes. Theorem
5.5.1 states what these bounds are.

Theorem 5.5.1 Error Bounds in the Trapezoidal Rule and
Simpson’s Rule

1. Let ET be the error in approximaƟng
∫ b

a
f(x) dx using the Trape-

zoidal Rule with n subintervals.
If f has a conƟnuous 2nd derivaƟve on [a, b] and M is any upper
bound of

∣∣f ′′(x)∣∣ on [a, b], then

ET ≤
(b− a)3

12n2
M.

2. Let ES be the error in approximaƟng
∫ b

a
f(x) dx using Simpson’s

Rule with n subintervals.
If f has a conƟnuous 4th derivaƟve on [a, b] and M is any upper
bound of

∣∣f (4)∣∣ on [a, b], then

ES ≤
(b− a)5

180n4
M.
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Figure 5.5.12: Graphing f ′′(x) in Example
5.5.7 to help establish error bounds.

5.5 Numerical IntegraƟon

There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
iƟvely.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The error in Simpson’s Rule has a term relaƟng to the 4th derivaƟve of f.
Consider a cubic polynomial: it’s 4th derivaƟve is 0. Therefore, the error in
approximaƟng the definite integral of a cubic polynomial with Simpson’s
Rule is 0 – Simpson’s Rule computes the exact answer!

We revisit Examples 5.5.3 and 5.5.5 and compute the error bounds using
Theorem 5.5.1 in the following example.

Example 5.5.7 CompuƟng error bounds

Find the error bounds when approximaƟng
∫ 1

0
e−x2 dx using the Trapezoidal

Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

SÊ½çã®ÊÄ
Trapezoidal Rule with n = 5:

We start by compuƟng the 2nd derivaƟve of f(x) = e−x2 :

f ′′(x) = e−x2(4x2 − 2).

Figure 5.5.12 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest value of
f ′′, in absolute value, is 2. Thus we letM = 2 and apply the error formula from
Theorem 5.5.1.

ET =
(1− 0)3

12 · 52
· 2 = 0.006.

Our error esƟmaƟon formula states that our approximaƟon of 0.7445 found
in Example 5.5.3 is within 0.0067 of the correct answer, hence we know that

0.7445− 0.0067 = .7378 ≤
∫ 1

0
e−x2 dx ≤ 0.7512 = 0.7445+ 0.0067.

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 5.5.1.

Simpson’s Rule with n = 4:
We start by compuƟng the 4th derivaƟve of f(x) = e−x2 :

f (4)(x) = e−x2(16x4 − 48x2 + 12).
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Figure 5.5.13: Graphing f (4)(x) in Exam-
ple 5.5.7 to help establish error bounds.

Time Speed
(mph)

0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51
10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

Figure 5.5.14: Speed data collected at 30
second intervals for Example 5.5.8.

Chapter 5 IntegraƟon

Figure 5.5.13 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest value
of f (4), in absolute value, is 12. Thus we letM = 12 and apply the error formula
from Theorem 5.5.1.

Es =
(1− 0)5

180 · 44
· 12 = 0.00026.

Our error esƟmaƟon formula states that our approximaƟonof 0.74683 found
in Example 5.5.5 is within 0.00026 of the correct answer, hence we know that

0.74683− 0.00026 = .74657 ≤
∫ 1

0
e−x2 dx ≤ 0.74709 = 0.74683+ 0.00026.

Once again we affirm the validity of Theorem 5.5.1.

At the beginning of this secƟon we menƟoned two main situaƟons where
numerical integraƟon was desirable. We have considered the case where an
anƟderivaƟve of the integrand cannot be computed. We now invesƟgate the
situaƟon where the integrand is not known. This is, in fact, the most widely
used applicaƟon of Numerical IntegraƟon methods. “Most of the Ɵme” we ob-
serve behavior but do not know “the” funcƟon that describes it. We instead
collect data about the behavior and make approximaƟons based on this data.
We demonstrate this in an example.

Example 5.5.8 ApproximaƟng distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 5.5.14. Approximate
the distance they traveled.

SÊ½çã®ÊÄ Recall that by integraƟng a speed funcƟon we get distance
traveled. We have informaƟon about v(t); we will use Simpson’s Rule to approx-

imate
∫ b

a
v(t) dt.

Themost difficult aspect of this problem is converƟng the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
Ɵme is measured in 30 second increments.

We need to compute∆x = (b − a)/n. Clearly, n = 24. What are a and b?
Since we start at Ɵme t = 0, we have that a = 0. The final recorded Ɵme came
aŌer 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

∆x =
b− a
n

=
1/5− 0

24
=

1
120

;
∆x
3

=
1

360
.

Notes:
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Thus the distance traveled is approximately:∫ 0.2

0
v(t) dt ≈ 1

360

[
f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn) + f(xn+1)

]
=

1
360

[
0+ 4 · 25+ 2 · 22+ · · ·+ 2 · 40+ 4 · 23+ 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.)

We started this chapter learning about anƟderivaƟves and indefinite inte-
grals. We then seemed to change focus by looking at areas between the graph
of a funcƟon and the x-axis. We defined these areas as the definite integral of
the funcƟon, using a notaƟon very similar to the notaƟon of the indefinite inte-
gral. The Fundamental Theorem of Calculus Ɵed these two seemingly separate
concepts together: we can find areas under a curve, i.e., we can evaluate a def-
inite integral, using anƟderivaƟves.

We ended the chapter by noƟng that anƟderivaƟves are someƟmes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approximaƟons of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter 7 we’ll see more applicaƟons of the definite integral. Before that, in
Chapter 6 we’ll learn advanced techniques of integraƟon, analogous to learning
rules like the Product, QuoƟent and Chain Rules of differenƟaƟon.
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Exercises 5.5
Terms and Concepts

1. T/F: Simpson’s Rule is a method of approximaƟng an-
ƟderivaƟves.

2. What are the two basic situaƟons where approximaƟng the
value of a definite integral is necessary?

3. Why are the LeŌ and Right Hand Rules rarely used?

4. Simpson’s Rule is based on approximaƟng porƟons of a
funcƟon with what type of funcƟon?

Problems
In Exercises 5 – 12, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
and n = 4.

(c) Find the exact value of the integral.

5.
∫ 1

−1
x2 dx

6.
∫ 10

0
5x dx

7.
∫ π

0
sin x dx

8.
∫ 4

0

√
x dx

9.
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx

10.
∫ 1

0
x4 dx

11.
∫ 2π

0
cos x dx

12.
∫ 3

−3

√
9− x2 dx

In Exercises 13 – 20, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

13.
∫ 1

0
cos

(
x2
)
dx

14.
∫ 1

−1
ex

2
dx

15.
∫ 5

0

√
x2 + 1 dx

16.
∫ π

0
x sin x dx

17.
∫ π/2

0

√
cos x dx

18.
∫ 4

1
ln x dx

19.
∫ 1

−1

1
sin x+ 2

dx

20.
∫ 6

0

1
sin x+ 2

dx

In Exercises 21 – 24, find n such that the error in approximat-
ing the given definite integral is less than 0.0001when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

21.
∫ π

0
sin x dx

22.
∫ 4

1

1√
x
dx

23.
∫ π

0
cos

(
x2
)
dx

24.
∫ 5

0
x4 dx

In Exercises 25 – 26, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in cenƟmeters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

25. ..

4.
7

.

6.
3

. 6.
9

. 6.
6.

5.
1

260



26. ..
3.

6
. 3.

6

. 4.
5. 6.

6

.

5.
6

261





6: T��«Ä®Øç�Ý Ê¥
AÄã®�®¥¥�Ù�Äã®�ã®ÊÄ

The previous chapter introduced the anƟderivaƟve and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applicaƟons of definite integrals than just area. As eval-
uaƟng definite integrals will become important, we will want to find anƟderiva-
Ɵves of a variety of funcƟons.

This chapter is devoted to exploring techniques of anƟdifferenƟaƟon. While
not every funcƟon has an anƟderivaƟve in terms of elementary funcƟons (a
concept introduced in the secƟon on Numerical IntegraƟon), we can sƟll find
anƟderivaƟves of a wide variety of funcƟons.

6.1 SubsƟtuƟon
We moƟvate this secƟon with an example. Let f(x) = (x2 + 3x − 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starƟng with f(x)
as we did?

This secƟon explores integraƟon by subsƟtuƟon. It allows us to “undo the
Chain Rule.” SubsƟtuƟon allows us to evaluate the above integral without know-
ing the original funcƟon first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
subsƟtuƟon. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.
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We have established u as a funcƟon of x, so now consider the differenƟal of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremulƟplied; the dx is not “just siƫng there.”
Return to the original integral and do some subsƟtuƟons through algebra:∫

(20x+ 30)(x2 + 3x− 5)9 dx =
∫

10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This secƟon contains numerous examples through which the reader will gain
understanding and mathemaƟcal maturity enabling them to regard subsƟtuƟon
as a natural tool when evaluaƟng integrals.

We stated before that integraƟon by subsƟtuƟon “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differenƟable funcƟons and consider the deriva-
Ɵve of their composiƟon:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g ′(x).

Thus ∫
F ′(g(x))g ′(x) dx = F(g(x)) + C.

IntegraƟon by subsƟtuƟon works by recognizing the “inside” funcƟon g(x) and
replacing it with a variable. By seƫng u = g(x), we can rewrite the derivaƟve
as

d
dx

(
F
(
u
))

= F ′(u)u ′.

Since du = g ′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g ′(x) dx =

∫
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.
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Theorem 6.1.1 IntegraƟon by SubsƟtuƟon

Let F and g be differenƟable funcƟons, where the range of g is an interval
I contained in the domain of F. Then∫

F ′(g(x))g ′(x) dx = F(g(x)) + C.

If u = g(x), then du = g ′(x)dx and∫
F ′(g(x))g ′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subsƟtuƟon is to make the integraƟon step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the anƟderivaƟve of the derivaƟve of F

is just F, plus a constant. The “work” involved is making the proper subsƟtuƟon.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example 6.1.1 IntegraƟng by subsƟtuƟon
Evaluate

∫
x sin(x2 + 5) dx.

SÊ½çã®ÊÄ Knowing that subsƟtuƟon is related to the Chain Rule, we
choose to let u be the “inside” funcƟon of sin(x2+5). (This is not always a good
choice, but it is oŌen the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that mulƟplicaƟon is commutaƟve, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now subsƟtute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du

Notes:
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= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by eval-

uaƟng the derivaƟve of the right hand side.

Example 6.1.2 IntegraƟng by subsƟtuƟon
Evaluate

∫
cos(5x) dx.

SÊ½çã®ÊÄ Again let u replace the “inside” funcƟon. Leƫng u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equaƟon by 5 to obtain 1

5du = dx. We can now subsƟtute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differenƟaƟon.

The previous example exhibited a common, and simple, type of subsƟtuƟon.
The “inside” funcƟon was a linear funcƟon (in this case, y = 5x). When the
inside funcƟon is linear, the resulƟng integraƟon is very predictable, outlined
here.

Key Idea 6.1.1 SubsƟtuƟon With A Linear FuncƟon

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Leƫng

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1
a
F(ax+ b) + C.

