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PREFACE

A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that you may better understand what you will find beyond this
page.

This text is Part | of a three—text series on Calculus. The first part covers
material taught in many “Calc 1” courses: limits, derivatives, and the basics of
integration, found in Chapters 1 through 6.1. The second text covers material
often taughtin “Calc 2:” integration and its applications, along with an introduc-
tion to sequences, series and Taylor Polynomials, found in Chapters 5 through
8. The third text covers topics common in “Calc 3” or “multivariable calc:” para-
metric equations, polar coordinates, vector—valued functions, and functions of
more than one variable, found in Chapters 9 through 14. All three are available
separately for free at www . apexcalculus. com. These three texts are intended
to work together and make one cohesive text, APEX Calculus, which can also be
downloaded from the website.

Printing the entire text as one volume makes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some
prefer to have a nice, bound copy of the text. Therefore this text has been split
into these three manageable parts, each of which can be purchased for about
$15 at Amazon.com.

A result of this splitting is that sometimes a concept is said to be explored in
a “later section,” though that section does not actually appear in this particular
text. Also, the index makes reference to topics and page numbers that do not
appear in this text. This is done intentionally to show the reader what topics are
available for study. Downloading the .pdf of APEX Calculus will ensure that you
have all the content.

For Students: How to Read this Text

Mathematics textbooks have a reputation for being hard to read. High—level
mathematical writing often seeks to say much with few words, and this style
often seeps into texts of lower—level topics. This book was written with the goal
of being easier to read than many other calculus textbooks, without becoming
too verbose.

Each chapter and section starts with an introduction of the coming material,
hopefully setting the stage for “why you should care,” and ends with alook ahead
to see how the just—learned material helps address future problems.

Please read the text; it is written to explain the concepts of Calculus. There
are numerous examples to demonstrate the meaning of definitions, the truth
of theorems, and the application of mathematical techniques. When you en-
counter a sentence you don’t understand, read it again. If it still doesn’t make
sense, read on anyway, as sometimes confusing sentences are explained by later
sentences.

You don’t have to read every equation. The examples generally show “all”
the steps needed to solve a problem. Sometimes reading through each step is
helpful; sometimes it is confusing. When the steps are illustrating a new tech-
nique, one probably should follow each step closely to learn the new technique.
When the steps are showing the mathematics needed to find a number to be
used later, one can usually skip ahead and see how that number is being used,
instead of getting bogged down in reading how the number was found.


http://apexcalculus.com
http://amazon.com

Most proofs have been omitted. In mathematics, proving something is al-
ways true is extremely important, and entails much more than testing to see if
it works twice. However, students often are confused by the details of a proof,
or become concerned that they should have been able to construct this proof
on their own. To alleviate this potential problem, we do not include the proofs
to most theorems in the text. The interested reader is highly encouraged to find
proofs online or from their instructor. In most cases, one is very capable of un-
derstanding what a theorem means and how to apply it without knowing fully
why it is true.

Interactive, 3D Graphics

New to Version 3.0 was the addition of interactive, 3D graphics in the .pdf
version. Nearly all graphs of objects in space can be rotated, shifted, and zoomed
in/out so the reader can better understand the object illustrated.

As of this writing, the only pdf viewers that support these 3D graphics are
Adobe Reader & Acrobat (and only the versions for PC/Mac/Unix/Linux com-
puters, not tablets or smartphones). To activate the interactive mode, click on
the image. Once activated, one can click/drag to rotate the object and use the
scroll wheel on a mouse to zoom in/out. (A great way to investigate an image
is to first zoom in on the page of the pdf viewer so the graphic itself takes up
much of the screen, then zoom inside the graphic itself.) A CTRL-click/drag pans
the object left/right or up/down. By right-clicking on the graph one can access
a menu of other options, such as changing the lighting scheme or perspective.
One can also revert the graph back to its default view. If you wish to deactivate
the interactivity, one can right-click and choose the “Disable Content” option.

Thanks

There are many people who deserve recognition for the important role they
have played in the development of this text. First, | thank Michelle for her sup-
port and encouragement, even as this “project from work” occupied my time
and attention at home. Many thanks to Troy Siemers, whose most important
contributions extend far beyond the sections he wrote or the 227 figures he
coded in Asymptote for 3D interaction. He provided incredible support, advice
and encouragement for which | am very grateful. My thanks to Brian Heinold
and Dimplekumar Chalishajar for their contributions and to Jennifer Bowen for
reading through so much material and providing great feedback early on. Thanks
to Troy, Lee Dewald, Dan Joseph, Meagan Herald, Bill Lowe, John David, Vonda
Walsh, Geoff Cox, Jessica Libertini and other faculty of VMI who have given me
numerous suggestions and corrections based on their experience with teaching
from the text. (Special thanks to Troy, Lee & Dan for their patience in teaching
Calc Il while | was still writing the Calc Ill material.) Thanks to Randy Cone for
encouraging his tutors of VMI’s Open Math Lab to read through the text and
check the solutions, and thanks to the tutors for spending their time doing so.
A very special thanks to Kristi Brown and Paul Janiczek who took this opportu-
nity far above & beyond what | expected, meticulously checking every solution
and carefully reading every example. Their comments have been extraordinarily
helpful. | am also thankful for the support provided by Wane Schneiter, who as
my Dean provided me with extra time to work on this project. Finally, a huge
heap of thanks is to be bestowed on the numerous people | do not know who
took the time to email me corrections and suggestions. | am blessed to have so
many people give of their time to make this book better.



A%X — Affordable Print and Electronic teXts

AFEX is a consortium of authors who collaborate to produce high—quality,
low—cost textbooks. The current textbook—writing paradigm is facing a poten-
tial revolution as desktop publishing and electronic formats increase in popular-
ity. However, writing a good textbook is no easy task, as the time requirements
alone are substantial. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboration, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is entirely free; someone always bears some cost. This text
“cost” the authors of this book their time, and that was not enough. APEX Cal-
culus would not exist had not the Virginia Military Institute, through a generous
Jackson—Hope grant, given the lead author significant time away from teaching
so he could focus on this text.

Each text is available as a free .pdf, protected by a Creative Commons At-
tribution - Noncommercial 4.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the latter, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add sections that are “missing” or remove sections that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

Version 4.0

Key changes from Version 3.0 to 4.0:

III

e Numerous typographical and “small” mathematical corrections (again, thanks

to all my close readers!).

e “Large” mathematical corrections and adjustments. There were a number
of places in Version 3.0 where a definition/theorem was not correct as
stated. See www.apexcalculus.com for more information.

¢ More useful numbering of Examples, Theorems, etc. “Definition 11.4.2"
refers to the second definition of Chapter 11, Section 4.

¢ The addition of Section 13.7: Triple Integration with Cylindrical and Spher-
ical Coordinates

¢ The addition of Chapter 14: Vector Analysis.


https://github.com/APEXCalculus
http://www.vmi.edu/APEX
http://apexcalculus.com




1: LIMITS

Calculus means “a method of calculation or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathematics that had taken place into
the first half of the 17t century, mathematicians and scientists were keenly
aware of what they could not do. (This is true even today.) In particular, two
important concepts eluded mastery by the great thinkers of that time: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as they were then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate x time.” But what if the rate is not constant
— can distance still be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathematicians, Sir
Isaac Newton and Gottfried Leibniz, are credited with independently formulating
a system of computing that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundation of “the calculus” is the limit. It is a tool to describe a par-
ticular behavior of a function. This chapter begins our study of the limit by ap-
proximating its value graphically and numerically. After a formal definition of
the limit, properties are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

1.1 An Introduction To Limits

We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.

Consider the function y = % When x is near the value 1, what value (if
any) is y near?
While our question is not precisely formed (what constitutes “near the value
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0.8 +

0.5

1

1.5

Figure 1.1.1: sin(x) /x near x = 1.

- 4

Figure 1.1.2: sin(x)/x near x = 0.

X sin(x)/x
0.9 0.870363
0.99 0.844471

0.999 0.841772

1 0.841471

1.001  0.84117
1.01  0.838447
11 0.810189

Figure 1.1.3: Values of sin(x)/x with x

near 1.

1”7?), the answer does not seem difficult to find. One might think first to look at a
graph of this function to approximate the appropriate y values. Consider Figure
1.1.1, wherey = % is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, then y = 901 ~ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value
(if any) is y near? By considering Figure 1.1.2, one can see that it seems that y

takes on values near 1. But what happens when x = 0? We have

The expression “0/0” has no value; it is indeterminate. Such an expression gives
no information about what is going on with the function nearby. We cannot find
out how y behaves near x = 0 for this function simply by letting x = 0.

Finding a limit entails understanding how a function behaves near a particu-
lar value of x. Before continuing, it will be useful to establish some notation. Let
y = f(x); that is, let y be a function of x for some function f. The expression “the
limit of y as x approaches 1” describes a number, often referred to as L, that y
nears as x nears 1. We write all this as

limy = lim f(x) = L.
x—1 x—1
This is not a complete definition (that will come in the next section); this is a
pseudo-definition that will allow us to explore the idea of a limit.
Above, where f(x) = sin(x)/x, we approximated

. sinx . sinx

lim — ~0.84 and I|lim— 1.

x—=1 X x—=0 X
(We approximated these limits, hence used the “~” symbol, since we are work-
ing with the pseudo-definition of a limit, not the actual definition.)

Once we have the true definition of a limit, we will find limits analytically;
that is, exactly using a variety of mathematical tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a function can provide
a good approximation, though often not very precise. Numerical methods can
provide a more accurate approximation. We have already approximated limits
graphically, so we now turn our attention to numerical approximations.

Consider again lim,_,; sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
1.1.3.

Notice that for values of x near 1, we have sin(x) /xnear 0.841. The x = 1 row
is in bold to highlight the fact that when considering limits, we are not concerned

Notes:
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with the value of the function at that particular x value; we are only concerned
with the values of the function when x is near 1.

Now approximate lim,_,q sin(x)/x numerically. We already approximated X sin(x) /x
the value of this limit as 1 graphically in Figure 1.1.2. The table in Figure 1.1.4 0.1 0.9983341665
shows the value of sin(x) /x for values of x near 0. Ten places after the decimal -0.01 0.9999833334

-0.001  0.9999998333
0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

point are shown to highlight how close to 1 the value of sin(x)/x gets as x takes
on values very near 0. We include the x = 0 row in bold again to stress that we
are not concerned with the value of our function at x = 0, only on the behavior
of the function near 0.

This numerical method gives confidence to say that 1 is a good approxima-
tion of lim,_,q sin(x) /x; that is, Figure 1.1.4: Values of sin(x)/x with x
) ) near 0.

)!l_r;%sm(x)/x ~ 1.
Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects
of the limit concept.

Example 1.1.1 Approximating the value of a limit 034 |
Use graphical and numerical methods to approximate
032 |
) XX —x—6
im ——.
x—3 6x2 — 19x + 3 0.3 |
. . - 0.28
SOLUTION To graphically approximate the limit, graph
0.26 |
y=(*—x—6)/(6x* —19x +3) ‘ ‘ ‘
. . . . . . 2 5 3 3 5
on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 1.1.5 and Figure 1.1.5: Graphically approximating a
1.1.6, respectively. limit in Example 1.1.1.
The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a better approximation. X 2 —x—6
. 6x2 —19x+3
The graph and the table imply that 79 020878
fim 5= *=% 004 295 0294163
e ~ 0294 . .
x=3 bx 19x+3 3 not defined
3.001 0.294073
This example may bring up a few questions about approximating limits (and 3.01 0.293669
the nature of limits themselves). 3.1 0.289773

1. If a graph does not produce as good an approximation as a table, why Figure 1.1.6: Numerically approximating
bother with it? a limit in Example 1.1.1.

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximation?

Notes:
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Figure 1.1.7: Graphically approximating a
limit in Example 1.1.2.

X fx)

0.1 0.9
-0.01 0.99
-0.001  0.999

0.001  0.999999
0.01 0.9999
0.1 0.99

Figure 1.1.8: Numerically approximating
a limit in Example 1.1.2.

Graphs are useful since they give a visual understanding concerning the be-
havior of a function. Sometimes a function may act “erratically” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing utilities are very accessible, it makes sense to make proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in question. In Example 1.1.1, we used both values
less than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do better. Using values “on both sides of 3” helps us identify trends.

Example 1.1.2 Approximating the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,

where
x+1 x<O0

f(x){ —x2+1 x>0

SOLUTION Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined function, so it
behaves differently on either side of 0. Figure 1.1.7 shows a graph of f(x), and
on either side of 0 it seems the y values approach 1. Note that f(0) is not actually
defined, as indicated in the graph with the open circle.

The table shown in Figure 1.1.8 shows values of f(x) for values of x near 0.
It is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that lim,_,o f(x) ~ 1; in fact, we are
probably very sure it equals 1.

Identifying When Limits Do Not Exist

A function may not have a limit for all values of x. That is, we cannot say
limy—f(x) = L for some numbers L for all values of ¢, for there may not be a
number that f(x) is approaching. There are three common ways in which a limit
may fail to exist.

1. The function f(x) may approach different values on either side of c.
2. The function may grow without upper or lower bound as x approaches c.

3. The function may oscillate as x approaches ¢ without approaching a spe-
cific value.

Notes:



We’'ll explore each of these in turn.

Example 1.1.3 Different Values Approached From Left and Right
Explore why Iimlf(x) does not exist, where
X—

X2 —2x+3 x<1
f(x)—{ X x>1

SOLUTION A graph of f(x) around x = 1 and a table are given in Figures
1.1.9 and 1.1.10, respectively. It is clear that as x approaches 1, f(x) does not
seem to approach a single number. Instead, it seems as though f(x) approaches
two different numbers. When considering values of x less than 1 (approaching
1 from the left), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behavior is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1.

Example 1.1.4 The Function Grows Without Bound
Explore why lim 1/(x — 1)2 does not exist.
X—

SOLUTION A graph and table of f(x) = 1/(x — 1)? are given in Figures
1.1.11 and 1.1.12, respectively. Both show that as x approaches 1, f(x) grows
larger and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x — 1)2 is very small, and:

1
very small number

= very large number.
Since f(x) is not approaching a single number, we conclude that

M=

does not exist.

Example 1.1.5 The Function Oscillates
Explore why Iin}) sin(1/x) does not exist.
X—>

SOLUTION Two graphs of f(x) = sin(1/x) are given in Figures 1.1.13.
Figure 1.1.13(a) shows f(x) on the interval [—1, 1]; notice how f(x) seems to os-
cillate near x = 0. One might think that despite the oscillation, as x approaches

Notes:

1.1 An Introduction To Limits

0.5 1 1.5 2
Figure 1.1.9: Observing no limitas x — 1
in Example 1.1.3.

X fix)
0.9 2.01
099  2.0001
0.999  2.000001
1.001  1.001
1.01 1.01
11 1.1

Figure 1.1.10: Values of f(x) nearx = 1in
Example 1.1.3.

100 +

50 +

0.5 1 1.5 2

Figure 1.1.11: Observing no limit as x —
1in Example 1.1.4.

X fx)
0.9 100.
099  10000.

0.999 1.x 10°

1.001 1.x 10°
1.01  10000.
1.1 100.

Figure 1.1.12: Values of f(x) nearx = 1in
Example 1.1.4.
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0, f(x) approaches 0. However, Figure 1.1.13(b) zooms in on sin(1/x), on the
interval [—0.1,0.1]. Here the oscillation is even more pronounced. Finally, in
the table in Figure 1.1.13(c), we see sin(x) /x evaluated for values of x near 0. As
x approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between —1 and 1 infinitely many times! Because of this oscillation,

)!I_I’po sin(1/x) does not exist.

y

-1 —0.5 0.5

Figure 1.1.13:

t t t X
2 4 6

Figure 1.1.14: Interpreting a difference
guotient as the slope of a secant line.

-

! X sin(1/x)
0.1 —0.544021
0.01 —0.506366
0.001 0.82688
Toa L 1 [ os x 0.0001  —0.305614
1. x 10> 0.0357488
1. x 107® —0.349994
1. x 1077  0.420548

(b) (c)

Observing that f(x) = sin(1/x) has no limit as x — 0 in Example 1.1.5.

Limits of Difference Quotients

We have approximated limits of functions as x approached a particular num-
ber. We will consider another important kind of limit after explaining a few key
ideas.

Let f(x) represent the position function, in feet, of some particle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that whenx = 1,
the particle is at position 10 ft., and when x = 5, the particle is at 20 ft. Another
way of expressing this is to say

f(1)=10 and f£(5) = 20.

Since the particle traveled 10 feet in 4 seconds, we can say the particle’s average
velocity was 2.5 ft/s. We write this calculation using a “quotient of differences,”
or, a difference quotient:
5 —f(1 10
f6) —f1) _ 10 _ 2.5ft/s.
5—-1 4
This difference quotient can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essentially what we are doing:

Notes:



given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 1.1.14.

Now consider finding the average speed on another time interval. We again
start at x = 1, but consider the position of the particle h seconds later. That is,
consider the positions of the particle when x = 1 and when x = 1 + h. The
difference quotient is now

fa+h) —f1) _ fa+h) —f1)

(1+h)—1 h

Let f(x) = —1.5x* + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quotient for all values of h (even
negative values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h # 0, the difference quotient computes the
average velocity of the particle over an interval of time of length h starting at
x=1.

For small values of h, i.e., values of h close to 0, we get average velocities
over very short time periods and compute secant lines over small intervals. See
Figure 1.1.15. This leads us to wonder what the limit of the difference quotient
is as h approaches 0. That is,

fA+h)—f(1)

im—F———- =7
h—0

As we do not yet have a true definition of a limit nor an exact method for
computing it, we settle for approximating the value. While we could graph the
difference quotient (where the x-axis would represent h values and the y-axis
would represent values of the difference quotient) we settle for making a table.
See Figure 1.1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathematical things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathematical curiosities; they allow us to link position, velocity and
acceleration together, connect cross-sectional areas to volume, find the work
done by a variable force, and much more.

In the next section we give the formal definition of the limit and begin our
study of finding limits analytically. In the following exercises, we continue our
introduction and approximate the value of limits.

Notes:

1.1 An Introduction To Limits

f
20 +
10 +
t + + X
2 4 6
(a)
f
20 +
10 +
t + + X
2 4 6
(b)
f
20 +
10 +
t t t X
2 4 6

Figure 1.1.15: Secant lines of f(x) atx = 1
and x = 1 + h, for shrinking values of h
(i.e., h — 0).

p farm—s
h
—0.5 9.25
-0.1 8.65
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Figure 1.1.16: The difference quotient
evaluated at values of h near 0.



Exercises 1.1
Terms and Concepts 13.

lim f(x), where
X—2
x+2 x<2
1. In your own words, what does it mean to “find the limit of fx) = IX—5 x>2 °
f(x) as x approaches 3”?

14. lim f(x), where

X—3

f(x)z{ X —x+1 x<3

2. An expression of the form % is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5). x+1  x>3

. - . . 15. lim
4. Describe three situations where lim f(x) does not exist. x—0
X—C

f6) = { cosx x<0

f(x), where

2
5. In your own words, what is a difference quotient? X+3x+1 x>0

i 16. lim f(x), where
sin )

6. When xis near 0, snx is near what value? x—=m/2

X

f(x):{ sinx  x<m/2

cosx x>m/2

Problems In Exercises 17 — 24, a function f and a value a are

given. Approximate the limit of the difference quotient,
!n Exercises 7 — :_l6, approximate the given limits both numer- im fla+h) —f(a) , using h — 401, 40.01.
ically and graphically. h—0 h
7. limx’ +3x—5 17. f(x) = -7x+2, a=3

x—1
18. f(x) =9x+0.06, a=—1
8 limx’ =3¢ +x—5
x—0
19. f(x) =x*+3x—7, a=1

i x+1
9. lim 1
x—0 x2 4+ 3x 20. f(x): , a=2
x+1
10. Ii X2 —2x—3 )
Xmm 21, f(x) = —4x +5x—1, a= -3
X+ 8x+7 22. f(x) =Inx, a=5

11. lim ———
x=—1x2+6x+5
23. f(x) =sinx, a=m

X +7x+ 10

12. )l{l_rpz m 24, f(X) =CO0sX, a=Tm



1.2 Epsilon-Delta Definition of a Limit

This section introduces the formal definition of a limit. Many refer to this as “the
epsilon-delta,” definition, referring to the letters ¢ and § of the Greek alphabet.

Before we give the actual definition, let’s consider a few informal ways of
describing a limit. Given a function y = f(x) and an x-value, ¢, we say that “the
limit of the function f, as x approaches c, is a value L":

1. if “ytendsto L” as “x tends to ¢.”
2. if “y approaches L” as “x approaches c.”

3. if “yis near L” whenever “x is near c.”

” u

The problem with these definitions is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to, or
approach, ¢? How near do x and y have to be to c and L, respectively?

The definition we describe in this section comes from formalizing 3. A quick
restatement gets us closer to what we want:

3'. If x is within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The traditional notation for the x-tolerance is the lowercase Greek letter
delta, or 9, and the y-tolerance is denoted by lowercase epsilon, or . One more

rephrasing of 3/ nearly gets us to the actual definition:

3”. If x is within § units of ¢, then the corresponding value of y is within € units
of L.

We can write “x is within § units of ¢” mathematically as
|x —c| <4, which is equivalent to c—d<x<c+6.
Letting the symbol “—” represent the word “implies,” we can rewrite 3" as
x—c|<d—|y—Ll<e or c—d<x<c+d—l-e<y<l+e.
The point is that § and ¢, being tolerances, can be any positive (but typically

small) values. Finally, we have the formal definition of the limit with the notation
seen in the previous section.

Notes:

1.2 Epsilon-Delta Definition of a Limit

Note: the common phrase “the -0 defi-
nition” is read aloud as “the epsilon delta
definition.” The hyphen between ¢ and ¢
is not a minus sign.
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Figure 1.2.1: lllustrating the ¢ — § process.
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Definition 1.2.1 The Limit of a Function f

Let / be an open interval containing ¢, and let f be a function defined on
I, except possibly at c. The limit of f(x), as x approaches c, is L, denoted
by

lim f(x) = L,
means that given any € > 0, there exists 6 > 0 such that for all x in /,
where x # ¢, if [x — c| < §, then [f(x) — L| < e.

(Mathematicians often enjoy writing ideas without using any words. Here is
the wordless definition of the limit:

)l(mf(x) =L < Ve>0,36>0st.0< |x—¢|<d—|f(x)—L| <e.)

Note the order in which € and § are given. In the definition, the y-tolerance
€ is given first and then the limit will exist if we can find an x-tolerance § that
works.

An example will help us understand this definition. Note that the explana-
tion is long, but it will take one through all steps necessary to understand the
ideas.

Example 1.2.1 Evaluating a limit using the definition
Show that Iim4 Vx = 2.
X—r

SOLUTION Before we use the formal definition, let’s try some numerical
tolerances. What if the y tolerance is 0.5, or ¢ = 0.5? How close to 4 does x
have to be so that y is within 0.5 units of 2, i.e., 1.5 < y < 2.5? In this case, we
can proceed as follows:

15< y <25
1.5< /x <25
152 < x <25°
2.25 < x < 6.25.

So, what is the desired x tolerance? Remember, we want to find a symmetric
interval of x values, namely 4 — § < x < 4 + ¢. The lower bound of 2.25is 1.75
units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller
of these two distances; we must have § < 1.75. See Figure 1.2.1.

Notes:



Given the y tolerance ¢ = 0.5, we have found an x tolerance, § < 1.75, such
that whenever x is within ¢ units of 4, then y is within ¢ units of 2. That’s what
we were trying to find.

Let’s try another value of e.

What if the y tolerance is 0.01, i.e., ¢ = 0.01? How close to 4 does x have to
be in order for y to be within 0.01 units of 2 (or 1.99 < y < 2.01)? Again, we
just square these values to get 1.992 < x < 2.012, or

3.9601 < x < 4.0401.

What is the desired x tolerance? In this case we must have § < 0.0399, which
is the minimum distance from 4 of the two bounds given above.

What we have so far: if e = 0.5, then § < 1.75and if ¢ = 0.01, then § <
0.0399. A pattern is not easy to see, so we switch to general ¢ try to determine
d symbolically. We start by assuming y = +/x is within ¢ units of 2:

ly—2|<e
—e<y—2<e¢ (Definition of absolute value)
—e<Vx—-2<e (y = vXx)
2—e<\x<2+¢ (Add 2)
(2—e) <x<(24¢)? (Square all)
4—4e+e® <x<b+be+¢? (Expand)
4— (4e — ) <X < 4+ (Be + £%). (Rewrite in the desired form)

The “desired form” in the last step is “4 — something < x < 4+ something.”
Since we want this last interval to describe an x tolerance around 4, we have that
either § < 4e — €2 or § < 4¢ + %, whichever is smaller:

§ < min{4e — 2 4c + £%}.

Since € > 0, the minimum is § < 4e — £2. That’s the formula: given an ¢, set
§ < e — &%

We can check this for our previous values. If e = 0.5, the formula gives
§ < 4(0.5)—(0.5)? = 1.75and when ¢ = 0.01, the formula gives § < 4(0.01)—
(0.01)? = 0.399.

So givenany ¢ > 0, set § < 4¢ — 2. Thenif [x — 4] < § (and x # 4), then
If(x) — 2| < e, satisfying the definition of the limit. We have shown formally
(and finally!) that )!m Vx = 2.

Notes:

1.2 Epsilon-Delta Definition of a Limit

11
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The previous example was a little long in that we sampled a few specific cases
of € before handling the general case. Normally this is not done. The previous
example is also a bit unsatisfying in that v/4 = 2; why work so hard to prove
something so obvious? Many -6 proofs are long and difficult to do. In this sec-
tion, we will focus on examples where the answer is, frankly, obvious, because
the non—obvious examples are even harder. In the next section we will learn
some theorems that allow us to evaluate limits analytically, that is, without us-
ing the e-¢ definition.

Example 1.2.2 Evaluating a limit using the definition
Show that Iir’nzx2 =4.
X—

SOLUTION Let’s do this example symbolically from the start. Lete > 0
be given; we want |y — 4| < ¢, i.e., [x* — 4| < . How do we find § such that
when |x — 2| < §, we are guaranteed that [x* — 4| < £?

This is a bit trickier than the previous example, but let’s start by noticing that
|x* — 4| = |x — 2| - |x + 2|. Consider:

D4 <e—lx—2 x+2|<e—|x—2] < ——. (1.1)
|x + 2|
Could we not set § = L?
|x + 2|

We are close to an answer, but the catch is that  must be a constant value (so
it can’t contain x). There is a way to work around this, but we do have to make an
assumption. Remember that ¢ is supposed to be a small number, which implies
that ¢ will also be a small value. In particular, we can (probably) assume that
d < 1. If this is true, then |x — 2| < § would imply that |x — 2| < 1, giving
1<x<3.

Now, back to the fraction L. Ifl<x<3,then3 <x+2<5(add2

|x + 2|

to all terms in the inequality). Taking reciprocals, we have

! < ! < L hich implies

- — which impli

5 x+2] 3 P

1 1

=< which implies

5 |x+2| P

C<t (12)
5 x4+ 2| '

€
This suggests that we set § < T To see why, let consider what follows when

we assume |x — 2| < §:

Notes:



x—2] <¢
Ix —2] < g (Our choice of 6)

E .
x—2| - [x+2[ < [x+2[- 5 (Multiply by |x 4 2])
W —a| < |x+2|- % (Combine left side)
2 € 3 .
X =4 <|x+2-=<|x+2|- = Using (1.2) aslongasd < 1
¥ =4l <2l S <otz o= e (Using (1.2)aslongas § < 1)

We have arrived at |x> — 4| < ¢ as desired. Note again, in order to make this
happen we needed 4 to first be less than 1. That is a safe assumption; we want
¢ to be arbitrarily small, forcing § to also be small.

We have also picked § to be smaller than “necessary.” We could get by with
a slightly larger §, as shown in Figure 1.2.2. The dashed outer lines show the
boundaries defined by our choice of €. The dotted inner lines show the bound-
aries defined by setting § = /5. Note how these dotted lines are within the
dashed lines. That is perfectly fine; by choosing x within the dotted lines we are
guaranteed that f(x) will be within ¢ of 4.

In summary, given € > 0, set § = /5. Then |x — 2| < § implies [x* — 4| < ¢
(i.e. |y — 4| < ¢) as desired. This shows that )I(i_r;nzxz = 4. Figure 1.2.2 gives a

visualization of this; by restricting x to values within § = £/5 of 2, we see that
f(x) is within ¢ of 4.

Make note of the general pattern exhibited in these last two examples. In
some sense, each starts out “backwards.” That is, while we want to

1. start with |x — ¢| < § and conclude that
2. f(x) =L <e,
we actually start by assuming

1. |[f(x) — L| < ¢, then perform some algebraic manipulations to give an
inequality of the form

2. |x — c| < something.

When we have properly done this, the something on the “greater than” side of
the inequality becomes our §. We can refer to this as the “scratch-work” phase
of our proof. Once we have d, we can formally start with |x — ¢| < § and use
algebraic manipulations to conclude that |[f(x) — L| < ¢, usually by using the
same steps of our “scratch—work” in reverse order.

Notes:

1.2 Epsilon-Delta Definition of a Limit

length of ¢

length of
d=¢/5

Figure 1.2.2: Choosing 6 = /5 in Exam-
ple 1.2.2.

13
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We highlight this process in the following example.

Example 1.2.3 Evaluating a limit using the definition
Prove that lim (3 — 2x) = —1.
x—1
SoLuTioN We start our scratch—work by considering |f(x) — (—1)| < e:
f) — (1) <e
e —2x+1<e (Now factor)
(x—1)( +x—1)| <e¢
[ Y[ — (1.3)
X2 +x—1| '

We are at the phase of saying that [x — 1| < something, where something=
£/|x* + x — 1|. We want to turn that something into 4.

Since x is approaching 1, we are safe to assume that x is between 0 and 2.
So

0<x<?2
0<x*< 4. (squared each term)

Since 0 < x < 2, we can add 0, x and 2, respectively, to each part of the inequal-
ity and maintain the inequality.

0<x*+x<6
—1<x*+x—-1<5. (subtracted 1 from each part)

In Equation (1.3), we wanted |x — 1| < ¢/|x* +x — 1|. The above shows that
given any x in [0, 2], we know that

X +x—1<5 which implies that
1 1
- which implies that
5 xX+x—-1
S (1.4)
5 x24+x-1 '

So we set < £/5. This ends our scratch-work, and we begin the formal proof
(which also helps us understand why this was a good choice of §).
Given g, let § < £/5. We want to show that when |x — 1| < §, then |(x® —

Notes:



2x) — (—1)| < e. We start with |x — 1| < ¢:

x—1] < ¢
x—1] < =
x—1| < < < S (for x near 1, from Equation (1.4))

5 |[x4+x—1]
x—1- )P 4+x—1<¢

I —2x+1] <e
06 =20 — (~1)] <&,

which is what we wanted to show. Thus Iiml(x3 —2x) = —1.
X—

We illustrate evaluating limits once more.

Example 1.2.4 Evaluating a limit using the definition
Prove that lim & = 1.
x—0
SOLUTION Symbolically, we want to take the equation |e¥ — 1| < ¢ and

unravel it to the form |x — 0| < 4. Here is our scratch—-work:

le“ =1l <e
—e<e—1<e (Definition of absolute value)
l-e<eée<l+e (Add 1)
In(l—¢) <x<In(l+¢) (Take natural logs)

Making the safe assumption that € < 1 ensures the last inequality is valid (i.e.,
sothatIn(1—¢) is defined). We can then set ¢ to be the minimum of | In(1—¢)|
andIn(1+¢);ie,

0 =min{|In(1—¢)|,In(1+¢)} =In(1+¢).

Now, we work through the actual the proof:

|x—0] < 4§
—d<x<d (Definition of absolute value)
—In(l+¢e)<x<In(l+e).
In(1—¢) <x<In(l+e). (sinceIn(1 —¢) < —In(1+¢))

Notes:

1.2 Epsilon-Delta Definition of a Limit

Note: RecallIn1 = 0 and Inx < 0 when
0 <x< 1 Soln(l—¢) < 0, hence we
consider its absolute value.

15



Chapter 1 Limits

16

The above line is true by our choice of § and by the fact that since | In(1 —¢)| >
In(1+4¢)andIn(l —¢) < 0,weknow In(1 —¢) < —In(1+¢).

l-e<eée<l+e (Exponentiate)
—e<e—-1<e (Subtract 1)

In summary, given € > 0, let § = In(1 4 ¢). Then |x — 0| < J implies
|e¥ — 1] < ¢ as desired. We have shown that Iirrz) e =1
X—

We note that we could actually show that lim,_,. e = e° for any constant c.
We do this by factoring out e® from both sides, leaving us to show lim,_,. ¥~ ¢ =
linstead. By using the substitution u = x—c, this reduces to showinglim,_,q e" =
1 which we just did in the last example. As an added benefit, this shows that in
fact the function f(x) = e is continuous at all values of x, an important concept
we will define in Section 1.5.

This formal definition of the limit is not an easy concept grasp. Our examples
are actually “easy” examples, using “simple” functions like polynomials, square—
roots and exponentials. It is very difficult to prove, using the techniques given
above, that Jm(sin x)/x = 1, as we approximated in the previous section.

There is hope. The next section shows how one can evaluate complicated
limits using certain basic limits as building blocks. While limits are an incredibly
important part of calculus (and hence much of higher mathematics), rarely are
limits evaluated using the definition. Rather, the techniques of the following
section are employed.

Notes:



Exercises 1.2

Terms and Concepts

1. What is wrong with the following “definition” of a limit?

“The limit of f(x), as x approaches a, is K”
means that given any § > 0 there exists ¢ > 0
such that whenever |[f(x) — K| < ¢, we have
|x —al < 6.

2. Which is given first in establishing a limit, the x—tolerance
or the y—tolerance?

3. T/F: € must always be positive.

4. T/F: 6 must always be positive.

Problems
In Exercises 5 — 14, prove the given limit using an ¢ — § proof.

5. lim(2x+5) = 13

lim
x—4

10.

11.

12.

13.

14.

lim(3 —x) = -2

X—5

. lim (* —=3) =6

X—3

. im (¢ +x—5) =15

x—4

- lim (2¢ +3x+1) =6
x—1

lim (x3—1) =7

X—2

lim5=5

X—2

lim (e* —1) =0

x—0

1
lim=-=1
x—1 X

Iin})sinx = 0 (Hint: use the fact that |sinx| < |x|, with
X—>

equality only when x = 0.)

17
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1.3 Finding Limits Analytically

In Section 1.1 we explored the concept of the limit without a strict definition,
meaning we could only make approximations. In the previous section we gave
the definition of the limit and demonstrated how to use it to verify our approxi-
mations were correct. Thus far, our method of finding a limit is 1) make a really
good approximation either graphically or numerically, and 2) verify our approx-

imation is correct using a -0 proof.

Recognizing that - proofs are cumbersome, this section gives a series of

theorems which allow us to find limits much more quickly and intuitively.

Suppose that lim,_,, f(x) = 2 and lim,_,, g(x) = 3. What is lim,_,» (f(x) +
g(x))? Intuition tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do

behave nicely.

Theorem 1.3.1

Let b, ¢, L and K be real numbers, let n be a positive integer, and let f and g be
functions defined on an open interval / containing ¢ with the following limits:

The following limits hold.

Basic Limit Properties

lim f(x) = L and IiLn g(x) =K.

X—C

1. Constants: limb=0>b
X—C
2. ldentity limx=c
X—C
3. Sums/Differences:  lim(f(x) £g(x)) =L £K
X—C
4. Scalar Multiples: limb - f(x) = bL
X—C
5. Products: lim f(x) - g(x) = LK
X—C
6. Quotients: lim f(x)/g(x) = L/K, (K # 0)
X—C
7. Powers: lim f(x)" = L"
X—C
8. Roots: lim f(x) = VL
X c
(If n is even then require f(x) > 0 on I.)
9. Compositions: Adjust our previously given limit situation to:
limf(x) =L, lim g(x) = Kand g(L) = K.
X—C xX—L
Then lim g(f(x)) = K.
X—C
Notes:



We make a note about Property #8: when n is even, L must be greater than
0. If nis odd, then the statement is true for all L.
We apply the theorem to an example.

Example 1.3.1 Using basic limit properties
Let
limf(x) =2, limg(x)=3 and p(x)=3x* —5x+7.

X—2 X—2

Find the following limits:

L. lim (f(x) +g(x)) 3. lim p(x)
2. lim (5f(x) + 9(x)*)
SOLUTION

1. Using the Sum/Difference rule, we know that Iim2 (fx)+g(x)) =2+3 =
X—
5.

2. Usingthe Scalar Multiple and Sum/Difference rules, we find that Iim2 (5f(x)+
X—

g(x)?) =5-2+32=19.

3. Here we combine the Power, Scalar Multiple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-

ted:
lim p(x) = lim(3x* — 5x + 7)
x—2 X—2
= lim 3x* — lim 5x + lim 7
X—2 X—2 x—2
=3.22-5.2+47
=9

Part 3 of the previous example demonstrates how the limit of a quadratic
polynomial can be determined using the properties of Theorem 1.3.1. Not only
that, recognize that

lim p(x) = 9 = p(2);

X—2
i.e., the limit at 2 was found just by plugging 2 into the function. This holds
true for all polynomials, and also for rational functions (which are quotients of
polynomials), as stated in the following theorem.

Notes:

1.3 Finding Limits Analytically
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Theorem 1.3.2 Limits of Polynomial and Rational Functions

Let p(x) and g(x) be polynomials and c a real number. Then:
L. lim p(x) = p(c)

2. tim P¥) _ ()

M0~ 6@ where g(c) # 0.

Example 1.3.2 Finding a limit of a rational function
Using Theorem 1.3.2, find
. 3x2—5x+1
im ——.
x>-1 x* —x2+3

SOLUTION Using Theorem 1.3.2, we can quickly state that

im 3x* —5x+1  3(—1)*—5(-1)+1
x—o-1 x4 —x2+3 (14— (-1)2+3
9

= —-=3.
3

It was likely frustrating in Section 1.2 to do a lot of work to prove that

limx* =4
xX—2

as it seemed fairly obvious. The previous theorems state that many functions
behave in such an “obvious” fashion, as demonstrated by the rational function

in Example 1.3.2.

Polynomial and rational functions are not the only functions to behave in
such a predictable way. The following theorem gives a list of functions whose
behavior is particularly “nice” in terms of limits. In the next section, we will give

a formal name to these functions that behave “nicely.”

Theorem 1.3.3 Special Limits

Let ¢ be a real number in the domain of the given function and let n be a positive integer. The

following limits hold:

1. limsinx =sinc 4. limcscx = cscc 7. lima* =a° (a > 0)
X—C X—C X—C
2. limcosx = cosc 5. limsecx = secc 8. limlnx=1Inc
X—C X—C X—C
3. limtanx = tanc 6. lim cotx = cotc i My — A
X—C X—C S. lmﬁ o ﬁ
Notes:



13

Example 1.3.3 Evaluating limits analytically
Evaluate the following limits.

1. lim cosx 4. lim e"*
X—T x—1

2. lim(sec? x — tan® x) __sinx
x—3 5. lim —

x—0 X

3. lim cosxsinx
x—m/2

SOLUTION

1. Thisisa straightforward application of Theorem 1.3.3. lim cosx = cos 7 =
X—T
—1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 1.3.3, we have:

lim (sec? x — tan® x) = sec’ 3 — tan? 3.
x—3

Using the Pythagorean Theorem, this last expression is 1; therefore

lim (sec? x — tan®x) = 1.
x—3

We can also use the Pythagorean Theorem from the start.

lim (sec® x — tan?x) = lim 1 = 1,
x—3 x—3

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying the Product limit rule of Theorem 1.3.1 and Theorem 1.3.3 gives

lim cosxsinx = cos(w/2)sin(n/2)=0-1=0.
x—m/2

4. Again, we can approach this in two ways. First, we can use the exponen-

tial/logarithmic identity that e"* = x and evaluate lim e"* = lim x = 1.
x—1 x—1

We can also use the limit Composition Rule of Theorem 1.3.1. Using The-

orem 1.3.3, we have limInx =In1l = 0 and Iimoe" =e’ =1, satisfying
X—

x—1
the conditions of the Composition Rule. Applying this rule,

lim e™ = lim e = e° = 1.
x—1 x—0

Both approaches are valid, giving the same result.

Notes:

Finding Limits Analytically
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5. We encountered this limit in Section 1.1. Applying our theorems, we at-
tempt to find the limit as

“ ”

sinx sin0 0
_> [ —_

x—=0 X 0 0
This, of course, violates a condition of Theorem 1.3.1, as the limit of the

denominator is not allowed to be 0. Therefore, we are still unable to eval-
uate this limit with tools we currently have at hand.

The section could have been titled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of functions, we can find limits involving sums,
products, powers, etc., of these functions. We further the development of such
comparative tools with the Squeeze Theorem, a clever and intuitive way to find
the value of some limits.

Before stating this theorem formally, suppose we have functions f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

fix) < g(x) < h(x).

If fand h have the same limit at ¢, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

Theorem 1.3.4 Squeeze Theorem

Let f, g and h be functions on an open interval / containing c such that

forall xin /,
f(x) < g(x) < h(x).
If
Ii_r>nf(x) =L= Ii_r)’n h(x),
then
lmg(x) =L

It can take some work to figure out appropriate functions by which to “squeeze’
a given function. However, that is generally the only place where work is neces-
sary; the theorem makes the “evaluating the limit part” very simple.

We use the Squeeze Theorem in the following example to finally prove that
sinx

lim — = 1.

x—0 X

Notes:



Example 1.3.4 Using the Squeeze Theorem
Use the Squeeze Theorem to show that

. sinx
lim — = 1.
x—=0 X
SOLUTION We begin by considering the unit circle. Each point on the

unit circle has coordinates (cos 6, sin 8) for some angle 6 as shown in Figure
1.3.1. Using similar triangles, we can extend the line from the origin through the
point to the point (1, tan 8), as shown. (Here we are assuming that0 < 6 < /2.

Later we will show that we can also consider 6 < 0.)

Figure 1.3.1 shows three regions have been constructed in the first quadrant,
two triangles and a sector of a circle, which are also drawn below. The area of
the large triangle is % tan 6; the area of the sector is §/2; the area of the triangle
contained inside the sector is % sin 6. It is then clear from the diagram that

tan6 0
> — >
2 - 2 -

Multiply all terms by —, giving
sin6
1 0
> —2>1
cosf ~ sind

Taking reciprocals reverses the inequalities, giving

sin6
cosf < e <1.

(These inequalities hold for all values of 8 near 0, even negative values, since

cos(—6) = cos § and sin(—0) = —sin§.)
Now take limits.

. . sind .
limcosd < lim — < lim 1
0—0 0—0 6—0

Notes:

1.3 Finding Limits Analytically

(1,tan )

(cos 8, sin 0)

(1,0

Figure 1.3.1: The unit circle and related
triangles.
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. sind
cos0 < lim — <1
6—0 6

. sind
1<lim—<1
6—o0 0

. . sinf
Clearly this means that lim —— = 1.
6—0 0

Two notes about the previous example are worth mentioning. First, one
might be discouraged by this application, thinking “I would never have come up
with that on my own. Thisis too hard!” Don’t be discouraged; within this text we
will guide you in your use of the Squeeze Theorem. As one gains mathematical
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the ratio of x and sin x
approaches 1, meaning that they are approaching 0 in essentially the same way.
Another way of viewing this is: for small x, the functionsy = xand y = sinx are
essentially indistinguishable.

We include this special limit, along with three others, in the following theo-
rem.

Theorem 1.3.5 Special Limits

Losinx 3. lim(1+x)x =e
1 )!m) X =1 x—0
— e—1
ek 4. lim =1
" x>0 X x=0 X

A short word on how to interpret the latter three limits. We know that as
x goes to 0, cosx goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is still 1. At the same time, the power is growing toward infinity. What happens
to a number near 1 raised to a very large power? In this particular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x — 0, e approaches 1 “just as fast” as
x — 0, resulting in a limit of 1.

Notes:



1.3 Finding Limits Analytically

Our final theorem for this section will be motivated by the following exam-

ple.
Example 1.3.5 Using algebra to evaluate a limit
Evaluate the following limit:
X2 —-1
lim .
x—=1 x—1
SOLUTION We begin by attempting to apply Theorem 1.3.2 and substi-

tuting 1 for x in the quotient. This gives:

“ ”

CoxP-1 12-1 0
lim = = -
x—=1 x —1 1—-1 0

an indeterminate form. We cannot apply the theorem.

By graphing the function, as in Figure 1.3.2, we see that the function seems
to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quotient can be factored:

X*—1  (x—1)(x+1)
x—1 x—1 ’ ; s x
1 2

The function is not defined when x = 1, but for all other x,

-1 (x—1)(x+1) {x—H(x+1) 1
x—1 x—1 - x—3 X

Figure 1.3.2: Graphing f in Example 1.3.5
to understand a limit.

Clearly Iimlx+ 1 = 2. Recall that when considering limits, we are not concerned
X—

with the value of the function at 1, only the value the function approaches as x
approaches 1. Since (x> —1)/(x — 1) and x + 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can

conclude that
2

lim —— = 2.
x—=1 x—1

The key to the above example is that the functionsy = (x* —1)/(x — 1) and
y = x+ 1 areidentical except at x = 1. Since limits describe a value the function
is approaching, not the value the function actually attains, the limits of the two
functions are always equal.

Notes:

25



Chapter 1 Limits

26

Theorem 1.3.6 Limits of Functions Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at ¢, and let
lim g(x) = L for some real number L. Then
X—C

lim f(x) = L.

X—C

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

g(x)

fx)
returns “0/0”, then (x — c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 1.3.6. We demon-
strate this once more.

tional function of the form g(x)/f(x) and directly evaluating the limit lim
X—C

Example 1.3.6 Evaluating a limit using Theorem 1.3.6
X3 —2x* -5x+6
Evaluate lim .
x—3 2x3 +3x2 — 32x + 15

SOLUTION We attempt to apply Theorem 1.3.2 by substituting 3 for x.
This returns the familiar indeterminate form of “0/0”. Since the numerator and
denominator are each polynomials, we know that (x —3) is factor of each. Using
whatever method is most comfortable to you, factor out (x—3) from each (using
polynomial division, synthetic division, a computer algebra system, etc.). We

find that
X -2 —5x+6  (x—3)(x*+x—2)
23+32-32x+15  (x—3)(22+9x—5)°
We can cancel the (x — 3) terms as long as x # 3. Using Theorem 1.3.6 we
conclude:

X =2 —-5x+6 o (x=3)(x*+x-2)
lim = lim
x=32x3 4+ 3x2 —32x+ 15  x—=3 (x —3)(2x* + 9x — 5)
(X2 +x—2)
= m ——
x—3 (2x* + 9x — 5)
10 1
40 4

We end this section by revisiting a limit first seen in Section 1.1, a limit of
a difference quotient. Let f(x) = —1.5x% + 11.5x; we approximated the limit
1+h)—f1
i LR — A1)
h—0 h
ample.

~ 8.5. We formally evaluate this limit in the following ex-

Notes:



1.3
Example 1.3.7 Evaluating the limit of a difference quotient
1+h)—f1
Let f(x) = —1.5x* + 11.5x; find lim M
h—0 h

SOLUTION Since f is a polynomial, our first attempt should be to em-
ploy Theorem 1.3.2 and substitute O for h. However, we see that this gives us
“0/0.” Knowing that we have a rational function hints that some algebra will
help. Consider the following steps:

’ f1+h) —f2) i —1.5(1+4 h)> +11.5(1 + h) — (—1.5(1)* + 11.5(1))
hﬁno h h hino h
—im —1.5(1+2h + h?) + 11.5 + 11.5h — 10
Al h
. —1.5h* 4+ 8.5h
=lim —
h—0 h
__h(—1.5h+8.5)
=lim —~=
h—0 h

= ,!imo(—l.Sh +8.5) (using Theorem 1.3.6,as h # 0)
—

= 8.5 (using Theorem 1.3.3)

This matches our previous approximation.

This section contains several valuable tools for evaluating limits. One of the
main results of this section is Theorem 1.3.3; it states that many functions that
we use regularly behave in a very nice, predictable way. In Section 1.5 we give a
name to this nice behavior; we label such functions as continuous. Defining that
term will require us to look again at what a limit is and what causes limits to not
exist.

Notes:

Finding Limits Analytically
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Exercises 1.3

Terms and Concepts In Exercises 15 — 18, use the following information to eval-
uate the given limit, when possible. If it is not possible to
1. Explainin your own words, without using e-6 formality, why determine the limit, state why not.
lim b = b. e limf(x) =2, limf(x)=1, f£f(1)=1/5
x—c x—1 x—10

e limg(x) =0, limgx)=m g¢(10)=m=

2. Explainin your own words, without using -0 formality, why x—=1 x—10

limx =c.

x—e 15. lim f(x)9®

x—1

3. What does the text mean when it says that certain func-

tions’ “behavior is ‘nice’ in terms of limits”? What, in par- 16. X|Ln’1\0 cos (Q(X))

ticular, is “nice”?

17. lim f(x)g(x)

x—1

4. Sketch a graph that visually demonstrates the Squeeze The-

orem. 18. lim g(5f(x))

x—1

5. You are given the following information:

(@) limf(x)=0
x—1

(b) limg(x)=0
x—1

(c) lim f(x)/g(x) = 2 _3\’
1 20. lim (X 3)

x—»1t\X—F5

What can be said about the relative sizes of f(x) and g(x)
as x approaches 1?

In Exercises 19 — 34, evaluate the given limit.

19. limx* —3x+7
x—3

21. lim cosxsinx

x—7/4
6. T/F: lim Inx = 0. Use a theorem to defend your answer.
x—1
.o 2x—=2
22. lim
x—=1 X+ 4
Problems 23. limInx
x—0
In Exercises 7 — 14, use the following information to evaluate "
. lim

the given limit, when possible. If it is not possible to deter- X33

mine the limit, state why not.
25. lim cscx

e limf(x)=6, Ilimf(x) =9, f(9)=6 x—m/6
Xx—9 X—6
* limg() =3, limg(x)=3, g(6)=9 26. lim In(1 + x)
7. im () + 9(x) L Aenes

x—m 5x2 — 2x — 3

8. lim (3f(x)/g(x))

28. lim 31’( +X1
X—T —_—
- (fx) — 29(x)
9. lim | "2
x—9 g(x) X —4ax—12
29. lm ——
x—6 x2 — 13x + 42
10. lim (&) ,
e \3—g() 30. lim X2
" x=0x2 — 2x
11. Iirr;g(f(x))
x X’ +6x—16
e etz
. X— —
12. lim f(g(x))
. x> —10x+16
. 32. lim ————
13. lim g(f(f(x))) x=2 X —X—2
X—6
2
—5x—14
i —f 2 33, lim >~ X7 %
1. lImf)gb0 = F70) +6°00 X2 1 10x + 16



34, lim X +9x+8 Exercises 39 — 43 challenge your understanding of limits but

x-1x2 —6x—7 can be evaluated using the knowledge gained in this section.
Use the Squeeze Theorem in Exercises 35 — 38, where appro- . sin3x
priate, to evaluate the given limit. 39. XI'_rH) X
1 in5.
35. lim xsin <7> 40. lim 20X
x—0 X x—0 8x
1 . In(1+x)
36. lesinxcos (X—2> 41. Jmf
. 3 . sinx . . .
37. lim f(x), where 3x — 2 < f(x) < x°. 42. Iml) ~ where x is measured in degrees, not radians.
x—1 X—>
38. i here 6x — 9 < < X2 - _X
me(x), where bx < flx) < x 43. Letf(x) = 0and g(x) = <

(a) Show why lim f(x) = 0.
X—2

(b) Show why lim g(x) = 1.
x—0

(c) Show why lim g(f(x)) does not exist.
X—2

(d) Show why the answer to part (c) does not violate the
Composition Rule of Theorem 1.3.1.
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1.4 One Sided Limits

We introduced the concept of a limit gently, approximating their values graphi-
cally and numerically. Next came the rigorous definition of the limit, along with
an admittedly tedious method for evaluating them. The previous section gave us
tools (which we call theorems) that allow us to compute limits with greater ease.
Chief among the results were the facts that polynomials and rational, trigono-
metric, exponential and logarithmic functions (and their sums, products, etc.) all
behave “nicely.” In this section we rigorously define what we mean by “nicely.”

In Section 1.1 we saw three ways in which limits of functions failed to exist:

1. The function approached different values from the left and right,
2. The function grows without bound, and
3. The function oscillates.

In this section we explore in depth the concepts behind #1 by introducing
the one-sided limit. We begin with formal definitions that are very similar to the
definition of the limit given in Section 1.2, but the notation is slightly different
and “x # c” is replaced with either “x < ¢” or “x > ¢.”

Definition 1.4.1 One Sided Limits: Left- and Right-Hand Limits

Left-Hand Limit

Let f be a function defined on (a, c) for some a < c and let L be a real
number.

The limit of f(x), as x approaches c from the left, is L, or, the left-hand
limit of fat cis L, denoted by

means given any € > 0, there exists § > 0 such that foralla < x < ¢, if
|x —c| < 0, then |f(x) — L| < e.

Right-Hand Limit

Let f be a function defined on (c, b) for some b > c and let L be a real
number.

The limit of f(x), as x approaches c from the right, is L, or, the right-hand
limit of fat cis L, denoted by

lim f(x) =L,

x—ct

means given any € > 0, there exists § > 0 such that for all ¢ < x < b, if
|x —c| < 0, then |f(x) — L| < e.

Notes:



Practically speaking, when evaluating a left-hand limit, we consider only val-
ues of x “to the left of ¢,” i.e., where x < c. The admittedly imperfect notation
X — ¢~ is used to imply that we look at values of x to the left of c. The nota-
tion has nothing to do with positive or negative values of either x or c. A similar
statement holds for evaluating right-hand limits; there we consider only values
of xto theright of ¢, i.e., x > c. We can use the theorems from previous sections
to help us evaluate these limits; we just restrict our view to one side of c.

We practice evaluating left- and right-hand limits through a series of exam-
ples.

Example 1.4.1 Evaluating one sided limits
Let f(x) = { 3 ix 2 ii i ; , as shown in Figure 1.4.1. Find each of the
following:

L i ) 5. i, 10

2. lim_f(x) 6. (0)

3. lim f(x) 7. Jim_ fx)

4. f(1) 8. f(2)

SOLUTION For these problems, the visual aid of the graph is likely more

effective in evaluating the limits than using f itself. Therefore we will refer often
to the graph.

1. Asx goes to 1 from the left, we see that f(x) is approaching the value of 1.

Therefore lim f(x) = 1.
x—1—

2. Asxgoesto 1from the right, we see that f(x) is approaching the value of 2.
Recall that it does not matter that there is an “open circle” there; we are
evaluating a limit, not the value of the function. Therefore |_|>T+ flx)=2.

X

3. The limit of f as x approaches 1 does not exist, as discussed in the first
section. The function does not approach one particular value, but two
different values from the left and the right.

4. Using the definition and by looking at the graph we see that f(1) = 1.

5. Asxgoes to 0 from the right, we see that f(x) is also approaching 0. There-
fore Iim+f(x) = 0. Note we cannot consider a left-hand limit at 0 as f is
x—0

not defined for values of x < 0.

Notes:

1.4 One Sided Limits

Figure 1.4.1: Agraph of fin Example 1.4.1.
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Figure 1.4.2: A graph of f from Example
1.4.2
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6. Using the definition and the graph, f(0) = 0.

7. As x goes to 2 from the left, we see that f(x) is approaching the value of

1. Therefore lim f(x) = 1.
X—27~

8. The graph and the definition of the function show that f(2) is not defined.

Note how the left and right-hand limits were different at x = 1. This, of
course, causes the limit to not exist. The following theorem states what is fairly
intuitive: the limit exists precisely when the left and right-hand limits are equal.

Theorem 1.4.1 Limits and One Sided Limits

Let f be a function defined on an open interval / containing c. Then

lim f(x) =L

X—C
if, and only if,

lim fix) =L and lim f(x) = L.

X—c— x—ct

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the left and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
left and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 1.4.1 — 1.4.4 is that the value of the func-
tion may/may not be equal to the value(s) of its left/right-hand limits, even when
these limits agree.

Example 1.4.2 Evaluating limits of a piecewise—defined function

2—-x 0<x<1 -
Let f(x) = { (x—2)2 1<x<2’ as shown in Figure 1.4.2. Evaluate the

following.
1. lim f(x) 5. lim f(x)
x—1— x—0t
2. IiT+f(x) 6. f(0)
3. lim f(x) 7. lim f(x)
4. f(1) 8. f(2)
Notes:



SOLUTION Again we will evaluate each using both the definition of fand
its graph.

1. Asxapproaches 1 from the left, we see that f(x) approaches 1. Therefore

lim f(x) = 1.
x—1—

2. As x approaches 1 from the right, we see that again f(x) approaches 1.

Therefore lim f(x) = 1.

x—14

3. Thelimit of fas x approaches 1 exists and is 1, as fapproaches 1 from both
the right and left. Therefore Iimlf(x) =1
X—r

4. f(1) is not defined. Note that 1 is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = 1.

5. As x goes to 0 from the right, f(x) approaches 2. So lim f(x) = 2.

x—0t

6. f(0) is not defined as 0 is not in the domain of f.

7. As x goes to 2 from the left, f(x) approaches 0. So lim f(x) = 0.

X—2~

8. f(2) is not defined as 2 is not in the domain of f.

Example 1.4.3 Evaluating limits of a piecewise—defined function
—1)2 0<x<

Let f(x) = { (x 11) 0= XX__2’1X 71 , as shown in Figure 1.4.3. Evaluate
the following.

1. xlamlt f(x) 3. )!I_I":‘\l f(x)

2. lim f(x) 4. f(1)

x—1+
SOLUTION Itis clear by looking at the graph that both the left and right-

hand limits of f, as x approaches 1, are 0. Thus it is also clear that the limit is 0;
ie., Iimlf(x) = 0. Itis also clearly stated that f(1) = 1.
X—r

Example 1.4.4 Evaluating limits of a piecewise—defined function

2
0<x<1 -
Let f(x) = { 2X—x 1< : Z5 0 38 shown in Figure 1.4.4. Evaluate the fol-

lowing.

Notes:

1.4 One Sided Limits

0.5 +

Figure 1.4.3: Graphing fin Example 1.4.3
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y 1. lim f(x) 3. lim f(x)
x—1— x—1
2. lim f(x) 4. f(1)
10 x—1+
SOLUTION It is clear from the definition of the function and its graph
051 that all of the following are equal:
] : . lim £ = lim () = lim f(x) = £(1) = 1.
Figure 1.4.4: Graphing f in Example 1.4.4 In Examples 1.4.1 - 1.4.4 we were asked to find both Iimlf(x) and f(1). Con-
X—r
sider the following table:
lim £(x) f(1)
x—1
Example 1.4.1 does not exist 1
Example 1.4.2 1 not defined
Example 1.4.3 0 1
Example 1.4.4 1 1

Only in Example 1.4.4 do both the function and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situation
which we explore in the next section, entitled “Continuity.” In short, a continu-
ous function is one in which when a function approaches a value as x — c (i.e.,
when )I(mf(x) = L), it actually attains that value at c. Such functions behave

nicely as they are very predictable.

Notes:
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Exercises 1.4

Terms and Concepts

1. What are the three ways in which a limit may fail to exist?

2. T/F:If lim f(x) =5, then Iimlf(x) =5
X—

x—1"

3. T/F:If lim f(x) =5,then lim f(x) =5
x—1t

x—1"

4. T/F:If lim f(x) = 5, then lim f(x) =5
x—1 x—1—

Problems

In Exercises 5 — 12, evaluate each expression using the given
graph of f(x).

5.

(a) XET_f(x) (d) f(1)

(b) lim 1) (&) M 0

(©) lim f(x) (f) fim, £
6. 1

0.5 +

(@ lim ) (d) f(1)

(5) im0 @ A

(©) lim f(x) () fim, 00

10.

(a) XLinf(X) (d) f(2)

(b) xl—i>T+f(X) (e) xiT*f(X)

(© lim f(x) (f) fim, £

(a) XL"IL flx) (c) lim f(x)

(b) lim f(x) (d) f(2)
x—1+

(a) XET— f(x) (c) Jmf(X)

(b) lim f(x) (d) f(1)
x—1t

(a) Xlﬁirgg f(x) (c) Xli_rgf(X)

(b) lim f(x) (d) f(0)
x—0t

35



36

1 2 3 4

(@) lim f(x) (e) lim f(x)
X——2— X—2~
(b) lim  f(x) (f) lim_flx)
(9 lim f(x) (8) lim f(x)
(d) f(—2) (h) f(2)
12. . . ._O > X
Let —3 < a < 3 be an integer.
(a) lim f(x) (@) lim £(x)
(b) lim f(x) (d) f(a)

In Exercises 13 — 21, evaluate the given limits of the piecewise

defined functions f.
x+1 x<1
13'f(x):{x2—5 x>1
(@ lim f(x) (c) lim f(x)
(b) lim f(x) (d) f(2)
x—11
2% +5x—1 x<0
14. f(x):{ sinx x>0
(a) lim f(x) (c) lim £(x)
(b) lim £(x) (d) £(0)
x—01
-1 x< -1
15. f(x) =< X +1 -1<x<1
X +1 x>1
(@ lim f(x) (e) lim f(x)
x——1— x—1—
(b) lim _f(x) (f) lim f(x)
(c) Xirnlf(x) (8) X“_"plf(x)
(d) f(—1) (h) £(1)

cos x x<m
16. f(x):{ sin x x>
() lim f(x) (c) Jln f(x)
(b) lim_f(x) (d) f(m)
1 — cos?x x<a
17. f(x):{ sin? x x>a'’

where a is a real number.

(a) Iimif(x) (c) Ii_r)rlf(x)
(b) lim_f(x) (d) f(a)
x+1 x <1
18. f(x) = 1 x=1
x—1 x>1
(a) Jim fx) (c) lim f(x)
(b) lim f(x) (d) f(2)
x—11
X x <2
19. f(x) = x+1 x=2
x> +2x+4 x> 2
(a) XE@[ f(x) (c) Xlij}f(X)
(b) lim f(x) (d) f(2)
x—2+t
[ ax=b)"+c x<b
Zo'f(x)_{ alx—b)+c  x>b

where g, b and c are real numbers.

(a) Xir;[ f(x) (c) lef(X)
(b) lim f(x) (d) f(b)
x—bt
. % x#0
21.f(x)_{ 5 DS
(a) Xlﬁirgg fx) (c) lim f(x)
(b) lim f(x) (d) £(0)
x—0t
Review
X +5x+4

22. Evaluate the limit: lim .
x=—-1x2 —3x—4

2
— 16
23. Evaluate the limit: lim Xi.
x—>—4x2 —4x — 32

| x> — 15x + 54
x=>—6 X2 —6x

24. Evaluate the limit: lim

x> — 4.4x +1.6

25. Approximate the limit numerically: lim 5
x—0.4  x? — 0.4x

2
5.8x — 1.2
26. Approximate the limit numerically: lim X2+7X
x—0.2 x2 —4.2x + 0.8



1.5 Continuity

As we have studied limits, we have gained the intuition that limits measure
“where a function is heading.” That is, if Iimlf(x) = 3, then as x is close to 1,
X—

f(x) is close to 3. We have seen, though, that this is not necessarily a good indi-
cator of what f(1) actually is. This can be problematic; functions can tend to one
value but attain another. This section focuses on functions that do not exhibit
such behavior.

Definition 1.5.1 Continuous Function

Let f be a function defined on an open interval / containing c.
1. fis continuous at c if lim f(x) = f(c).
X—C

2. fis continuous on / if f is continuous at c for all values of cin /. If f
is continuous on (—oo, 00), we say f is continuous everywhere.

A useful way to establish whether or not a function fis continuous at c is to
verify the following three things:

1. f(x) exists,

i
2. f(c) is defined, and
fx) = £(o).

Example 1.5.1 Finding intervals of continuity
Let f be defined as shown in Figure 1.5.1. Give the interval(s) on which fis con-
tinuous.

3.

lim
X—C

SOLUTION We proceed by examining the three criteria for continuity.

1. The limits lim f(x) exists for all ¢ between 0 and 3.
X—C

2. f(c) is defined for all ¢ between 0 and 3, except for c = 1. We know
immediately that f cannot be continuous at x = 1.

3. The limit lim f(x) = f(c) for all c between 0 and 3, except, of course, for
X—C
c=1.
We conclude that f is continuous at every point of (0, 3) except at x = 1.
Therefore fis continuous on (0, 1) and (1, 3).

Our definition of continuity (currently) only applies to open intervals. After
Definition 1.5.2, we’ll be able to say that fis continuous on [0, 1) and (1, 3].

Notes:

0.5

1.5 Continuity

Figure 1.5.1: Agraph of fin Example 1.5.1.
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Chapter 1 Limits

Figure 1.5.2: A graph of the step function
in Example 1.5.2.
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Example 1.5.2 Finding intervals of continuity

The floor function, f(x) = | x|, returns the largest integer smaller than, or equal
to, the input x. (For example, f(r) = || = 3.) The graph of fin Figure 1.5.2
demonstrates why this is often called a “step function.”

Give the intervals on which fis continuous.

SOLUTION We examine the three criteria for continuity.

1. The limits lim,_,.f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The function is defined for all values of c.

3. Thelimit lim f(x) = f(c) for all values of c where the limit exist, since each
X—C
step consists of just a line.

We conclude that f is continuous everywhere except at integer values of c. So
the intervals on which fis continuous are

.., (=2,-1),(-1,0),(0,1),(1,2),....

Our definition of continuity on an interval specifies the interval is an open
interval. We can extend the definition of continuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

Definition 1.5.2 Continuity on Closed Intervals

Let fbe defined on the closed interval [a, b] for some real numbers a < b.
fis continuous on [a, b] if:

1. fis continuous on (a, b),

2. lim f(x) = f(a) and

x—at

3. lim f(x) = f(b).

x—b—

We can make the appropriate adjustments to talk about continuity on half—
open intervals such as [a, b) or (a, b] if necessary.

Using this new definition, we can adjust our answer in Example 1.5.1 by stat-
ing that f is continuous on [0, 1) and (1, 3], as mentioned in that example. We

Notes:



can also revisit Example 1.5.2 and state that the floor function is continuous on
the following half-open intervals

., [~2,-1),[-1,0),[0,1),[1,2),....