Thus
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can use Key
Idea 6.1.1, but we will only employ it aŌer going through all of the steps.

Notes:
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Example 6.1.3 IntegraƟng by subsƟtuƟng a linear funcƟon
Evaluate

∫
7

−3x+ 1
dx.

SÊ½çã®ÊÄ View the integrand as the composiƟon of funcƟons f(g(x)),
where f(x) = 7/x and g(x) = −3x+ 1. Employing our understanding of subsƟ-
tuƟon, we let u = −3x+1, the inside funcƟon. Thus du = −3dx. The integrand
lacks a −3; hence divide the previous equaƟon by −3 to obtain −du/3 = dx.
We can now evaluate the integral through subsƟtuƟon.∫

7
−3x+ 1

dx =
∫

7
u
du
−3

=
−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln | − 3x+ 1|+ C.

Using Key Idea 6.1.1 is faster, recognizing that u is linear and a = −3. One may
want to conƟnue wriƟng out all the steps unƟl they are comfortable with this
parƟcular shortcut.

Not all integrals that benefit from subsƟtuƟon have a clear “inside” funcƟon.
Several of the following examples will demonstrate ways in which this occurs.

Example 6.1.4 IntegraƟng by subsƟtuƟon
Evaluate

∫
sin x cos x dx.

SÊ½çã®ÊÄ There is not a composiƟonof funcƟonhere to exploit; rather,
just a product of funcƟons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is oŌen beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The subsƟtuƟon becomes very straighƞorward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.

Notes:

267



Chapter 6 Techniques of AnƟdifferenƟaƟon

One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral leƫng u = cos x and discover why the answer is the same,
yet looks different.

Our examples so far have required “basic subsƟtuƟon.” The next example
demonstrates how subsƟtuƟons can be made that oŌen strike the new learner
as being “nonstandard.”

Example 6.1.5 IntegraƟng by subsƟtuƟon
Evaluate

∫
x
√
x+ 3 dx.

SÊ½çã®ÊÄ Recognizing the composiƟon of funcƟons, set u = x + 3.
Then du = dx, giving what seems iniƟally to be a simple subsƟtuƟon. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful to rewrite

√
u as u 1

2 .∫
x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this parƟcular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example 6.1.6 IntegraƟng by subsƟtuƟon
Evaluate

∫
1

x ln x
dx.

SÊ½çã®ÊÄ This is another example where there does not seem to be
an obvious composiƟon of funcƟons. The line of thinking used in Example 6.1.5
is useful here: choose something for u and consider what this implies du must
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be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, seƫng u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
u

1
x
dx︸︷︷︸

du

=

∫
1
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interesƟng; the natural log of the natural log. Take the deriva-
Ɵve to confirm this answer is indeed correct.

Integrals Involving Trigonometric FuncƟons

SecƟon 6.3 delves deeper into integrals of a variety of trigonometric func-
Ɵons; here we use subsƟtuƟon to establish a foundaƟon that wewill build upon.

Thenext three exampleswill help fill in somemissing pieces of our anƟderiva-
Ɵve knowledge. We know the anƟderivaƟves of the sine and cosine funcƟons;
what about the other standard funcƟons tangent, cotangent, secant and cose-
cant? We discover these next.

Example 6.1.7 IntegraƟon by subsƟtuƟon: anƟderivaƟves of tan x
Evaluate

∫
tan x dx.

SÊ½çã®ÊÄ The previous paragraph established that we did not know
the anƟderivaƟves of tangent, hence we must assume that we have learned
something in this secƟon that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composiƟon of func-
Ɵons may not be immediately obvious, recognize that cos x is “inside” the 1/x
funcƟon. Therefore, we see if seƫng u = cos x returns usable results. We have
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that du = − sin x dx, hence−du = sin x dx. We can integrate:

∫
tan x dx =

∫
sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

∫
−1
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−1|+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent.

Example 6.1.8 IntegraƟng by subsƟtuƟon: anƟderivaƟves of sec x
Evaluate

∫
sec x dx.

SÊ½çã®ÊÄ This example employs a wonderful trick: mulƟply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of leŌ field, but it works beauƟfully. Consider:

∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.
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Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

We can use similar techniques to those used in Examples 6.1.7 and 6.1.8
to find anƟderivaƟves of cot x and csc x (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 6.1.2 AnƟderivaƟves of Trigonometric FuncƟons

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = − ln | cos x|+C

4.
∫

csc x dx = − ln | csc x+ cot x|+ C

5.
∫

sec x dx = ln | sec x+ tan x|+ C

6.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

Example 6.1.9 IntegraƟon by subsƟtuƟon: powers of cos x and sin x
Evaluate

∫
cos2 x dx.

SÊ½çã®ÊÄ We have a composiƟon of funcƟons as cos2 x =
(
cos x

)2.
However, seƫng u = cos xmeans du = − sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos2 x (per-
haps consult the back of this text for this formula), which states

cos2 x =
1+ cos(2x)

2
.

The right hand side of this equaƟon is not difficult to integrate. We have:∫
cos2 x dx =

∫
1+ cos(2x)

2
dx

=

∫ (
1
2
+

1
2
cos(2x)

)
dx.
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Now use Key Idea 6.1.1:

=
1
2
x+

1
2
sin(2x)

2
+ C

=
1
2
x+

sin(2x)
4

+ C.

We’ll make significant use of this power–reducing technique in future secƟons.

Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integraƟon is tenuous and one may think that working with
the integrand will improperly change the results. IntegraƟon by subsƟtuƟon
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integraƟon
easier to perform.

Example 6.1.10 IntegraƟon by subsƟtuƟon: simplifying first

Evaluate
∫

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx.

SÊ½çã®ÊÄ One may try to start by seƫng u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with raƟonal funcƟons (i.e., quoƟents made up of polynomial
funcƟons), it is an almost universal rule that everything works beƩer when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x2 + 2x+ 1 is divided
into x3 + 4x2 + 8x+ 5, it goes in x+ 2 Ɵmes with a remainder of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

= x+ 2+
3x+ 3

x2 + 2x+ 1
.

IntegraƟng x + 2 is simple. The fracƟon can be integrated by seƫng u = x2 +
2x+ 1, giving du = (2x+ 2) dx. This is very similar to the numerator. Note that
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du/2 = (x+ 1) dx and then consider the following:∫
x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2+

3x+ 3
x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1
2
x2 + 2x+ C1 +

∫
3
u
du
2

=
1
2
x2 + 2x+ C1 +

3
2
ln |u|+ C2

=
1
2
x2 + 2x+

3
2
ln |x2 + 2x+ 1|+ C.

In some ways, we “lucked out” in that aŌer dividing, subsƟtuƟon was able to be
done. In later secƟons we’ll develop techniques for handling raƟonal funcƟons
where subsƟtuƟon is not directly feasible.

Example 6.1.11 IntegraƟon by alternate methods

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, subsƟtuƟon.

SÊ½çã®ÊÄ We already know how to integrate this parƟcular example.
Rewrite

√
x as x 1

2 and simplify the fracƟon:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subsƟtuƟon as its implementaƟon is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =
∫
(x2 + 2x+ 3) · 2 du. What are we to do

with the other x terms? Since u = x 1
2 , u2 = x, etc. We can then replace x2 and
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x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

which is obviously the same answer we obtained before. In this situaƟon, sub-
sƟtuƟon is arguably more work than our other method. The fantasƟc thing is
that it works. It demonstrates how flexible integraƟon is.

SubsƟtuƟon and Inverse Trigonometric FuncƟons

When studying derivaƟves of inverse funcƟons, we learned that

d
dx
(
tan−1 x

)
=

1
1+ x2

.

Applying the Chain Rule to this is not difficult; for instance,

d
dx
(
tan−1 5x

)
=

5
1+ 25x2

.

Wenow explore how SubsƟtuƟon can be used to “undo” certain derivaƟves that
are the result of the Chain Rule applied to Inverse Trigonometric funcƟons. We
begin with an example.

Example 6.1.12 IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons
Evaluate

∫
1

25+ x2
dx.

SÊ½çã®ÊÄ The integrand looks similar to the derivaƟve of the arctan-
gent funcƟon. Note:

1
25+ x2

=
1

25(1+ x2
25 )

=
1

25(1+
( x
5
)2
)

=
1
25

1
1+

( x
5
)2 .
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Thus ∫
1

25+ x2
dx =

1
25

∫
1

1+
( x
5
)2 dx.

This can be integrated using SubsƟtuƟon. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus ∫

1
25+ x2

dx =
1
25

∫
1

1+
( x
5
)2 dx

=
1
5

∫
1

1+ u2
du

=
1
5
tan−1 u+ C

=
1
5
tan−1

( x
5

)
+ C

Example 6.1.12 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric funcƟons. The results are
summarized here.

Theorem 6.1.3 Integrals Involving Inverse Trigonometric FuncƟons

Let a > 0.

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

Let’s pracƟce using Theorem 6.1.3.

Example 6.1.13 IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons
Evaluate the given indefinite integrals.

1.
∫

1
9+ x2

dx, 2.
∫

1

x
√

x2 − 1
100

dx 3.
∫

1√
5− x2

dx.
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SÊ½çã®ÊÄ Each can be answered using a straighƞorward applicaƟon of
Theorem 6.1.3.

1.
∫

1
9+ x2

dx =
1
3
tan−1 x

3
+ C, as a = 3.

2.
∫

1

x
√

x2 − 1
100

dx = 10 sec−1 10x+ C, as a = 1
10 .

3.
∫

1√
5− x2

= sin−1 x√
5
+ C, as a =

√
5.

Most applicaƟons of Theorem 6.1.3 are not as straighƞorward. The next
examples show some common integrals that can sƟll be approached with this
theorem.

Example 6.1.14 IntegraƟng by subsƟtuƟon: compleƟng the square
Evaluate

∫
1

x2 − 4x+ 13
dx.

SÊ½çã®ÊÄ IniƟally, this integral seems to have nothing in commonwith
the integrals in Theorem 6.1.3. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. It is, however, related to the arctangent funcƟon.

We see this by compleƟng the square in the denominator. We give a brief
reminder of the process here.

Start with a quadraƟc with a leading coefficient of 1. It will have the form of
x2+bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b
2

)2

+ c− b2

4

In our example, we take half of −4 and square it, geƫng 4. We add/subtract it
into the denominator as follows:

1
x2 − 4x+ 13

=
1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4+ 13

=
1

(x− 2)2 + 9
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We can now integrate this using the arctangent rule. Technically, we need to
subsƟtute first with u = x− 2, but we can employ Key Idea 6.1.1 instead. Thus
we have∫

1
x2 − 4x+ 13

dx =
∫

1
(x− 2)2 + 9

dx =
1
3
tan−1 x− 2

3
+ C.

Example 6.1.15 Integrals requiring mulƟple methods
Evaluate

∫
4− x√
16− x2

dx.

SÊ½çã®ÊÄ This integral requires two different methods to evaluate it.
We get to those methods by spliƫng up the integral:∫

4− x√
16− x2

dx =
∫

4√
16− x2

dx−
∫

x√
16− x2

dx.