This can tempt us to conclude that f is continuous everywhere; after all, if f is
continuous on [0, 1) and [1, 2), isn’t f also continuous on [0, 2)? Of course, the
answer is no, and the graph of the floor function immediately confirms this.

Continuous functions are important as they behave in a predictable fashion:
functions attain the value they approach. Because continuity is so important,
most of the functions you have likely seen in the past are continuous on their
domains. This is demonstrated in the following example where we examine the
intervals of continuity of a variety of common functions.

Example 1.5.3 Determining intervals on which a function is continuous
For each of the following functions, give the domain of the function and the
interval(s) on which it is continuous.

1. fx) = 1/x 4. f(x) =V1i—x2
2. f(x) =sinx 5. f(x) = |x]|

3. f(x) = V&

SOLUTION We examine each in turn.

1. The domain of f(x) = 1/xis (—o0,0) U (0,00). As it is a rational func-
tion, we apply Theorem 1.3.2 to recognize that fis continuous on all of its
domain.

2. The domain of f(x) = sinx is all real numbers, or (—oco, c0). Applying
Theorem 1.3.3 shows that sin x is continuous everywhere.

3. The domain of f(x) = /xis [0, 00). Applying Theorem 1.3.3 shows that
f(x) = y/x is continuous on its domain of [0, c0).

4. The domain of f(x) = v/1 — x? is [—1, 1]. Applying Theorems 1.3.1 and
1.3.3 shows that fis continuous on all of its domain, [—1, 1].

5. The domain of f(x) = |x| is (—oo, 00). We can define the absolute value
—x x<0
x x>0
function is continuous on all of its domain, giving that f is continuous on
(—00,0) and [0, 00). We cannot assume this implies that f is continuous
on (—o0, 00); we need to check that )!mf(x) = f(0), as x = O is the point

functionas f(x) = . Each “piece” of this piecewise defined

where f transitions from one “piece” of its definition to the other. It is
easy to verify that this is indeed true, hence we conclude that f(x) = |x|
is continuous everywhere.

Notes:

1.5 Continuity
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Chapter 1 Limits

Continuity is inherently tied to the properties of limits. Because of this, the
properties of limits found in Theorems 1.3.1 and 1.3.2 apply to continuity as well.
Further, now knowing the definition of continuity we can re-read Theorem 1.3.3
as giving a list of functions that are continuous on their domains. The following
theorem states how continuous functions can be combined to form other con-
tinuous functions, followed by a theorem which formally lists functions that we
know are continuous on their domains.

Theorem 1.5.1 Properties of Continuous Functions

Let fand g be continuous functions on an interval /, let c be a real number
and let n be a positive integer. The following functions are continuous on
l.

[EEN

. Sums/Differences: f+g

2. Constant Multiples: ¢ - f

3. Products: f-g

4. Quotients: f/a (aslongasg # 0on )

5. Powers: f"

6. Roots: Jf (If n is even then require f(x) > 0 on I.)
7. Compositions: Adjust the definitions of f and g to: Let f be

continuous on /, where the range of fon [is J,
and let g be continuous on J. Then g o f, i.e.,
g(f(x)), is continuous on .

Theorem 1.5.2 Continuous Functions

Let n be a positive integer. The following functions are continuous on their domains.

1. f(x) = sinx 4. f(x) = cscx 7. f(x) =" (a > 0)
2. f(x) = cosx 5. f(x) = secx 8. f(x) =Inx
3. f(x) = tanx 6. f(x) = cotx 9. f(x) = v/x

We apply these theorems in the following Example.

Notes:
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1.5 Continuity

Example 1.5.4 Determining intervals on which a function is continuous
State the interval(s) on which each of the following functions is continuous.
1 f(xX)=vx—1++5—x 3. f(x) =tanx
2. f(x) = xsinx 4. f(x) = Vinx
SOLUTION We examine each in turn, applying Theorems 1.5.1and 1.5.2
as appropriate. y

1. Thesquare—rootterms are continuous on the intervals [1, o0) and (—o0, 5],
respectively. As fis continuous only where each term is continuous, f is
continuous on [1, 5], the intersection of these two intervals. A graph of f 27

is given in Figure 1.5.3.

2. The functions y = xand y = sin x are each continuous everywhere, hence
their product is, too.

3. Theorem 1.5.2 states that f(x) = tanx is continuous “on its domain.” Its 2 4
domain includes all real numbers except odd multiples of 7/2. Thus the
intervals on which f(x) = tan x is continuous are Figure 1.5.3: A graph of f in Example
1.5.4(1).

(L) (L
* 27 27 2’27 2’2 Yty

4. The domain of y = \/x is [0, c0). The range of y = Inxis (—oo, ), but if
we restrict its domain to [1, o) its range is [0, 00). So restricting y = Inx
to the domain of [1, co) restricts its output is [0, 00), on which y = /x is
defined. Thus the domain of f(x) = VInx s [1, c0).

A common way of thinking of a continuous function is that “its graph can
be sketched without lifting your pencil.” That is, its graph forms a “continuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo—definition glosses over some of the finer points of continuity. Very
strange functions are continuous that one would be hard pressed to actually
sketch by hand.

This intuitive notion of continuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1,2] and f(1) = —10 and
f(2) = 5. If fis continuous on [1, 2] (i.e., its graph can be sketched as a continu-
ous curve from (1, —10) to (2, 5)) then we know intuitively that somewhere on
[1,2] f must be equal to —9, and —8, and —7, —6, ..., 0, 1/2, etc. In short, f
takes on all intermediate values between —10 and 5. It may take on more val-
ues; f may actually equal 6 at some time, for instance, but we are guaranteed all
values between —10 and 5.

Notes:
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0.5 +

0.5 1

—0.5 +

—1

Figure 1.5.4: Graphing a root of f(x) =
X — COSX.
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While this notion seems intuitive, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

Theorem 1.5.3 Intermediate Value Theorem

Let f be a continuous function on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is
at least one value cin (a, b) such that f(c) = y.

One important application of the Intermediate Value Theorem is root find-
ing. Given a function f, we are often interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approxima-
tions can be found through successive applications of this theorem. Suppose
through direct computation we find that f(a) < 0 and f(b) > 0, where a < b.
The Intermediate Value Theorem states that there is at least one cin (a, b) such
that f(c) = 0. The theorem does not give us any clue as to where to find such a
value in the interval (a, b), just that at least one such value exists.

There is a technique that produces a good approximation of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibilities:

1. f(d) = 0: We got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0: Then we know there is a root of fon the interval [d, b] — we have
halved the size of our interval, hence are closer to a good approximation
of the root.

3. f(d) > 0: Then we know there is a root of fon the interval [a, d] —again,we
have halved the size of our interval, hence are closer to a good approxi-
mation of the root.

Successively applying this technique is called the Bisection Method of root
finding. We continue until the interval is sufficiently small. We demonstrate this
in the following example.

Example 1.5.5 Using the Bisection Method
Approximate the root of f(x) = x — cosx, accurate to three places after the
decimal.

SOLUTION Consider the graph of f(x) = x—cos x, shown in Figure 1.5.4.
Itis clear that the graph crosses the x-axis somewhere near x = 0.8. To start the
Bisection Method, pick an interval that contains 0.8. We choose [0.7,0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

Notes:



Iteration 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

Iteration 2: f(0.7) < 0,£(0.8) > 0, and at the midpoint, 0.75, we have f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
tinue to check the endpoints, just the midpoint. Thus we put the rest of
the iterations in Figure 1.5.5.

Notice that in the 12" iteration we have the endpoints of the interval each
starting with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places after the decimal. Using a computer, we have

£(0.7390) = —0.00014, £(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximation of where fis 0. The
Intermediate Value Theorem states that the actual zero is still within this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places after the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a
second for the program to run the necessary 35 iterations. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 iterations).

Itis a simple matter to extend the Bisection Method to solve problems similar
to “Find x, where f(x) = 0. For instance, we can find x, where f(x) = 1. It
actually works very well to define a new function g where g(x) = f(x) — 1. Then
use the Bisection Method to solve g(x) = 0.

Similarly, given two functions f and g, we can use the Bisection Method to
solve f(x) = g(x). Once again, create a new function h where h(x) = f(x) — g(x)
and solve h(x) = 0.

In Section 4.1 another equation solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathematics, though, so we will wait before introducing it.

This section formally defined what it means to be a continuous function.
“Most” functions that we deal with are continuous, so often it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

In the next section we examine one more aspect of limits: limits that involve
infinity.

Notes:

1.5 Continuity

Iteration # Interval Midpoint Sign
1 [0.7,0.9] f(0.8) >0
2 [0.7,0.8] f(0.75) > 0
3 [0.7,0.75] f(0.725) < 0
4 [0.725,0.75]  f(0.7375) < O
5 [0.7375,0.75] £(0.7438) >0
6 [0.7375,0.7438]  £(0.7407) > 0
7 [0.7375,0.7407]  £(0.7391) > 0
8 [0.7375,0.7391]  £(0.7383) < O
9 [0.7383,0.7391]  f(0.7387) < 0
10 [0.7387,0.7391]  £(0.7389) < O
11 [0.7389,0.7391]  £(0.7390) < O
12 [0.7390, 0.7391]

Figure 1.5.5: Iterations of the Bisection

Method of Root Finding
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Exercises 1.5

Terms and Concepts

1.

10.

In your own words, describe what it means for a function
to be continuous.

. In your own words, describe what the Intermediate Value

Theorem states.

. What is a “root” of a function?

. Given functions fand g on an interval /, how can the Bisec-

tion Method be used to find a value ¢ where f(c) = g(c)?

. T/F: If f is defined on an open interval containing ¢, and

lim f(x) exists, then fis continuous at c.
X—C

. T/F:If fis continuous at ¢, then lim f(x) exists.
X—C

. T/F:If fis continuous at ¢, then lim f(x) = f(c).

x—ct

. T/F:If fis continuous on [a, b], then lim f(x) = f(a).

X—a—

. T/F:If fis continuous on [0, 1) and [1, 2), then fis continu-

ouson [0, 2).

T/F: The sum of continuous functions is also continuous.

Problems

In Exercises 11 — 18, a graph of a function f is given along with
a value a. Determine if f is continuous at g; if it is not, state
why it is not.

11.

12.

a=1
y
Y

1.5 +

a=1

1.5 +

0.5 +

t t t
0.5 1 15 2

13. a=1

1.5 +

0.5 +

P e

0.5

14. a=0

1.5 +

0.5 +

[N
=
w

0.5

15. a=1

1.5 +

t t t
0.5 1 1.5

16. a=4

—4 -3 -2 -1 1 2 3

—2




18. a = 371/2
y
24

1.5 +

0.5

+ + ~+ > X
/2 ™ 37/2 2m

In Exercises 19 — 22, determine if f is continuous at the indi-
cated values. If not, explain why.

1 x=0
19.f(x):{ SmTX x>0
(a) x=0
(b) x=m
X —x x<1
20.f(x):{ 2 x> 1
(a) x=0
(b) x=1
21. f(x):{ izigifz‘ iij
(a) x=-1
(b) x=10
w-{ A 73
(a) x=0
(b) x=28

In Exercises 23 — 34, give the intervals on which the given
function is continuous.

23. f(x) =x* —3x+9
24. g(x) =
25. g(x) = VA —x*

26. h(k) =vV1—k+vk+1
27. f(t) = V/5t* — 30

1
28. g(t) = Nier
1
29. g(x) = .
30. f(x) =¢"

31. g(s) =Ins

32. h(t) = cost

33. f(k) = /1 — ¢
34. f(x) = sin(e* + x*)

Exercises 35 — 38 test your understanding of the Intermediate
Value Theorem.

35. Let f be continuous on [1,5] where f(1) = —2 and f(5) =
—10. Does a value 1 < ¢ < 5 exist such that f(c) = —9?
Why/why not?

36. Let g be continuous on [—3, 7] where g(0) = 0and g(2) =
25. Does a value —3 < ¢ < 7 exist such that g(c) = 15?
Why/why not?

37. Let f be continuous on [—1, 1] where f(—1) = —10 and
f(1) = 10. Does a value —1 < ¢ < 1 exist such that
f(c) = 11? Why/why not?

38. Let h be a function on [—1, 1] where h(—1) = —10 and
h(1) = 10. Does a value —1 < ¢ < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 39 — 42, use the Bisection Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given function in the given interval.

39. f(x) =x*+2x—4on[1,1.5].

40. f(x) =sinx —1/20n[0.5,0.55]

41. f(x) = € —20n[0.65,0.7].

42. f(x) = cosx — sinxon [0.7,0.8].

Review
43, Letf(x):{XZS;S iig .
(@) fim F(x) (c) lim £(x)
(b) lim f(x) (d) £(5)
x—5+

44. Numerically approximate the following limits:

) X —82x—17.2

(a) lim ——— %
x——4/5F x2 +58+4

X —82x—17.2

(b) lim ————
x——4/5— X*+5.8x+4

45. Give an example of function f(x) for which Iin”(u)f(x) does not
X—
exist.
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10Q +

Figure 1.6.1: Graphing f(x) = 1/x* for
values of x near 0.
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1.6 Limits Involving Infinity

In Definition 1.2.1 we stated that in the equation lim,_,.f(x) = L, both ¢ and
L were numbers. In this section we relax that definition a bit by considering
situations when it makes sense to let ¢ and/or L be “infinity.”

As a motivating example, consider f(x) = 1/x?, as shown in Figure 1.6.1.
Note how, as x approaches 0, f(x) grows very, very large —in fact, it grows without
bound. It seems appropriate, and descriptive, to state that

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notation such as

We explore both types of use of oo in turn.

Definition 1.6.1 Limit of Infinity, co

Let / be an open interval containing ¢, and let f be a function defined on
1, except possibly at c.

* The limit of f(x), as x approaches ¢, is infinity, denoted by

2 ) = o,
means that given any N > 0, there exists § > 0 such that for all x
in I, where x # ¢, if [x — c| < 0, then f(x) > N.

* The limit of f(x), as x approaches c, is negative infinity, denoted
by

)l(l_rn_f(x) = =00,

means that given any N < 0, there exists § > 0 such that for all x
in/, where x # ¢, if |x — c| < §, then f(x) < N.

The first definition is similar to the e—§ definition from Section 1.2. In that
definition, given any (small) value ¢, if we let x get close enough to ¢ (within §
units of ¢) then f(x) is guaranteed to be within ¢ of L. Here, given any (large)
value N, if we let x get close enough to ¢ (within § units of ¢), then f(x) will be

Notes:



1.6 Limits Involving Infinity

at least as large as N. In other words, if we get close enough to ¢, then we can
make f(x) as large as we want. We define limits equal to —oo in a similar way.
It is important to note that by saying lim,_,. f(x) = oo we are implicitly stat-
ing that the limit of f(x), as x approaches c, does not exist. A limit only exists
when f(x) approaches an actual numeric value. We use the concept of limits
that approach infinity because it is helpful and descriptive.
We define one-sided limits that approach infinity in a similar way.

Definition 1.6.2 One-Sided Limits of Infinity

e Let fbe a function defined on (a, c) for some a < c.

The limit of f(x), as x approaches c from the left, is infinity, or, the
left-hand limit of f at c is infinity, denoted by

lim f(x) = oo,

means given any N > 0, there exists § > 0 such that for all
a<x<c,if |x—c| <0, then f(x) > N.
e Let fbe a function defined on (c, b) for some b > c.

The limit of f(x), as x approaches c from the right, is infinity, or,
the right-hand limit of f at c is infinity, denoted by

Iim+f(x) = 00,

means given any N > 0, there exists § > 0 such that for all
c<x<b,if |x—c| < ,thenf(x) > N.

¢ The term left- (or, right-) hand limit of f at c is negative infinity is
defined in a manner similar to Definition 1.6.1.

Example 1.6.1 Evaluating limits involving infinity y
1
Find lim ———— as shown in Figure 1.6.2. 100 |
x—=1 (x —1)2
SOLUTION In Example 1.1.4 of Section 1.1, by inspecting values of x

close to 1 we concluded that this limit does not exist. That is, it cannot equal any
real number. But the limit could be infinite. And in fact, we see that the function
does appear to be growing larger and larger, as f(.99) = 10%, f(.999) = 105,
£(.9999) = 10%. A similar thing happens on the other side of 1. In general,
let a “large” value N be given. Let § = I/W If x is within § of 1, i.e., if

50 +

0.5 1 1.5 2

Figure 1.6.2: Observing infinite limit as
x — 1in Example 1.6.1.

Notes:
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50 -

-1 —0.5 0.5 1

—50 I

1
Figure 1.6.3: Evaluating lim —.
x—0 X
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Ix — 1| < 1/V/N, then:

1
x—1 < —
K-1< o

1
x—1)?% < =
=1 <5
! >N
-1z~

which is what we wanted to show. So we may say Iim1 1/(x — 1)* = oo.
X—

Example 1.6.2 Evaluating limits involving infinity
1
Find lim —, as shown in Figure 1.6.3.
x—0 X
SOLUTION It is easy to see that the function grows without bound near

0, but it does so in different ways on different sides of 0. Since its behavior is not

consistent, we cannot say that Iirr}) — = o0o. However, we can make a statement
x—0 X

1 1
about one-sided limits. We can state that lim — = ocoand |lim — = —oc.
x—0t X x—0— X

The graphs in the two previous examples demonstrate that if a function f has
a limit (or, left- or right-hand limit) of infinity at x = ¢, then the graph of f looks
similar to a vertical line near x = c. This observation leads to a definition.

Definition 1.6.3 Vertical Asymptote

Let / be an interval that either contains c or has c as an endpoint, and let
fbe a function defined on /, except possibly at c.

If the limit of f(x) as x approaches c from either the left or right (or both)
is 0o or —oo, then the line x = c is a vertical asymptote of f.

Example 1.6.3 Finding vertical asymptotes
3x
Find the vertical asymptotes of f(x) = Rt
X —
SOLUTION Vertical asymptotes occur where the function grows with-

out bound; this can occur at values of ¢ where the denominator is 0. When x is
near ¢, the denominator is small, which in turn can make the function take on
large values. In the case of the given function, the denominator is 0 at x = £2.
Substituting in values of x close to 2 and —2 seems to indicate that the function

Notes:



1.6 Limits Involving Infinity

tends toward oo or —oo at those points. We can graphically confirm this by look-
ing at Figure 1.6.4. Thus the vertical asymptotes are at x = £2.

When a rational function has a vertical asymptote at x = ¢, we can conclude
that the denominator is 0 at x = c¢. However, just because the denominator ‘
is 0 at a certain point does not mean there is a vertical asymptote there. For -5
instance, f(x) = (x> — 1)/(x — 1) does not have a vertical asymptote at x = 1,
as shown in Figure 1.6.5. While the denominator does get small near x = 1,
the numerator gets small too, matching the denominator step for step. In fact,
factoring the numerator, we get

—10 |

3x
x2—4’

(x—1)(x+1) Figure 1.6.4: Graphing f(x) =
x—1 )

flx) =

Canceling the common term, we get that f(x) = x + 1 for x # 1. So there is
clearly no asymptote; rather, a hole exists in the graph at x = 1.

The above example may seem a little contrived. Another example demon- y
strating this important concept is f(x) = (sinx)/x. We have considered this 3
function several times in the previous sections. We found that lim,_,q % =1;
i.e., there is no vertical asymptote. No simple algebraic cancellation makes this
fact obvious; we used the Squeeze Theorem in Section 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then 1
there will usually be a vertical asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a vertical asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

f t = X
—1 1 2

Figure 1.6.5: Graphically showing that
Indeterminate Forms fx) = X —1
T ox—1

toteatx = 1.

does not have an asymp-
We have seen how the limits

. sinx ]
lim —— and lim
x—0 X x=1 x—1

each return the indeterminate form “0/0” when we blindly plug in x = 0 and
x = 1, respectively. However, 0/0 is not a valid arithmetical expression. It gives
no indication that the respective limits are 1 and 2.

With a little cleverness, one can come up with 0/0 expressions which have
a limit of oo, 0, or any other real number. That is why this expression is called
indeterminate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that

Notes:
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the numerator is shrinking to 0 while the denominator is also shrinking to 0.
The respective rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to do more work in order to
compute the limit. That work may be algebraic (such as factoring and canceling)
or it may require a tool such as the Squeeze Theorem. In a later section we will
learn a technique called I’'HGspital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are oo — 0o, 00+ 0, 00 /00, 0°, oc°
and 1°°. Again, keep in mind that these are the “blind” results of evaluating a
limit, and each, in and of itself, has no meaning. The expression co — co does
not really mean “subtract infinity from infinity.” Rather, it means “One quantity
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between —oo and oo.

Note that 1/0 and co/0 are not indeterminate forms, though they are not
exactly valid mathematical expressions, either. In each, the function is growing
without bound, indicating that the limit will be co, —o0, or simply not exist if the
left- and right-hand limits do not match.

Limits at Infinity and Horizontal Asymptotes

At the beginning of this section we briefly considered what happens to f(x) =
1/x? as x grew very large. Graphically, it concerns the behavior of the function to
the “far right” of the graph. We make this notion more explicit in the following
definition.

Definition 1.6.4 Limits at Infinity and Horizontal Asymptotes

Let L be a real number.

1. Let f be a function defined on (a,c0) for some number a. The
limit of f at infinity is L, or lim f(x) = L, means for every e > 0
X—» 00

there exists M > a such that if x > M, then |f(x) — L| < e.

2. Let f be a function defined on (—o0, b) for some number b. The

limit of f at negative infinity is L, or lim f(x) = L, means
X——00
for every € > 0 there exists M < b such that if x < M, then
If(x) — L] <e.

3. If lim f(x) = Lor lim f(x) = L, wesaytheliney = Lisa
X—» 00 X—>— 00

horizontal asymptote of f.

Notes:
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We can also define limits such as lim f(x) = co by combining this definition =~ ——==-----4 R
X—» 00
with Definition 1.6.1.

Example 1.6.4 Approximating horizontal asymptoztes 0g |
Approximate the horizontal asymptote(s) of f(x) = eia
SOLUTION We will approximate the horizontal asymptotes by approxi- _‘20 _‘10 l‘o 2; X
mating the limits
(a)
: X X
ng'\oo ia and lem eia X f(x)
10 0.9615

Figure 1.6.6(a) shows a sketch of f, and part (b) gives values of f(x) for large mag- 100 0.9996
nitude values of x. It seems reasonable to conclude from both of these sources 10000  0.999996
that f has a horizontal asymptote at y = 1. —10 0.9615

—100 0.9996

Later, we will show how to determine this analytically. 10000 0.999996

(b)

Horizontal asymptotes can take on a variety of forms. Figure 1.6.7(a) shows

that f(x) = x/(x* + 1) has a horizontal asymptote of y = 0, where 0 is ap- Figure 1.6.6: Using a graph and a table
proached from both above and below. to approximate a horizontal asymptote in
Figure 1.6.7(b) shows that f(x) = x/v/x?> + 1 has two horizontal asymptotes; Example 1.6.4.

oneaty = 1and the otheraty = —1.
Figure 1.6.7(c) shows that f(x) = (sin x)/x has even more interesting behav-
ior than at just x = 0; as x approaches +o0, f(x) approaches 0, but oscillates as

it does this.
y y y
—io |
X
1 20
Figure 1.6.7: Considering different types of horizontal asymptotes.
Notes:
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We can analytically evaluate limits at infinity for rational functions once we
understand limy_, o, 1/x. As x gets larger and larger, 1/x gets smaller and smaller,
approaching 0. We can, in fact, make 1/x as small as we want by choosing a large
enough value of x. Given ¢, we can make 1/x < e by choosing x > 1/¢. Thus
we have lim,_,», 1/x = 0.

It is now not much of a jump to conclude the following:

Now suppose we need to compute the following limit:

. X+ 2x+1
lim ——M———.
x—o0 4x3 — 2x2 + 9

A good way of approaching this is to divide through the numerator and denom-
inator by x> (hence multiplying by 1), which is the largest power of x to appear
in the function. Doing this, we get

) X +2x+1 1/ B+ 2ax+1
lim —————— = lim .
x=mo0 3 — 22 +9  x—oo 1/ 4x3 — 22+ 9
— lim X3+ 2x/x3 +1/x3
a0 b33 — 22 /33 4+ 9/x3
“m1+2ﬂﬁ+wﬁ
x—o0 4 —2/x+9/3"

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/x", we see that the limit becomes

1+0+0 1

4-0+0 4

This procedure works for any rational function. In fact, it gives us the follow-
ing theorem.

Notes:



Theorem 1.6.1 Limits of Rational Functions at Infinity

Let f(x) be a rational function of the following form:

X" + Ap_ X"+ -+ ax+ag
BpX™ + bpp_1X"=1 4+ - + bix + by’

fix) =

where any of the coefficients may be 0 except for a, and b,.

_ m 00 = lim f0) = 5
1. If n = m, then XI_l)rr;Of(x) = X_I:rPOOf(x) =
2. If n < m,then lim f(x) = lim f(x) =0.
X—» 00 X——00

3. If n > m, then lim f(x) and f(x) are both infinite.
X

lim
X— 00 — — 00

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situation like the
example above, where we will divide by x" and in the limit all the terms will
approach 0 except for a,x"/x" and b, x™ /x". Since n = m, this will leave us with
the limit a,/by,. If n < m, then after dividing through by x™, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/b,,, or 0. If n > m, and
we try dividing through by x”, we end up with all the terms in the denominator
tending toward 0, while the x” term in the numerator does not approach 0. This
is indicative of some sort of infinite limit.

Intuitively, as x gets very large, all the terms in the numerator are small in
comparison to a,x”, and likewise all the terms in the denominator are small
compared to b,x™. If n = m, looking only at these two important terms, we
have (a,x")/(b,x™). This reduces to a,/b,. If n < m, the function behaves
like a,/(bymx™~"), which tends toward 0. If n > m, the function behaves like
apx"~™ /by, which will tend to either co or —oo depending on the values of n,
m, ap, by, and whether you are looking for lim,_, o f(x) or lim,_, _ o f(x).

With care, we can quickly evaluate limits at infinity for a large number of
functions by considering the largest powers of x. For instance, consider again

X_I)igwoo \/ﬁ, graphed in Figure 1.6.7(b). When x is very large, x> + 1 ~ x2.

Thus

X X
VX2+1lxavx2=|x|, and — ~ —.
A VX411 x|

This expression is 1 when x is positive and —1 when x is negative. Hence we get
asymptotes of y = 1 and y = —1, respectively.

Notes:

1.6 Limits Involving Infinity
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_05 4+
(a)
y
0.5 T
t t t > X
10 20 30 40
_os | //’_7
(b)
y
1 > X
20 40
—20 1
—40 1

(c)

Example 1.6.5 Finding a limit of a rational function
2
X
Confirm analytically that y = 1 is the horizontal asymptote of f(x) = era as
X
approximated in Example 1.6.4.

SOLUTION Before using Theorem 1.6.1, let’s use the technique of eval-
uating limits at infinity of rational functions that led to that theorem. The largest
power of x in fis 2, so divide the numerator and denominator of f by x?, then
take limits.

. X2 ) Xz/xz
lim = lim ———
x—00 X2 + 4 x—o0 X2 /x2 + 4/X2
= lim ————
x—o0 14 4/x?
_ 1
140

=1

We can also use Theorem 1.6.1 directly; in this case n = m so the limit is the
ratio of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1.

Example 1.6.6 Finding limits of rational functions
Use Theorem 1.6.1 to evaluate each of the following limits.

X+ 2x—1 |
1. lim — 3. lim
x——oco X341 x—oco 3 — X

x4+ 2x—1
2. lim ————=
x—>ool—X—3X2

SOLUTION

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 1.6.8(a).

2. The highest power of x is X2, which occurs in both the numerator and de-
nominator. The limit is therefore the ratio of the coefficients of x2, which
is —1/3. See Figure 1.6.8(b).

3. The highest power of x is in the numerator so the limit will be co or —oo.
To see which, consider only the dominant terms from the numerator and
denominator, which are x?> and —x. The expression in the limit will behave
like x*/(—x) = —x for large values of x. Therefore, the limit is —cc. See
Figure 1.6.8(c).

Figure 1.6.8: Visualizing the functions in
Example 1.6.6.

54

Notes:



Chapter Summary

In this chapter we:
o defined the limit,

e found accessible ways to approximate the value of limits numerically and
graphically,

¢ developed a not—so—easy method of proving the value of a limit (-0 proofs),
¢ explored when limits do not exist,

¢ defined continuity and explored properties of continuous functions, and

e considered limits that involved infinity.

Why? Mathematics is famous for building on itself and calculus proves to
be no exception. In the next chapter we will be interested in “dividing by 0.”
That is, we will want to divide a quantity by smaller and smaller numbers and
see what value the quotient approaches. In other words, we will want to find a
limit. These limits will enable us to, among other things, determine exactly how
fast something is moving when we are only given position information.

Later, we will want to add up an infinite list of numbers. We will do so by
first adding up a finite list of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum often is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over time an
appreciation is often formed based on the scope of its applicability.

Notes:

1.6 Limits Involving Infinity
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Exercises 1.6

Terms and Concepts - r
P 10. f(x) TR
1. T/F:If Imf(x) = o0, then we are implicitly stating that the (@) Xin;_ f(x) (d) Xir;n_ fx)
limit exists. (b) XLiTJrf(X) (e) xLiT+f(X)
(@) lim £(x) (f) lim £(x)

2. T/F:If lim f(x) = 5, then we are implicitly stating that the
X— 00

limit exists.
50

3. T/F:If lim f(x) = —oo, then lim f(x) = oo

x—1~ x—1t

4, T/F: If Iin}’f(x) = o0, then f has a vertical asymptote at
X—
X =05.

—50 |

5. T/F: 00/0 s not an indeterminate form.

1
11. f(x) = — 1
6. List 5 indeterminate forms. e+
(@) lim f(x) (¢) lim f(x)
7. Construct a function with a vertical asymptote at x = 5 and xmeo x—07
a horizontal asymptote at y = 5. (b) im fx) (d) “%Lf(X)
X—roo X—

8. Let Iim7f(x) = oo0. Explain how we know that f is/is not
X—

14
continuous at x = 7. N\

0.5 \‘;

u X

—-10 -5 5 10

Problems os |

In Exercises 9 — 14, evaluate the given limits using the graph
of the function.

12. f(x) = X sin(7x)

1
9. f(X) = (X—|— 1)2
(a) lim f(x)
(@) lim f(x) o
x——1"
b) i
B im0 (b) lim f(x)

x——11

100 +

50 +




13. f(x) = cos(x)

(@) lim f(x)

X——00

(b) lim f(x)

X—r 00

14. f(x) = 2" +10
() lim f(x)

(b) lim f(x)

X—r 00
150 +

100 +

50 +

10 s 5
In Exercises 15 — 18, numerically approximate the following
limits:

(a) lim f(x)
x—3—

(b) lim_f(x)

(€) lim £(x)

15. f(x) = szi%

16. f(x) = %
17. f(x) = %
18. f(x) = szz__giitég

In Exercises 19 — 24, identify the horizontal and vertical
asymptotes, if any, of the given function.

2% —2x—4
190 = a0
-3 —9x—6
200 = 50 o1
2
X +x—12
2L ) = 28 T — 21
2
x =9
22, f(x) = o _9
2
x =9
2 S = 557
2
x =1
24. f(x) = 1

In Exercises 25 — 28, evaluate the given limit.

3 2
25. lim M

X— 00 x—5

3 2
26. lim M

X—00 — X

Review

29. Use an e — ¢ proof to show that

lim5x —2 = 3.
x—1
30. Let lim f(x) = 3and lim g(x) = —1. Evaluate the following
X—2 X—2

limits.

(@ lim(f+9)(x)
(b) lim (fg) ()

(©) lim (f/g)(x)

(d) lim f(x)?*”

2
x =1 x<3
31. Letf(x):{ X45 >3

Is f continuous everywhere?

32. Evaluate the limit: lim In x.
X—e
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2: DERIVATIVES

The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivative. Limits describe where a function is going; derivatives describe
how fast the function is going.

2.1 Instantaneous Rates of Change: The Derivative

A common amusement park ride lifts riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Students of physics may recall that the
height (in feet) of the riders, t seconds after freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = —16t* + 150.

Using this formula, it is easy to verify that, without intervention, the riders
will hit the ground at t = 2.54/1.5 ~ 3.06 seconds. Suppose the designers of
the ride decide to begin slowing the riders’ fall after 2 seconds (corresponding
to a height of 86 ft.). How fast will the riders be traveling at that time?

We have been given a position function, but what we want to compute is a
velocity at a specific point in time, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, we do know from common experience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in Section 1.1 when we introduced the
difference quotient. We have

change in distance “rise” .
— = = average velocity.
change in time run

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some time period containing t = 2. If we make the time
interval small, we will get a good approximation. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approximation of the velocity.)

Consider the interval fromt = 2 tot = 3 (just before the riders hit the
ground). On that interval, the average velocity is

f3)-1f2) _f3)-fQ2)

- — 80t
3_2 1 /s




Chapter 2 Derivatives

Average Velocity

h ft/s
1 —80
0.5 —72
0.1 —65.6
0.01 —64.16
0.001 —64.016

Figure 2.1.1: Approximating the instan-
taneous velocity with average velocities
over a small time period h.

60

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a better approximation of the instan-
taneous velocity. On [2, 2.5] we have

f25) —f2) _f25)—f2) _ 5
25-2 0.5

We can do this for smaller and smaller intervals of time. For instance, over
a time span of 1/10%" of a second, i.e., on [2,2.1], we have

f21) - f2) _ f21) -£2)

= = —65.6 ft/s.
21-2 0.1

Over a time span of 1/100™" of a second, on [2, 2.01], the average velocity is

f(201) —f2) _ f2.0) —f2) _ e
200—2 o001 o0t

What we are really computing is the average velocity on the interval [2, 2+ h]
for small values of h. That is, we are computing

f2+h) -2
h

where h is small.

We really want to use h = 0, but this, of course, returns the familiar “0/0”
indeterminate form. So we employ a limit, as we did in Section 1.1.

We can approximate the value of this limit numerically with small values of
h as seen in Figure 2.1.1. It looks as though the velocity is approaching —64 ft/s.
Computing the limit directly gives

i f2+h) —f2) ’ —16(2 + h)? + 150 — (—16(2)? + 150)
Pl h = h
__ —64h — 16n°
= lim ———
h—0 h
= lim (—64 — 16h)

h—0

— —64.

Graphically, we can view the average velocities we computed numerically as
the slopes of secant lines on the graph of f going through the points (2,(2))
and (2 + h,f(2 + h)). In Figure 2.1.2, the secant line correspondingto h = 1is
shown in three contexts. Figure 2.1.2(a) shows a “zoomed out” version of f with
its secant line. In (b), we zoom in around the points of intersection between
f and the secant line. Notice how well this secant line approximates f between

Notes:



2.1 Instantaneous Rates of Change: The Derivative

those two points —it isa common practice to approximate functions with straight
lines.

As h — 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of —64. In parts (c) and (d) of
Figure 2.1.2, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).

y y
150
100 -
100 +
50 +
50 +
t t f X
1 2 3
t t t \ X
_50 L 2 2.5 3
(a) (b)
y y
100 100
50 + 50 +
t t t X t t t X
1.5 2 2.5 1.5 2 2.5
() (d)

Figure 2.1.2: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to fat x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this section. First, we formally define two of them.

Notes:
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Chapter 2 Derivatives

Definition 2.1.1 Derivative at a Point

Let f be a continuous function on an open interval / and let c be in I. The
derivative of f at ¢, denoted f'(c), is

i L0 =1(6)

h—0 h

9

provided the limit exists. If the limit exists, we say that fis differentiable
at ¢; if the limit does not exist, then f is not differentiable at c. If fis
differentiable at every point in /, then f is differentiable on /.

Definition 2.1.2 Tangent Line

Let f be continuous on an open interval / and differentiable at c, for some
cin /. The line with equation £(x) = f'(c)(x—c) +f(c) is the tangent line
to the graph of f at ¢; that is, it is the line through (c, f(c)) whose slope
is the derivative of f at c.

Some examples will help us understand these definitions.

Example 2.1.1 Finding derivatives and tangent lines
Let f(x) = 3x* + 5x — 7. Find:

L f(1) 3. f/(3)

2. The equation of the tangent line 4. The equation of the tangent line
to the graph of fat x = 1. to the graph fat x = 3.

SOLUTION

1. We compute this directly using Definition 2.1.1.

f(1+h)—£(1)
h

(1) = lim

h—0

_ lim 3(1+h)?>+5(1+h)—7—(3(1)>+5(1) —7)
b h

. 3h*+11h

lim ———

h—0 h

(3h +11) = 11.

lim
h—0

Notes:
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2.1 Instantaneous Rates of Change: The Derivative

2. The tangent line at x = 1 has slope f’(1) and goes through the point
(1,f(1)) = (1,1). Thus the tangent line has equation, in point-slope form,
y = 11(x — 1) + 1. In slope-intercept form we have y = 11x — 10.

3. Again, using the definition,

f3+h) —f3)

'B)=1i
3 h[Po h
—im 33+h)?2+50B+h) —7-(33)2+53)-7) y
T o0 h 60 1
_im 3h* 4 23h
0 h 40
= lim (3h + 23)
h—0
20 +
= 23.
4. Thetangentlineatx = 3 has slope 23 and goes through the point (3,£(3)) = "1 ; ; )

(3,35). Thus the tangent line has equationy = 23(x—3)+35 = 23x—34.
Figure 2.1.3: A graph of f(x) = 3x* +5x—

A graph of fis given in Figure 2.1.3 along with the tangent lines at x = 1 and 7 and its tangent lines at x = 1and x = 3.

x = 3.

Anotherimportant line that can be created using information from the deriva-
tive is the normal line. It is perpendicular to the tangent line, hence its slope is
the opposite—reciprocal of the tangent line’s slope.

Definition 2.1.3 Normal Line

Let f be continuous on an open interval / and differentiable at ¢, for some
cin /. The normal line to the graph of f at cis the line with equation

f'(e)

where f'(c) # 0. When f/(c) = 0, the normal line is the vertical line
through (c, f(c)); thatis, x = c.

n(x) = —x—¢)+fc),

Example 2.1.2 Finding equations of normal lines
Let f(x) = 3x*> + 5x — 7, as in Example 2.1.1. Find the equations of the normal
lines to the graph of fat x = 1 and x = 3.

SOLUTION In Example 2.1.1, we found that f'(1) = 11. Hence atx = 1,

Notes:
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t t t t X
1 2 3 4

Figure 2.1.4: A graph of f(x) = 3x* +5x—
7, along with its normal line at x = 1.

64

the normal line will have slope —1/11. An equation for the normal line is

n(x) = I—ll(x— 1)+ 1.

The normal line is plotted with y = f(x) in Figure 2.1.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” Mathematically, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite—reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect ratio of the picture of the graph plays
a big role in this.)

We also found that f/(3) = 23, so the normal line to the graph of fat x = 3
will have slope —1/23. An equation for the normal line is

n(x) = E(x —3) +35.

Linear functions are easy to work with; many functions that arise in the
course of solving real problems are not easy to work with. A common practice
in mathematical problem solving is to approximate difficult functions with not—
so—difficult functions. Lines are a common choice. It turns out that at any given
point on the graph of a differentiable function f, the best linear approximation
to fis its tangent line. That is one reason we’ll spend considerable time finding
tangent lines to functions.

One type of function that does not benefit from a tangent-line approxima-
tion is a line; it is rather simple to recognize that the tangent line to a line is the
line itself. We look at this in the following example.

Example 2.1.3 Finding the derivative of a linear function
Consider f(x) = 3x + 5. Find the equation of the tangent line to fat x = 1 and
x=17.

SOLUTION We find the slope of the tangent line by using Definition
2.1.1.

/ - f(L+h) —f(1)
f'(1) = lim —

h—0
31+h)+5—-(3+5)
h—0 h

I
5
|

Notes:



2.1 Instantaneous Rates of Change: The Derivative

We just found that f'(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only functions with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivative at any point x will be a; that is,
f'(x) =a.

It is now easy to see that the tangent line to the graph of fat x = 1 is just f,
with the same being true for x = 7.

We often desire to find the tangent line to the graph of a function without
knowing the actual derivative of the function. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

Example 2.1.4 Numerical approximation of the tangent line
Approximate the equation of the tangent line to the graph of f(x) = sinx at
x =0.

SOLUTION In order to find the equation of the tangent line, we need a
slope and a point. The point is given to us: (0,sin0) = (0,0). To compute the
slope, we need the derivative. This is where we will make an approximation.

Recall that in(0 + h) — sin0
sin(0 4+ n) — sin

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

£(0) ~ SNOD Z8IN0 6 gog3.
0.1

Thus our approximation of the equation of the tangent line is y = 0.9983(x —
0) + 0 = 0.9983x; it is graphed in Figure 2.1.5. The graph seems to imply the
approximation is rather good.

Recall from Section 1.3 that lim,_,o % = 1, meaning for values of x near
0, sinx =~ x. Since the slope of the liney = xis 1 at x = 0, it should seem
reasonable that “the slope of f(x) = sinx” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 2.1.1. To find the derivative of fat x = 1, we needed
to evaluate a limit. To find the derivative of f at x = 3, we needed to again
evaluate a limit. We have this process:

Notes:

0.5

NI -

3

Figure 2.1.5: f(x) = sin x graphed with an
approximation to its tangent line atx = 0.
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input specific m return
number ¢ to fand ¢ number f'(c)

This process describes a function; given one input (the value of c¢), we return
exactly one output (the value of f'(c)). The “do something” box is where the
tedious work (taking limits) of this function occurs.

Instead of applying this function repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

do something return

input variable x —»| — .
P to f and x function f'(x)

The output is the “derivative function,” f'(x). The f’(x) function will take a
number c as input and return the derivative of f at c. This calls for a definition.

Definition 2.1.4 Derivative Function

Let f be a differentiable function on an open interval /. The function

f/(X) = lim .f(X+h2' 7f(X)

h—0

is the derivative of f.

Notation:
Let y = f(x). The following notations all represent the derivative of f:

dy df d d

flx) =y = " B md a(y)-

d
Important: The notation d%: is one symbol; it is not the fraction “dy/dx”. The

notation, while somewhat confusing at first, was chosen with care. A fraction—
looking symbol was chosen because the derivative has many fraction—like prop-
erties. Among other places, we see these properties at work when we talk about
the units of the derivative, when we discuss the Chain Rule, and when we learn
about integration (topics that appear in later sections and chapters).

Examples will help us understand this definition.

Example 2.1.5 Finding the derivative of a function
Let f(x) = 3x* + 5x — 7 as in Example 2.1.1. Find f’(x).

Notes:
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SOLUTION We apply Definition 2.1.4.
. flx+h)—f(x)
/ —
f6) = i h

_im 3(x+h)2+5(x+h)—7—(3x%+5x—7)
a h—0 h

_ 3h% 4 6xh+5h

lim —

h—0 h

(3h + 6x+5)

= lim
h—0
=6x+5

Sof’(x) = 6x+5. Recall earlier we found that f/(1) = 11and f/(3) = 23. Note
our new computation of f’(x) affirm these facts.

Example 2.1.6 Finding the derivative of a function

Let f(x) = x% Find £/ (x).

SOLUTION We apply Definition 2.1.4.
- fx+h) — fx)
/ = J\ AT ) —J\A)
fix) h'ﬂh h
11
= lim X+h+1 x+1
h—0 h

Now find common denominator then subtract; pull 1/h out front to facilitate

reading.
—Iiml x+1 x+h+1
Chsoh \(x+1)(x+h+1) (x+1)(x+h+1)
1 [(x+1—(x+h+1)
= lim —-
h—0 h x+1)(x+h+1)
1 —h
= lim —-
hsoh \(x+1)(x+h+1)
-1
A0 (x + 1)(x+ h+ 1)
_ -1
 (x+1)(x+1)
-1
C (x+1)2
Notes:
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0.5 +

t t t > X
-1 —0.5 0.5 1

Figure 2.1.6: The absolute value function,
f(x) = |x|. Notice how the slope of
the lines (and hence the tangent lines)
abruptly changes at x = 0.
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Sof'(x) =

> To practice using our notation, we could also state

(x+1)
d/ 1\ -1
dx \x+1/)  (x+1)2
Example 2.1.7 Finding the derivative of a function
Find the derivative of f(x) = sin x.

SOLUTION Before applying Definition 2.1.4, note that once this is found,
we can find the actual tangent line to f(x) = sinx at x = 0, whereas we settled
for an approximation in Example 2.1.4.

£/(x) = lim SMx*h) = sinx (Sm( Use trig identity )

h—0 h x + h) = sinxcos h + cosxsinh
sinx cos h 4+ cosxsinh — sinx
= lim (regroup)
h—0 h
sinx(cosh — 1) + cosxsinh
=i (split into two fractions)
h—0 h
) sinx(cosh —1)  cosxsinh cosh — 1 sinh
= lim + use lim =0and lim — =1
h—0 h h h—0 h h—0 h

=sinx-0+4cosx-1

= cosx!

We have found that when f(x) = sinx, f’(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine function is a nice
function. Then again, perhaps this is not entirely surprising. The sine function
is periodic — it repeats itself on regular intervals. Therefore its rate of change
also repeats itself on the same regular intervals. We should have known the
derivative would be periodic; we now know exactly which periodic function it is.

Thinking back to Example 2.1.4, we can find the slope of the tangent line to
f(x) = sinxatx = 0 using our derivative. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1.

Example 2.1.8 Finding the derivative of a piecewise defined function
Find the derivative of the absolute value function,

— 0
o=l ={ 7 %S0

See Figure 2.1.6.

h) —
SOLUTION We need to evaluate lim flxt h) — f)
h—0 h

defined, we need to consider separately the limits when x < 0 and when x > 0.

. As fis piecewise—

Notes:
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When x < 0:

0l
|
=
I
3

d
When x > 0, a similar computation shows that a(x) =1.

We need to also find the derivative at x = 0. By the definition of the deriva-
tive at a point, we have

Since x = 0 is the point where our function’s definition switches from one piece
to the other, we need to consider left and right-hand limits. Consider the fol-
lowing, where we compute the left and right hand limits side by side.

f(0 +h) — f(0) f(0 +h) — f(0)

hl_|>n01 h - hI_l)r’ng h -
. —h—-0 _ . h—-0
hlrg— h o hl;n;r h
lim —1=-1 lim 1=1
h—0— h—0t

The last lines of each column tell the story: the left and right hand limits are not
equal. Therefore the limit does not exist at 0, and f is not differentiable at 0. So

we have
oy ) 1 x<0
f(X){ 1 x>0°

Atx = 0, f’(x) does not exist; there is a jump discontinuity at 0; see Figure 2.1.7.
So f(x) = |x]| is differentiable everywhere except at 0.

The point of non-differentiability came where the piecewise defined func-
tion switched from one piece to the other. Our next example shows that this
does not always cause trouble.

Example 2.1.9 Finding the derivative of a piecewise defined function
sinx x< /2

1 X>m/2 " See Figure 2.1.8.

Find the derivative of f(x), where f(x) = {

Notes:

-1 —0.5 0.5 1

Figure 2.1.7: A graph of the derivative of
flx) = Ixl.
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0.5 +

NTRpe S

Figure 2.1.8: A graph of f(x) as defined in
Example 2.1.9.

0.5 +

NTEg

Figure 2.1.9: A graph of f'(x) in Example
2.1.9.
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SoLuTioN Using Example 2.1.7, we know that when x < /2, f/(x) =
cos x. It is easy to verify that when x > /2, f’(x) = 0; consider:

fxt by~ 1-1

lim = lim ——=1im0=0.
h—0 h h—0 h h—0

So far we have y
, . cosx x<m/2
f(X)_{ 0 x>m/2’
We still need to find f/(7/2). Notice at x = m/2 that both pieces of f’ are 0,
meaning we can state that f'(7/2) = 0.
Being more rigorous, we can again evaluate the difference quotient limit at
x = 7/2, utilizing again left and right—hand limits:

lim f(w/24 h) — f(x/2) _ im f(r/2+h) — f(n/2) _
h—0— h h—o0t h

__sin(7/2 + h) — sin(7/2) oo1-1
hln(;[ h - hLIT* h
sin(%) cos(h) + sin(h) cos(3) — sin(5) lim 2 =

h~l>0* h - h—ot h

lim 1-cos(h) +sin(h)-0—1 _ 0.

h—0— h
0.

Since both the left and right hand limits are 0 at x = 7/2, the limit exists and
f'(7/2) exists (and is 0). Therefore we can fully write f’ as

i J cosx x< /2
f(X)_{ 0 x>m/2°

See Figure 2.1.9 for a graph of this function.

Recall we pseudo—defined a continuous function as one in which we could
sketch its graph without lifting our pencil. We can give a pseudo—definition for
differentiability as well: it is a continuous function that does not have any “sharp
corners.” One such sharp corner is shown in Figure 2.1.6. Even though the func-
tion fin Example 2.1.9 is piecewise—defined, the transition is “smooth” hence it
is differentiable. Note how in the graph of f in Figure 2.1.8 it is difficult to tell
when f switches from one piece to the other; there is no “corner.”

Notes:



2.1 Instantaneous Rates of Change: The Derivative

Differentiablity on Closed Intervals

When we defined the derivative at a point in Definition 2.1.1, we specified
that the interval | over which a function f was defined needed to be an open
interval. Open intervals are required so that we can take a limit at any point ciin
I, meaning we want to approach c from both the left and right.

Recall we also required open intervals in Definition 1.5.1 when we defined
what it meant for a function to be continuous. Later, we used one-sided limits to
extend continuity to closed intervals. We now extend differentiability to closed
intervals by again considering one-sided limits.

Our motivation is three-fold. First, we consider “common sense.” In Example
2.1.5 we found that when f(x) = 3x?>+5x—7, f'(x) = 6x+5, and this derivative
is defined for all real numbers, hence f is differentiable everywhere. It seems
appropriate to also conclude that fis differentiable on closed intervals, like [0, 1],
as well. After all, f'(x) is defined at both x = 0 and x = 1.

Secondly, consider f(x) = y/x. The domain of fis [0, c0). Is f differentiable
on its domain — specifically, is f differentiable at 0? (We’ll consider this in the
next example.)

Finally, in later sections, having the derivative defined on closed intervals will
prove useful. One such place is Section 7.4 where the derivative plays a role in
measuring the length of a curve.

After a formal definition of differentiability on a closed interval, we explore
the concept in an example.

Definition 2.1.5 Differentiability on a Closed Interval

Let f be continuous on [a, b] and differentiable on (a, b), and let the one-
sided limits

lim M and lim

h—0+t h h—0—

flb +h) — f(b)
h

exist. Then we say fis differentiable on [a, b].

For all the functions fin this text, we can determine differentiability on [a, b]
by considering the limits lim,_, o+ f'(x) and lim,_,,— f'(x). This is often easier to
evaluate than the limit of the difference quotient.

Example 2.1.10 Differentiability at an endpoint

Consider f(x) = v/x = x/2 and g(x) = Vx® = x*/2. The domain of each func-
tion is [0, 00). It can be shown that each is differentiable on (0, 00); determine
the differentiability of each at x = 0.

Notes:
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y:xl/z

y=x"

t X
1

Figure 2.1.10: A graph of y = x*/? and

y = x*/? in Example 2.1.10.
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SOLUTION We start by considering f and take the right-hand limit of the
difference quotient:
i fla+h)—fla) im VO+h—+0
h—0t h B h—o0t h

_wh

= lim —

h—0+ h
=0 =

The one-sided limit of the difference quotient does not exist at x = 0 for f;
therefore f is differentiable on (0, 00) and not differentiable on [0, co).

We state (without proof) that f/(x) = 1/(24/x). Note that lim,_,o+ f'(x) =
oo; this limit was easier to evaluate than the limit of the difference quotient,
though it required us to already know the derivative of f.

Now consider g:

gla+h) —gla)

lim ——————= = |lim
h—0+t h h—0+
h3/2
= lim —
h—o0t+ h
= lim h'/2 =0
h—0+

As the one-sided limit exists at x = 0, we conclude g is differentiable on its
domain of [0, c0).

We state (without proof) that g’(x) = 3+/x/2. Note that lim,_,o+ g’(x) = 0;
again, this limit is easier to evaluate than the limit of the difference quotient.

The two functions are graphed in Figure 2.1.10. Note how f(x) = /x seems
to “go vertical” as x approaches 0, implying the slopes of its tangent lines are
growing toward infinity. Also note how the slopes of the tangent lines to g(x) =
V3 approach 0 as x approaches 0.

Most calculus textbooks omit this topic and simply avoid specific cases where
it could be applied. We choose in this text to not make use of the topic unless
itis “needed.” Many theorems in later sections require a function f to be differ-
entiable on an open interval I; we could remove the word “open” and just use
“...onaninterval I,” but choose to not do so in keeping with the current math-
ematical tradition. Our first use of differentiability on closed intervals comes in
Chapter 7, where we measure the lengths of curves.

This section defined the derivative; in some sense, it answers the question of
“What is the derivative?” The next section addresses the question “What does
the derivative mean?”

Notes:



Exercises 2.1

Terms and Concepts

1. T/F:Letfbe a position function. The average rate of change
on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The definition of the derivative of a function at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
tions 2.1.1and 2.1.4.

5. Lety = f(x). Give three different notations equivalent to

tlf'/ (X) .II

6. If two lines are perpendicular, what is true of their slopes?

Problems

In Exercises 7 — 14, use the definition of the derivative to com-
pute the derivative of the given function.

10. g(x) = x
11. h(x) =x

12. f(x) =3¢ —x+ 4

1
13. = -
r(x) N
1
14. =
r(s) P

In Exercises 15 — 22, a function and an x-value c are given.
(Note: these functions are the same as those given in Exer-
cises 7 through 14.)

(a) Give the equation of the tangent line at x = c.

(b) Give the equation of the normal line at x = c.
15. f(x) = 6,atx = —2.
16. f(x) = 2x,atx = 3.
17. f(x) =4 —3x,atx =7.

18. g(x) = x*, atx = 2.

19. h(x) = X, atx = 4.

20. f(x) = 3% —x+4,atx = —1.

1
21 r(x) = =, atx = —2.
X

1
,atx = 3.
2 X

22, r(x) =

In Exercises 23 — 26, a function f and an x—value a are given.
Approximate the equation of the tangent line to the graph of
fatx = a by numerically approximating f'(a), usingh = 0.1.

23. fx) =x"+2x+1,x=3

24. f(x) =

X =
x+1
25. f(x) =¢e", x=2
26. f(x) = cosx,x =0

27. The graph of f(x) = x> — 1is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (—1,0), (0, —1)
and (2, 3).

(b) Using the definition, find f'(x).

(c) Find the slope of the tangent line at the points
(—1,0), (0,—1) and (2, 3).

y

Ny

N

28. The graph of f(x) = x—|1— 1

is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0,1) and
(1,0.5).

(b) Using the definition, find f'(x).

(c) Find the slope of the tangent line at the points (0, 1)
and (1,0.5).

/

|

fiey
N
~
Wy
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In Exercises 29 — 32, a graph of a function f(x) is given. Using
the graph, sketch f'(x).

29.

30.

31.

32.

In Exercises 33 — 34, a graph of a function g(x) is given. Using
the graph, answer the following questions.
1. Whereis g(x) > 0?
2. Whereis g(x) < 0?
3. Whereis g(x) = 0?

1. Whereis g'(x) < 0?
2. Whereis g’'(x) > 0?
3. Whereis g’'(x) = 0?

33.

In Exercises 35 — 36, a function f(x) is given, along with its do-
main and derivative. Determine if f(x) is differentiable on its
domain.

35. f(x) = /x*(1 — ), domain = [0, 1], f(x) = %
36. f(x) = cos (v/x), domain = [0, c0), f'(x) = —%

Review

2
2x — 35
37. Approximate lim H—X
x—5 x2 — 10.5x + 27.5
38. Use the Bisection Method to approximate, accurate to two
decimal places, the root of g(x) = x* + x> + x — 1 on
[0.5,0.6].

39. Give intervals on which each of the following functions are

continuous.
1
(a) o1 (c) v5—x
(b) - ) V5—x
xt -1

40. Use the graph of f(x) provided to answer the following.

(a) Iimgff(X) =? () lim f(x) =?
(b) lim f(x)=? (d) Where is f continu-
x> —37F ous?
3{




2.2 Interpretations of the Derivative

The previous section defined the derivative of a function and gave examples of
how to compute it using its definition (i.e., using limits). The section also started
with a brief motivation for this definition, that is, finding the instantaneous ve-
locity of a falling object given its position function. The next section will give us
more accessible tools for computing the derivative, tools that are easier to use
than repeated use of limits.

This section falls in between the “What is the definition of the derivative?”
and “How do | compute the derivative?” sections. Here we are concerned with
“What does the derivative mean?”, or perhaps, when read with the right em-
phasis, “What is the derivative?” We offer two interconnected interpretations
of the derivative, hopefully explaining why we care about it and why it is worthy
of study.

Interpretation of the Derivative #1: Instantaneous Rate of Change

The previous section started with an example of using the position of an
object (in this case, a falling amusement—park rider) to find the object’s veloc-
ity. This type of example is often used when introducing the derivative because
we tend to readily recognize that velocity is the instantaneous rate of change
of position. In general, if fis a function of x, then f’(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
tive answers “When x changes, at what rate does f change?” Thinking back to
the amusement—park ride, we asked “When time changed, at what rate did the
height change?” and found the answer to be “By —64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “60
mph.” Five minutes later, you wonder how far you have traveled. Certainly, lots
of things could have happened in those 5 minutes; you could have intentionally
sped up significantly, you might have come to a complete stop, you might have
slowed to 20 mph as you passed through construction. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approximation of
the distance traveled?

One could argue the only good approximation, given the information pro-
vided, would be based on “distance = rate x time.” In this case, we assume a
constant rate of 60 mph with a time of 5/60 hours. Hence we would approxi-
mate the distance traveled as 5 miles.

Referring back to the falling amusement—park ride, knowing thatatt = 2 the
velocity was —64 ft/s, we could reasonably assume that 1 second later the rid-

Notes:

2.2

Interpretations of the Derivative
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ers’ height would have dropped by about 64 feet. Knowing that the riders were
accelerating as they fell would inform us that this is an under—approximation. If
all we knew was that f(2) = 86 and f'(2) = —64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground.

Units of the Derivative

It is useful to recognize the units of the derivative function. If y is a function
of x, i.e., y = f(x) for some function f, and y is measured in feet and x in seconds,
then the units of yY = f’ are “feet per second,” commonly written as “ft/s.” In
general, if y is measured in units P and x is measured in units Q, then y’ will be
measured in units “P per Q”, or “P/Q.” Here we see the fraction—like behavior
of the derivative in the notation:

the units of ﬂ are M.

dx units of x

Example 2.2.1 The meaning of the derivative: World Population
Let P(t) represent the world population t minutes after 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7,028,734, 178 (www.prb.org). It
is also fairly accurate to state that P’(0) = 156; that is, at midnight on January 1,
2012, the population of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the population grew by about 28,800 - 156 = 4,492, 800 people.

Example 2.2.2 The meaning of the derivative: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
itive) profit making just one widget; the start—up costs will likely exceed $10.
Mathematically, we would write this as P(1) < 0.

What do P(1000) = 500and P’(1000) = 0.25 mean? Approximate P(1100).

SOLUTION The equation P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P/(1000) = 0.25 as meaning that
the profit is increasing at rate of $0.25 per widget (the units are “dollars per
widget.”) Since we have no other information to use, our best approximation
for P(1100) is:

P(1100) ~ P(1000) + P’(1000) x 100 = $500 + 100 - 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525.

Notes:



The previous examples made use of an important approximation tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this section. Five minutes after looking at the speedometer, our best
approximation for distance traveled assumed the rate of change was constant.
In Examples 2.2.1 and 2.2.2 we made similar approximations. We were given
rate of change information which we used to approximate total change. Nota-
tionally, we would say that

fle+h) ~ f(c) +f'(c) - h.

This approximation is best when h is “small.” “Small” is a relative term; when
dealing with the world population, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The Derivative and Motion

One of the most fundamental applications of the derivative is the study of
motion. Let s(t) be a position function, where t is time and s(t) is distance. For
instance, s could measure the height of a projectile or the distance an object has
traveled.

Let’s let s(t) measure the distance traveled, in feet, of an object after t sec-
onds of travel. Then s’(t) has units “feet per second,” and s’(t) measures the
instantaneous rate of distance change — it measures velocity.

Now consider v(t), a velocity function. That is, at time t, v(t) gives the ve-
locity of an object. The derivative of v, v/(t), gives the instantaneous rate of
velocity change — acceleration. (We often think of acceleration in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average acceleration, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and time is measured in seconds, then the units of acceleration
(i.e., the units of v/(t)) are “feet per second per second,” or (ft/s)/s. We often
shorten this to “feet per second squared,” or ft/s?, but this tends to obscure the
meaning of the units.

Perhaps the most well known acceleration is that of gravity. In this text, we
use g = 32ft/s? or g = 9.8m/s%. What do these numbers mean?

A constant acceleration of 32(ft/s)/s means that the velocity changes by
32ft/s each second. For instance, let v(t) measures the velocity of a ball thrown
straight up into the air, where v has units ft/s and t is measured in seconds. The
ball will have a positive velocity while traveling upwards and a negative velocity
while falling down. The acceleration is thus —32ft/s?. If v(1) = 20ft/s, then
when t = 2, the velocity will have decreased by 32ft/s; that is, v(2) = —12ft/s.
We can continue: v(3) = —44ft/s, and we can also figure that v(0) = 52ft/s.

These ideas are so important we write them out as a Key Idea.

Notes:

2.2

Interpretations of the Derivative

77



Chapter 2 Derivatives

16 |

12 +

Figure 2.2.1: A graph of f(x) = x*.
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Figure 2.2.2: Agraph of f(x) = x* and tan-
gent lines.
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Key Idea 2.2.1 The Derivative and Motion

1. Let s(t) be the position function of an object. Then s’(t) is the
velocity function of the object.

2. Let v(t) be the velocity function of an object. Then v/(t) is the
acceleration function of the object.

We now consider the second interpretation of the derivative given in this
section. This interpretation is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
spective.

Interpretation of the Derivative #2: The Slope of the Tangent Line
fle +h) — flc)
h

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
off: (c,f(c)) and (c+h, f(c+h)). As h shrinks to 0, these two points come close
together; in the limit we find f'(c), the slope of a special line called the tangent
line that intersects f only once near x = c.

Lines have a constant rate of change, their slope. Nonlinear functions do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value ¢ by computing f'(c). We can get an idea of how fis
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

Given a function y = f(x), the difference quotient gives a

Example 2.2.3 Understanding the derivative: the rate of change

Consider f(x) = x? as shown in Figure 2.2.1. Itis clear that at x = 3 the function
is growing faster than at x = 1, as it is steeper at x = 3. How much faster is it
growing?

SOLUTION We can answer this directly after the following section, where
we learn to quickly compute derivatives. For now, we will answer graphically,
by considering the slopes of the respective tangent lines.

With practice, one can fairly effectively sketch tangent lines to a curve at a
particular point. In Figure 2.2.2, we have sketched the tangent linestofatx =1
and x = 3, along with a grid to help us measure the slopes of these lines. At

Notes:



x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f
growing faster at x = 3 than at x = 1, it is growing three times as fast.

Example 2.2.4 Understanding the graph of the derivative

Consider the graph of f(x) and its derivative, f'(x), in Figure 2.2.3(a). Use these
graphs to find the slopes of the tangent lines to the graph of fatx = 1, x = 2,
and x = 3.

SOLUTION To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f’.

The slope of the tangent line to fat x = 1is f/(1); this looks to be about —1.

The slope of the tangent line to fat x = 2 is f'(2); this looks to be about 4.

The slope of the tangent line to fat x = 3 is f/(3); this looks to be about 3.

Using these slopes, the tangent lines to f are sketched in Figure 2.2.3(b). In-
cluded on the graph of f’ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help better visualize the y value of f’ at those points.

Example 2.2.5 Approximation with the derivative
Consider again the graph of f(x) and its derivative f’(x) in Example 2.2.4. Use
the tangent line to f at x = 3 to approximate the value of f(3.1).

SOLUTION Figure 2.2.4 shows the graph of f along with its tangent line,
zoomed in at x = 3. Notice that near x = 3, the tangent line makes an excellent
approximation of f. Since lines are easy to deal with, often it works well to ap-
proximate a function with its tangent line. (This is especially true when you don’t
actually know much about the function at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 2.2.4, it was not explicitly
computed. Recall that the tangent lineto fatx = cisy = f'(c)(x — ¢) + f(c).
While fis not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f'(3) = 3, we can compute the tangent line to be approximately y = 3(x—3)+4.
It is often useful to leave the tangent line in point—slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(31) ~y(3.1) =3(3.1—-3)+4=.1%34+4=43.

We approximate f(3.1) ~ 4.3.

To demonstrate the accuracy of the tangent line approximation, we now
state that in Example 2.2.5, f(x) = —x3 + 7x* — 12x + 4. We can evaluate
f(3.1) = 4.279. Had we known f all along, certainly we could have just made
this computation. In reality, we often only know two things:

Notes:

2.2 Interpretations of the Derivative
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Figure 2.2.3: Graphsof fandf’ in Example
2.2.4, along with tangent lines in (b).
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Figure 2.2.4: Zooming in on f and its tan-
gent line at x = 3 for the function given
in Examples 2.2.4 and 2.2.5.
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1. what f(c) is, for some value of ¢, and
2. what f'(c) is.

For instance, we can easily observe the location of an object and its instan-
taneous velocity at a particular point in time. We do not have a “function f”
for the location, just an observation. This is enough to create an approximating
function for f.

This last example has a direct connection to our approximation method ex-
plained above after Example 2.2.2. We stated there that

fle+h) = f(c) +f'(c) - h.

If we know f(c) and f'(c) for some value x = ¢, then computing the tangent
line at (c,f(c)) is easy: y(x) = f'(c)(x — ¢) + f(c). In Example 2.2.5, we used
the tangent line to approximate a value of f. Let’s use the tangent line at x = ¢
to approximate a value of f near x = ¢; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+h) =f(c)((c+h) —c)+flc) =F(c) - h+flc).

This is the exact same approximation method used above! Not only does it make
intuitive sense, as explained above, it makes analytical sense, as this approxima-
tion method is simply using a tangent line to approximate a function’s value.

The importance of understanding the derivative cannot be understated. When
fis a function of x, f/(x) measures the instantaneous rate of change of f with re-
spect to x and gives the slope of the tangent line to f at x.