The first integral is handled using a straighƞorward applicaƟon of Theorem6.1.3;
the second integral is handled by subsƟtuƟon, with u = 16−x2. We handle each
separately.∫

4√
16− x2

dx = 4 sin−1 x
4
+ C.

∫
x√

16− x2
dx: Set u = 16 − x2, so du = −2xdx and xdx = −du/2. We

have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1
2

∫
1√
u
du

= −
√
u+ C

= −
√
16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x
4
+
√
16− x2 + C.

SubsƟtuƟon and Definite IntegraƟon

This secƟon has focused on evaluaƟng indefinite integrals as we are learning
a new technique for finding anƟderivaƟves. However, much of the Ɵme integra-
Ɵon is used in the context of a definite integral. Definite integrals that require
subsƟtuƟon can be calculated using the following workflow:
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1. Start with a definite integral
∫ b

a
f(x) dx that requires subsƟtuƟon.

2. Ignore the bounds; use subsƟtuƟon to evaluate
∫

f(x) dx and find an an-

ƟderivaƟve F(x).

3. Evaluate F(x) at the bounds; that is, evaluate F(x)
∣∣∣b
a
= F(b)− F(a).

This workflow works fine, but subsƟtuƟon offers an alternaƟve that is powerful
and amazing (and a liƩle Ɵme saving).

At its heart, (using the notaƟon of Theorem 6.1.1) subsƟtuƟon converts inte-
grals of the form

∫
F ′(g(x))g ′(x) dx into an integral of the form

∫
F ′(u) du with

the subsƟtuƟon of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subsƟtuƟon is performed.

Theorem 6.1.4 SubsƟtuƟon with Definite Integrals

Let F and g be differenƟable funcƟons, where the range of g is an interval
I that is contained in the domain of F. Then∫ b

a
F ′
(
g(x)

)
g ′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem 6.1.4 states that once you convert to integraƟng with re-
spect to u, you do not need to switch back to evaluaƟng with respect to x. A few
examples will help one understand.

Example 6.1.16 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ 2

0
cos(3x− 1) dx using Theorem 6.1.4.

SÊ½çã®ÊÄ Observing the composiƟon of funcƟons, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the laƩer
equaƟon by 3 to get du/3 = dx.

By seƫng u = 3x− 1, we are implicitly staƟng that g(x) = 3x− 1. Theorem
6.1.4 states that the new lower bound is g(0) = −1; the new upper bound is
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Figure 6.1.1: Graphing the areas de-
fined by the definite integrals of Example
6.1.16.
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y = sin x cos x
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Figure 6.1.2: Graphing the areas de-
fined by the definite integrals of Example
6.1.17.

6.1 SubsƟtuƟon

g(2) = 5. We now evaluate the definite integral:∫ 2

0
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
≈ −0.039.

NoƟce how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this parƟcular situaƟon, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

Example 6.1.17 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ π/2

0
sin x cos x dx using Theorem 6.1.4.

SÊ½çã®ÊÄ Wesaw the corresponding indefinite integral in Example 6.1.4.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the laƩer here.

Let u = g(x) = cos x, giving du = − sin x dx and hence sin x dx = −du. The
new upper bound is g(π/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣1
0
= 1/2.

In Figure 6.1.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 6.1.4 guarantees that they have the same area.

IntegraƟon by subsƟtuƟon is a powerful and useful integraƟon technique.
The next secƟon introduces another technique, called IntegraƟon by Parts. As
subsƟtuƟon “undoes” the Chain Rule, integraƟon by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundaƟononwhichmost
other integraƟon techniques are based.
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Exercises 6.1
Terms and Concepts

1. SubsƟtuƟon “undoes” what derivaƟve rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of SubsƟtuƟon.

3.
∫

3x2
(
x3 − 5

)7 dx
4.

∫
(2x− 5)

(
x2 − 5x+ 7

)3 dx
5.

∫
x
(
x2 + 1

)8 dx
6.

∫
(12x+ 14)

(
3x2 + 7x− 1

)5 dx
7.

∫
1

2x+ 7
dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 24, use SubsƟtuƟon to evaluate the indefi-
nite integral involving trigonometric funcƟons.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos3(x) sin(x)dx

17.
∫

cos(3− 6x)dx

18.
∫

sec2(4− x)dx

19.
∫

sec(2x)dx

20.
∫

tan2(x) sec2(x)dx

21.
∫

x cos
(
x2
)
dx

22.
∫

tan2(x)dx

23.
∫

cot x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jusƟfy it through SubsƟtuƟon.

24.
∫

csc x dx. Do not just refer to Theorem 6.1.2 for the an-
swer; jusƟfy it through SubsƟtuƟon.

In Exercises 25 – 32, use SubsƟtuƟon to evaluate the indefi-
nite integral involving exponenƟal funcƟons.

25.
∫

e3x−1dx

26.
∫

ex
3
x2dx

27.
∫

ex
2−2x+1(x− 1)dx

28.
∫

ex + 1
ex

dx

29.
∫

ex

ex + 1
dx

30.
∫

ex − e−x

e2x
dx

31.
∫

33xdx

32.
∫

42xdx

In Exercises 33 – 36, use SubsƟtuƟon to evaluate the indefi-
nite integral involving logarithmic funcƟons.

33.
∫

ln x
x

dx

34.
∫ (

ln x
)2

x
dx
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35.
∫ ln

(
x3
)

x
dx

36.
∫

1
x ln (x2)

dx

In Exercises 37 – 42, use SubsƟtuƟon to evaluate the indefi-
nite integral involving raƟonal funcƟons.

37.
∫

x2 + 3x+ 1
x

dx

38.
∫

x3 + x2 + x+ 1
x

dx

39.
∫

x3 − 1
x+ 1

dx

40.
∫

x2 + 2x− 5
x− 3

dx

41.
∫

3x2 − 5x+ 7
x+ 1

dx

42.
∫

x2 + 2x+ 1
x3 + 3x2 + 3x

dx

In Exercises 43 – 52, use SubsƟtuƟon to evaluate the indefi-
nite integral involving inverse trigonometric funcƟons.

43.
∫

7
x2 + 7

dx

44.
∫

3√
9− x2

dx

45.
∫

14√
5− x2

dx

46.
∫

2
x
√
x2 − 9

dx

47.
∫

5√
x4 − 16x2

dx

48.
∫

x√
1− x4

dx

49.
∫

1
x2 − 2x+ 8

dx

50.
∫

2√
−x2 + 6x+ 7

dx

51.
∫

3√
−x2 + 8x+ 9

dx

52.
∫

5
x2 + 6x+ 34

dx

In Exercises 53 – 78, evaluate the indefinite integral.

53.
∫

x2

(x3 + 3)2
dx

54.
∫ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

55.
∫

x√
1− x2

dx

56.
∫

x2 csc2
(
x3 + 1

)
dx

57.
∫

sin(x)
√

cos(x)dx

58.
∫

sin
(
5x+ 1

)
dx

59.
∫

1
x− 5

dx

60.
∫

7
3x+ 2

dx

61.
∫

3x3 + 4x2 + 2x− 22
x2 + 3x+ 5

dx

62.
∫

2x+ 7
x2 + 7x+ 3

dx

63.
∫

9(2x+ 3)
3x2 + 9x+ 7

dx

64.
∫

−x3 + 14x2 − 46x− 7
x2 − 7x+ 1

dx

65.
∫

x
x4 + 81

dx

66.
∫

2
4x2 + 1

dx

67.
∫

1
x
√
4x2 − 1

dx

68.
∫

1√
16− 9x2

dx

69.
∫

3x− 2
x2 − 2x+ 10

dx

70.
∫

7− 2x
x2 + 12x+ 61

dx

71.
∫

x2 + 5x− 2
x2 − 10x+ 32

dx

72.
∫

x3

x2 + 9
dx
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73.
∫

x3 − x
x2 + 4x+ 9

dx

74.
∫

sin(x)
cos2(x) + 1

dx

75.
∫

cos(x)
sin2(x) + 1

dx

76.
∫

cos(x)
1− sin2(x)

dx

77.
∫

3x− 3√
x2 − 2x− 6

dx

78.
∫

x− 3√
x2 − 6x+ 8

dx

In Exercises 79 – 86, evaluate the definite integral.

79.
∫ 3

1

1
x− 5

dx

80.
∫ 6

2
x
√
x− 2dx

81.
∫ π/2

−π/2
sin2 x cos x dx

82.
∫ 1

0
2x(1− x2)4 dx

83.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

84.
∫ 1

−1

1
1+ x2

dx

85.
∫ 4

2

1
x2 − 6x+ 10

dx

86.
∫ √

3

1

1√
4− x2

dx
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A: SÊ½çã®ÊÄÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ
Chapter 1
SecƟon 1.1

1. Answers will vary.
3. F
5. Answers will vary.
7. −1
9. Limit does not exist

11. 1.5
13. Limit does not exist.
15. 1

17.

h f(a+h)−f(a)
h

−0.1 −7
−0.01 −7
0.01 −7
0.1 −7

The limit seems to be exactly 7.

19.

h f(a+h)−f(a)
h

−0.1 4.9
−0.01 4.99
0.01 5.01
0.1 5.1

The limit is approx. 5.

21.

h f(a+h)−f(a)
h

−0.1 29.4
−0.01 29.04
0.01 28.96
0.1 28.6

The limit is approx. 29.

23.

h f(a+h)−f(a)
h

−0.1 −0.998334
−0.01 −0.999983
0.01 −0.999983
0.1 −0.998334

The limit is approx. −1.

SecƟon 1.2

1. ε should be given first, and the restricƟon |x− a| < δ implies
|f(x)− K| < ε, not the other way around.

3. T
5. Let ε > 0 be given. We wish to find δ > 0 such that when

|x− 4| < δ, |f(x)− 13| < ε.
Consider |f(x)− 13| < ε:

|f(x)− 13| < ε

|(2x+ 5)− 13| < ε

|2x− 8| < ε

2|x− 4| < ε

−ε/2 < x− 4 < ε/2.

This implies we can let δ = ε/2. Then:
|x− 4| < δ

−δ < x− 4 < δ

−ε/2 < x− 4 < ε/2
−ε < 2x− 8 < ε

−ε < (2x+ 5)− 13 < ε

|(2x+ 5)− 13| < ε,

which is what we wanted to prove.

7. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 3| < δ, |f(x)− 6| < ε.
Consider |f(x)− 6| < ε, keeping in mind we want to make a
statement about |x− 3|:

|f(x)− 6| < ε

|x2 − 3− 6| < ε

|x2 − 9| < ε

|x− 3| · |x+ 3| < ε

|x− 3| < ε/|x+ 3|

Since x is near 3, we can safely assume that, for instance,
2 < x < 4. Thus

2+ 3 < x+ 3 < 4+ 3
5 < x+ 3 < 7
1
7
<

1
x+ 3

<
1
5

ε

7
<

ε

x+ 3
<

ε

5

Let δ = ε
7 . Then:

|x− 3| < δ

|x− 3| <
ε

7
|x− 3| <

ε

x+ 3

|x− 3| · |x+ 3| <
ε

x+ 3
· |x+ 3|

Assuming x is near 3, x+ 3 is posiƟve and we can drop the
absolute value signs on the right.

|x− 3| · |x+ 3| <
ε

x+ 3
· (x+ 3)

|x2 − 9| < ε

|(x2 − 3)− 6| < ε,

which is what we wanted to prove.
9. Let ε > 0 be given. We wish to find δ > 0 such that when

|x− 1| < δ, |f(x)− 6| < ε.
Consider |f(x)− 6| < ε, keeping in mind we want to make a
statement about |x− 1|:

|f(x)− 6| < ε

|(2x2 + 3x+ 1)− 6| < ε

|2x2 + 3x− 5| < ε

|2x+ 5| · |x− 1| < ε

|x− 1| < ε/|2x+ 5|

Since x is near 1, we can safely assume that, for instance,
0 < x < 2. Thus

0+ 5 < 2x+ 5 < 4+ 5
5 < 2x+ 5 < 9
1
9
<

1
2x+ 5

<
1
5

ε

9
<

ε

2x+ 5
<

ε

5



Let δ = ε
9 . Then:

|x− 1| < δ

|x− 1| <
ε

9
|x− 1| <

ε

2x+ 5

|x− 1| · |2x+ 5| <
ε

2x+ 5
· |2x+ 5|

Assuming x is near 1, 2x+ 5 is posiƟve and we can drop the
absolute value signs on the right.

|x− 1| · |2x+ 5| <
ε

2x+ 5
· (2x+ 5)

|2x2 + 3x− 5| < ε

|(2x2 + 3x+ 1)− 6| < ε,

which is what we wanted to prove.

11. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 2| < δ, |f(x)− 5| < ε. However, since f(x) = 5, a constant
funcƟon, the laƩer inequality is simply |5− 5| < ε, which is
always true. Thus we can choose any δ we like; we arbitrarily
choose δ = ε.

13. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 1| < δ, |f(x)− 1| < ε.
Consider |f(x)− 1| < ε, keeping in mind we want to make a
statement about |x− 1|:

|f(x)− 1| < ε

|1/x− 1| < ε

|(1− x)/x| < ε

|x− 1|/|x| < ε

|x− 1| < ε · |x|

Since x is near 1, we can safely assume that, for instance,
1/2 < x < 3/2. Thus ε/2 < ε · x.
Let δ = ε

2 . Then:

|x− 1| < δ

|x− 1| <
ε

2
|x− 1| < ε · x
|x− 1|/x < ε

Assuming x is near 1, x is posiƟve and we can bring it into the
absolute value signs on the leŌ.

|(x− 1)/x| < ε

|1− 1/x| < ε

|(1/x)− 1| < ε,

which is what we wanted to prove.

SecƟon 1.3

1. Answers will vary.

3. Answers will vary.

5. As x is near 1, both f and g are near 0, but f is approximately twice
the size of g. (I.e., f(x) ≈ 2g(x).)

7. 9

9. 0

11. 3

13. 3

15. 1

17. 0

19. 7

21. 1/2

23. Limit does not exist

25. 2

27. π2+3π+5
5π2−2π−3 ≈ 0.6064

29. −8

31. 10

33. −3/2

35. 0

37. 1

39. 3

41. 1

43. (a) Apply Part 1 of Theorem 1.3.1.
(b) Apply Theorem 1.3.6; g(x) = x

x is the same as g(x) = 1
everywhere except at x = 0. Thus lim

x→0
g(x) = lim

x→0
1 = 1.

(c) The funcƟon f(x) is always 0, so g
(
f(x)

)
is never defined as

g(x) is not defined at x = 0. Therefore the limit does not
exist.

(d) The ComposiƟon Rule requires that lim
x→0

g(x) be equal to
g(0). They are not equal, so the condiƟons of the
ComposiƟon Rule are not saƟsfied, and hence the rule is
not violated.

SecƟon 1.4

1. The funcƟon approaches different values from the leŌ and right;
the funcƟon grows without bound; the funcƟon oscillates.

3. F

5. (a) 2
(b) 2
(c) 2
(d) 1
(e) As f is not defined for x < 0, this limit is not defined.
(f) 1

7. (a) Does not exist.
(b) Does not exist.
(c) Does not exist.
(d) Not defined.
(e) 0
(f) 0

9. (a) 2
(b) 2
(c) 2
(d) 2

11. (a) 2
(b) 2
(c) 2
(d) 0
(e) 2
(f) 2
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(g) 2
(h) Not defined

13. (a) 2
(b) −4
(c) Does not exist.
(d) 2

15. (a) 0
(b) 0
(c) 0
(d) 0
(e) 2
(f) 2
(g) 2
(h) 2

17. (a) 1− cos2 a = sin2 a
(b) sin2 a
(c) sin2 a
(d) sin2 a

19. (a) 4
(b) 4
(c) 4
(d) 3

21. (a) −1
(b) 1
(c) Does not exist
(d) 0

23. 2/3

25. −9

SecƟon 1.5

1. Answers will vary.

3. A root of a funcƟon f is a value c such that f(c) = 0.

5. F

7. T

9. F

11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17. (a) No; lim
x→−2

f(x) ̸= f(−2)

(b) Yes
(c) No; f(2) is not defined.

19. (a) Yes
(b) Yes

21. (a) Yes
(b) Yes

23. (−∞,∞)

25. [−2, 2]

27. (−∞,−
√
6] and [

√
6,∞)

29. (−∞,∞)

31. (0,∞)

33. (−∞, 0]

35. Yes, by the Intermediate Value Theorem.

37. We cannot say; the Intermediate Value Theorem only applies to
funcƟon values between−10 and 10; as 11 is outside this range,
we do not know.

39. Approximate root is x = 1.23. The intervals used are:
[1, 1.5] [1, 1.25] [1.125, 1.25]
[1.1875, 1.25] [1.21875, 1.25] [1.234375, 1.25]
[1.234375, 1.2421875] [1.234375, 1.2382813]

41. Approximate root is x = 0.69. The intervals used are:
[0.65, 0.7] [0.675, 0.7] [0.6875, 0.7]
[0.6875, 0.69375] [0.690625, 0.69375]

43. (a) 20
(b) 25
(c) Limit does not exist
(d) 25

45. Answers will vary.

SecƟon 1.6

1. F

3. F

5. T

7. Answers will vary.

9. (a) ∞
(b) ∞

11. (a) 1
(b) 0
(c) 1/2
(d) 1/2

13. (a) Limit does not exist
(b) Limit does not exist

15. Tables will vary.

(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) = −∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; verƟcal asymptotes at x = −5, 4.

21. Horizontal asymptote at y = 0; verƟcal asymptotes at x = −1, 0.

23. No horizontal or verƟcal asymptotes.

25. ∞
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27. −∞

29. SoluƟon omiƩed.

31. Yes. The only “quesƟonable” place is at x = 3, but the leŌ and
right limits agree.

Chapter 2
SecƟon 2.1

1. T

3. Answers will vary.

5. Answers will vary.

7. f ′(x) = 0

9. f ′(t) = −3

11. h′(x) = 3x2

13. r ′(x) = −1
x2

15. (a) y = 6

(b) x = −2

17. (a) y = −3x+ 4

(b) y = 1/3(x− 7)− 17

19. (a) y = 48(x− 4) + 64

(b) y = − 1
48 (x− 4) + 64

21. (a) y = −1/4(x+ 2)− 1/2

(b) y = 4(x+ 2)− 1/2

23. y = 8.1(x− 3) + 16

25. y = 7.77(x− 2) + e2, or y = 7.77(x− 2) + 7.39.

27. (a) ApproximaƟons will vary; they should match (c) closely.

(b) f ′(x) = 2x

(c) At (−1, 0), slope is−2. At (0,−1), slope is 0. At (2, 3),
slope is 4.

29. .....

−2

.

−1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

31. .....

−2

.

−1

.

1

.

2

. −5.

5

.

x

.

y

33. (a) Approximately on (−2, 0) and (2,∞).

(b) Approximately on (−∞,−2) and (0, 2).

(c) Approximately at x = 0, ±2.

(d) Approximately on (−∞,−1) and (1,∞).

(e) Approximately on (−1, 1).

(f) Approximately at x = ±1.

35. limh→0+
f(0+h)−f(0)

h = 0; note also that limx→0+ f ′(x) = 0. So f
is differenƟable at x = 0.
limh→0−

f(1+h)−f(1)
h = −∞; note also that

limx→1− f ′(x) = −∞. So f is not differenƟable at x = 1.
f is differenƟable on [0, 1), not its enƟre domain.

37. Approximately 24.

39. (a) (−∞,∞)

(b) (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

(c) (−∞, 5]
(d) [−

√
5,
√
5]

SecƟon 2.2

1. Velocity

3. Linear funcƟons.

5. −17

7. f(10.1) is likely most accurate, as accuracy is lost the farther from
x = 10 we go.

9. 6

11. Ō/s2

13. (a) thousands of dollars per car
(b) It is likely that P(0) < 0. That is, negaƟve profit for not

producing any cars.

15. f(x) = g′(x)

17. Either g(x) = f ′(x) or f(x) = g′(x) is acceptable. The actual
answer is g(x) = f ′(x), but is very hard to show that f(x) ̸= g′(x)
given the level of detail given in the graph.

19. f ′(x) = 10x

21. f ′(π) ≈ 0.

SecƟon 2.3

1. Power Rule.

3. One answer is f(x) = 10ex.

5. g(x) and h(x)

7. One possible answer is f(x) = 17x− 205.

9. f ′(x) is a velocity funcƟon, and f ′′(x) is acceleraƟon.

11. f ′(x) = 14x− 5

13. m′(t) = 45t4 − 3
8 t

2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t

21. f ′(t) = 0

23. g′(x) = 24x2 − 120x+ 150

25. f ′(x) = 18x− 12

27. f ′(x) = 6x5 f ′′(x) = 30x4 f ′′′(x) = 120x3 f(4)(x) = 360x2

29. h′(t) = 2t− et h′′(t) = 2− et h′′′(t) = −et h(4)(t) = −et

31. f ′(θ) = cos θ + sin θ f ′′(θ) = − sin θ + cos θ
f ′′′(θ) = − cos θ − sin θ f(4)(θ) = sin θ − cos θ

33. Tangent line: y = 2(x− 1)
Normal line: y = −1/2(x− 1)

35. Tangent line: y = x− 1
Normal line: y = −x+ 1

37. Tangent line: y =
√
2(x− π

4 )−
√
2

Normal line: y = −1√
2
(x− π

4 )−
√
2
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39. The tangent line to f(x) = ex at x = 0 is y = x+ 1; thus
e0.1 ≈ y(0.1) = 1.1.

SecƟon 2.4

1. F

3. T

5. F

7. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)

(b) f ′(x) = 3x2 + 6x

(c) They are equal.

9. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)

(b) h′(s) = 4s+ 7

(c) They are equal.

11. (a) f ′(x) = x(2x)−(x2+3)1
x2

(b) f ′(x) = 1− 3
x2

(c) They are equal.

13. (a) h′(s) = 4s3(0)−3(12s2)
16s6

(b) h′(s) = −9/4s−4

(c) They are equal.