Notes:



Exercises 2.2
Terms and Concepts

In Exercises 15 — 18, graphs of functions f(x) and g(x) are
given. Identify which function is the derivative of the other.

1. What is the instantaneous rate of change of position
called?

2. Given afunction y = f(x), in your own words describe how
to find the units of f'(x).

3. What functions have a constant rate of change?

Problems

4. Given f(5) = 10 and f'(5) = 2, approximate f(6).

5. Given P(100) = —67 and P/(100) = 5, approximate
P(110).

6. Given z(25) = 187 and Z'(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f'(10) = 5 and the methods de-
scribed in this section, which approximation is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f'(7).
9. Given H(0) = 17 and H(2) = 29, approximate H’(2).

10. Let V(x) measure the volume, in decibels, measured inside
arestaurant with x customers. What are the units of V'(x)?

11. Let v(t) measure the velocity, in ft/s, of a car moving in a
straight line t seconds after starting. What are the units of
!
v'(t)?

12. The height H, in feet, of ariver is recorded t hours after mid-
night, April 1. What are the units of H'(t)?

13. Pisthe profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P’(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours after
midnight on July 4 in Sidney, NE.

(a) What are the units of T’ (h)?
(b) 1s T'(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

\ g(x)
2T f(x)
15.
+ > X
—4 -2 2 4
2]
4|
y
\ g(x) £
2
16.
X
2
5 |
4 |
5 4
f0)
17.
X
-5 5
g(x)

. 0

Review

In Exercises 19 — 20, use the definition to compute the deriva-

£ /\
/.
2 4
g(x)

tives of the following functions.

19. f(x) = 5%

20. f(x) = (x — 2)3

In Exercises 21 — 22, numerically approximate the value of

f'(x) at the indicated x value.

21. f(x) = cosxatx = .

22. f(x) = v/xatx = 9.
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2.3 Basic Differentiation Rules

The derivative is a powerful tool but is admittedly awkward given its reliance on
limits. Fortunately, one thing mathematicians are good at is abstraction. For
instance, instead of continually finding derivatives at a point, we abstracted and
found the derivative function.

Let’s practice abstraction on linear functions, y = mx -+ b. What is y’? With-
out limits, recognize that linear function are characterized by being functions
with a constant rate of change (the slope). The derivative, y’, gives the instan-
taneous rate of change; with a linear function, this is constant, m. Thus y’ = m.

Let’s abstract once more. Let’s find the derivative of the general quadratic
function, f(x) = ax*® + bx + c. Using the definition of the derivative, we have:

a(x+h)2+b(x+h)+c— (ax* + bx+c)

/ — |
fiix) = lim P
_im ah? + 2ahx + bh
o h—0 h

= limah+2ax+b
h—0
=2ax+b.

So if y = 6x% + 11x — 13, we can immediately compute y’ = 12x + 11.
In this section (and in some sections to follow) we will learn some of what
mathematicians have already discovered about the derivatives of certain func-

tions and how derivatives interact with arithmetic operations. We start with a
theorem.

Theorem 2.3.1 Derivatives of Common Functions

1. Constant Rule: d .
5. —(sinx) = cos x

d
— (c) = 0, where cis a constant. dx
dx
2. Power Rule: el E(COSX) = —sinx

d
—(x") = nx""*, where n is an d
dx integer, n > 0. 7. dx E)=c

d

8. —(Inx) = —
dx( ) X

Notes:



This theorem starts by stating an intuitive fact: constant functions have no
rate of change as they are constant. Therefore their derivative is O (they change
at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivatives of Power Functions (of the form y = x") are very
straightforward: multiply by the power, then subtract 1 from the power. We see
something incredible about the function y = €*: it is its own derivative. We also
see a new connection between the sine and cosine functions.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f'(x)? According to the Power Rule,

/ d d 1 0
F=20) =2 () =18 =1

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: 1. They change at the same rate.

Let’s practice using this theorem.

Example 2.3.1 Using Theorem 2.3.1 to find, and use, derivatives
Let f(x) = x3.

1. Find f'(x).
2. Find the equation of the line tangent to the graph of fat x = —1.

3. Use the tangent line to approximate (—1.1)3.

IS

. Sketch f, f’ and the found tangent line on the same axis.

SOLUTION
1. The Power Rule states that if f(x) = x3, then f’(x) = 3x°.

2. To find the equation of the line tangent to the graph of fatx = —1, we
need a point and the slope. The pointis (—1,f(—1)) = (—1,—1). The
slopeisf’(—1) = 3. Thus the tangentline has equationy = 3(x—(—1))+
(-1) =3x+2.

3. We can use the tangent line to approximate (—1.1)3 as —1.1is close to
—1. We have
(=112 ~3(-11)+2=-13.

We can easily find the actual answer; (—1.1)3 = —1.331.

4. See Figure 2.3.1.

Notes:

2.3 Basic Differentiation Rules

Figure 2.3.1: A graph of f(x) = x?, along
with its derivative f'(x) = 3x* and its tan-
gentlineatx = —1.
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Theorem 2.3.1 gives useful information, but we will need much more. For
instance, using the theorem, we can easily find the derivative of y = x3, but
it does not tell how to compute the derivative of y = 2x3, y = x> + sinx nor
y = x3 sinx. The following theorem helps with the first two of these examples
(the third is answered in the next section).

Theorem 2.3.2 Properties of the Derivative

Let f and g be differentiable on an open interval | and let ¢ be a real
number. Then:

1. Sum/Difference Rule:

d d d

—(f0)£900) = —(f0) £ —(900) =F (0 £ ')
2. Constant Multiple Rule:

o e0) - 1) = 40

Theorem 2.3.2 allows us to find the derivatives of a wide variety of functions.
It can be used in conjunction with the Power Rule to find the derivatives of any
polynomial. Recall in Example 2.1.5 that we found, using the limit definition,
the derivative of f(x) = 3x* + 5x — 7. We can now find its derivative without
expressly using limits:

i(3x2+5x+7) :31()(2) +51(x) +i(7)
dx dx dx dx
—3.2x4+5-140
= 6x + 5.

We were a bit pedantic here, showing every step. Normally we would do all
d

the arithmetic and steps in our head and readily find po (3x2+5x+ 7) = 6x+5.
x

Example 2.3.2 Using the tangent line to approximate a function value
Let f(x) = sinx 4+ 2x + 1. Approximate f(3) using an appropriate tangent line.

SOLUTION This problem is intentionally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximation are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all time.
One must make a judgment using whatever seems reasonable. In this example,
the actual answer is f(3) = sin 3 4+ 7, where the real problem spot is sin 3. What
is sin 3?

Notes:



Since 3 is close to 7, we can assume sin3 = sinw = 0. Thus one guess is
f(3) = 7. Can we do better? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = .

Using Theorem 2.3.1 we find f/(x) = cos x+ 2. The slope of the tangent line
is thus f/(7) = cosm + 2 = 1. Also, f(7) = 2w + 1 = 7.28. So the tangent line
tothegraphoffatx =nmisy =1(x — 7)) +2r+1=x+ 7+ 1 = x + 4.14.
Evaluated at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the
tangent line, our final approximation is that f(3) ~ 7.14.

Using a calculator, we get an answer accurate to 4 places after the decimal:
f(3) = 7.1411. Our initial guess was 7; our tangent line approximation was more
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy sometime, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approximating, and many scientists, engineers and mathematicians often face
problems too hard to solve directly. So they approximate.

Higher Order Derivatives

The derivative of a function f is itself a function, therefore we can take its
derivative. The following definition gives a name to this concept and introduces
its notation.

Definition 2.3.1 Higher Order Derivatives

Let y = f(x) be a differentiable function on /. The following are defined,
provided the corresponding limits exist.

1. The second derivative of f is:

" d /(. d (dy dzy "
=5 (rw) = 5 (%) =5 ="

2. The third derivative of f is:

700 = () = 5 (52) = S5 =v"

dx \d )~ dé
3. The n'" derivative of fis:

d d (d"! d"
100 = 2 (100) = 5 (5r ) = 52 =",

T dx \dxn—1 - dx”

In general, when finding the fourth derivative and on, we resort to the f (4) (x)

Notes:

2.3 Basic Differentiation Rules

Note: The second derivative notation
could be written as

d’y  d¥y d?

a2 (dx)?  (dw)? v)-

That is, we take the derivative of y twice
(hence d?), both times with respect to x
(hence (dx)* = dx?).
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notation, not f"”/(x); after a while, too many ticks is confusing.
Let’s practice using this new concept.

Example 2.3.3 Finding higher order derivatives
Find the first four derivatives of the following functions:

1. f(x) = 4x* 3. f(x) = 5e*
2. f(x) =sinx
SOLUTION

1. Using the Power and Constant Multiple Rules, we have: f'(x) = 8x. Con-
tinuing on, we have

d
fro)=_(8) =8 f"0=0 9% =0.

Notice how all successive derivatives will also be 0.

2. We employ Theorem 2.3.1 repeatedly.
f'(x) = cosx; f"(x) = —sinx; f"(x) = —cosx; F®(x) = sinx.

Note how we have come right back to f(x) again. (Can you quickly figure
what £(23) (x) is?)

3. Employing Theorem 2.3.1 and the Constant Multiple Rule, we can see that

) =F"(x) =f"(x) = f¥(x) = 5¢".

Interpreting Higher Order Derivatives

What do higher order derivatives mean? What is the practical interpreta-
tion?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivative of a function fis the rate of change of the rate
of change of f.

One way to grasp this concept is to let f describe a position function. Then,
as stated in Key Idea 2.2.1, f’ describes the rate of position change: velocity.
We now consider f”, which describes the rate of velocity change. Sports car

Notes:
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enthusiasts talk of how fast a car can go from 0 to 60 mph; they are bragging
about the acceleration of the car.

We started this chapter with amusement—park riders free—falling with posi-
tion function f(t) = —16t> + 150. It is easy to compute f'(t) = —32t ft/s and
f"(t) = —32 (ft/s)/s. We may recognize this latter constant; it is the accelera-
tion due to gravity. In keeping with the unit notation introduced in the previous
section, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” written as “ft/s>.”

It can be difficult to consider the meaning of the third, and higher order,
derivatives. The third derivative is “the rate of change of the rate of change of
the rate of change of f” That is essentially meaningless to the uninitiated. In
the context of our position/velocity/acceleration example, the third derivative
is the “rate of change of acceleration,” commonly referred to as “jerk.”

Make no mistake: higher order derivatives have great importance even if
their practical interpretations are hard (or “impossible”) to understand. The
mathematical topic of series makes extensive use of higher order derivatives.

Notes:

2.3 Basic Differentiation Rules
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Exercises 2.3

Terms and Concepts

1. What is the name of the rule which states that % (x") =

nx"fl, where n > 0 is an integer?
2. Whatis i(Inx)?
dx

3. Give an example of a function f(x) where f'(x) = f(x).

4. Give an example of a function f(x) where f'(x) = 0.

5. The derivative rules introduced in this section explain how
to compute the derivative of which of the following func-

tions?
e fix) = 3—2 e j(x) = sinxcosx
e gx) =3¢ —x+17 . k(x)=e"
e h(x) =5Inx o m(x) = v/x

6. Explain in your own words how to find the third derivative

of a function f(x).

7. Give an example of a function where f'(x) # Oandf” (x) =

0.

8. Explain in your own words what the second derivative

“means.”

9. If f(x) describes a position function, then f’(x) describes

what kind of function? What kind of function is f'(x)?

10. Let f(x) be a function measured in pounds, where x is mea-

sured in feet. What are the units of f”(x)?

Problems

In Exercises 11 — 26, compute the derivative of the given func-

tion.
11. f(x) =7 —5x+ 7
12. g(x) = 14x° + 7% + 11x — 29
13. m(t) =9 — 1 +3t—8
14. f(6) = 9sinf + 10cos 6
15. f(r) = 6e"
16. g(t) = 10t* — cost + 7sint
17. f(x) =2Inx —x
18. p(s) =3+ 31 + 12 +s5+1

19. h(t) = e' —sint —cost

20.

21.

22.

23.

24.

25.

26.

flx) = In(5x)

f(t) =In(17) + €* +sinw/2

g(t) = (1+3¢)?

g(x) = (2x—5)°

fl) = (1 —x)°

flx) = (2 = 3

A property of logarithms is that log, x = :;’:—:Z, for all

basesa,b > 0,7# 1.
(a) Rewrite this identity when b = e, i.e., using log, x =
Inx, with a = 10.
(b) Use part (a) to find the derivative of y = log,, x.

(c) Use part (b) to find the derivative of y = log, x, for
anya >0, # 1.

In Exercises 27 — 32, compute the first four derivatives of the
given function.

27.

28.

29.

30.

31.

32.

flx) = x°

g(x) = 2 cos x

h(t) =t —¢'

p(0) = 6* — ¢
£(6) = sin6 — cos 0
f(x) = 1,100

In Exercises 33 — 38, find the equations of the tangent and
normal lines to the graph of the function at the given point.

33.

34.

35.

36.

37.

38.

fx) =x —xatx=1
ft)y=e"+3att=0

g(x) =Inxatx=1

f(x) = 4sinxatx = /2
f(x) = —2cosxatx = /4

f(x) =2x+3atx=5

Review

39.

Given that ® = 1, approximate the value of %! using the
tangent line to f(x) = e atx = 0.



2.4 The Product and Quotient Rules

The previous section showed that, in some ways, derivatives behave nicely. The
Constant Multiple and Sum/Difference Rules established that the derivative of
f(x) = 5x* + sin x was not complicated. We neglected computing the derivative
of things like g(x) = 5x*sinx and h(x) = j% on purpose; their derivatives are
not as straightforward. (If you had to guess what their respective derivatives are,
you would probably guess wrong.) For these, we need the Product and Quotient
Rules, respectively, which are defined in this section.

We begin with the Product Rule.

Theorem 2.4.1 Product Rule

Let f and g be differentiable functions on an open interval I. Then fg is a
differentiable function on /, and

d

= (£0a(0) = £)9'(x) + £ (g 4.

d
Important: o (f(x)g(x)) # f'(x)g’(x)! While this answer is simpler than
the Product Rule, it is wrong.
We practice using this new rule in an example, followed by an example that
demonstrates why this theorem is true.

Example 2.4.1 Using the Product Rule
Use the Product Rule to compute the derivative of y = 5x%sinx. Evaluate the
derivative at x = 7/2.

SOLUTION To make our use of the Product Rule explicit, let’s set f(x) =
5x? and g(x) = sinx. We easily compute/recall that f'(x) = 10x and g’(x) =
cos x. Employing the rule, we have

d 2 o 2 H
— (SX sin x) = 5x“ cosx + 10xsin x.
dx
At x = /2, we have
2 T T m
(7/2) =5 (5) cos (5 ) +107sin (3 ) =57
y'(m/2) 5) o5 + 5 sin (3 ™

We graph y and its tangent line at x = /2, which has a slope of 57, in Figure
2.4.1. While this does not prove that the Product Rule is the correct way to han-
dle derivatives of products, it helps validate its truth.

Notes:

2.4 The Product and Quotient Rules
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Figure 2.4.1: A graph of y = 5x’ sinx and
its tangent line at x = /2.
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We now investigate why the Product Rule is true.

Example 2.4.2 A proof of the Product Rule
Use the definition of the derivative to prove Theorem 2.4.1.

SOLUTION By the limit definition, we have

2 (f)g00) = tim S0 180 —Sl)ale)
dx

h—0 h

We now do something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of —f(x+h)g(x) +f(x+h)g(x), then do some regrouping
as shown.

% (f99(x) = lim flxth)g(x +hh) —fX90) (0w add 0 to the numerator)
~ im fox+ hg(x+h) — flx+ h)g,EX) +Hfxt Mg —fN90) oroun)
. (f(x +h)glx+h) — fix+ h)g(X)) + (f(x +h)g(x) — f(x)g(x))
_ ;:m: fx+h)g(x + h})7 —flx+ h)g(X)h £ lim fix+ h)g(Xf)l — fx)a(x) (factor)
= Jim f(x + h) gbt hg —90) Jim floct hZ — /) g(x) (apply limits)
=fl0)g'(x) + £ (x)g(x).

It is often true that we can recognize that a theorem is true through its proof
yvet somehow doubt its applicability to real problems. In the following example,
we compute the derivative of a product of functions in two ways to verify that
the Product Rule is indeed “right.”

Example 2.4.3 Exploring alternate derivative methods

Lety = (x* + 3x + 1)(2x® — 3x + 1). Find y’ two ways: first, by expanding
the given product and then taking the derivative, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SOLUTION We first expand the expression for y; a little algebra shows
thaty = 2x* 4+ 3x® — 6x2 + 1. It is easy to compute y’:

y' = 8x® 4+ 9x% — 12x.

Notes:



Now apply the Product Rule.

y' = (¢ +3x+1)(4x —3) + (2x + 3)(2x* — 3x + 1)
= (4%* + 9%* — 5x — 3) + (4> — 7x + 3)
= 8x® + 9x° — 12x.
The uninformed usually assume that “the derivative of the product is the

product of the derivatives.” Thus we are tempted to say that y’ = (2x+3)(4x—
3) = 8x? 4 6x — 9. Obviously this is not correct.

Example 2.4.4 Using the Product Rule with a product of three functions
Lety = x3 Inxcos x. Find y’.

SOLUTION We have a product of three functions while the Product Rule
only specifies how to handle a product of two functions. Our method of handling
this problem is to simply group the latter two functions together, and consider
y = x*(Inxcosx). Following the Product Rule, we have

y' = () (Inxcosx)’ + 3x*(Inx cosx)

To evaluate ( In x cos x)/, we apply the Product Rule again:

1
= () (Inx(—sinx) + = cosx) + 3x*(Inxcos x)
X
1
= x®Inx(—sinx) + x* = cos x + 3x* In x cos x
X

Recognize the pattern in our answer above: when applying the Product Rule to
a product of three functions, there are three terms added together in the final
derivative. Each term contains only one derivative of one of the original func-
tions, and each function’s derivative shows up in only one term. It is straightfor-
ward to extend this pattern to finding the derivative of a product of 4 or more
functions.

We consider one more example before discussing another derivative rule.

Example 2.4.5 Using the Product Rule
Find the derivatives of the following functions.

1. f(x) =xInx

2. g(x) =xInx — x.

Notes:

2.4 The Product and Quotient Rules
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SOLUTION Recalling that the derivative of Inx is 1/x, we use the Product
Rule to find our answers.

d
1. d—(xlnx) =x-1/x+1-Inx=1+Inx.
X

2. Using the result from above, we compute

i(xlnx—x) =1+Inx—1=lInx.
dx

This seems significant; if the natural log function In x is an important function (it
is), it seems worthwhile to know a function whose derivative is Inx. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.)

We have learned how to compute the derivatives of sums, differences, and
products of functions. We now learn how to find the derivative of a quotient of
functions.

Theorem 2.4.2 Quotient Rule

Let f and g be differentiable functions defined on an open interval /,
where g(x) # 0 on I. Then f/g is differentiable on /, and

d (f(X)> _ 9Wf"(0) — fx)g" (%)

dx \ g(x) g(x)2

The Quotient Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a fraction’s numerator
and denominator as “HI” and “LO”, respectively. Then

d (HI'\ LO-dHI-HI dLO
dx \LO/ LOLO ’

read “low dee high minus high dee low, over low low.” Said fast, that phrase can
roll off the tongue, making it easy to memorize. The “dee high” and “dee low”
parts refer to the derivatives of the numerator and denominator, respectively.

Let’s practice using the Quotient Rule.

Example 2.4.6 Using the Quotient Rule
5x2
Let f(x) = ——. Find f'(x).
f) = 2 Find £/(x)

Notes:
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SOLUTION Directly applying the Quotient Rule gives:

d <5x2) sinx - 10x — 5x% - cos x

dx \ sinx sin® x

10x sin x — 5x% cos x

sin x

The Quotient Rule allows us to fill in holes in our understanding of derivatives
of the common trigonometric functions. We start with finding the derivative of
the tangent function.

Example 2.4.7 Using the Quotient Rule to find < (tan x).
Find the derivative of y = tanx.

SOLUTION At first, one might feel unequipped to answer this question.
But recall that tan x = sin x/ cos x, so we can apply the Quotient Rule.

i(tanx) B i sin x 10
dx " dx \ cosx

€OS X cos X — sin x(— sinx) >

cos? x
2 )
COs“ X + sin“ x

|
NI
\

8
N
NI

cos? x
1
cos? x
= sec? x.

Figure 2.4.2: A graph of y = tanx along

with its tangent line at x = 7 /4.
This is a beautiful result. To confirm its truth, we can find the equation of the

tangent line to y = tanx at x = /4. The slope is sec’(7/4) = 2; y = tanx,
along with its tangent line, is graphed in Figure 2.4.2.

We include this result in the following theorem about the derivatives of the
trigonometric functions. Recall we found the derivative of y = sin x in Example
2.1.7 and stated the derivative of the cosine function in Theorem 2.3.1. The
derivatives of the cotangent, cosecant and secant functions can all be computed
directly using Theorem 2.3.1 and the Quotient Rule.

Notes:

93



Chapter 2 Derivatives

Theorem 2.4.3 Derivatives of Trigonometric Functions

d, . d .
1. a(smx) = cos X 2. &(cosx) = —sinx
3. dix(tanx) = sec’x 4. %(cotx) = —csc?x
5 i(secx) = secxtanx 6 i(cscx) — —cscxcotx
" dx a " dx a

To remember the above, it may be helpful to keep in mind that the deriva-
tives of the trigonometric functions that start with “c” have a minus sign in them.

Example 2.4.8 Exploring alternate derivative methods
2

5x
In Example 2.4.6 the derivative of f(x) = —— was found using the Quotient
sin x
Rule. Rewriting f as f(x) = 5x* cscx, find f’ using Theorem 2.4.3 and verify the
two answers are the same.

10x sin x — 5x? cos x
SOLUTION We found in Example 2.4.6 that the f'(x) = .

2
sin® x
We now find f’ using the Product Rule, considering f as f(x) = 5x* csc x.
d
"(x) = — (5% cscx)
00 ==
= 5x%(— cscx cot x) + 10x cscx (now rewrite trig functions)
, —1 cosx 10x

sinx sinx sinx
—5x%cosx  10x )
——+— (get common denominator)
sin“ x sinx
10xsin x — 5x% cos x

sin? x
Finding f’ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule
is fine. Work to “simplify” your results into a form that is most readable and
useful to you.

The Quotient Rule gives other useful results, as shown in the next example.

Notes:
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Example 2.4.9 Using the Quotient Rule to expand the Power Rule
Find the derivatives of the following functions.

1
2. flx) = WL where n > 0is an integer.

SOLUTION We employ the Quotient Rule.
x-0—1-1 1
1 f/(X) = X2 = _Xiz
X"-0—1-nx""1 nx"1 n
2. fl(x) = = — = — .
(Xn)z XZn Xn+1

1
The derivative of y = o turned out to be rather nice. It gets better. Con-
sider:

d /1 d/ _
— | = = — (x ”) (apply result from Example 2.4.9)
dx \ x" dx
n . .

= v (rewrite algebraically)

= —nx~ (")

= —nx""1.
This is reminiscent of the Power Rule: multiply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
striction of n > 0.

Theorem 2.4.4 Power Rule with Integer Exponents

Let f(x) = x", where n # 0 is an integer. Then

Fi()=n-x""L.

Taking the derivative of many functions is relatively straightforward. It is
clear (with practice) what rules apply and in what order they should be applied.
Other functions present multiple paths; different rules may be applied depend-
ing on how the function is treated. One of the beautiful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to

Notes:

2.4 The Product and Quotient Rules
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the same result, the derivative. We demonstrate this concept in an example.

Example 2.4.10  Exploring alternate derivative methods

2 —3x+1
Let f(x) = )% Find f/(x) in each of the following ways:

1. By applying the Quotient Rule,

2. by viewing f as f(x) = (x2 —3x + 1) - x~! and applying the Product and
Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

SOLUTION
1. Applying the Quotient Rule gives:

x-(2x—3)—(x2—3x+1)-1_xzfl_1_i
X2 xR X2

fi0) =

2. By rewriting f, we can apply the Product and Power Rules as follows:

flx)= (¢ =3x4+1) - (=1)x?+ (2x—3) -x*
7x2—3x+1+2x—3

x2 X
x> —3x+1 2x2 —3x
= 2 + 2
X X
X -1 1
X _1_;’

the same result as above.

1
3. Asx # 0, we can divide through by x first, giving f(x) = x — 3 + " Now

apply the Power Rule.
1

_X7’

Fo)=1

the same result as before.

Example 2.4.10 demonstrates three methods of finding f’. One is hard pressed
to argue for a “best method” as all three gave the same result without too much
difficulty, although it is clear that using the Product Rule required more steps.
Ultimately, the important principle to take away from this is: reduce the answer

Notes:



to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f’, including:

. p— p— 27 .
17)%2 _ X (ZX 3) )(()2( 3X+1) 1 _ (X273X+1) ~(71)X72+(2X73)-X71.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

In the next section we continue to learn rules that allow us to more easily
compute derivatives than using the limit definition directly. We have to memo-
rize the derivatives of a certain set of functions, such as “the derivative of sin x
is cos x.” The Sum/Difference, Constant Multiple, Power, Product and Quotient
Rules show us how to find the derivatives of certain combinations of these func-
tions. The next section shows how to find the derivatives when we compose
these functions together.

Notes:

2.4 The Product and Quotient Rules
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Exercises 2.4

Terms and Concepts

d
1. T/F: The Product Rule states that ™ (x2 sinx) = 2xcosx.
x

d 2
2. T/F: The Quotient Rule states that — X— = cosx.
dx \ sinx 2x

3. T/F: The derivatives of the trigonometric functions that
start with “c” have minus signs in them.

4. What derivative rule is used to extend the Power Rule to
include negative integer exponents?

5. T/F: Regardless of the function, there is always exactly one
right way of computing its derivative.

6. Inyour own words, explain what it means to make your an-
swers “clear.”

Problems

In Exercises 7 — 10:
(a) Use the Product Rule to differentiate the function.

(b) Manipulate the function algebraically and differenti-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.
7. f(x) = x(x* + 3x)
8. g(x) = 2(5x%)
9. h(s) = (25 — 1)(s + 4)
10. f(x) = (X +5)(3 — x°)

In Exercises 11 — 14:
(a) Use the Quotient Rule to differentiate the function.

(b) Manipulate the function algebraically and differenti-
ate without the Quotient Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) = x ;r 3
12. g(x) = %
13. h(s) = %

14. f(t) = t:J:ll

In Exercises 15 — 36, compute the derivative of the given func-
tion.

15. f(x) = xsinx
16. f(x) = x* cos x

17. f(x) = e*Inx

18. f(t) = tiz(csct _4)

x+7
19. =
9(x) X—5
tS
20. g(t) = ——
9(t) cost — 2t2

21. h(x) = cotx — €
22. f(x) = (tanx) Inx
23. h(t) =7 +6t—2

X e

24. f(x) 2

25. f(x) = (3x* + 8x + 7)€"

26. g(t) =

7x—1

27. =(16x° +24x* +3x)—— =~
fix) = (16x" + 24x" + 3x) 16x3 + 24x% + 3x

28. f(t) = t(sect +e')

sinx
29 ) = oo 3
3 . sin6
cos X X
31. = — 4+ —
fx) X + tanx

32. g(x) = €*(sin(w/4) — 1)
33. g(t) = 4te' —sintcost

t?sint+ 3
34. h(t) = t2cost + 2

35. f(x) = x*¢* tanx

36. g(x) = 2xsinxsecx



In Exercises 37 — 40, find the equations of the tangent and
normal lines to the graph of g at the indicated point.

37. g(s) = €°(s> +2) at (0, 2).

38. g(t) =tsintat (3, —3)

39. g(x) = x)i at (2,4)
40. g(0) = cos@&T—lse at (0,1)

In Exercises 41 — 44, find the x—values where the graph of the
function has a horizontal tangent line.

41. f(x) = 6x* — 18x — 24

42. f(x) = xsinxon [—1,1]

43. f(x) = Xi -
2
44. f(x) = xil

In Exercises 45 — 48, find the requested derivative.

45. f(x) = xsinx; find f" (x).
46. f(x) = xsinx; find £ (x).
47. f(x) = cscx; find £ (x).

48. f(x) = (X* — 5x +2)(xX* +x — 7); find £ ® (x).

Review

In Exercises 49 — 52, use the graph of f(x) to sketch f'(x).

51.
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2.5 The Chain Rule

We have covered almost all of the derivative rules that deal with combinations
of two (or more) functions. The operations of addition, subtraction, multiplica-
tion (including by a constant) and division led to the Sum and Difference rules,
the Constant Multiple Rule, the Power Rule, the Product Rule and the Quotient
Rule. To complete the list of differentiation rules, we look at the last way two (or
more) functions can be combined: the process of composition (i.e. one function
“inside” another).

One example of a composition of functions is f(x) = cos(x?). We currently
do not know how to compute this derivative. If forced to guess, one would likely
guess f'(x) = —sin(2x), where we recognize — sin x as the derivative of cos x
and 2x as the derivative of x*. However, this is not the case; f/(x) # — sin(2x).
In Example 2.5.4 we'll see the correct answer, which employs the new rule this
section introduces, the Chain Rule.

Before we define this new rule, recall the notation for composition of func-
tions. We write (fo g)(x) or f(g(x)), read as “f of g of x,” to denote composing f
with g. In shorthand, we simply write f o g or f(g) and read it as “f of g.” Before
giving the corresponding differentiation rule, we note that the rule extends to
multiple compositions like f(g(h(x))) or f(g(h(j(x)))), etc.

To motivate the rule, let’s look at three derivatives we can already compute.

Example 2.5.1 Exploring similar derivatives

Find the derivatives of F1(x) = (1 — x)?, F,(x) = (1 — x)3, and F3(x) = (1 —
x)*. (We'll see later why we are using subscripts for different functions and an
uppercase F.)

SOLUTION In order to use the rules we already have, we must first ex-
pand each function as F1(x) = 1 — 2x 4+ x%, F>(x) = 1 — 3x + 3x* — x3 and
F3(x) =1 —4x + 6x* — 4x> + x*.

It is not hard to see that:

Fi(x) = =24 2x,
Fj(x) = —3 + 6x — 3x* and
Fi(x) = —4 + 12x — 12x* + 4x°.

An interesting fact is that these can be rewritten as
Fiix) = —2(1 —x), Fyh(x) = —3(1 —x)* and Fj(x) = —4(1 —x)>.

A pattern might jump out at you; note how the we end up multiplying by the old
power and the new power is reduced by 1. We also always multiply by (—1).

Notes:



Recognize that each of these functions is a composition, letting g(x) = 1 —x:

Fi(x) = fi(g(x)), where fi(x) = x*,
F(x) = f2(g(x)), where fo(x) = X3,
F3(x) = f3(g9(x)), where f3(x) = x*.

We’ll come back to this example after giving the formal statements of the
Chain Rule; for now, we are just illustrating a pattern.

When composing functions, we need to make sure that the new function is
actually defined. For instance, consider f(x) = v/x and g(x) = —x* — 1. The
domain of f excludes all negative numbers, but the range of g is only negative
numbers. Therefore the composition f(g(x)) = v/—x2 — 1 is not defined for
any x, and hence is not differentiable.

The following definition takes care to ensure this problem does not arise.
We'll focus more on the derivative result than on the domain/range conditions.

Theorem 2.5.1 The Chain Rule

Let g be a differentiable function on an interval /, let the range of g be a
subset of the interval J, and let f be a differentiable function on J. Then
y = f(g(x)) is a differentiable function on /, and

y' =f'(g(x))-g'(x).

To help understand the Chain Rule, we return to Example 2.5.1.

Example 2.5.2 Using the Chain Rule
Use the Chain Rule to find the derivatives of the following functions, as given in
Example 2.5.1.

SOLUTION Example 2.5.1 ended with the recognition that each of the
given functions was actually a composition of functions. To avoid confusion, we
ignore most of the subscripts here.

Fi(x) = (1 —x)2%
We found that
y = (1—x)*> =f(g(x)), where f(x) = x* and g(x) =1 — x.

To find y’, we apply the Chain Rule. We need f'(x) = 2xand g’(x) = —1.

Notes:

2.5 The Chain Rule
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Part of the Chain Rule uses f/(g(x)). This means substitute g(x) for x in the
equation for f'(x). That'is, f/(x) = 2(1 — x). Finishing out the Chain Rule we
have

X)), wheref( ) = x*and g(x) = (1 — x). We have

ity — (10 =l
= 3(1 — x). The Chain Rule then states

f'(x) = 3x%, s0 f'(g(x))
y'=f(g(x)-g'(x) =3(1—x?(-1) = -3(1 - x).
Fa(x) = (1 —x)*

Finally, when y = (1 — x)%, we have f(x) = x* and g(x) = (1 — x). Thus
f'(x) =4 andf'(g(x)) = (1—x)3.Thus

y'=£(g(0) ') =41 —x° (1) = —4(1 - »)°.

Example 2.5.2 demonstrated a particular pattern: when f(x) = x", then
y' =n-(g(x))""1-g’(x). This is called the Generalized Power Rule.

Theorem 2.5.2 Generalized Power Rule

Let g(x) be a differentiable function and let n # 0 be an integer. Then

d

~(90") =n- (g00)"™" - 9'00).

This allows us to quickly find the derivative of functions like y = (3x* — 5x +
7 + sinx)®. While it may look intimidating, the Generalized Power Rule states
that
y' =20(3x* — 5x + 7 +sinx)® - (6x — 5 + cos x).

Treat the derivative—taking process step—by—step. In the example just given,
first multiply by 20, then rewrite the inside of the parentheses, raising it all to
the 19t power. Then think about the derivative of the expression inside the
parentheses, and multiply by that.

We now consider more examples that employ the Chain Rule.

Notes:



Example 2.5.3 Using the Chain Rule
Find the derivatives of the following functions:

1. y=sin2x 2.y=In(4*—-2x*) 3 y=e X

SOLUTION

1. Consider y = sin2x. Recognize that this is a composition of functions,
where f(x) = sinx and g(x) = 2x. Thus

y' =f'(g(x)) - g'(x) = cos(2x) - 2 = 2 cos 2x.

2. Recognize that y = In(4x® — 2x?) is the composition of f(x) = Inx and
g(x) = 4x3 — 2x%. Also, recall that

d 1
—(In x) = —.
dx X
This leads us to:
1 12x* —4x  4x(3x—1 2(3x -1
y = ———  (12x" —4x) = _ M ) _ A ).
43 — 2x? 43 —2x*  2x(2x% — x) 2% — x
3. Recognize thaty = e~ is the composition of f(x) = e and g(x) = —x?.

Remembering that f'(x) = €*, we have

y' =e . (=2x) = (—Zx)e’xz.

Example 2.5.4 Using the Chain Rule to find a tangent line
Let f(x) = cos x%. Find the equation of the line tangent to the graph of fatx = 1.

SOLUTION The tangent line goes through the point (1, f(1)) ~ (1, 0.54)
with slope f'(1). To find f/, we need the Chain Rule.
f'(x) = —sin(x?) - (2x) = —2xsinx?. Evaluated at x = 1, we have f'(1) =

—2sin1 ~ —1.68. Thus the equation of the tangent line is
y = —1.68(x — 1) + 0.54.

The tangent line is sketched along with fin Figure 2.5.1.

The Chain Rule is used often in taking derivatives. Because of this, one can
become familiar with the basic process and learn patterns that facilitate finding
derivatives quickly. For instance,

,  (anything)’
~anything

d . _ ,
a(ln(anythmg)) = - (anything)

anything

Notes:

2.5 The Chain Rule

X

-1 |

Figure 2.5.1: f(x) = cos x* sketched along
with its tangent line at x = 1.
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A concrete example of this is

d 45x* + sinx + e
—( In(3x*®> — cos x + €* ) = )
dx( ( +e€) 3x15 — cos x + e*

While the derivative may look intimidating at first, look for the pattern. The
denominator is the same as what was inside the natural log function; the nu-

merator is simply its derivative.
This pattern recognition process can be applied to lots of functions. In gen-
eral, instead of writing “anything”, we use u as a generic function of x. We then

say
i(Inu) = u—/
dx Toul

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar functions.

d d
1. a(u“)zn-u”_l-u’. 4. a(cosu):—u’-sinu.
d d
2. &(e“) =u’ e 5. a(tan u) =u'-secu.
3 d(sinu)—u’ cosu
o = )

Of course, the Chain Rule can be applied in conjunction with any of the other
rules we have already learned. We practice this next.

Example 2.5.5 Using the Product, Quotient and Chain Rules
Find the derivatives of the following functions.

1 flx) =x°sin2x® 2. f(x) =

SOLUTION

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step—

by—step.

F'(x) = x°(6x* cos 2x*) + 5x*(sin 2x*) = 6x’ cos 2 + 5x* sin 2x°.

2. We must employ the Quotient Rule along with the Chain Rule. Again, pro-

Notes:



ceed step—by-step.
e (15%2) — 53 ((—2x)e™) e (10x* + 15x%)
(e—xz)z - e~

— (10x* + 15x%).

£100 =

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g’(x). Just rewrite f(x), then find g’(x). Then move on to the f/(x)g(x) part.
Don’t attempt to figure out both parts at once.

Likewise, using the Quotient Rule, approach the numerator in two steps and
handle the denominator after completing that. Only simplify afterward.

We can also employ the Chain Rule itself several times, as shown in the next
example.

Example 2.5.6 Using the Chain Rule multiple times
Find the derivative of y = tan®(6x> — 7x).

SOLUTION Recognize that we have the g(x) = tan(6x® — 7x) function
“inside” the f(x) = x® function; that is, we have y = (‘tan(6x —7x))5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
derivative. Rather, we are approaching this step—by—step.

y" =5(tan(6x® — 7x))4 g’ (x).
We now find g’ (x). We again need the Chain Rule;
g’ (x) = sec?(6x® — 7x) - (18x* — 7).
Combine this with what we found above to give
y’ = 5(tan(6x’> — 7)())4 -sec?(6x® — 7x) - (18x* — 7)
= (90x* — 35) sec?(6x> — 7x) tan*(6x® — 7x).

This function is frankly a ridiculous function, possessing no real practical
value. It is very difficult to graph, as the tangent function has many vertical
asymptotes and 6x3 — 7x grows so very fast. The important thing to learn from
this is that the derivative can be found. In fact, it is not “hard;” one can take
several simple steps and should be careful to keep track of how to apply each of
these steps.

Notes:

2.5 The Chain Rule
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It is a traditional mathematical exercise to find the derivatives of arbitrarily
complicated functions just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

Example 2.5.7 Using the Product, Quotient and Chain Rules

—2\ _ cin2(p4x
Find the derivative of f(x) = xcosl(:(xz)+ ;)I:) (e™)

SOLUTION This function likely has no practical use outside of demon-
strating derivative skills. The answer is given below without simplification. It
employs the Quotient Rule, the Product Rule, and the Chain Rule three times.

=
( In(x* 4 5x*) - {(x (—sin(x2)) - (—2x7%) + 1 cos(x?)) — 2sin(e™) - cos(e™) - (4e4")] )

3
- (xcos(xfz) - sinz(eAX)) . %

(In(x2 + 5x4))?

The reader is highly encouraged to look at each term and recognize why it
is there. (l.e., the Quotient Rule is used; in the numerator, identify the “LOdHI”
term, etc.) This example demonstrates that derivatives can be computed sys-
tematically, no matter how arbitrarily complicated the function is.

The Chain Rule also has theoretic value. That is, it can be used to find the
derivatives of functions that we have not yet learned as we do in the following
example.

Example 2.5.8 The Chain Rule and exponential functions
Use the Chain Rule to find the derivative of y = 2*.

SOLUTION We only know how to find the derivative of one exponential
function, y = e*. We can accomplish our goal by rewriting 2 in terms of e.
Recalling that e¥ and In x are inverse functions, we can write

In2

2=e¢ andso y=2"= (e"?)" = ("2,

The function is now the composition y = f(g(x)), with f(x) = e* and g(x) =
x(In2). Since f’(x) = e* and g’(x) = In 2, the Chain Rule gives
y/ — ex(lnz) .ln2.

Recall that the e*("2) term on the right hand side is just 2%, our original function.
Thus, the derivative contains the original function itself. We have

y =y-In2=2"-In2.

Notes:



We can extend this process to use any base a, where a > 0 and a # 1. All we
need to do is replace each “2” in our work with “a.” The Chain Rule, coupled
with the derivative rule of €*, allows us to find the derivatives of all exponential
functions.

The comment at the end of previous example is important and is restated
formally as a theorem.

Theorem 2.5.3 Derivatives of Exponential Functions

Let f(x) = a*, fora > 0,a # 1. Then fis differentiable for all real
numbers (i.e., differentiable everywhere) and

f'(x)=Ina-d".

Alternate Chain Rule Notation

Itis instructive to understand what the Chain Rule “looks like” using ”%” no-
tation instead of y’ notation. Suppose that y = f(u) is a function of u, where
u = g(x) is a function of x, as stated in Theorem 2.5.1. Then, through the com-
position f o g, we can think of y as a function of x, as y = f(g(x)). Thus the
derivative of y with respect to x makes sense; we can talk about %. This leads
to an interesting progression of notation:

y' =f'(9x) -9’ (x)

d

E): =y'(u)-u'(x) (sincey = f(u) and u = g(x))

d

Y = ﬂ . @ (using “fractional” notation for the derivative)
dx du dx

Here the “fractional” aspect of the derivative notation stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy dy

dx  dx’
It is important to realize that we are not canceling these terms; the derivative
notation of % is one symbol. It is equally important to realize that this notation

was chosen precisely because of this behavior. It makes applying the Chain Rule
easy with multiple variables. For instance,

Notes:

2.5 The Chain Rule
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dy dy dO dA
dt  dO dA  dt’
where () and A are any variables you’d like to use.

One of the most common ways of “visualizing” the Chain Rule is to consider
a set of gears, as shown in Figure 2.5.2. The gears have 36, 18, and 6 teeth,
respectively. That means for every revolution of the x gear, the u gear revolves
twice. That is, the rate at which the u gear makes a revolution is twice as fast
as the rate at which the x gear makes a revolution. Using the terminology of

calculus, the rate of u-change, with respect to x, is % =2.

Likewise, every revolution of u causes 3 revolutions of y: % = 3. How does
y change with respect to x? For each revolution of x, y revolves 6 times; that is,
d dy du
Y_Y N _;3-%.
dx du dx
We can then extend the Chain Rule with more variables by adding more gears
to the picture.

It is difficult to overstate the importance of the Chain Rule. So often the

Figure 2.5.2: A series of gears to demon- functions that we deal with are compositions of two or more functions, requir-
strate the Chain Rule. Note how & = ing us to use this rule to compute derivatives. It is also often used in real life
dj di .
= when actual functions are unknown. Through measurement, we can calculate
(or, approximate) % and %. With our knowledge of the Chain Rule, we can find
dy
a-

In the next section, we use the Chain Rule to justify another differentiation
technique. There are many curves that we can draw in the plane that fail the
“yertical line test.” For instance, consider x*> + y*> = 1, which describes the unit
circle. We may still be interested in finding slopes of tangent lines to the circle at
various points. The next section shows how we can find % without first “solving
for y.” While we can in this instance, in many other instances solving for y is
impossible. In these situations, implicit differentiation is indispensable.

Notes:
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Exercises 2.5

Terms and Concepts

1.

. T/F: i(In(xz)) =7

T/F: The Chain Rule describes how to evaluate the deriva-
tive of a composition of functions.

d
. T/F: The Generalized Power Rule states that o (g(x)") =
x

n(g(x))nfl.

dx

d

.2 X\~ L X
. TR dx(3)~1.1 3"

dxidx.dt

. T/F: —

dy_a d7y

fx) = (Inx—|—x2)3

Problems

In Exercises 7 — 36, compute the derivative of the given func-
tion.

7. f(x) = (45 —x)*°

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A = (3t —2)°

. g(0) = (sin @ + cos 0)*

h(t) = e+
f) = (Inx+x)?
flx) =27

f00 = (x+3)*

f(x) = cos(3x)
g(x) = tan(5x)
h(0) = tan (6 + 40)
g(t) =sin (£ + 3)
h(t) = sin® (2t)

p(t) = cos® (£ + 3t + 1)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

g(r)=4
g(t) — 5C0$t
g(t) = 15
3W
m(w) = w
h(t) = 2'4+3
T3t42
341
m(w) = S
3¢ +
X
f(X) = 272

f(x) = x*sin(5x)

) = (6 +x)°(3x* + 2x)3
g(t) = cos(t* + 3t) sin(5t — 7)
f(x) = sin(3x + 4) cos(5 — 2x)

g(t) = cos(%)es‘f2

sin (4x + 1)

0= "5 sy
_ (4x+1)
T = "an(s0

In Exercises 37 - 40, find the equations of tangent and normal
lines to the graph of the function at the given point. Note: the
functions here are the same as in Exercises 7 through 10.

37.

38.

39.

40.

41.

fix) = (43 —x)Patx=0
f(ty=@Bt—2)%att=1
g(#) = (sinf 4 cosf)* at§ = 7/2

h(t) =¥ T latt=—1

d
Compute — (In(kx)) two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule In(ab) = Ina + In b,
then taking the derivative.
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d k
42. C te — (| t :
ompute dx( n(x")) two ways

(a) Using the Chain Rule, and
(b) by first using the logarithm rule In(a”) = pIna, then
taking the derivative.

Review

43. The “wind chill factor” is a measurement of how cold it
“feels” during cold, windy weather. Let W(w) be the wind

chill factor, in degrees Fahrenheit, when it is 25°F outside
with a wind of w mph.

(a) What are the units of W' (w)?
(b) What would you expect the sign of W’(10) to be?
44. Find the derivatives of the following functions.

(a) f(x) = x*¢* cotx

(b) g(x) = 2"3*4*



2.6 Implicit Differentiation

2.6 Implicit Differentiation
In the previous sections we learned to find the derivative, %, ory’, when yis
given explicitly as a function of x. That is, if we know y = f(x) for some function
f, we can find y’. For example, given y = 3x? — 7, we can easily find y’ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

Sometimes the relationship between y and x is not explicit; rather, it is im- v
plicit. For instance, we might know that x> — y = 4. This equality defines a
relationship between x and y; if we know x, we could figure out y. Can we still \

find y’? In this case, sure; we solve for y to get y = x> — 4 (hence we now know
y explicitly) and then differentiate to get y’ = 2x. \

Sometimes the implicit relationship between x and y is complicated. Sup- ‘ ‘
pose we are given sin(y) + y* = 6 — x3. A graph of this implicit function is given -2 2
in Figure 2.6.1. In this case there is absolutely no way to solve for y in terms of
elementary functions. The surprising thing is, however, that we can still find y’ -2
via a process known as implicit differentiation.

Implicit differentiation is a technique based on the Chain Rule that is used to
find a derivative when the relationship between the variables is given implicitly Figure 2.6.1: A graph of the implicit func-
rather than explicitly (solved for one variable in terms of the other). tion sin(y) +y* = 6 — x°.

We begin by reviewing the Chain Rule. Let f and g be functions of x. Then

d

a(ﬂg(x))) =f'(g(x)) - g'(x).

Suppose now that y = g(x). We can rewrite the above as

L) =F0) v o S()=fw-L @

These equations look strange; the key concept to learn here is that we can find
y’ even if we don’t exactly know how y and x relate.

We demonstrate this process in the following example.

Example 2.6.1 Using Implicit Differentiation
Find y’ given that sin(y) + y® = 6 — x°.

SOLUTION We start by taking the derivative of both sides (thus main-
taining the equality.) We have :

%(sin(y) +y3) = %(G—P).

Notes:
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The right hand side is easy; it returns —3x2.
The left hand side requires more consideration. We take the derivative term—
by-term. Using the technique derived from Equation 2.1 above, we can see that

d(s'n )7cos !
(s _ s
dx y vy

We apply the same process to the y term.

2 0) = () =307
Putting this together with the right hand side, we have
cos(y)y’ + 3y’y’ = —3x%.
Now solve for y’.
cos(y)y’ + 3y*y’ = —3x%.
(cosy+3y*)y’ = —3x°
, —3x2

~ cosy + 32

This equation for y’ probably seems unusual for it contains both x and y
terms. How is it to be used? We'll address that next.

Implicit functions are generally harder to deal with than explicit functions.
With an explicit function, given an x value, we have an explicit formula for com-
puting the corresponding y value. With an implicit function, one often has to
find x and y values at the same time that satisfy the equation. It is much eas-
ier to demonstrate that a given point satisfies the equation than to actually find
such a point.

For instance, we can affirm easily that the point (\3/5, 0) lies on the graph of
the implicit function siny 4y = 6 — x3. Plugging in 0 for y, we see the left hand
side is 0. Setting x = V6, we see the right hand side is also 0; the equation is
satisfied. The following example finds the equation of the tangent line to this
function at this point.

Example 2.6.2 Using Implicit Differentiation to find a tangent line
Find the equation of the line tangent to the curve of the implicitly defined func-
tion siny + y* = 6 — x° at the point (v/6,0).

SOLUTION In Example 2.6.1 we found that
, . —3x
cosy + 3y?
Notes:



We find the slope of the tangent line at the point (\%, 0) by substituting V6 for
x and O for y. Thus at the point (v/6,0), we have the slope as

Therefore the equation of the tangent line to the implicitly defined function

, —3(v/6)? —3v/36

cos0+3-02 1

siny +y3 = 6 — x3 at the point (v/6,0) is

The curve and this tangent line are shown in Figure 2.6.2.

This suggests a general method for implicit differentiation. For the steps be-

y = —3V36(x — V6) + 0~ —9.91x + 18.

low assume y is a function of x.

1. Take the derivative of each term in the equation. Treat the x terms like
normal. When taking the derivatives of y terms, the usual rules apply
except that, because of the Chain Rule, we need to multiply each term

by y'.

2. Get all the y’ terms on one side of the equal sigh and put the remaining

terms on the other side.

3. Factor out y’; solve for y’ by dividing.

Practical Note: When working by hand, it may be beneficial to use the symbol
% instead of y/, as the latter can be easily confused for y or y*.

Example 2.6.3

Given the implicitly defined function y* + x?y* = 1 4 2x, find y'.

SOLUTION
tive of y3 is 3y2y’.

The second term, x?y*, is a little tricky. It requires the Product Rule as it is the
product of two functions of x: x? and y*. Its derivative is x*(4y®y’) + 2xy*. The
first part of this expression requires a y’ because we are taking the derivative of a
y term. The second part does not require it because we are taking the derivative

of x2.

The derivative of the right hand side is easily found to be 2. In all, we get:

Move terms around so that the left side consists only of the y’ terms and the

Using Implicit Differentiation

We will take the implicit derivatives term by term. The deriva-

3%y + Py’ + 2xy® = 2.

right side consists of all the other terms:

3%y + axtyy’ = 2 — 2xy*.

4

Notes:

2.6 Implicit Differentiation

Figure 2.6.2: The function siny + y* =
6 — x> and its tangent line at the point

(v/6,0).
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Figure 2.6.3: A graph of the implicitly de-
fined function y* + x*y* = 1 + 2x along
with its tangent line at the point (0, 1).

Figure 2.6.4: A graph of the implicitly de-
fined function sin(x*y?) + y* = x + y.

114

Factor out y’ from the left side and solve to get

) 2- 2xy*
3y? + 4x?y3’

To confirm the validity of our work, let’s find the equation of a tangent line
to this function at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this function. At this point, y’ = 2/3. So the equation of the tangent
lineisy = 2/3(x—0)+ 1. The function and its tangent line are graphed in Figure
2.6.3.

Notice how our function looks much different than other functions we have
seen. For one, it fails the vertical line test. Such functions are important in many
areas of mathematics, so developing tools to deal with them is also important.

Example 2.6.4 Using Implicit Differentiation
Given the implicitly defined function sin(x?y?) + y® = x +y, find y'.

SOLUTION Differentiating term by term, we find the most difficulty in
the first term. It requires both the Chain and Product Rules.

%(sin(x2y2)> = cos(x%y?) - (x y )
= cos(xy?) - ( 2(29y") + 2xy°)
=2(xyy’ + xy?) cos(x’y*).

We leave the derivatives of the other terms to the reader. After taking the
derivatives of both sides, we have

20y’ + xy?) cos(x’y?) + 3y°y' =1+

We now have to be careful to properly solve for y’, particularly because of
the product on the left. It is best to multiply out the product. Doing this, we get

2%y cos(x*y?)y’ + 2xy? cos(x*y?) + 3y*y =1 +y'.
From here we can safely move around terms to get the following:

2%y cos(x*y?)y’ +3y%y" —y’ =1 — 2xy? cos(x*y?).
Then we can solve for y’ to get

, 1 —2xy*cos(x’y?)
= 2x2y cos(x2y?) +3y2 — 1’

Notes:



A graph of this implicit function is given in Figure 2.6.4. It is easy to verify
that the points (0,0), (0,1) and (0, —1) all lie on the graph. We can find the
slopes of the tangent lines at each of these points using our formula for y’.

At (0,0), the slope is —1.

At (0,1), the slope is 1/2.

At (0, —1), the slope is also 1/2.

The tangent lines have been added to the graph of the function in Figure
2.6.5.

Quite a few “famous” curves have equations that are given implicitly. We can
use implicit differentiation to find the slope at various points on those curves.

We investigate two such curves in the next examples.

Example 2.6.5 Finding slopes of tangent lines to a circle

Find the slope of the tangent line to the circle x> 4-y? = 1atthe point (1/2,1/3/2).

SOLUTION Taking derivatives, we get 2x+2yy’ = 0. Solving for y’ gives:
y ==
y

This is a clever formula. Recall that the slope of the line through the origin and
the point (x,y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
—x/y. Hence these two lines are always perpendicular.
At the point (1/2,/3/2), we have the tangent line’s slope as
M2 o

GRRVEV- RV

A graph of the circle and its tangent line at (1/2,+/3/2) is given in Figure
2.6.6, along with a thin dashed line from the origin that is perpendicular to the
tangent line. (It turns out that all normal lines to a circle pass through the center
of the circle.)

This section has shown how to find the derivatives of implicitly defined func-
tions, whose graphs include a wide variety of interesting and unusual shapes.
Implicit differentiation can also be used to further our understanding of “regu-
lar” differentiation.

One hole in our current understanding of derivatives is this: what is the
derivative of the square root function? That is,

L)
dx

d

(V8 = L) =2

Notes:

2.6 Implicit Differentiation

Figure 2.6.5: A graph of the implicitly de-
fined function sin(x*y*) +y* = x +y and
certain tangent lines.

Figure 2.6.6: The unit circle with its tan-
gent line at (1/2,+/3/2).
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We allude to a possible solution, as we can write the square root function as
a power function with a rational (or, fractional) power. We are then tempted to
apply the Power Rule and obtain

9 pary = bea 2 L

dx 2 2¢/x

The trouble with this is that the Power Rule was initially defined only for
positive integer powers, n > 0. While we did not justify this at the time, gen-
erally the Power Rule is proved using something called the Binomial Theorem,
which deals only with positive integers. The Quotient Rule allowed us to extend
the Power Rule to negative integer powers. Implicit Differentiation allows us to
extend the Power Rule to rational powers, as shown below.

Lety = x™/", where m and n are integers with no common factors (som = 2
and n = 5is fine, but m = 2 and n = 4 is not). We can rewrite this explicit
function implicitly as y” = x™. Now apply implicit differentiation.

Z0m) =2 6m)

n

n_y—l.y/:m_xm—l

m—1

, mx

y

———  (now substitute x™/" for y)
n yn—

m Xm—l
= FW (apply lots of algebra)

_ M (m=n)/n
n

m _
— 7Xm/n 1
n

The above derivation is the key to the proof extending the Power Rule to ra-
tional powers. Using limits, we can extend this once more to include all powers,
including irrational (even transcendental!) powers, giving the following theo-
rem.

Theorem 2.6.1 Power Rule for Differentiation

Let f(x) = x", where n # 0O is a real number. Then fis differentiable on
its domain, except possibly at x = 0, and f'(x) = n - x" 1.

Notes:



This theorem allows us to say the derivative of x™ is Tx™ 1.

We now apply this final version of the Power Rule in the next example, the
second investigation of a “famous” curve.

Example 2.6.6 Using the Power Rule
Find the slope of x*/3 4 y?/3 = 8 at the point (8, 8).

SOLUTION This is a particularly interesting curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling around
inside of a larger circle, as shown in Figure 2.6.7.

To find the slope of the astroid at the point (8,8), we take the derivative
implicitly.

2 2
Sx13 4 gyfl/‘?’y' —0

3
2 13 2 a3
2z —_%,
3/ VT3
/ x—1/3
V=
LYy
Y x1/3 x

Plugging in x = 8 and y = 8, we get a slope of —1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.6.8.

Implicit Differentiation and the Second Derivative

We can use implicit differentiation to find higher order derivatives. In theory,
this is simple: first find %, then take its derivative with respect to x. In practice,
it is not hard, but it often requires a bit of algebra. We demonstrate this in an
example.

Example 2.6.7 Finding the second derivative
dZ
Given x*> + y? = 1, find ay_ y".
dx?
SOLUTION We found thaty’ = % = —x/yin Example 2.6.5. To find y”/,
Notes:

2.6 Implicit Differentiation
y
“ > X

Figure 2.6.7: An astroid, traced out by a
point on the smaller circle as it rolls inside
the larger circle.

Figure 2.6.8: An astroid with a tangent
line.
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Figure 2.6.9: A plot of y = x*.

we apply implicit differentiation to y’.

= — (—> (Now use the Quotient Rule.)

replace y’ with —x/y:

__y—x(=x/y)
-

o y+Xy

Ty

While this is not a particularly simple expression, it is usable. We can see that
y"” > 0wheny < 0andy” < 0wheny > 0. In Section 3.4, we will see how
this relates to the shape of the graph.

Logarithmic Differentiation

Consider the function y = x*; it is graphed in Figure 2.6.9. It is well-defined
for x > 0 and we might be interested in finding equations of lines tangent and
normal to its graph. How do we take its derivative?

The function is not a power function: it has a “power” of x, not a constant.
It is not an exponential function: it has a “base” of x, not a constant.

A differentiation technique known as logarithmic differentiation becomes
useful here. The basic principle is this: take the natural log of both sides of an
equation y = f(x), then use implicit differentiation to find y’. We demonstrate
this in the following example.

Example 2.6.8 Using Logarithmic Differentiation
Given y = x*, use logarithmic differentiation to find y’.

SOLUTION As suggested above, we start by taking the natural log of

Notes:



2.6 Implicit Differentiation

both sides then applying implicit differentiation.

y=x*
In(y) = In(x¥) (apply logarithm rule) 34
In(y) = xInx (now use implicit differentiation)
5 1
—( In ) = —(xlnx)
(n)) = =
/ 1 1
Y _ Inx+x- -
y X
; : > x
y7 =Inx+1 ! ?
' ) o Figure 2.6.10: A graph of y = x* and its
y = y( Inx + 1) (substitute y = x') tangent line at x = 1.5.
y' =x(Inx+1).

To “test” our answer, let’s use it to find the equation of the tangent line at x =
1.5. The point on the graph our tangent line must pass through is (1.5,1.51%) ~
(1.5,1.837). Using the equation for y’, we find the slope as

y' =1.5"3(In1.5+ 1) ~ 1.837(1.405) ~ 2.582.

Thus the equation of the tangent line is y = 1.6833(x — 1.5) + 1.837. Figure
2.6.10 graphs y = x* along with this tangent line.

Implicit differentiation proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of functions. In particular, it extended the
Power Rule to rational exponents, which we then extended to all real numbers.
In the next section, implicit differentiation will be used to find the derivatives of

inverse functions, such as y = sin" 1 x.

Notes:
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Exercises 2.6

Terms and Concepts

1. Inyour own words, explain the difference between implicit
functions and explicit functions.

2. Implicit differentiation is based on what other differentia-
tion rule?

3. T/F: Implicit differentiation can be used to find the deriva-
tive of y = v/x.

4. T/F: Implicit differentiation can be used to find the deriva-
tive of y = x*/%.
Problems

In Exercises 5 — 12, compute the derivative of the given func-
tion.

1
5. 100 = VA + =

7
6. f(x) = /x + x>
7. ft)y=v1-—-1¢

8. g(t) = Vtsint

10. f(x) =x" + x4t

11. g(x)

12. f(t) = vt(sect +€")
. ody -
In Exercises 13 — 25, find pm using implicit differentiation.

13. X* +y* +y=7
14, X5+ /5 =1
15. cos(x) + sin(y) =1

X

16. - =10

17. Y =10
X

18. x*e? +2' =5
19. x¥*tany = 50

20. (3% +2y°)* =2

21. (y* +2y —x)* =200

Xty

22.
X + y?

17

sin(x) +y

23.
cos(y) + x

=1

24, In(*+y) =e

25. In(P +xy+y*) =1

26. Show that d—i is the same for each of the following implicitly
defined functions.
(@) =1
(b) ¥y* =1
(c) sin(xy) =1
(d) In(xy) =1
In Exercises 27 — 32, find the equation of the tangent line to

the graph of the implicitly defined function at the indicated
points. As a visual aid, each function is graphed.

27. X5 5 =1

(a) At(1,0).

(b) At (0.1,0.281) (which does not exactly lie on the
curve, but is very close).

y

(0.1,0.281)




29. (xX* +y* — 4)* = 108y’
(a) At (0,4).

(b) At (2,—+/108).

<

3. (x—2)*+(y—3)*=9

(a) At

(b) At (4“\[ 3).

(35 5242)

(o2

3. X+ +2xy =0
(a) At(—1,1).

(b) At ( 1,

N\I—‘ N\l—\ ~

1+\/§)).

1-V5).

In Exercises 33 — 36, an implicitly defined function is given.

d*y
Find —
ind —=

cises 13 through 16.
3B. X+ +y=7
34. 25425 =1
35. cosx+siny=1

36. X =10
y

In Exercises 37 — 42, use logarithmic differentiation to find

d
d—y, then find the equation of the tangent line at the indicated
X

x-value.

. Note: these are the same problems used in Exer-

37 y= (140", x=1

38 y= (2", x=1
X

39 y= >, x=
y x+1

40. y =x"0F2 x—7/2

1
41, y:::z’ x=1

oy GEDEED)

(x+3)(x+4)’

x=0
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Figure 2.7.1: A function falong with its in-
verse f~1. (Note how it does not matter
which function we refer to as f; the other

isf1)

J 1
(0.375, —0.5)

Figure 2.7.2: Corresponding tangent lines

drawn to fand f
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2.7 Derivatives of Inverse Functions

Recall that a function y = f(x) is said to be one to one if it passes the horizontal
line test; thatis, for two different x values x; and x,, we do not have f(x1) = f(x2).
In some cases the domain of f must be restricted so that it is one to one. For
instance, consider f(x) = x2. Clearly, f(—1) = f(1), so fis not one to one on its
regular domain, but by restricting f to (0, o), fis one to one.

Now recall that one to one functions have inverses. That is, if f is one to
one, it has an inverse function, denoted by f~1, such that if f(a) = b, then
f~Y(b) = a. The domain of f~1 is the range of f, and vice-versa. For ease of
notation, we set g = f~! and treat g as a function of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f(a(b)) = f(a) =b.

In general, f(g(x)) = xand g(f(x)) = x. This gives us a convenient way to check
if two functions are inverses of each other: compose them and if the result is x,
then they are inverses (on the appropriate domains.)

When the point (a, b) lies on the graph of f, the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflection of f across the
line y = x. In Figure 2.7.1 we see a function graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this relationship, whatever we know about f can quickly be transferred
into knowledge about g.

For example, consider Figure 2.7.2 where the tangent line to f at the point
(a,b) is drawn. That line has slope f’(a). Through reflection across y = x, we

1
can see that the tangent line to g at the point (b, a) should have slope ——.

f'(a)

This then tells us that g’ (b) = )
(b) 7(a)

Consider:

Information about g = f~*

(0.375,—0.5) lieson g

Information about f
(—0.5,0.375) lieson f

Slope of tangent line to
gatx =0.375is4/3

9’(0.375) = 4/3

Slope of tangent line to f
atx = —0.5is3/4

f'(—0.5) = 3/4

We have discovered a relationship between f’ and g’ in a mostly graphical
way. We can realize this relationship analytically as well. Let y = g(x), where
againg = f~1. Wewanttofindy’. Sincey = g(x), we know that f(y) = x. Using
the Chain Rule and Implicit Differentiation, take the derivative of both sides of

Notes:



this last equality.

f'ly)-y' =
;L 1
YT
;L 1
YT Fak)

This leads us to the following theorem.

Theorem 2.7.1 Derivatives of Inverse Functions

Let fbe differentiable and one to one on an open interval /, where f'(x) #
0 for all xin /, let J be the range of fon /, let g be the inverse function of
f, and let f(a) = b for some ain I. Then g is a differentiable function on
J, and in particular,

L (F ) (b)=g'(b) =

1
f'(a)

The results of Theorem 2.7.1 are not trivial; the notation may seem confusing
at first. Careful consideration, along with examples, should earn understanding.
In the next example we apply Theorem 2.7.1 to the arcsine function.

Example 2.7.1 Finding the derivative of an inverse trigonometric function
Let y = arcsinx = sin~ ! x. Find y’ using Theorem 2.7.1.

SOLUTION Adopting our previously defined notation, let g(x) = arcsin x
and f(x) = sinx. Thus f’(x) = cos x. Applying the theorem, we have

1

f'(g(x))
_ 1
cos(arcsinx)

g'(x) =

This last expression is not immediately illuminating. Drawing a figure will
help, as shown in Figure 2.7.4. Recall that the sine function can be viewed as
taking in an angle and returning a ratio of sides of a right triangle, specifically,
the ratio “opposite over hypotenuse.” This means that the arcsine function takes
as input a ratio of sides and returns an angle. The equation y = arcsin x can
be rewritten as y = arcsin(x/1); that is, consider a right triangle where the

Notes:

2.7 Derivatives of Inverse Functions
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V1—x2

Figure 2.7.4: A right triangle defined by
y = sin"'(x/1) with the length of the
third leg found using the Pythagorean
Theorem.

S
S
=

ISH
N
Nl

NI

wlx

B

-1 1

y = sinTtx

ENE]

|
(S1E]

Figure 2.7.5: Graphs of sinx and sin~* x

along with corresponding tangent lines.
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hypotenuse has length 1 and the side opposite of the angle with measure y has
length x. This means the final side has length v/1 — x2, using the Pythagorean
Theorem.