15. f ′(x) = sin x+ x cos x

17. f ′(x) = ex ln x+ ex 1x

19. g′(x) = −12
(x−5)2

21. h′(x) = − csc2 x− ex

23. h′(t) = 14t+ 6

25. f ′(x) =
(
6x+ 8

)
ex +

(
3x2 + 8x+ 7

)
ex

27. f ′(x) = 7

29. f ′(x) = sin2(x)+cos2(x)+3 cos(x)
(cos(x)+3)2

31. f ′(x) = −x sin x−cos x
x2 + tan x−x sec2 x

tan2 x

33. g′(t) = 12t2et + 4t3et − cos2 t+ sin2 t

35. f ′(x) = 2xex tan x = x2ex tan x+ x2ex sec2 x

37. Tangent line: y = 2x+ 2
Normal line: y = −1/2x+ 2

39. Tangent line: y = 4
Normal line: x = 2

41. x = 3/2

43. f ′(x) is never 0.

45. f ′′(x) = 2 cos x− x sin x

47. f ′′(x) = cot2 x csc x+ csc3 x

49. .....

−2

.

−1

.

1

.

2

.

−3

.

3

.

−2

.

2

.

−4

.

4

. −6.

6

.

x

.

y

51. .....

−2

.

−1

.

1

.

2

.

3

.

4

.

5

.

−2

.

2

.

−4

.

4

. −6.

6

.

x

.

y

SecƟon 2.5

1. T
3. F
5. T
7. f ′(x) = 10(4x3 − x)9 · (12x2 − 1) = (120x2 − 10)(4x3 − x)9

9. g′(θ) = 3(sin θ + cos θ)2(cos θ − sin θ)
11. f ′(x) = 3

(
ln x+ x2

)
2( 1x + 2x)

13. f ′(x) = 4
(
x+ 1

x
)3(1− 1

x2
)

15. g′(x) = 5 sec2(5x)

17. g ′(t) = cos
(
t5 + 1

t
) (

5t4 − 1
t3

)
19. p′(t) = −3 cos2(t2 + 3t+ 1) sin(t2 + 3t+ 1)(2t+ 3)
21. f ′(x) = 2/x
23. g′(r) = ln 4 · 4r

25. g′(t) = 0

27. f ′(x) =
(3t+2)

(
(ln 2)2t

)
−(2t+3)

(
(ln 3)3t

)
(3t+2)2

29. f ′(x) = 2x
2
(ln 3·3x

2
2x+1)−(3x

2
+x)(ln 2·2x

2
2x)

22x2

31. f ′(x) =
5(x2+ x)4(2x+1)(3x4+2x)3+3(x2+ x)5(3x4+2x)2(12x3+2)

33. f ′(x) = 3 cos(3x+ 4) cos(5− 2x) + 2 sin(3x+ 4) sin(5− 2x)

35. f ′(x) = 4(5x−9)3 cos(4x+1)−15 sin(4x+1)(5x−9)2
(5x−9)6

37. Tangent line: y = 0
Normal line: x = 0

39. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

41. In both cases the derivaƟve is the same: 1/x.
43. (a) ◦ F/mph

(b) The sign would be negaƟve; when the wind is blowing at
10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

SecƟon 2.6

1. Answers will vary.
3. T
5. f ′(x) = 1

2 x
−1/2 − 1

2 x
−3/2 = 1

2
√

x −
1

2
√

x3

7. f ′(t) = −t√
1−t2

9. h′(x) = 1.5x0.5 = 1.5
√
x

11. g′(x) =
√

x(1)−(x+7)(1/2x−1/2)
x = 1

2
√

x −
7

2
√

x3

13. dy
dx = −4x3

2y+1

15. dy
dx = sin(x) sec(y)

17. dy
dx = y

x

A.5



19. dy
dx = − 2 sin(y) cos(y)

x

21. dy
dx = 1

2y+2

23. If one takes the derivaƟve of the equaƟon, as shown, using the
QuoƟent Rule, one finds dy

dx =
− cos(x)(x+cos(y))+sin(x)+y
sin(y)(sin(x)+y)+x+cos(y) .

If one first clears the denominator and writes
sin(x) + y = cos(y) + x then takes the derivaƟve of both sides,
one finds dy

dx =
1−cos(x)
1+sin(y) .

These expressions, by themselves, are not equal. However, for
values of x and y that saƟsfy the original equaƟon (i.e, for x and y
such that sin(x)+y)

cos(y)+x) = 1), these expressions are equal.

25. dy
dx = − 2x+y

2y+x

27. (a) y = 0
(b) y = −1.859(x− 0.1) + 0.281

29. (a) y = 4
(b) y = 0.93(x− 2) + 4√108

31. (a) y = − 1√
3
(x− 7

2 ) +
6+3

√
3

2

(b) y =
√
3(x− 4+3

√
3

2 ) + 3
2

33. d2y
dx2 =

(2y+1)(−12x2)+4x3
(
2−4x3
2y+1

)
(2y+1)2

35. d2y
dx2 = cos x cos y+sin2 x tan y

cos2 y

37. y′ = (1+ x)1/x
( 1
x(x+1) − ln(1+x)

x2
)

Tangent line: y = (1− 2 ln 2)(x− 1) + 2

39. y′ = xx
x+1

(
ln x+ 1− 1

x+1
)

Tangent line: y = (1/4)(x− 1) + 1/2

41. y′ = x+1
x+2

( 1
x+1 − 1

x+2
)

Tangent line: y = 1/9(x− 1) + 2/3

SecƟon 2.7

1. F

3. The point (10, 1) lies on the graph of y = f−1(x) (assuming f is
inverƟble).

5. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

7. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

9.
(
f−1)′ (20) = 1

f ′(2) = 1/5

11.
(
f−1)′ (√3/2) = 1

f ′(π/6) = 1

13.
(
f−1)′ (1/2) = 1

f ′(1) = −2

15. h′(t) = 2√
1−4t2

17. g′(x) = 2
1+4x2

19. g′(t) = cos−1(t) cos(t)− sin(t)√
1−t2

21. h′(x) = sin−1(x)+cos−1(x)√
1−x2 cos−1(x)2

23. f ′(x) = − 1√
1−x2

25. (a) f(x) = x, so f ′(x) = 1
(b) f ′(x) = cos(sin−1 x) 1√

1−x2
= 1.

27. y =
√
2(x−

√
2/2) + π/4

29. dy
dx =

y(y−2x)
x(x−2y)

31. 3x2 + 1

Chapter 3
SecƟon 3.1

1. Answers will vary.

3. Answers will vary.

5. F

7. A: none; the funcƟon isn’t defined here. B: abs. max & rel. max C:
rel. min D: none; the funcƟon isn’t defined here. E: none F: rel.
min G: rel. max

9. f ′(0) = 0

11. f ′(π/2) = 0 f ′(3π/2) = 0

13. f ′(2) is not defined f ′(6) = 0

15. f ′(0) = 0

17. min: (−0.5, 3.75)
max: (2, 10)

19. min: (π/4, 3
√
2/2)

max: (π/2, 3)

21. min: (
√
3, 2

√
3)

max: (5, 28/5)

23. min: (π,−eπ)

max: (π/4,
√
2eπ/4
2 )

25. min: (1, 0)
max: (e, 1/e)

27. dy
dx =

y(y−2x)
x(x−2y)

29. 3x2 + 1

SecƟon 3.2

1. Answers will vary.

3. Any c in [−1, 1] is valid.

5. c = −1/2

7. Rolle’s Thm. does not apply.

9. Rolle’s Thm. does not apply.

11. c = 0

13. c = 3/
√
2

15. The Mean Value Theorem does not apply.

17. c = ± sec−1(2/
√
π)

19. c = 5−7
√
7

6

21. Max value of 19 at x = −2 and x = 5; min value of 6.75 at
x = 1.5.

23. They are the odd, integer valued mulƟples of π/2 (such as
0,±π/2,±3π/2,±5π/2, etc.)

SecƟon 3.3

1. Answers will vary.

3. Answers will vary; graphs should be steeper near x = 0 than near
x = 2.

5. False; for instance, y = x3 is always increasing though it has a
criƟcal point at x = 0.

7. Graph and verify.

9. Graph and verify.
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11. Graph and verify.

13. Graph and verify.

15. domain: (−∞,∞)

c.p. at c = −1;
decreasing on (−∞,−1);
increasing on (−1,∞);
rel. min at x = −1.

17. domain=(−∞,∞)

c.p. at c = 1
6 (−1±

√
7);

decreasing on ( 16 (−1−
√
7), 1

6 (−1+
√
7)));

increasing on (−∞, 1
6 (−1−

√
7)) and ( 16 (−1+

√
7),∞);

rel. min at x = 1
6 (−1+

√
7);

rel. max at x = 1
6 (−1−

√
7).

19. domain=(−∞,∞)

c.p. at c = 1;
decreasing on (1,∞)

increasing on (−∞, 1);
rel. max at x = 1.

21. domain=(−∞,−2) ∪ (−2, 4) ∪ (4,∞)

no c.p.;
decreasing on enƟre domain, (−∞,−2), (−2, 4) and (4,∞)

23. domain=(−∞,∞)

c.p. at c = −3π/4,−π/4, π/4, 3π/4;
decreasing on (−3π/4,−π/4) and (π/4, 3π/4);
increasing on (−π,−3π/4), (−π/4, π/4) and (3π/4, π);
rel. min at x = −π/4, 3π/4;
rel. max at x = −3π/4, π/4.

25. c = 1/2

SecƟon 3.4

1. Answers will vary.

3. Yes; Answers will vary.

5. Graph and verify.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. Possible points of inflecƟon: none; concave up on (−∞,∞)

17. Possible points of inflecƟon: x = 0; concave down on (−∞, 0);
concave up on (0,∞)

19. Possible points of inflecƟon: x = −2/3, 0; concave down on
(−2/3, 0); concave up on (−∞,−2/3) and (0,∞)

21. Possible points of inflecƟon: x = 1; concave up on (−∞,∞)

23. Possible points of inflecƟon: x = ±1/
√
3; concave down on

(−1/
√
3, 1/

√
3); concave up on (−∞,−1/

√
3) and (1/

√
3,∞)

25. Possible points of inflecƟon: x = −π/4, 3π/4; concave down on
(−π/4, 3π/4) concave up on (−π,−π/4) and (3π/4, π)

27. Possible points of inflecƟon: x = 1/e3/2; concave down on
(0, 1/e3/2) concave up on (1/e3/2,∞)

29. min: x = 1

31. max: x = −1/
√
3 min: x = 1/

√
3

33. min: x = 1

35. min: x = 1

37. max: x = 0

39. max: x = π/4; min: x = −3π/4

41. min: x = 1/
√
e

43. f ′ has no maximal or minimal value.