Therefore cos(sin"!x) = cosy = v/1 — x2/1 = v/1 — x2, resulting in

i(arcsinx) =g'(x) = 1
dx V1i—x

Remember that the input x of the arcsine function is a ratio of a side of a right
triangle to its hypotenuse; the absolute value of this ratio will never be greater
than 1. Therefore the inside of the square root will never be negative.

In order to make y = sin x one to one, we restrict its domain to [—7/2, 7/2];
on this domain, the range is [—1, 1]. Therefore the domain of y = arcsin x is
[—1,1] and the range is [—7/2, w/2]. When x = %1, note how the derivative of
the arcsine function is undefined; this corresponds to the fact that as x — =+1,
the tangent lines to arcsine approach vertical lines with undefined slopes.

In Figure 2.7.5 we see f(x) = sinxand f~1(x) = sin~* x graphed on their re-
spective domains. The line tangent to sin x at the point (7/3,/3/2) has slope
cosm/3 = 1/2. The slope of the corresponding point on sin~!x, the point

(V3/2,7/3),is

1

1 1 1
1- (322 Vi-34 ViAo 12 "

verifying yet again that at corresponding points, a function and its inverse have
reciprocal slopes.

Using similar techniques, we can find the derivatives of all the inverse trigono-
metric functions. In Figure 2.7.3 we show the restrictions of the domains of the
standard trigonometric functions that allow them to be invertible.

Notes:



2.7 Derivatives of Inverse Functions

Inverse

Function Domain Range Function Domain Range
sinx [~m/2,7/2] [-1,1] sin~tx [-1,1] [~7/2,7/2)
cos x [0, 7] [-1,1] cos tx [—1,1] [0, 7]
tanx (—7/2,7/2) (—00, 00) tan~?x (—00, 00) (—7/2,7/2)
csCx [-7/2,0) U (0,7/2] (—o0,—1]U[1,00) csctx (=00, —1]U[1,00) [—7/2,0)U(0,7/2]
secx [0,7/2) U (w/2,7] (—o0,—1]U][1,00) sec !x (—o00,—1]U[1,00) [0,7/2) U (7/2,7]
cot x (0,7) (—00,00) cot™ x (—00,00) (0,7)

Figure 2.7.3: Domains and ranges of the trigonometric and inverse trigonometric functions.

Theorem 2.7.2 Derivatives of Inverse Trigonometric Functions

The inverse trigonometric functions are differentiable on all open sets
contained in their domains (as listed in Figure 2.7.3) and their derivatives
are as follows:

d =il _ 1 4, — -1 — ,;
1. &(sm X) T d (cos™"x) T
d 1) — 1 5. csctx) = -t
2. dx(sec X) = |X|\/m d ( ) X2 — 1
d,__ 1 9 ot—tx) = — 1
3. a(tan 1X) T1rR 6 dx(cOt 5 = 1+x2

Note how the last three derivatives are merely the opposites of the first
three, respectively. Because of this, the first three are used almost exclusively
throughout this text.

d 1
In Section 2.3, we stated without proof or explanation that — ( In x) = —.
Ix
We can justify that now using Theorem 2.7.1, as shown in the example.

Example 2.7.2 Finding the derivative of y = In x

d
Use Theorem 2.7.1 to compute ™ (Inx).

SOLUTION View y = Inx as the inverse of y = €*. Therefore, using our
standard notation, let f(x) = e and g(x) = Inx. We wish to find g’(x). Theorem

Notes:
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2.7.1 gives:

In this chapter we have defined the derivative, given rules to facilitate its
computation, and given the derivatives of a number of standard functions. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

Theorem 2.7.3 Glossary of Derivatives of Elementary Functions

Let u and v be differentiable functions, and let a, ¢ and n be real
numbers, a > 0, n # 0.

1. &(cu) = 2. Lutv)=u+V

3. L(u-v) =u/ +uv 4, 4(4) = vy

5. 2 (u(v) ): v)V 6. L(c)=0

7. L(x) = 8. L(x") =nx""?

9. (&) = 10. Z(a*) =Ina-a*

11. Z(Inx) = 12. Z(log,x) = & -1

13. Z(sinx) = cosx 14. 2 (cosx) = —sinx

15. £ (secx) = secxtanx 16. < (cscx) = —cscxcotx
17. Z(tanx) = sec’x 18. Z(cotx) = — csc®x
19. Z(sin~'x) = L= 20. Z(cos™x) = -
21. L(sec™lx) = ¥ 1271 22. Z(csctx) = W%
23. Z(tan"'x) = 24, Z(cot™'x) = —o

Notes:



Exercises 2.7

Terms and Concepts
1. T/F: Every function has an inverse.

2. In your own words explain what it means for a function to
be “one to one.”

3. If (1,10) lies on the graph of y = f(x), what can be said
about the graph of y = f*(x)?

4. If (1,10) lies on the graph of y = f(x) and f'(1) = 5, what
can be said about y = f1(x)?

Problems

In Exercises 5 — 8, verify that the given functions are inverses.

5. f(x) =2x+6andg(x) = 1x—3

6. f(x) = x* +6x+11,x > 3and
gx) =vx—2-3,x>2

3

7. fix) = X_S,X#Sand
gx) = 3J;5X,X750
8. 00 = 53 x # 1and g(x) =109

In Exercises 9 — 14, an invertible function f(x) is given along
with a point that lies on its graph. Using Theorem 2.7.1, eval-
uate (f!)’ (x) at the indicated value.

9. f(x) = 5x + 10
Point= (2, 20)
Evaluate (')’ (20)

10. f(x) =x* —2x+4,x>1
Point= (3,7)
Evaluate (')’ (7)

11. f(x) =sin2x, —1/4 < x < 1/4
Point= (7/6,/3/2)
Evaluate (')’ (v/3/2)

12. f(x) =x* —6x* +15x — 2
Point= (1, 8)
Evaluate (')’ (8)
13. f(x) = ;,x >0
1+ x?
Point= (1,1/2)
Evaluate (') (1/2)

14. f(x) = 6e*
Point= (0, 6)
Evaluate (f!)’ (6)

In Exercises 15 — 24, compute the derivative of the given func-
tion.

15. h(t) = sin~*(2t)
16. f(t) = sec '(2t)
17. g(x) = tan~}(2x)
18. f(x) = xsin"'x
19. g(t) =sintcos 't
20. f(t) = Inte'

sinTlx

cos—tx

22. g(x) = tan (/)

21. h(x) =

23. f(x) = sec™'(1/x)
24. f(x) = sin(sin "' x)

In Exercises 25 — 26, compute the derivative of the given func-
tion in two ways:

(a) By simplifying first, then taking the derivative, and
(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.
25. f(x) = sin(sin" ' x)
26. f(x) = tan™*(tanx)

In Exercises 27 — 28, find the equation of the line tangent to
the graph of f at the indicated x value.

27. f(x) =sin"'x at x= 2

V3
4

28. f(x) =cos™'(2x) at x=

Review

29. Find &

%, where X’y — y*x = 1.

30. Find the equation of the line tangent to the graph of x* +
y* + xy = 7 at the point (1, 2).

31. Letf(x) = X° +x.
Evaluate Imw.

127






3: THE GRAPHICAL BEHAVIOR
OF FUNCTIONS

Our study of limits led to continuous functions, a certain class of functions that
behave in a particularly nice way. Limits then gave us an even nicer class of
functions, functions that are differentiable.

This chapter explores many of the ways we can take advantage of the infor-
mation that continuous and differentiable functions provide.

3.1 Extreme Values

Given any quantity described by a function, we are often interested in the largest
and/or smallest values that quantity attains. For instance, if a function describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a function describes the value of a stock, we might want
to know the highest/lowest values the stock attained over the past year. We call
such values extreme values.

Definition 3.1.1 Extreme Values

Let f be defined on an interval | containing c.

1. f(c

flx
2. f(c
fix

The maximum and minimum values are the extreme values, or extrema,
of fon .

is the minimum (also, absolute minimum) of f on / if f(c) <
forall xin /.

is the maximum (also, absolute maximum) of f on / if f(c) >
forallxin /.

~— — NN

Consider Figure 3.1.1. The function displayed in (a) has a maximum, but
no minimum, as the interval over which the function is defined is open. In (b),
the function has a minimum, but no maximum; there is a discontinuity in the
“natural” place for the maximum to occur. Finally, the function shown in (c) has
both a maximum and a minimum; note that the function is continuous and the
interval on which it is defined is closed.

It is possible for discontinuous functions defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
they did not. On the other hand, continuous functions on a closed interval al-
ways have a maximum and minimum value.

L )
\ 7
-2 —1 1 2
(a)
y
4
2
L h |
L J
—2 —1 1 2
(b)
y
L h |
L J
-2 —1 1 2

(c)

Figure 3.1.1: Graphs of functions with and

without extreme values.

Note: The extreme values of a function

“w . n

are “y” values, values the function attains,

not the input values.
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(5, 25)

20 +

(0,0)

(-1, —11)

=20 ¢ (3, —27)

Figure 3.1.2: A graph of f(x) = 2 — 9x*
as in Example 3.1.1.

Note: The terms local minimum and local
maximum are often used as synonyms for
relative minimum and relative maximum.

As it makes intuitive sense that an ab-
solute maximum is also a relative max-
imum, Definition 3.1.2 allows a relative
maximum to occur at an interval’s end-
point.
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Theorem 3.1.1 The Extreme Value Theorem

Let f be a continuous function defined on a closed interval I. Then f has
both a maximum and minimum value on /.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. After the example, we will draw on lessons
learned to form a more general and powerful method for finding extreme values.

Example 3.1.1 Approximating extreme values
Consider f(x) = 2x3> — 9x? on | = [—1, 5], as graphed in Figure 3.1.2. Approxi-
mate the extreme values of f.

SOLUTION The graphis drawn in such a way to draw attention to certain
points. It certainly seems that the smallest y value is —27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of /, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than —27. Since the problem asks for an approximation, we
approximate the extreme values to be 25 and —27.

Notice how the minimum value came at “the bottom of a hill,” and the maxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [—1, 4]. The idea that the point (0, 0)
is the location of an extreme value for some interval is important, leading us to
a definition of a relative maximum. In short, a “relative max” is a y-value that’s
the largest y-value “nearby.”

Definition 3.1.2 Relative Minimum and Relative Maximum

Let f be defined on an interval / containing c.

1. Ifthereisad > Osuch that f(c) < f(x) forall x in | where |x — ¢| <
0, then f(c) is a relative minimum of f. We also say that f has a
relative minimum at (c, f(c)).

2. Ifthereisa d > Osuch that f(c) > f(x) for all xin / where [x — c| <
0, then f(c) is a relative maximum of f. We also say that f has a
relative maximum at (c, f(c)).

The relative maximum and minimum values comprise the relative ex-
trema of f.

Notes:



We briefly practice using these definitions.

Example 3.1.2 Approximating relative extrema
Consider f(x) = (3x* —4x*> —12x2+5)/5, as shown in Figure 3.1.3. Approximate
the relative extrema of f. At each of these points, evaluate f'.

SOLUTION We still do not have the tools to exactly find the relative
extrema, but the graph does allow us to make reasonable approximations. It
seems f has relative minima at x = —1 and x = 2, with values of f(—1) = 0 and
f(2) = —5.4. It also seems that f has a relative maximum at the point (0, 1).

We approximate the relative minima to be 0 and —5.4; we approximate the
relative maximum to be 1.

It is straightforward to evaluate f'(x) = £(12x* — 12x* — 24x) atx = 0,1
and 2. In each case, f'(x) = 0.

Example 3.1.3 Approximating relative extrema
Approximate the relative extrema of f(x) = (x—1)?/3+2, shown in Figure 3.1.4.
At each of these points, evaluate f'.

SOLUTION The figure implies that f does not have any relative maxima,
but has a relative minimum at (1, 2). In fact, the graph suggests that not only
is this point a relative minimum, y = f(1) = 2 is the minimum value of the
function.

We compute f'(x) = 2(x — 1)~*/3. When x = 1, f/ is undefined.

What can we learn from the previous two examples? We were able to vi-
sually approximate relative extrema, and at each such point, the derivative was
either 0 or it was not defined. This observation holds for all functions, leading

to a definition and a theorem.

Definition 3.1.3 Critical Numbers and Critical Points

Let f be defined at c. The value cis a critical number (or critical value)
of fif f'(c) = 0 or f/(c) is not defined.

If ¢ is a critical number of f, then the point (c, f(c)) is a critical point of f.

Notes:

3.1 Extreme Values

< |
N
w |

x

Figure 3.1.3: A graph of f(x) = (3x* —
4x* — 12x* +5)/5 as in Example 3.1.2.

Figure 3.1.4: A graph of f(x) = (x —
1)*2 + 2 asiin Example 3.1.3.
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Figure 3.1.5: A graph of f(x) = x* which
has a critical value of x = 0, but no rela-
tive extrema.
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Theorem 3.1.2 Relative Extrema and Critical Points

Let a function f be defined on an open interval / containing c, and let f
have a relative extremum at the point (c, f(c)). Then cis a critical number

of f.

Be careful to understand that this theorem states “Relative extrema on open
intervals occur at critical points.” It does not say “All critical numbers produce
relative extrema.” For instance, consider f(x) = x3. Since f'(x) = 3x?, it is
straightforward to determine that x = 0 is a critical number of f. However, f has
no relative extrema, as illustrated in Figure 3.1.5.

Theorem 3.1.1 states that a continuous function on a closed interval will have
both an absolute maximum and an absolute minimum. Common sense tells us
“extrema occur either at the endpoints or somewhere in between.” It is easy
to check for extrema at endpoints, but there are infinitely many points to check
that are “in between.” Our theory tells us we need only check at the critical
points that are in between the endpoints. We combine these concepts to offer
a strategy for finding extrema.

Key Idea 3.1.1 Finding Extrema on a Closed Interval

Let f be a continuous function defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.
2. Find the critical numbers of fin [a, b].
3. Evaluate f at each critical number.

4. The absolute maximum of fis the largest of these values, and the
absolute minimum of fis the least of these values.

We practice these ideas in the next examples.

Example 3.1.4 Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x*> — 12x on [0, 3], graphed in Figure
3.1.6(a).

SOLUTION We follow the steps outlined in Key Idea 3.1.1. We first eval-

Notes:



uate f at the endpoints:
f(0)=0 and f(3)=45.

Next, we find the critical values of fon [0,3]. f'(x) = 6x* + 6x — 12 = 6(x +

2)(x — 1); therefore the critical values of fare x = —2 and x = 1. Since x = —2
does not lie in the interval [0, 3], we ignore it. Evaluating f at the only critical
number in our interval gives: f(1) = —7.

The table in Figure 3.1.6(b) gives f evaluated at the “important” x values in
[0, 3]. We can easily see the maximum and minimum values of f: the maximum
value is 45 and the minimum value is —7.

Note that all this was done without the aid of a graph; this work followed an
analytic algorithm and did not depend on any visualization. Figure 3.1.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We practice again.

Example 3.1.5 Finding extreme values
Find the maximum and minimum values of f on [—4, 2], where

[ (x—1)2 x<o0
f(x)—{ x+1 x>0~

graphed in Figure 3.1.7(a).

SOLUTION Here f is piecewise—defined, but we can still apply Key Idea
3.1.1 as it is continuous on [—4, 2] (one should check to verify that Iirrz)f(x) =
X—

f(0)). Evaluating f at the endpoints gives:
f(—4)=25 and f(2)=3.

We now find the critical numbers of f. We have to define f’ in a piecewise
manner; it is
2(x—1) x<o0

fl(x):{ 1 x>0

Note that while fis defined for all of [—4, 2], f' is not, as the derivative of f does
not exist when x = 0. (From the left, the derivative approaches —2; from the
right the derivative is 1.) Thus one critical number of fis x = 0.

We now set f'(x) = 0. When x > 0, f'(x) is never 0. When x < 0, f'(x) is
also never 0, so we find no critical values from setting f'(x) = 0.

So we have three important x values to consider: x = —4,2 and 0. Evaluat-
ing f at each gives, respectively, 25, 3 and 1, shown in Figure 3.1.7(b). Thus the

Notes:

3.1 Extreme Values

40 |

20

w kL o |Xx
o

(b)

Figure 3.1.6: Finding the extreme values
of f(x) = 2x*+3x*—12xin Example 3.1.4.

4 2 2
(a)
x  f(x)
—4 25
0 1
2 3

(b)
Figure 3.1.7: Finding the extreme values

of a piecewise—defined function in Exam-
ple 3.1.5.
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0.5 +
t t t > X
-2 —1 1 2
705 4
—1 1
(a)
x f(x)
-2 —0.65
—\/T -1
0 1
VT -1
2 —0.65

(b)

Figure 3.1.8: Finding the extrema of
f(x) = cos(x*) in Example 3.1.6.

X fx)
-1 0
0o 1
1 0

(b)

Figure 3.1.9: Finding the extrema of the
half—circle in Example 3.1.7.

Note: We implicitly found the derivative
of X¥* +y* = 1, the unit circle, in Ex-
ample 2.6.5 as % = —x/y. In Exam-
ple 3.1.7, half of the unit circle is given as
y = f(x) = V1 — x2. We found f'(x) =

\/%. Recognize that the denominator
—X

of this fraction is y; that is, we again found
0 =% =—x/y.
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absolute minimum of fis 1, the absolute maximum of fis 25, confirmed by the
graph of f.

Example 3.1.6 Finding extreme values
Find the extrema of f(x) = cos(x?) on [—2, 2], graphed in Figure 3.1.8(a).

SOLUTION We again use Key Idea 3.1.1. Evaluating f at the endpoints of
the interval gives: f(—2) = f(2) = cos(4) &~ —0.6536. We now find the critical
values of f.

Applying the Chain Rule, we find f'(x) = —2xsin(x?). Set f’(x) = 0 and
solve for x to find the critical values of f.

We have f’(x) = 0 when x = 0 and when sin(x?) = 0. In general, sint = 0
whent=...—2m, —m 0,7,... Thussin(x*) = Owhen x* = 0, , 27, ... (x* is
always positive so we ignore —, etc.) Sosin(x?) = Owhenx = 0, +/7, /27,
etc. The only values to fall in the given interval of [—2, 2] are 0 and £+/7, where
VTR 1.77.

We again construct a table of important values in Figure 3.1.8(b). In this
example we have 5 values to consider: x = 0, £2, ++/7.

From the table it is clear that the maximum value of f on [—2, 2] is 1; the
minimum value is —1. The graph of f confirms our results.

We consider one more example.

Example 3.1.7 Finding extreme values
Find the extreme values of f(x) = v/1 — x?, graphed in Figure 3.1.9(a).

SOLUTION A closed interval is not given, so we find the extreme values
of f on its domain. fis defined whenever 1 — x> > 0; thus the domain of fis
[—1, 1]. Evaluating f at either endpoint returns 0.

Using the Chain Rule, we find f'(x) = % The critical points of f are

found when f’(x) = 0 or when f’ is undefined. It is straightforward to find that
f’(x) = 0when x = 0, and f’ is undefined when x = +1, the endpoints of the
interval. The table of important values is given in Figure 3.1.9(b). The maximum
value is 1, and the minimum value is 0. (See also the marginal note.)

We have seen that continuous functions on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next section, we further our study of the information we can
glean from “nice” functions with the Mean Value Theorem. On a closed interval,
we can find the average rate of change of a function (as we did at the beginning
of Chapter 2). We will see that differentiable functions always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.

Notes:



Exercises 3.1

Terms and Concepts

1. Describe what an “extreme value” of a function is in your
own words.

2. Sketch the graph of a function fon (—1, 1) that has both a
maximum and minimum value.

3. Describe the difference between absolute and relative
maxima in your own words.

4. Sketch the graph of a function f where f has a relative max-
imum atx = 1 and f'(1) is undefined.

5. T/F:If cis a critical value of a function f, then f has either a
relative maximum or relative minimum at x = c.

6. Fill in the blanks: The critical points of a function f are
found where f’(x) is equal to or where f'(x) is

Problems

In Exercises 7 — 8, identify each of the marked points as being
an absolute maximum or minimum, a relative maximum or
minimum, or none of the above.

>

In Exercises 9 — 16, evaluate f'(x) at the points indicated in
the graph.

5. flx) =

(0,2)

10. f(x) = x*v6 — x

y

| ey
2l
5 ]
+ + X
-2 (0,00 2
11. f(x) =sinx
y
(7/2,1)
1]
+ X
2 4
—1
(37/2,-1)

21
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14. f(x) = Vx* —2x +1 In Exercises 17 — 26, find the extreme values of the function
on the given interval.

3 17. fx) =X +x+4 on [-1,2].
3 9 2
18. f(x) =x" — >X —30x+3 on [0,6].

19. f(x) =3sinx on [r/4,27/3].

(1,0)

? 20. f(x) =xXV4—x on [-2,2].

21. f(x) :x—l—% on [1,5].

XZ

f 22. f(x) = 235 o [-3,5].

23. f(x) = e“cosx on [0,m].

24. f(x) = €"sinx on [0,m].

-

1 “os (0,0) 05 Inx
25. f(x) = — on [1,4].
—0.5 X
26. f(x) =x**—x on [0,2].
2
x> x<0
16.f(x)—{ x x>0
Review
y
H 27. Find £, where Xy — y’x = 1.
051 28. Find the equation of the line tangent to the graph of x* +
y* + xy = 7 at the point (1, 2).
-t 0 ©.9 o5 ! 29. Letf(x) = X + x.
—0.5 Evaluate lim w
s—0 S
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3.2 The Mean Value Theorem

We motivate this section with the following question: Suppose you leave your
house and drive to your friend’s house in a city 100 miles away, completing the
trip in two hours. At any point during the trip do you necessarily have to be going
50 miles per hour?

In answering this question, it is clear that the average speed for the entire
trip is 50 mph (i.e. 100 miles in 2 hours), but the question is whether or not your
instantaneous speed is ever exactly 50 mph. More simply, does your speedome-
ter ever read exactly 50 mph?. The answer, under some very reasonable as-
sumptions, is “yes.”

Let’s now see why this situation is in a calculus text by translating it into
mathematical symbols.

First assume that the function y = f(t) gives the distance (in miles) traveled
from your home at time t (in hours) where 0 < t < 2. In particular, this gives
f(0) = 0and f(2) = 100. The slope of the secant line connecting the starting
and ending points (0, f(0)) and (2, f(2)) is therefore

Af  f(2) —f(0) 100-0
At 2-0 2

= 50 mph.

The slope at any point on the graph itself is given by the derivative f'(t). So,
since the answer to the question above is “yes,” this means that at some time
during the trip, the derivative takes on the value of 50 mph. Symbolically,

f(2) - f(0)
2-0

f'(c) = =50

for some time 0 < ¢ < 2.

How about more generally? Given any function y = f(x) and a range a <
x < b does the value of the derivative at some point between a and b have to
match the slope of the secant line connecting the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equation f'(c) = % have to hold for some a <
c<b?

Let’s look at two functions in an example.

Example 3.2.1 Comparing average and instantaneous rates of change
Consider functions

1
filx) = 2 and  f,(x) = |x|

with a = —1 and b = 1 as shown in Figure 3.2.1(a) and (b), respectively. Both
functions have a value of 1 at a and b. Therefore the slope of the secant line

Notes:

3.2 The Mean Value Theorem
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0.5 +

(b)

Figure 3.2.1: A graph of fi(x) = 1/x* and
f2(x) = |x| in Example 3.2.1.

Figure 3.2.2: Agraph of f(x) = x> —5x* +
3x + 5, where f(a) = f(b). Note the ex-
istence of ¢, where a < ¢ < b, where

f'(c) =0.
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connecting the end points is 0 in each case. But if you look at the plots of each,
you can see that there are no points on either graph where the tangent lines
have slope zero. Therefore we have found that there is no c in [—1, 1] such that

So what went “wrong”? It may not be surprising to find that the discontinuity
of f; and the corner of f, play a role. If our functions had been continuous and
differentiable, would we have been able to find that special value c? This is our
motivation for the following theorem.

Theorem 3.2.1 The Mean Value Theorem of Differentiation

Let y = f(x) be a continuous function on the closed interval [a, b] and
differentiable on the open interval (a, b). There exists avalue ¢, a < ¢ <

b, such that
f(b) — f(a)
(c) —
f (C) - b—a .
That s, thereis a value cin (a, b) where the instantaneous rate of change
of fat cis equal to the average rate of change of fon [a, b].

Note that the reasons that the functions in Example 3.2.1 fail are indeed that

f1 has a discontinuity on the interval [—1, 1] and f; is not differentiable at the ori-
gin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

Theorem 3.2.2 Rolle’s Theorem

Let f be continuous on [a, b] and differentiable on (a, b), where f(a) =
f(b). There is some cin (a, b) such that f/(c) = 0.

Consider Figure 3.2.2 where the graph of a function fis given, where f(a) =
f(b). 1t should make intuitive sense that if fis differentiable (and hence, continu-
ous) that there would be a value cin (a, b) where f'(c) = 0; that is, there would

be a relative maximum or minimum of fin (a, b). Rolle’s Theorem guarantees at
least one; there may be more.

Notes:



Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some ¢ where f’(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem
Let f be differentiable on (a, b) where f(a) = f(b). We consider two cases.

Case 1: Consider the case when fis constant on [a, b]; that is, f(x) = f(a) = f(b)
for all x in [a, b]. Then f’(x) = 0 for all x in [a, b], showing there is at least one
value cin (a,b) where f'(c) = 0.

Case 2: Now assume that fis not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at the
endpoints or at a critical value in (a, b). Since f(a) = f(b) and fis not constant, it
is clear that the maximum and minimum cannot both be found at the endpoints.
Assume, without loss of generality, that the maximum of f is not found at the
endpoints. Therefore there is a cin (g, b) such that f(c) is the maximum value
of f. By Theorem 3.1.2, ¢ must be a critical number of f; since f is differentiable,
we have that f'(c) = 0, completing the proof of the theorem. O

We can now prove the Mean Value Theorem.

Proof of the Mean Value Theorem
Define the function

b ~fla)

a(x) = fx) — "=~

We know g is differentiable on (a, b) and continuous on [a, b] since fis. We can
show g(a) = g(b) (it is actually easier to show g(b) — g(a) = 0, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of cin (a, b) such
that g’(c) = 0. But note that

b) —
0=g'(0) = (0 - 11,
nence fib) - f(a)
f/(C) - b _ aa 9
which is what we sought to prove. [l

Going back to the very beginning of the section, we see that the only as-
sumption we would need about our distance function f(t) is that it be continu-
ous and differentiable for t from 0 to 2 hours (both reasonable assumptions). By
the Mean Value Theorem, we are guaranteed a time during the trip where our

Notes:

3.2 The Mean Value Theorem
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—40 |

Figure 3.2.3: Demonstrating the Mean
Value Theorem in Example 3.2.2.
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instantaneous speed is 50 mph. This fact is used in practice. Some law enforce-
ment agencies monitor traffic speeds while in aircraft. They do not measure
speed with radar, but rather by timing individual cars as they pass over lines
painted on the highway whose distances apart are known. The officer is able
to measure the average speed of a car between the painted lines; if that aver-
age speed is greater than the posted speed limit, the officer is assured that the
driver exceeded the speed limit at some time.

Note that the Mean Value Theorem is an existence theorem. It states that a
special value c exists, but it does not give any indication about how to find it. It
turns out that when we need the Mean Value Theorem, existence is all we need.

Example 3.2.2 Using the Mean Value Theorem
Consider f(x) = x* + 5x + 5 on [—3, 3]. Find c in [—3, 3] that satisfies the Mean
Value Theorem.

SOLUTION The average rate of change of fon [—3, 3] is:
13)-f-3) 8,
3 (-3) 6

We want to find ¢ such that f/(c) = 14. We find f'(x) = 3x*> + 5. We set this
equal to 14 and solve for x.

f'(x) =14
3 +5=14
X =3

x = +v3 ~ +1.732

We have found 2 values c in [—3, 3] where the instantaneous rate of change
is equal to the average rate of change; the Mean Value Theorem guaranteed at
least one. In Figure 3.2.3 fis graphed with a dashed line representing the aver-
age rate of change; the lines tangent to fat x = ++/3 are also given. Note how
these lines are parallel (i.e., have the same slope) with the dashed line.

While the Mean Value Theorem has practical use (for instance, the speed
monitoring application mentioned before), it is mostly used to advance other
theory. We will use it in the next section to relate the shape of a graph to its
derivative.

Notes:



Exercises 3.2

Terms and Concepts

1. Explain in your own words what the Mean Value Theorem
states.

2. Explain in your own words what Rolle’s Theorem states.

Problems

In Exercises 3 — 10, a function f(x) and interval [a, b] are given.
Check if Rolle’s Theorem can be applied to fon [a, b]; if so, find
cin[a, b] such that f'(c) = 0.

3. f(x) = 6on[~1,1].

4. f(x) = 6xon [-1,1].

5. f(x) =x* +x—60n[-3,2].
6. f(x) =x* +x—2o0n[-3,2].
7. f(x) =x* +xon[-2,2].

8. f(x) = sinxon [r/6,57/6.

9. f(x) = cosxon [0, ].

on [0, 2].

1
10/ = o1

In Exercises 11 — 20, a function f(x) and interval [a, b] are
given. Check if the Mean Value Theorem can be applied to f
on [a, b]; if so, find a value c in [a, b] guaranteed by the Mean

Value Theorem.
11. f(x) =x" +3x—1on[-2,2].
12. f(x) = 58 —6x+8o0n|0,5].
13. f(x) = V9 —x2on [0, 3].

14. f(x) = v/25 —xon [0,9].

2
15. f(x) = X _i on [0, 2].

X2 —

16. f(x) = Inxon [1,5].

17. f(x) = tanxon [—/4, 7 /4)].

18. f(x) =x> —2X +x+1on[-2,2].
19. f(x) = 2 — 58 +6x+ 1on [-5,2].

20. f(x) =sin"‘xon[-1,1].

Review

21. Find the extreme values of f(x) = x* — 3x + 9 on [~2, 5].

22. Describe the critical points of f(x) = cos x.

23. Describe the critical points of f(x) = tanx.
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Figure 3.3.1: A graph of a function f used
to illustrate the concepts of increasing
and decreasing.

(a, f(a))
t t t f X
a 1 b 2

Figure 3.3.2: Examining the secant line of
an increasing function.
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3.3 Increasing and Decreasing Functions

Our study of “nice” functions f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f'(x) = 0 or f’ does
not exist, and points ¢ where f’(c) is the average rate of change of f on some
interval.

In this section we begin to study how functions behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuitive concept. Given the graph in Figure 3.3.1, where
would you say the function is increasing? Decreasing? Even though we have
not defined these terms mathematically, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

Definition 3.3.1 Increasing and Decreasing Functions

Let f be a function defined on an interval /.
1. fisincreasing on | if for every a < bin I, f(a) < f(b).

2. fis decreasing on / if for every a < b in I, f(a) > f(b).

Informally, a function is increasing if as x gets larger (i.e., looking left to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such information should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was accelerating vs. decelerat-
ing). If f describes the population of a city, we should be interested in when the
population is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing,
differentiable function on an open interval /, such as the one shown in Figure
3.3.2,and let a < b be given in I. The secant line on the graph of ffrom x = a
to x = b is drawn; it has a slope of (f(b) — f(a))/(b — a). But note:

Average rate of
= change of fon
[a,b]is > 0.
We have shown mathematically what may have already been obvious: when
fis increasing, its secant lines will have a positive slope. Now recall the Mean
Value Theorem guarantees that there is a number ¢, where a < ¢ < b, such that

f/(C) _ f(bg:ﬁ(a)

f(b) — f(a) numerator >0 slope of the
= - = .
b—a denominator >0 secant line > 0

> 0.

Notes:



3.3 Increasing and Decreasing Functions

By considering all such secant lines in /, we strongly imply that f/(x) > Oon /. A
similar statement can be made for decreasing functions.

Our above logic can be summarized as “If fis increasing, then f’ is probably
positive” Theorem 3.3.1 below turns this around by stating “If f/ is positive,
then fis increasing.” This leads us to a method for finding when functions are
increasing and decreasing.

Theorem 3.3.1 Test For Increasing/Decreasing Functions

Let f be a continuous function on [a, b] and differentiable on (a, b).
Note: Parts 1 & 2 of Theorem 3.3.1 also
1. If f’(c) > Oforall cin (a,b), then fis increasing on [a, b]. hold if f'(c) = 0 for a finite number of

values of cin /.
2. Iff’(c) < Oforall cin (a,b), then fis decreasing on [a, b].

3. Iff’(c) = 0forallcin (a,b), then fis constant on [a, b].

Let f be differentiable on an interval  and let a and b be in / where f/(a) > 0
andf’(b) < 0. If f’is continuous on [a, b], it follows from the Intermediate Value
Theorem that there must be some value ¢ between a and b where f/(c) = 0. (It
turns out that this is still true even if f" is not continuous on [a, b].) This leads us
to the following method for finding intervals on which a function is increasing or
decreasing.

Key Idea 3.3.1 Finding Intervals on Which f is Increasing or
Decreasing

Let f be a differentiable function on an interval I. To find intervals on
which fis increasing and decreasing:

1. Find the critical values of f. That is, find all ¢ in / where f'(c) = 0
or f’ is not defined.

2. Use the critical values to divide / into subintervals.
3. Pick any point p in each subinterval, and find the sign of f'(p).

(@) Iff'(p) > 0O, then fis increasing on that subinterval.
(b) If f'(p) < 0, then fis decreasing on that subinterval.