45. f ′ has a minimal value at x = 0

47. Possible points of inflecƟon: x = −2/3, 0; f ′ has a relaƟve min
at: x = 0 ; relaƟve max at: x = −2/3

49. f ′ has no relaƟve extrema

51. f ′ has a relaƟve max at x = −1/
√
3; relaƟve min at x = 1/

√
3

53. f ′ has a relaƟve min at x = 3π/4; relaƟve max at x = −π/4

55. f ′ has a relaƟve min at x = 1/
√
e3 = e−3/2

SecƟon 3.5

1. Answers will vary.

3. T

5. T

7. A good sketch will include the x and y intercepts and draw the
appropriate line.

9. Use technology to verify sketch.

11. Use technology to verify sketch.

13. Use technology to verify sketch.

15. Use technology to verify sketch.

17. Use technology to verify sketch.

19. Use technology to verify sketch.

21. Use technology to verify sketch.

23. Use technology to verify sketch.

25. Use technology to verify sketch.

27. CriƟcal point: x = 0 Points of inflecƟon: ±b/
√
3

29. CriƟcal points: x = nπ/2−b
a , where n is an odd integer Points of

inflecƟon: (nπ − b)/a, where n is an integer.

31. dy
dx = −x/y, so the funcƟon is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
d2y
dx2 = −1/y− x2/y3, which is posiƟve when y < 0 and is
negaƟve when y > 0. Hence the funcƟon is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.

Chapter 4
SecƟon 4.1

1. F

3. x0 = 1.5, x1 = 1.5709148, x2 = 1.5707963, x3 = 1.5707963,
x4 = 1.5707963, x5 = 1.5707963

5. x0 = 0, x1 = 2, x2 = 1.2, x3 = 1.0117647, x4 = 1.0000458,
x5 = 1

7. x0 = 2, x1 = 0.6137056389, x2 = 0.9133412072,
x3 = 0.9961317034, x4 = 0.9999925085, x5 = 1

9. roots are: x = −5.156, x = −0.369 and x = 0.525

11. roots are: x = −1.013, x = 0.988, and x = 1.393

13. x = ±0.824,

15. x = ±0.743

17. The approximaƟons alternate between x = 1 and x = 2.
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SecƟon 4.2

1. T

3. (a) 5/(2π) ≈ 0.796cm/s
(b) 1/(4π) ≈ 0.0796 cm/s
(c) 1/(40π) ≈ 0.00796 cm/s

5. 63.14mph

7. Due to the height of the plane, the gun does not have to rotate
very fast.

(a) 0.0573 rad/s
(b) 0.0725 rad/s
(c) In the limit, rate goes to 0.0733 rad/s

9. (a) 0.04 Ō/s
(b) 0.458 Ō/s
(c) 3.35 Ō/s
(d) Not defined; as the distance approaches 24, the rates

approaches∞.

11. (a) 50.92 Ō/min
(b) 0.509 Ō/min
(c) 0.141 Ō/min

As the tank holds about 523.6Ō3, it will take about 52.36 minutes.

13. (a) The rope is 80Ō long.
(b) 1.71 Ō/sec
(c) 1.84 Ō/sec
(d) About 34 feet.

15. The cone is rising at a rate of 0.003Ō/s.

SecƟon 4.3

1. T

3. 2500; the two numbers are each 50.

5. There is no maximum sum; the fundamental equaƟon has only 1
criƟcal value that corresponds to a minimum.

7. Area = 1/4, with sides of length 1/
√
2.

9. The radius should be about 3.84cm and the height should be
2r = 7.67cm. No, this is not the size of the standard can.

11. The height and width should be 18 and the length should be 36,
giving a volume of 11, 664in3.

13. 5− 10/
√
39 ≈ 3.4 miles should be run underground, giving a

minimum cost of $374,899.96.

15. The dog should run about 19 feet along the shore before starƟng
to swim.

17. The largest area is 2 formed by a square with sides of length
√
2.

SecƟon 4.4

1. T

3. F

5. Answers will vary.

7. Use y = x2; dy = 2x · dx with x = 2 and dx = 0.05. Thus
dy = .2; knowing 22 = 4, we have 2.052 ≈ 4.2.

9. Use y = x3; dy = 3x2 · dx with x = 5 and dx = 0.1. Thus
dy = 7.5; knowing 53 = 125, we have 5.13 ≈ 132.5.

11. Use y =
√
x; dy = 1/(2

√
x) · dx with x = 16 and dx = 0.5. Thus

dy = .0625; knowing
√
16 = 4, we have

√
16.5 ≈ 4.0625.

13. Use y = 3√x; dy = 1/(3 3√x2) · dx with x = 64 and dx = −1.
Thus dy = −1/48 ≈ 0.0208; we could use
−1/48 ≈ −1/50 = −0.02; knowing 3√64 = 4, we have
3√63 ≈ 3.98.

15. Use y = sin x; dy = cos x · dx with x = π and dx ≈ −0.14. Thus
dy = 0.14; knowing sin π = 0, we have sin 3 ≈ 0.14.

17. dy = (2x+ 3)dx

19. dy = −2
4x3 dx

21. dy =
(
2xe3x + 3x2e3x

)
dx

23. dy = 2(tan x+1)−2x sec2 x
(tan x+1)2 dx

25. dy = (ex sin x+ ex cos x)dx

27. dy = 1
(x+2)2 dx

29. dy = (ln x)dx

31. dV = ±0.157

33. ±15π/8 ≈ ±5.89in2

35. (a) 297.8 feet
(b) ±62.3 Ō
(c) ±20.9%

37. (a) 298.9 feet
(b) ±8.67 Ō
(c) ±2.9%

39. 1%

Chapter 5
SecƟon 5.1

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 3/4x4 + C

11. 10/3x3 − 2x+ C

13. s+ C

15. −3/(t) + C

17. tan θ + C

19. sec x− csc x+ C

21. 3t/ ln 3+ C

23. 4/3t3 + 6t2 + 9t+ C

25. x6/6+ C

27. ax+ C

29. − cos x+ 3

31. x4 − x3 + 7

33. 7x/ ln 7+ 1− 49/ ln 7

35. 7x3
6 − 9x

2 + 40
3

37. θ − sin(θ)− π + 4

39. 3x− 2

41. dy = (2xex cos x+ x2ex cos x− x2ex sin x)dx

SecƟon 5.2

1. Answers will vary.
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3. 0

5. (a) 3
(b) 4
(c) 3
(d) 0
(e) −4
(f) 9

7. (a) 4
(b) 2
(c) 4
(d) 2
(e) 1
(f) 2

9. (a) π

(b) π

(c) 2π
(d) 10π

11. (a) −59
(b) −48
(c) −27
(d) −33

13. (a) 4
(b) 4
(c) −4
(d) −2

15. (a) 2Ō/s
(b) 2Ō
(c) 1.5Ō

17. (a) 64Ō/s
(b) 64Ō
(c) t = 2
(d) t = 2+

√
7 ≈ 4.65 seconds

19. 2

21. 16

23. 24

25. −7

27. 1/4x4 − 2/3x3 + 7/2x2 − 9x+ C

29. 3/4t4/3 − 1/t+ 2t/ ln 2+ C

SecƟon 5.3

1. limits

3. Rectangles.

5. 22 + 32 + 42 = 29

7. 0− 1+ 0+ 1+ 0 = 0

9. 1+ 1/2+ 1/3+ 1/4+ 1/5 = 137/60

11. 1/2+ 1/6+ 1/12+ 1/20 = 4/5

13. Answers may vary;
∑5

i=1 3i

15. Answers may vary;
∑4

i=1
i

i+1

17. 5 · 10 = 50

19. 1045

21. −8525

23. 5050

25. 155

27. 24

29. 19

31. π/3+ π/(2
√
3) ≈ 1.954

33. 0.388584

35. (a) Exact expressions will vary; (1+n)2

4n2 .
(b) 121/400, 10201/40000, 1002001/4000000
(c) 1/4

37. (a) 8.
(b) 8, 8, 8
(c) 8

39. (a) Exact expressions will vary; 100− 200/n.
(b) 80, 98, 499/5
(c) 100

41. F(x) = 5 tan x+ 4

43. G(t) = 4/6t6 − 5/4t4 + 8t+ 9

45. G(t) = sin t− cos t− 78

SecƟon 5.4

1. Answers will vary.

3. T

5. 20

7. 0

9. 1

11. (5− 1/5)/ ln 5

13. −4

15. 16/3

17. 45/4

19. 1/2

21. 1/2

23. 1/4

25. 8

27. 0

29. ExplanaƟons will vary. A sketch will help.

31. c = 2/
√
3

33. c = ln(e− 1) ≈ 0.54

35. 2/π

37. 2

39. 16

41. −300Ō

43. 30Ō

45. −1Ō

47. −64Ō/s

49. 2Ō/s

51. 27/2

53. 9/2
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55. F′(x) = (3x2 + 1) 1
x3+x

57. F′(x) = 2x(x2 + 2)− (x+ 2)

SecƟon 5.5

1. F

3. They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.

5. (a) 3/4
(b) 2/3
(c) 2/3

7. (a) 1
4 (1+

√
2)π ≈ 1.896

(b) 1
6 (1+ 2

√
2)π ≈ 2.005

(c) 2

9. (a) 38.5781
(b) 147/4 ≈ 36.75
(c) 147/4 ≈ 36.75

11. (a) 0
(b) 0
(c) 0

13. Trapezoidal Rule: 0.9006
Simpson’s Rule: 0.90452

15. Trapezoidal Rule: 13.9604
Simpson’s Rule: 13.9066

17. Trapezoidal Rule: 1.1703
Simpson’s Rule: 1.1873

19. Trapezoidal Rule: 1.0803
Simpson’s Rule: 1.077

21. (a) n = 161 (using max
(
f ′′(x)

)
= 1)

(b) n = 12 (using max
(
f (4)(x)

)
= 1)

23. (a) n = 1004 (using max
(
f ′′(x)

)
= 39)

(b) n = 62 (using max
(
f (4)(x)

)
= 800)

25. (a) Area is 30.8667 cm2.
(b) Area is 308, 667 yd2.

Chapter 6
SecƟon 6.1

1. Chain Rule.

3. 1
8 (x

3 − 5)8 + C

5. 1
18

(
x2 + 1

)9
+ C

7. 1
2 ln |2x+ 7|+ C

9. 2
3 (x+ 3)3/2 − 6(x+ 3)1/2 + C = 2

3 (x− 6)
√
x+ 3+ C

11. 2e
√

x + C

13. − 1
2x2 − 1

x + C

15. sin3(x)
3 + C

17. − 1
6 sin(3− 6x) + C

19. 1
2 ln | sec(2x) + tan(2x)|+ C

21. sin(x2)
2 + C

23. The key is to rewrite cot x as cos x/ sin x, and let u = sin x.

25. 1
3 e

3x−1 + C

27. 1
2 e

(x−1)2 + C

29. ln
(
ex + 1

)
+ C

31. 27x
ln 27 + C

33. 1
2 ln

2(x) + C

35. 3
2 (ln x)

2 + C

37. x2
2 + 3x+ ln |x|+ C

39. x3
3 − x2

2 + x− 2 ln |x+ 1|+ C

41. 3
2 x

2 − 8x+ 15 ln |x+ 1|+ C

43.
√
7 tan−1

(
x√
7

)
+ C

45. 14 sin−1
(

x√
5

)
+ C

47. 5
4 sec

−1(|x|/4) + C

49.
tan−1

(
x−1√

7

)
√
7

+ C

51. 3 sin−1 ( x−4
5

)
+ C

53. − 1
3(x3+3)

+ C

55. −
√
1− x2 + C

57. − 2
3 cos

3
2 (x) + C

59. ln |x− 5|+ C

61. 3x2
2 + ln

∣∣x2 + 3x+ 5
∣∣− 5x+ C

63. 3 ln
∣∣3x2 + 9x+ 7

∣∣+ C

65. 1
18 tan

−1
(

x2
9

)
+ C

67. sec−1(|2x|) + C

69. 3
2 ln

∣∣x2 − 2x+ 10
∣∣+ 1

3 tan
−1 ( x−1

3
)
+ C

71. 15
2 ln

∣∣x2 − 10x+ 32
∣∣+ x+

41 tan−1
(

x−5√
7

)
√
7

+ C

73. x2
2 + 3 ln

∣∣x2 + 4x+ 9
∣∣− 4x+

24 tan−1
(

x+2√
5

)
√
5

+ C

75. tan−1(sin(x)) + C

77. 3
√
x2 − 2x− 6+ C

79. − ln 2

81. 2/3

83. (1− e)/2

85. π/2
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Index

!, 405
Absolute Convergence Theorem, 456
absolute maximum, 129
absolute minimum, 129
Absolute Value Theorem, 410
acceleraƟon, 77, 651
AlternaƟng Harmonic Series, 427, 454, 467
AlternaƟng Series Test, 450
aN, 669, 679
analyƟc funcƟon, 488
angle of elevaƟon, 656
anƟderivaƟve, 197

of vector–valued funcƟon, 646
arc length, 379, 527, 553, 648, 673
arc length parameter, 673, 675
asymptote

horizontal, 50
verƟcal, 48

aT, 669, 679
average rate of change, 635
average value of a funcƟon, 777
average value of funcƟon, 244

Binomial Series, 489
BisecƟon Method, 42
boundary point, 690
bounded sequence, 412

convergence, 413
bounded set, 690

center of mass, 791–793, 795, 822
Chain Rule, 101

mulƟvariable, 721, 724
notaƟon, 107

circle of curvature, 678
circulaƟon, 870
closed, 690
closed disk, 690
concave down, 151
concave up, 151
concavity, 151, 524

inflecƟon point, 152
test for, 152

conic secƟons, 498
degenerate, 498
ellipse, 501
hyperbola, 504
parabola, 498

connected, 865
simply, 865

conservaƟve field, 865, 866, 868

Constant MulƟple Rule
of derivaƟves, 84
of integraƟon, 201
of series, 427

constrained opƟmizaƟon, 754
conƟnuous funcƟon, 37, 696

properƟes, 40, 697
vector–valued, 638

contour lines, 684
convergence

absolute, 454, 456
AlternaƟng Series Test, 450
condiƟonal, 454
Direct Comparison Test, 437
for integraƟon, 347

Integral Test, 434
interval of, 462
Limit Comparison Test, 438
for integraƟon, 349

nth–term test, 429
of geometric series, 422
of improper int., 342, 347, 349
of monotonic sequences, 416
of p-series, 423
of power series, 461
of sequence, 408, 413
of series, 419
radius of, 462
RaƟo Comparison Test, 443
Root Comparison Test, 446

coordinates
cylindrical, 828
polar, 533
spherical, 831

criƟcal number, 131
criƟcal point, 131, 749–751
cross product

and derivaƟves, 643
applicaƟons, 605
area of parallelogram, 606
torque, 608
volume of parallelepiped, 607

definiƟon, 601
properƟes, 603, 604

curl, 853
of conservaƟve fields, 868

curvature, 675
and moƟon, 679
equaƟons for, 677
of circle, 677, 678
radius of, 678
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curve
parametrically defined, 511
rectangular equaƟon, 511
smooth, 517

curve sketching, 159
cusp, 517
cycloid, 633
cylinder, 563
cylindrical coordinates, 828

decreasing funcƟon, 142
finding intervals, 143

definite integral, 209
and subsƟtuƟon, 278
of vector–valued funcƟon, 646
properƟes, 211

del operator, 851
derivaƟve

acceleraƟon, 78
as a funcƟon, 66
at a point, 62
basic rules, 82
Chain Rule, 101, 107, 721, 724
Constant MulƟple Rule, 84
Constant Rule, 82
differenƟal, 189
direcƟonal, 729, 731, 732, 735, 736
exponenƟal funcƟons, 107
First Deriv. Test, 145
Generalized Power Rule, 102
higher order, 85
interpretaƟon, 86

hyperbolic funct., 324
implicit, 111, 726
interpretaƟon, 75
inverse funcƟon, 122
inverse hyper., 327
inverse trig., 125
logarithmic differenƟaƟon, 118
Mean Value Theorem, 138
mixed parƟal, 704
moƟon, 78
mulƟvariable differenƟability, 713, 718
normal line, 63
notaƟon, 66, 85
parametric equaƟons, 521
parƟal, 700, 708
Power Rule, 82, 95, 116
power series, 465
Product Rule, 89
QuoƟent Rule, 92
second, 85
Second Deriv. Test, 155
Sum/Difference Rule, 84
tangent line, 62
third, 85
trigonometric funcƟons, 94
vector–valued funcƟons, 639, 640, 643
velocity, 78

differenƟable, 62, 713, 718

differenƟal, 189
notaƟon, 189

Direct Comparison Test
for integraƟon, 347
for series, 437

direcƟonal derivaƟve, 729, 731, 732, 735, 736
directrix, 498, 563
Disk Method, 364
displacement, 238, 634, 648
distance

between lines, 619
between point and line, 619
between point and plane, 628
between points in space, 560
traveled, 659

divergence, 852, 853
AlternaƟng Series Test, 450
Direct Comparison Test, 437
for integraƟon, 347

Integral Test, 434
Limit Comparison Test, 438
for integraƟon, 349

nth–term test, 429
of geometric series, 422
of improper int., 342, 347, 349
of p-series, 423
of sequence, 408
of series, 419
RaƟo Comparison Test, 443
Root Comparison Test, 446

Divergence Theorem
in space, 900
in the plane, 877

dot product
and derivaƟves, 643
definiƟon, 588
properƟes, 589, 590

double integral, 770, 771
in polar, 781
properƟes, 774

eccentricity, 503, 507
elementary funcƟon, 248
ellipse

definiƟon, 501
eccentricity, 503
parametric equaƟons, 517
reflecƟve property, 504
standard equaƟon, 502

extrema
absolute, 129, 749
and First Deriv. Test, 145
and Second Deriv. Test, 155
finding, 132
relaƟve, 130, 749, 750

Extreme Value Theorem, 130, 754
extreme values, 129

factorial, 405
First DerivaƟve Test, 145



first octant, 560
floor funcƟon, 38
flow, 870, 872
fluid pressure/force, 397, 399
flux, 870, 872, 893, 894
focus, 498, 501, 504
Fubini’s Theorem, 771
funcƟon

of three variables, 687
of two variables, 683
vector–valued, 631

Fundamental Theorem of Calculus, 236, 237
and Chain Rule, 240

Fundamental Theorem of Line Integrals, 864, 866

Gabriel’s Horn, 384
Gauss’s Law, 904
Generalized Power Rule, 102
geometric series, 421, 422
gradient, 731, 732, 735, 736, 746

and level curves, 732
and level surfaces, 746

Green’s Theorem, 874

Harmonic Series, 427
Head To Tail Rule, 578
Hooke’s Law, 390
hyperbola

definiƟon, 504
eccentricity, 507
parametric equaƟons, 517
reflecƟve property, 507
standard equaƟon, 505

hyperbolic funcƟon
definiƟon, 321
derivaƟves, 324
idenƟƟes, 324
integrals, 324
inverse, 325
derivaƟve, 327
integraƟon, 327
logarithmic def., 326

implicit differenƟaƟon, 111, 726
improper integraƟon, 342, 345
incompressible vector field, 852
increasing funcƟon, 142

finding intervals, 143
indefinite integral, 197

of vector–valued funcƟon, 646
indeterminate form, 2, 49, 335, 336
inflecƟon point, 152
iniƟal point, 574
iniƟal value problem, 202
Integral Test, 434
integraƟon

arc length, 379
area, 209, 762, 763
area between curves, 241, 354
average value, 244
by parts, 283

by subsƟtuƟon, 265
definite, 209
and subsƟtuƟon, 278
properƟes, 211
Riemann Sums, 232

displacement, 238
distance traveled, 659
double, 770
fluid force, 397, 399
Fun. Thm. of Calc., 236, 237
general applicaƟon technique, 353
hyperbolic funct., 324
improper, 342, 345, 347, 349
indefinite, 197
inverse hyper., 327
iterated, 761
Mean Value Theorem, 243
mulƟple, 761
notaƟon, 198, 209, 237, 761
numerical, 248
LeŌ/Right Hand Rule, 248, 255
Simpson’s Rule, 253, 255, 256
Trapezoidal Rule, 251, 255, 256

of mulƟvariable funcƟons, 759
of power series, 465
of trig. funcƟons, 271
of trig. powers, 294, 299
of vector–valued funcƟon, 646
of vector–valued funcƟons, 646
parƟal fracƟon decomp., 314
Power Rule, 202
Sum/Difference Rule, 202
surface area, 383, 529, 554
trig. subst., 305
triple, 808, 819–821
volume
cross-secƟonal area, 362
Disk Method, 364
Shell Method, 371, 375
Washer Method, 366, 375

with cylindrical coordinates, 829
with spherical coordinates, 833
work, 387

interior point, 690
Intermediate Value Theorem, 42
interval of convergence, 462
iterated integraƟon, 761, 770, 771, 808, 819–821

changing order, 765
properƟes, 774, 814

L’Hôpital’s Rule, 332, 334
lamina, 787
LeŌ Hand Rule, 218, 223, 248
LeŌ/Right Hand Rule, 255
level curves, 684, 732
level surface, 688, 746
limit

Absolute Value Theorem, 410
at infinity, 50
definiƟon, 10



difference quoƟent, 6
does not exist, 4, 32
indeterminate form, 2, 49, 335, 336
L’Hôpital’s Rule, 332, 334
leŌ handed, 30
of infinity, 46
of mulƟvariable funcƟon, 691, 692, 698
of sequence, 408
of vector–valued funcƟons, 637
one sided, 30
properƟes, 18, 692
pseudo-definiƟon, 2
right handed, 30
Squeeze Theorem, 22

Limit Comparison Test
for integraƟon, 349
for series, 438

line integral
Fundamental Theorem, 864, 866
over scalar field, 841, 843, 859
over vector field, 860
path independent, 865, 866
properƟes over a scalar field, 846
properƟes over a vector field, 863

lines, 612
distances between, 619
equaƟons for, 614
intersecƟng, 615
parallel, 615
skew, 615

logarithmic differenƟaƟon, 118

Möbius band, 881
Maclaurin Polynomial, see Taylor Polynomial

definiƟon, 474
Maclaurin Series, see Taylor Series

definiƟon, 485
magnitude of vector, 574
mass, 787, 788, 822, 847

center of, 791, 847
maximum

absolute, 129, 749
and First Deriv. Test, 145
and Second Deriv. Test, 155
relaƟve/local, 130, 749, 752

Mean Value Theorem
of differenƟaƟon, 138
of integraƟon, 243

Midpoint Rule, 218, 223
minimum

absolute, 129, 749
and First Deriv. Test, 145, 155
relaƟve/local, 130, 749, 752

moment, 793, 795, 822
monotonic sequence, 414
mulƟple integraƟon, see iterated integraƟon
mulƟvariable funcƟon, 683, 687

conƟnuity, 696–698, 714, 719
differenƟability, 713, 714, 718, 719
domain, 683, 687

level curves, 684
level surface, 688
limit, 691, 692, 698
range, 683, 687

Newton’s Method, 168
norm, 574
normal line, 63, 521, 742
normal vector, 623
nth–term test, 429
numerical integraƟon, 248

LeŌ/Right Hand Rule, 248, 255
Simpson’s Rule, 253, 255
error bounds, 256

Trapezoidal Rule, 251, 255
error bounds, 256

octant
first, 560

one to one, 880
open, 690
open ball, 698
open disk, 690
opƟmizaƟon, 181

constrained, 754
orientable, 880
orthogonal, 592, 742

decomposiƟon, 596
orthogonal decomposiƟon of vectors, 596
orthogonal projecƟon, 594
osculaƟng circle, 678
outer unit normal vector, 900

p-series, 423
parabola

definiƟon, 498
general equaƟon, 499
reflecƟve property, 501

parallel vectors, 582
Parallelogram Law, 578
parametric equaƟons

arc length, 527
concavity, 524
definiƟon, 511
finding d2y

dx2 , 525
finding dy

dx , 521
normal line, 521
of a surface, 880
surface area, 529
tangent line, 521

parametrized surface, 880
parƟal derivaƟve, 700, 708

high order, 708
meaning, 702
mixed, 704
second derivaƟve, 704
total differenƟal, 712, 718

parƟƟon, 225
size of, 225

path independent, 865, 866



perpendicular, see orthogonal
piecewise smooth curve, 846
planes

coordinate plane, 562
distance between point and plane, 628
equaƟons of, 624
introducƟon, 562
normal vector, 623
tangent, 745

point of inflecƟon, 152
polar

coordinates, 533
funcƟon
arc length, 553
gallery of graphs, 540
surface area, 554

funcƟons, 536
area, 549
area between curves, 551
finding dy

dx , 546
graphing, 536

polar coordinates, 533
ploƫng points, 533

potenƟal funcƟon, 857, 866
Power Rule

differenƟaƟon, 82, 89, 95, 116
integraƟon, 202

power series, 460
algebra of, 491
convergence, 461
derivaƟves and integrals, 465

projecƟle moƟon, 656, 657, 670

quadric surface
definiƟon, 566
ellipsoid, 568
ellipƟc cone, 567
ellipƟc paraboloid, 567
gallery, 567–569
hyperbolic paraboloid, 569
hyperboloid of one sheet, 568
hyperboloid of two sheets, 569
sphere, 568
trace, 566

QuoƟent Rule, 92

R, 574
radius of convergence, 462
radius of curvature, 678
RaƟo Comparison Test

for series, 443
rearrangements of series, 455, 456
related rates, 174
Riemann Sum, 218, 222, 225

and definite integral, 232
Right Hand Rule, 218, 223, 248
right hand rule

of Cartesian coordinates, 560
of the cross product, 605

Rolle’s Theorem, 138

Root Comparison Test
for series, 446

saddle point, 751, 752
Second DerivaƟve Test, 155, 752
sensiƟvity analysis, 717
sequence

Absolute Value Theorem, 410
posiƟve, 437

sequences
boundedness, 412
convergent, 408, 413, 416
definiƟon, 405
divergent, 408
limit, 408
limit properƟes, 411
monotonic, 414

series
absolute convergence, 454
Absolute Convergence Theorem, 456
alternaƟng, 449
ApproximaƟon Theorem, 452

AlternaƟng Series Test, 450
Binomial, 489
condiƟonal convergence, 454
convergent, 419
definiƟon, 419
Direct Comparison Test, 437
divergent, 419
geometric, 421, 422
Integral Test, 434
interval of convergence, 462
Limit Comparison Test, 438
Maclaurin, 485
nth–term test, 429
p-series, 423
parƟal sums, 419
power, 460, 461
derivaƟves and integrals, 465

properƟes, 427
radius of convergence, 462
RaƟo Comparison Test, 443
rearrangements, 455, 456
Root Comparison Test, 446
Taylor, 485
telescoping, 424, 425

Shell Method, 371, 375
signed area, 209
signed volume, 770, 771
simple curve, 865
simply connected, 865
Simpson’s Rule, 253, 255

error bounds, 256
smooth, 642

curve, 517
surface, 880

smooth curve
piecewise, 846

speed, 651
sphere, 561



spherical coordinates, 831
Squeeze Theorem, 22
Stokes’ Theorem, 906
Sum/Difference Rule

of derivaƟves, 84
of integraƟon, 202
of series, 427

summaƟon
notaƟon, 219
properƟes, 221

surface, 880
smooth, 880

surface area, 800
of parametrized surface, 886, 887
solid of revoluƟon, 383, 529, 554

surface integral, 891
surface of revoluƟon, 564, 565

tangent line, 62, 521, 546, 641
direcƟonal, 739

tangent plane, 745
Taylor Polynomial

definiƟon, 474
Taylor’s Theorem, 477

Taylor Series
common series, 491
definiƟon, 485
equality with generaƟng funcƟon, 487

Taylor’s Theorem, 477
telescoping series, 424, 425
terminal point, 574
torque, 608
total differenƟal, 712, 718

sensiƟvity analysis, 717
total signed area, 209
trace, 566
Trapezoidal Rule, 251, 255

error bounds, 256
triple integral, 808, 819–821

properƟes, 814

unbounded sequence, 412
unbounded set, 690
unit normal vector

aN, 669
and acceleraƟon, 668, 669
and curvature, 679
definiƟon, 666
in R2, 668

unit tangent vector
and acceleraƟon, 668, 669
and curvature, 675, 679
aT, 669
definiƟon, 664
in R2, 668

unit vector, 580
properƟes, 582
standard unit vector, 584
unit normal vector, 666
unit tangent vector, 664

vector field, 850
conservaƟve, 865, 866
curl of, 853
divergence of, 852, 853
over vector field, 860
potenƟal funcƟon of, 857, 866

vector–valued funcƟon
algebra of, 632
arc length, 648
average rate of change, 635
conƟnuity, 638
definiƟon, 631
derivaƟves, 639, 640, 643
describing moƟon, 651
displacement, 634
distance traveled, 659
graphing, 631
integraƟon, 646
limits, 637
of constant length, 645, 655, 656, 665
projecƟle moƟon, 656, 657
smooth, 642
tangent line, 641

vectors, 574
algebra of, 577
algebraic properƟes, 580
component form, 575
cross product, 601, 603, 604
definiƟon, 574
dot product, 588–590
Head To Tail Rule, 578
magnitude, 574
norm, 574
normal vector, 623
orthogonal, 592
orthogonal decomposiƟon, 596
orthogonal projecƟon, 594
parallel, 582
Parallelogram Law, 578
resultant, 578
standard unit vector, 584
unit vector, 580, 582
zero vector, 578

velocity, 77, 651
volume, 770, 771, 806

Washer Method, 366, 375
work, 387, 599



DifferenƟaƟon Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx

(
sin−1 x

)
=

1
√
1− x2

20.
d
dx

(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx

(
csc−1 x

)
=

−1
|x|

√
x2 − 1

22.
d
dx

(
sec−1 x

)
=

1
|x|

√
x2 − 1

23.
d
dx

(
tan−1 x

)
=

1
1+ x2

24.
d
dx

(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx

(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx

(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx

(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx

(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx

(
tanh−1 x

)
=

1
1− x2

36.
d
dx

(
coth−1 x

)
=

1
1− x2

IntegraƟon Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =

∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ln x dx = x ln x− x+ C

8.
∫

ax dx =
1
ln a

· ax + C

9.
∫ 1

x
dx = ln |x|+ C

10.
∫

cos x dx = sin x+ C

11.
∫

sin x dx =− cos x+ C

12.
∫

tan x dx =− ln | cos x|+ C

13.
∫

sec x dx = ln | sec x+ tan x|+ C

14.
∫

csc x dx =− ln | csc x+ cot x|+ C

15.
∫

cot x dx = ln | sin x|+ C

16.
∫

sec2 x dx = tan x+ C

17.
∫

csc2 x dx =− cot x+ C

18.
∫

sec x tan x dx = sec x+ C

19.
∫

csc x cot x dx =− csc x+ C

20.
∫

cos2 x dx =
1
2
x+

1
4
sin

(
2x
)
+ C

21.
∫

sin2 x dx =
1
2
x−

1
4
sin

(
2x
)
+ C

22.
∫ 1

x2 + a2
dx =

1
a
tan−1

(
x
a

)
+ C

23.
∫ 1

√
a2 − x2

dx = sin−1
(

x
a

)
+ C

24.
∫ 1

x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

25.
∫

cosh x dx = sinh x+ C

26.
∫

sinh x dx = cosh x+ C

27.
∫

tanh x dx = ln(cosh x) + C

28.
∫

coth x dx = ln | sinh x|+ C

29.
∫ 1

√
x2 − a2

dx = ln
∣∣x+√

x2 − a2
∣∣+ C

30.
∫ 1

√
x2 + a2

dx = ln
∣∣x+√

x2 + a2
∣∣+ C

31.
∫ 1

a2 − x2
dx =

1
2a

ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

32.
∫ 1

x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

33.
∫ 1

x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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DefiniƟons of the Trigonometric FuncƟons

Unit Circle DefiniƟon

x

y

(x, y)

y

x

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle DefiniƟon

Adjacent

OppositeHy
pot

enu
se

θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric IdenƟƟes

Pythagorean IdenƟƟes
sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

CofuncƟon IdenƟƟes
sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas
sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
sin
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd IdenƟƟes
sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas
sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles
h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

b
θ

ac
h

Right Circular Cone
Volume = 1

3πr
2h

Surface Area =
πr
√
r2 + h2 + πr2

h

r

Parallelograms
Area = bh

b

h

Right Circular Cylinder
Volume = πr2h

Surface Area =
2πrh+ 2πr2

h

r

Trapezoids
Area = 1

2 (a+ b)h

b

a

h

Sphere
Volume = 4

3πr
3

Surface Area =4πr2
r

Circles
Area = πr2

Circumference = 2πr
r

General Cone
Area of Base = A

Volume = 1
3Ah

h

A

Sectors of Circles
θ in radians

Area = 1
2θr

2

s = rθ r

s

θ

General Right Cylinder
Area of Base = A

Volume = Ah
h

A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a soluƟon of
the equaƟon p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily disƟnct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

QuadraƟc Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

RaƟonal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cs+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

ArithmeƟc OperaƟons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



AddiƟonal Formulas

SummaƟon Formulas:
n∑

i=1
c = cn

n∑
i=1

i =
n(n+ 1)

2
n∑

i=1
i2 =

n(n+ 1)(2n+ 1)
6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of RevoluƟon:

S = 2π
∫ b

a
f(x)
√
1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√
1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series CondiƟon(s) of
Convergence

CondiƟon(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1
bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
conƟnuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

RaƟo Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posiƟve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posiƟve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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