We demonstrate using this process in the following example.

Notes:
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Figure 3.3.4: A graph of f(x) in Example
3.3.1, showing where f is increasing and
decreasing.
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Example 3.3.1 Finding intervals of increasing/decreasing
Let f(x) = x> + x> — x + 1. Find intervals on which fis increasing or decreasing.

SOLUTION Using Key Idea 3.3.1, we first find the critical values of f. We
have f/(x) = 3x* + 2x — 1 = (3x — 1)(x + 1), so f'(x) = 0 when x = —1 and
when x = 1/3. f’ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
tire domain of f which is (—o00,00). We thus break the whole real line into
three subintervals based on the two critical values we just found: (—oo, —1),
(—=1,1/3) and (1/3, c0). This is shown in Figure 3.3.3.

f’ > 0 incr f’ < 0 decr f' > 0 incr

-1 1/3

A
Y

Figure 3.3.3: Number line for fin Example 3.3.1.

We now pick a value p in each subinterval and find the sign of f'(p). All we
care about is the sign, so we do not actually have to fully compute f'(p); pick
“nice” values that make this simple.

Subinterval 1, (—co, —1): We (arbitrarily) pick p = —2. We can compute
f'(=2) directly: f/(=2) = 3(=2)? +2(—2) — 1 = 7 > 0. We conclude that fis
increasing on (—oo, —1).

Note we can arrive at the same conclusion without computation. For in-
stance, we could choose p = —100. The first term in f'(—100), i.e., 3(—100)? is
clearly positive and very large. The other terms are small in comparison, so we
know f'(—100) > 0. All we need is the sign.

Subinterval 2, (—1,1/3): We pick p = 0 since that value seems easy to deal
with. f/(0) = —1 < 0. We conclude fis decreasing on (—1,1/3).

Subinterval 3, (1/3,00): Pick an arbitrarily large value for p > 1/3 and note
that f(p) = 3p? + 2p — 1 > 0. We conclude that fis increasing on (1/3, cc).

We can verify our calculations by considering Figure 3.3.4, where fis graphed.
The graph also presents f’; note how f/ > 0 when fis increasing and f' < 0
when fis decreasing.

One is justified in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-
pens near x = —1 and x = 0.3, but we cannot determine exactly where from
the graph.

Notes:



One could argue that just finding critical values is important; once we know
the significant points are x = —1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relationship between increasing/decreasing and the
sign of f/. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the critical points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f’ is straightforward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has options for finding needed information. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. Solutions are tractable only through the use of computers to do many
calculations for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a function to a computer and have it return maximum and
minimum values, intervals on which the function is increasing and decreasing,
the locations of relative maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In Section 3.1 we learned the definition of relative maxima and minima and
found that they occur at critical points. We are now learning that functions can
switch from increasing to decreasing (and vice—versa) at critical points. This new
understanding of increasing and decreasing creates a great method of determin-
ing whether a critical point corresponds to a maximum, minimum, or neither.
Imagine a function increasing until a critical point at x = ¢, after which it de-
creases. A quick sketch helps confirm that f(c) must be a relative maximum. A
similar statement can be made for relative minimums. We formalize this con-
ceptin a theorem.

Theorem 3.3.2 First Derivative Test

Let f be differentiable on an interval / and let ¢ be a critical number in /.

1. If the sign of f’ switches from positive to negative at c, then f(c) is
a relative maximum of f.

2. If the sign of f switches from negative to positive at ¢, then f(c) is
a relative minimum of f.

3. If " is positive (or, negative) before and after c, then f(c) is not a
relative extrema of f.

Notes:

3.3

Increasing and Decreasing Functions
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Figure 3.3.5: A graph of f(x) in Example

3.3.2, showing whe
decreasing.
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Example 3.3.2 Using the First Derivative Test
Find the intervals on which f is increasing and decreasing, and use the First
Derivative Test to determine the relative extrema of f, where

2+3
flo) = =2

SOLUTION We start by noting the domain of f: (—oc0, 1) U (1, 00). Key
Idea 3.3.1 describes how to find intervals where f is increasing and decreasing
when the domain of f is an interval. Since the domain of f in this example is
the union of two intervals, we apply the techniques of Key Idea 3.3.1 to both
intervals of the domain of f.

Since fis not defined at x = 1, the increasing/decreasing nature of f could
switch at this value. We do not formally consider x = 1 to be a critical value of
f, but we will include it in our list of critical values that we find next.

Using the Quotient Rule, we find

X —2x-3

0 ="t

We need to find the critical values of f; we want to know when f'(x) = 0 and
when f’ is not defined. That latter is straightforward: when the denominator
of f/(x) is O, f’ is undefined. That occurs when x = 1, which we’ve already
recognized as an important value.

f’(x) = 0 when the numerator of f/(x) is 0. That occurs when x?> —2x — 3 =
(x—3)(x+ 1) =0;ie.,whenx =—1,3.

We have found that f has two critical numbers, x = —1,3,andatx = 1
something important might also happen. These three numbers divide the real
number line into 4 subintervals:

(=o00,-1), (-1,1), (1,3) and (3,00).
Pick a number p from each subinterval and test the sign of f’ at p to determine
whether fis increasing or decreasing on that interval. Again, we do well to avoid
complicated computations; notice that the denominator of f’ is always positive
so we can ignore it during our work.
Interval 1, (—oo, —1):  Choosing a very small number (i.e., a negative number
with a large magnitude) p returns p> — 2p — 3 in the numerator of f’; that will
be positive. Hence fis increasing on (—oo, —1).
Interval 2, (—1,1): Choosing 0 seems simple: f'(0) = —3 < 0. We conclude
fis decreasing on (—1,1).
Interval 3, (1,3): Choosing 2 seems simple: f'(2) = —3 < 0. Again, fis
decreasing.

Notes:



Interval 4, (3,00): Choosing an very large number p from this subinterval will
give a positive numerator and (of course) a positive denominator. So fis increas-
ing on (3, 00).

In summary, fis increasing on the intervals (—oo, —1) and (3, c0) and is de-
creasing on the intervals (—1,1) and (1,3). Since at x = —1, the sign of f’
switched from positive to negative, Theorem 3.3.2 states that f(—1) is a relative
maximum of f. At x = 3, the sign of f’ switched from negative to positive, mean-
ing f(3) is a relative minimum. At x = 1, fis not defined, so there is no relative
extrema at x = 1.

rel. rel.

f'>0incr M §/ <0 decr f<o0decr ™M £ 5 0iner

-1 1 3

Figure 3.3.6: Number line for fin Example 3.3.2.

This is summarized in the number line shown in Figure 3.3.6. Also, Figure
3.3.5 shows a graph of f, confirming our calculations. This figure also shows
f’, again demonstrating that f is increasing when f’ > 0 and decreasing when
f' <o.

One is often tempted to think that functions always alternate “increasing,
decreasing, increasing, decreasing,...” around critical values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was not
technically a critical value, it was an important value we needed to consider.
We found that f was decreasing on “both sides of x = 1.”

We examine one more example.

Example 3.3.3 Using the First Derivative Test
Find the intervals on which f(x) = x3/3 — 4x?/3 is increasing and decreasing and
identify the relative extrema.

SOLUTION We again start with taking a derivative. Since we know we
want to solve f'(x) = 0, we will do some algebra after taking the derivative.

\h
—~
x
~—
I

Notes:

3.3

Increasing and Decreasing Functions
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10 |

Figure 3.3.8: A graph of f(x) in Example
3.3.3, showing where f is increasing and
decreasing.
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8
:Ex*%(x—l)(er 1).

This derivation of f’ shows that f'(x) = 0 when x = +1 and f’ is not de-
fined when x = 0. Thus we have 3 critical values, breaking the number line into
4 subintervals as shown in Figure 3.3.7.

Interval 1, (0o, —1): We choose p = —2; we can easily verify that f/(—2) <
0. So fis decreasing on (—oo, —1).
Interval 2, (—1,0): Choose p = —1/2. Once more we practice finding the sign
of f/(p) without computing an actual value. We have f'(p) = (8/3)p~'/3(p —
1)(p + 1); find the sign of each of the three terms.

Fo) =30 (-1 p+1).

<0 <0 >0

We have a “negative x negative X positive” giving a positive number; f is in-
creasing on (—1,0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

We have 2 positive factors and one negative factor; f/(p) < 0 and so fis de-
creasing on (0, 1).

Interval 4, (1, c0): Similar work to that done for the other three intervals shows
that f/(x) > 0 on (1, ), so fis increasing on this interval.

rel. rel. rel.
f'<odecr ™N > 0iner MX  f<odecr ™M £/ 0 iner

- ‘ ‘ ‘ g

-1 0 1

Figure 3.3.7: Number line for fin Example 3.3.3.

We conclude by stating that fis increasing on the intervals (—1, 0) and (1, co)
and decreasing on the intervals (—oco, —1) and (0,1). The sign of f’ changes
from negative to positive around x = —1 and x = 1, meaning by Theorem 3.3.2
that f(—1) and f(1) are relative minima of f. As the sign of f’ changes from pos-
itive to negative at x = 0, we have a relative maximum at f(0). Figure 3.3.8

Notes:



shows a graph of f, confirming our result. We also graph f’, highlighting once
more that fis increasing when f’ > 0 and is decreasing when f’ < 0.

We have seen how the first derivative of a function helps determine when
the function is going “up” or “down.” In the next section, we will see how the
second derivative helps determine how the graph of a function curves.

Notes:

3.3

Increasing and Decreasing Functions
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Exercises 3.3

Terms and Concepts

1. Inyour own words describe what it means for a function to
be increasing.

2. What does a decreasing function “look like”?

3. Sketch a graph of a function on [0, 2] that is increasing,
where it is increasing “quickly” near x = 0 and increasing
“slowly” near x = 2.

4. Give an example of a function describing a situation where
it is “bad” to be increasing and “good” to be decreasing.

5. T/F: Functions always switch from increasing to decreasing,
or decreasing to increasing, at critical points.

6. Afunction f has derivative f'(x) = (sinx + 2)e* ™%, where
f'(x) > 1forall x. Is fincreasing, decreasing, or can we not
tell from the given information?

Problems

In Exercises 7 — 14, a function f(x) is given.
(a) Compute f'(x).

(b) Graph f and f’ on the same axes (using technology is
permitted) and verify Theorem 3.3.1.

7. fx) =2x+3

8. f(x) =x* —3x+5

9. f(x) = cosx
10. f(x) =tanx
1. fx) =x* =5 +7x—1
12 fx) =2¢ —x* +x—1

13. f(x) = x* —5x% + 4

14.

1

=53

In Exercises 15 — 24, a function f(x) is given.

15.

16.

17.

(a) Give the domain of f.
(b) Find the critical numbers of f.

(c) Create a number line to determine the intervals on
which fis increasing and decreasing.

(d) Use the First Derivative Test to determine whether
each critical point is a relative maximum, minimum,
or neither.

fx) =x" +2x—3

fxX)=x+3¢+3

fx) =2 4+x —x+3

18. f(x) =x =3¢ +3x—1
1
19. f(x) = 12
X —4
20. f(x) = 21
X
20 = s
CEEI
22. f(x) = —
23. f(x) = sinxcosxon (—m, ).
24. f(x) = x> — 5x
Review

25.

26.

Consider f(x) = x* — 3x + 5 on [—1, 2]; find ¢ guaranteed
by the Mean Value Theorem.

Consider f(x) = sinxon [—7/2, 7/2]; find ¢ guaranteed by
the Mean Value Theorem.



3.4 Concavity and the Second Derivative

Our study of “nice” functions continues. The previous section showed how the
first derivative of a function, f’, can relay important information about f. We
now apply the same technique to f itself, and learn what this tells us about f.

The key to studying f’ is to consider its derivative, namely f”, which is the
second derivative of f. When f” > 0, f’ is increasing. When f”/ < 0, f' is
decreasing. f’ has relative maxima and minima where f” = 0 or is undefined.

This section explores how knowing information about f” gives information
about f.

Concavity

We begin with a definition, then explore its meaning.

Definition 3.4.1 Concave Up and Concave Down

Let f be differentiable on an interval /. The graph of f is concave up on /
if f is increasing. The graph of fis concave down on / if f’ is decreasing.
If f is constant then the graph of fis said to have no concavity.

The graph of a function fis concave up when f’ is increasing. That means as
one looks at a concave up graph from left to right, the slopes of the tangent lines
will be increasing. Consider Figure 3.4.1, where a concave up graph is shown
along with some tangent lines. Notice how the tangent line on the left is steep,
downward, corresponding to a small value of f/. On the right, the tangent line
is steep, upward, corresponding to a large value of f'.

If a function is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the function is increasing and concave up, then the rate
of increase is increasing. The function is increasing at a faster and faster rate.

Now consider a function which is concave down. We essentially repeat the
above paragraphs with slight variation.

The graph of a function fis concave down when f is decreasing. That means
as one looks at a concave down graph from left to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.4.2, where a concave down graph is
shown along with some tangent lines. Notice how the tangent line on the left
is steep, upward, corresponding to a large value of f’. On the right, the tangent
line is steep, downward, corresponding to a small value of .

If a function is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the function is decreasing and concave down, then the
rate of decrease is decreasing. The function is decreasing at a faster and faster
rate.

Notes:

3.4 Concavity and the Second Derivative

t } X
-2 2

Figure 3.4.1: A function f with a concave
up graph. Notice how the slopes of the
tangent lines, when looking from left to
right, are increasing.

Note: We often state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admittedly terrible, but it
works.

t } X
-2 2

Figure 3.4.2: A function f with a concave
down graph. Notice how the slopes of the
tangent lines, when looking from left to
right, are decreasing.
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f! < 0, decreasing
f” < 0,c. down

f! > 0, increasing
£'" < 0,c.down

£’ > 0, increasing
> 0,cup

f! < 0, decreasing
7 > 0cup

Figure 3.4.3: Demonstrating the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the relation-
ships with the first and second deriva-
tives.

Note: Geometrically speaking, a function
is concave up if its graph lies above its tan-
gent lines. A function is concave down if
its graph lies below its tangent lines.

15 +

Figure 3.4.4: A graph of a function with
its inflection points marked. The inter-
vals where concave up/down are also in-
dicated.
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Our definition of concave up and concave down is given in terms of when
the first derivative is increasing or decreasing. We can apply the results of the
previous section and to find intervals on which a graph is concave up or down.
That is, we recognize that f’ is increasing when f” > 0, etc.

Theorem 3.4.1 Test for Concavity

Let f be twice differentiable on an interval /. The graph of fis concave up
if f > 0on |/, and is concave down if f/ < 0 on /.

If knowing where a graph is concave up/down is important, it makes sense
that the places where the graph changes from one to the other is also important.
This leads us to a definition.

Definition 3.4.2 Point of Inflection

A point of inflection is a point on the graph of f at which the concavity
of f changes.

Figure 3.4.4 shows a graph of a function with inflection points labeled.

If the concavity of f changes at a point (c,f(c)), then f’ is changing from
increasing to decreasing (or, decreasing to increasing) at x = c¢. That means that
the sign of f” is changing from positive to negative (or, negative to positive) at
x = c. This leads to the following theorem.

Theorem 3.4.2 Points of Inflection

If (c,f(c)) is a point of inflection on the graph of f, then either f"(c) = 0
or f"" is not defined at c.

We have identified the concepts of concavity and points of inflection. It is
now time to practice using these concepts; given a function, we should be able
to find its points of inflection and identify intervals on which it is concave up or
down. We do so in the following examples.

Example 3.4.1 Finding intervals of concave up/down, inflection points
Let f(x) = x> — 3x + 1. Find the inflection points of fand the intervals on which
it is concave up/down.

Notes:



SOLUTION We start by finding f/(x) = 3x* — 3 and f”/(x) = 6x. To find
the inflection points, we use Theorem 3.4.2 and find where f”/(x) = 0 or where
f" is undefined. We find f” is always defined, and is 0 only when x = 0. So the
point (0,1) is the only possible point of inflection.

This possible inflection point divides the real line into two intervals, (—oco, 0)
and (0, c0). We use a process similar to the one used in the previous section to
determine increasing/decreasing. Pick any ¢ < 0; f”(c) < 0 so f is concave
down on (—o00, 0). Pickany ¢ > 0; f”(c) > 0so fis concave up on (0, co). Since
the concavity changes at x = 0, the point (0, 1) is an inflection point.

The number line in Figure 3.4.5 illustrates the process of determining con-
cavity; Figure 3.4.6 shows a graph of fand f”, confirming our results. Notice how
fis concave down precisely when f”(x) < 0 and concave up when f”(x) > 0.

Example 3.4.2 Finding intervals of concave up/down, inflection points
Let f(x) = x/(x* — 1). Find the inflection points of f and the intervals on which
it is concave up/down.

SOLUTION We need to find f" and f”. Using the Quotient Rule and sim-
plifying, we find

(x> +3)

_f/(X) _ —(1 +x2) and f”(X) _ W

To find the possible points of inflection, we seek to find where f”/(x) = 0 and
where f” is not defined. Solving f”/(x) = 0 reduces to solving 2x(x* + 3) = 0;
we find x = 0. We find that f” is not defined when x = +1, for then the
denominator of f” is 0. We also note that f itself is not defined at x = =+1,
having a domain of (—oo, —1) U (—1,1) U (1, 00). Since the domain of fis the
union of three intervals, it makes sense that the concavity of f could switch across
intervals. We technically cannot say that f has a point of inflection at x = +1 as
they are not part of the domain, but we must still consider these x-values to be
important and will include them in our number line.

The important x-values at which concavity might switcharex = —1,x =0
and x = 1, which split the number line into four intervals as shown in Figure
3.4.7. We determine the concavity on each. Keep in mind that all we are con-
cerned with is the sign of f” on the interval.

Interval 1, (—oco, —1): Select a number c in this interval with a large magnitude
(for instance, ¢ = —100). The denominator of " (x) will be positive. In the
numerator, the (¢? + 3) will be positive and the 2¢ term will be negative. Thus
the numerator is negative and f”/(c) is negative. We conclude fis concave down
on (—oo, —1).

Notes:

3.4 Concavity and the Second Derivative

f"” <0cdown f” >0c up

0

Figure 3.4.5: A number line determining
the concavity of fin Example 3.4.1.

Figure 3.4.6: A graph of f(x) used in Ex-
ample 3.4.1.
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+ )\

—~10 |

Figure 3.4.8: A graph of f(x) and f”(x) in
Example 3.4.2.

20 7

s | S(t)

10 +

Figure 3.4.9: A graph of S(t) in Example
3.4.3, modeling the sale of a product over
time.
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Interval 2, (—1,0): For any number c in this interval, the term 2c in the numer-
ator will be negative, the term (c* + 3) in the numerator will be positive, and
the term (c2 — 1)3 in the denominator will be negative. Thus f”/(c) > 0 and fis
concave up on this interval.

Interval 3, (0, 1): Any number cin this interval will be positive and “small.” Thus
the numerator is positive while the denominator is negative. Thus f”(c) < 0
and fis concave down on this interval.

Interval 4, (1, 00): Choose a large value for c. It is evident that f”/(c) > 0, so we
conclude that fis concave up on (1, c0).

f” < 0 c. down f” >0cup f” <0 c. down f” >0cup

h ‘ ‘ ‘ g

-1 0 1

Figure 3.4.7: Number line for fin Example 3.4.2.

We conclude that fis concave up on (—1,0) and (1, co) and concave down
on (—oo, —1) and (0, 1). There is only one point of inflection, (0, 0), as fis not
defined at x = 1. Our work is confirmed by the graph of fin Figure 3.4.8. No-
tice how fis concave up whenever f” is positive, and concave down when " is
negative.

Recall that relative maxima and minima of f are found at critical points of
f; that is, they are found when f'(x) = 0 or when f’ is undefined. Likewise,
the relative maxima and minima of f are found when f”/(x) = 0 or when f" is
undefined; note that these are the inflection points of f.

What does a “relative maximum of f’ ” mean? The derivative measures the
rate of change of f; maximizing f’ means finding where fis increasing the most —
where f has the steepest tangent line. A similar statement can be made for min-
imizing f'; it corresponds to where f has the steepest negatively—sloped tangent
line.

We utilize this concept in the next example.

Example 3.4.3 Understanding inflection points

The sales of a certain product over a three-year span are modeled by S(t) =
t* — 8t + 20, where t is the time in years, shown in Figure 3.4.9. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

SOLUTION We want to maximize the rate of decrease, which is to say,
we want to find where S’ has a minimum. To do this, we find where S is 0. We
find S’(t) = 4t — 16tand S” (t) = 12t*> — 16. Setting S”(t) = 0 and solving, we
gett = /4/3 = 1.16 (we ignore the negative value of t since it does not lie in

Notes:



the domain of our function S).

This is both the inflection point and the point of maximum decrease. This
is the point at which things first start looking up for the company. After the
inflection point, it will still take some time before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

A graph of S(t) and S’(t) is given in Figure 3.4.10. When §’(t) < 0, sales are
decreasing; note how at t & 1.16, S’(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t &~ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “leveling off.”

Not every critical point corresponds to a relative extrema; f(x) = x3 has a
critical point at (0, 0) but no relative maximum or minimum. Likewise, just be-
cause f”(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflection” since we needed
to check to see if the concavity changed. The canonical example of f/(x) = 0
without concavity changing is f(x) = x*. Atx = 0, f”(x) = 0 but fis always
concave up, as shown in Figure 3.4.11.

The Second Derivative Test

The first derivative of a function gave us a test to find if a critical value cor-
responded to a relative maximum, minimum, or neither. The second derivative
gives us another way to test if a critical point is a local maximum or minimum.
The following theorem officially states something that is intuitive: if a critical
value occurs in a region where a function fis concave up, then that critical value
must correspond to a relative minimum of f, etc. See Figure 3.4.12 for a visual-
ization of this.

Theorem 3.4.3 The Second Derivative Test

Let ¢ be a critical value of f where "/ (c) is defined.
1. If f”(c) > 0, then f has a local minimum at (c, f(c)).

2. Iff”(c) < 0, then f has a local maximum at (c, f(c)).

The Second Derivative Test relates to the First Derivative Test in the following
way. If f”(c) > 0, then the graph is concave up at a critical point ¢ and f' itself
is growing. Since f'(c) = 0 and f’ is growing at c, then it must go from negative
to positive at c. This means the function goes from decreasing to increasing, in-
dicating a local minimum at c.

Notes:

3.4 Concavity and the Second Derivative

s(t)

10 +

s'(1)

Figure 3.4.10: A graph of S(t) in Example

3.4.3 along with S’ (t).

Figure 3.4.11: A graph of f(x) = x"
Clearly fis always concave up, despite the
fact that f”/(x) = 0 when x = 0. It this
example, the possible point of inflection
(0,0) is not a point of inflection.

10 1

c. down

=>rel. max S5

: : : > X
-2 -1 1 2
—5 c.up
= rel. min
—10
Figure 3.4.12: Demonstrating the fact

that relative maxima occur when the
graph is concave down and relative min-
ima occur when the graph is concave up.
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40 +

f'7(10) >0

Figure 3.4.13: A graph of f(x) in Example
3.4.4. The second derivative is evaluated
at each critical point. When the graph is
concave up, the critical point represents
a local minimum; when the graph is con-
cave down, the critical point represents a
local maximum.
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Example 3.4.4 Using the Second Derivative Test
Let f(x) = 100/x + x. Find the critical points of f and use the Second Derivative
Test to label them as relative maxima or minima.

SoLuTioN We find f/(x) = —100/x* + 1 and f”(x) = 200/x>. We set
f'(x) = 0.and solve for x to find the critical values (note that f' is not defined at
x = 0, but neither is f so this is not a critical value.) We find the critical values
are x = £10. Evaluating f” at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. Evaluating f”(—10) = —0.1 < 0, determining a relative maximum
at x = —10. These results are confirmed in Figure 3.4.13.

We have been learning how the first and second derivatives of a function
relate information about the graph of that function. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locations of relative extrema and inflection points. In Chapter 1
we saw how limits explained asymptotic behavior. In the next section we com-
bine all of this information to produce accurate sketches of functions.

Notes:



Exercises 3.4

Terms and Concepts

1. Sketch a graph of a function f(x) that is concave up on (0, 1)
and is concave down on (1, 2).

2. Sketch a graph of a function f(x) that is:

(a) Increasing, concave up on (0, 1),
(b) increasing, concave down on (1, 2),
(c) decreasing, concave down on (2, 3) and

(d) increasing, concave down on (3, 4).

3. Is is possible for a function to be increasing and concave
down on (0, co) with a horizontal asymptote of y = 1? If
so, give a sketch of such a function.

4. lIsis possible for a function to be increasing and concave up
on (0, co) with a horizontal asymptote of y = 1? If so, give
a sketch of such a function.

Problems

In Exercises 5 — 14, a function f(x) is given.
(a) Compute f”(x).

(b) Graph fand f" on the same axes (using technology is
permitted) and verify Theorem 3.4.1.

5. f(x) = —7x+3

6. f(x) = —4xX +3x—8

7. f(x) = 4x +3x—8

8 f(X)=x* =3 +x—1
9. f(x) = =X +x —2x+5
10. f(x) = sinx

11. f(x) =tanx

1
12. f(x) = el
13. flx) = %
14, 1) =

In Exercises 15 — 28, a function f(x) is given.
(a) Find the possible points of inflection of f.

(b) Create a number line to determine the intervals on
which f is concave up or concave down.

15. f(x) =x" —2x+1
16. f(x) = —x* —5x+7
17. fx) =X —x+1

18. f(x) = 2 —3x +9x +5

19. f(x) = 4+ = —2x+3

IN K

x
3

20. f(x) = —3x* +8x° + 6x° — 24x 42
4 3 2
21 f(x) =x"—4x +6x" —4x+1

22. f(x) = secxon (—37/2,37/2)

1
24. f(x) = xz)i -

25. f(x) = sinx + cosxon (—m, )

26. f(x) = x€"

27. f(x) =X Inx

28. f(x) =e™*
In Exercises 29 — 42, a function f(x) is given. Find the critical
points of f and use the Second Derivative Test, when possi-
ble, to determine the relative extrema. (Note: these are the
same functions as in Exercises 15 — 28.)

29. fx) =xX —2x+1

30. f(x) = —x* —5x+ 7

31 f(x) =x* —x+1

32, f(x) =2x° =38 +9x+5

33, f(x) =

§—2x+3

34, f(x) = —3x* + 8%’ + 6x* — 24x + 2
4 3 2
35. f(x) =x" —4x +6x" —4x+1

36. f(x) =secxon (—3w/2,37/2)
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1
38. f(x) = ﬁ

39. f(x) = sinx + cosxon (—m, )

42. fix) =e™"
In Exercises 43 — 56, a function f(x) is given. Find the x val-
ues where f'(x) has a relative maximum or minimum. (Note:
these are the same functions as in Exercises 15 — 28.)

43, f(x) =x* —2x+1

44, f(x) = —xX* —5x+7

45. f(x) =x —x+1

46. f(x) =2x* =3¢ +9x+5

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

xX* e

f(X): Z+§—2X+3
f(x) = —3x" 4+ 8x° + 6x" — 24x + 2
f) =x*—a +6x —4x+1
f(x) = secxon (—37/2,37/2)

1
fix) = x24+1

X
fx) = 2_1
f(x) = sinx 4 cosxon (—m, )
flx) = e
fx) =X Inx



3.5 Curve Sketching

We have been learning how we can understand the behavior of a function based
on its first and second derivatives. While we have been treating the properties
of a function separately (increasing and decreasing, concave up and concave
down, etc.), we combine them here to produce an accurate graph of the function
without plotting lots of extraneous points.

Why bother? Graphing utilities are very accessible, whether on a computer,
a hand-held calculator, or a smartphone. These resources are usually very fast
and accurate. We will see that our method is not particularly fast — it will require
time (but it is not hard). So again: why bother?

We are attempting to understand the behavior of a function f based on the
information given by its derivatives. While all of a function’s derivatives relay
information about it, it turns out that “most” of the behavior we care about is
explained by f” and f”. Understanding the interactions between the graph of f
and f’ and f” is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is somewhat
similar to stating that one understands how an engine works after looking only at
pictures. It is true that the basic ideas will be conveyed, but “hands—on” access
increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching graphs of functions and gives a framework for putting that
information together. It is followed by several examples.

Key Idea 3.5.1 Curve Sketching

To produce an accurate sketch a given function f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
entire real line then find restrictions, such as where a denominator
is 0 or where negatives appear under the radical.

2. Find the critical values of f.
3. Find the possible points of inflection of f.

4. Find the location of any vertical asymptotes of f (usually done in
conjunction with item 1 above).

5. Consider the limits f(x) and lim f(x) to determine the end
X X— 00

lim
——00
behavior of the function.

(continued)

Notes:

3.5 Curve Sketching
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Key Idea 3.5.1 Curve Sketching — Continued

6. Create a number line that includes all critical points, possible
points of inflection, and locations of vertical asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each critical point and possible point of inflection.
Plot these points on a set of axes. Connect these points with curves
exhibiting the proper concavity. Sketch asymptotes and x and y
intercepts where applicable.

Example 3.5.1 Curve sketching
Use Key Idea 3.5.1 to sketch f(x) = 3x3 — 10x*> + 7x + 5.

SOLUTION We follow the steps outlined in the Key Idea.

1. The domain of fis the entire real line; there are no values x for which f(x)

is not defined.

2. Find the critical values of f. We compute f’(x) = 9x*> — 20x + 7. Use the

Quadratic Formula to find the roots of f':

L 204 \/(—g?;; —409)@) _ % (10 i+ \/ﬁ) = x ~ 0.435,1.787.

3. Find the possible points of inflection of f. Compute f”(x) = 18x — 20. We

have
f"(x) =0=x=10/9 ~ 1.111.

4. There are no vertical asymptotes.

5. We determine the end behavior using limits as x approaches *infinity.

Xj@ f(x) = —oc0 XILm f(x) = 0.

We do not have any horizontal asymptotes.

6. We place the values x = (10 4+ +/37)/9 and x = 10/9 on a number

line, as shown in Figure 3.5.1. We mark each subinterval as increasing or

Notes:
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3.5 Curve Sketching

decreasing, concave up or down, using the techniques used in Sections
3.3and 3.4.

f’ > 0 incr f’ < 0 decr f' < 0 decr f’ >0 incr
f” < 0 c. down ‘ f" < 0 c. down ‘ f” >0c up ‘ f"” <0c up
) \ \ \ - 5 f

1(10—+/37) Y1111 1(10+v37)
~ 0.435 ~ 1.787

: : : > x
Figure 3.5.1: Number line for fin Example 3.5.1. -1 / 1 2 3

7. We plot the appropriate points on axes as shown in Figure 3.5.2(a) and -5 |
connect the points with straight lines. In Figure 3.5.2(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = —0.424. In Figure 3.5.2(c) we show y
a graph of fdrawn with a computer program, verifying the accuracy of our 10 T
sketch.

(a)

X2 —x—2

5
Example 3.5.2 Curve sketching
Sketch f(x) = ‘

X J—

2 6 T T T T X
1/ 1 2 3
SOLUTION We again follow the steps outlined in Key Idea 3.5.1.

1. In determining the domain, we assume it is all real numbers and look for
restrictions. We find that at x = —2 and x = 3, f(x) is not defined. So the
domain of fis D = {real numbers x | x # —2,3}.

(b)

2. To find the critical values of f, we first find f/(x). Using the Quotient Rule,

we find
iy & +4 —8x+4
o) = (X+x—6)2  (x—3)2(x+2)? 5/

f'(x) = 0when x = 1/2, and f’ is undefined when x = —2, 3. Since f’
is undefined only when fis, these are not critical values. The only critical 11 / ‘ ‘ > X

valueis x = 1/2.

3. To find the possible points of inflection, we find f”(x), again employing St
the Quotient Rule: (c)

_ 24x* — 24x +56

/X)) = ———— . Figure 3.5.2: Sketching fin Example 3.5.1.
=301 2

We find that f” (x) is never O (setting the numerator equal to 0 and solving
for x, we find the only roots to this quadratic are imaginary) and f” is

Notes:
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Chapter 3 The Graphical Behavior of Functions

undefined when x = —2,3. Thus concavity will possibly only change at
x=—2andx = 3.

4. The vertical asymptotes of fare at x = —2 and x = 3, the places where f
is undefined.

5. Thereis ahorizontal asymptoteofy = 1, as f(x) = 1land lim f(x) =
X X— 00

lim
——00

4 1.

6. We place the values x = 1/2, x = —2 and x = 3 on a number line as
shown in Figure 3.5.3. We mark in each interval whether fis increasing or
decreasing, concave up or down. We see that f has a relative maximum at
x = 1/2; concavity changes only at the vertical asymptotes.

y f’ >0 incr f’ >0 incr f’ < 0 decr f' < 0 decr

f” >0cup ‘ f” < 0 c. down f" < 0 c. down ‘ f” >0c up

< i i >
2 3

Nl ——

7. In Figure 3.5.4(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the function looks like (these lines effectively only convey increas-
ing/decreasing information). In Figure 3.5.4(b), we adjust the graph with

(b) the appropriate concavity. We also show f crossing the x axisat x = —1

and x = 2.

|
|
|
|
|
:
|
e X Figure 3.5.3: Number line for fin Example 3.5.2.
|
|
|
|
|
|
|
|

Figure 3.5.4(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch.

77777 Example 3.5.3 Curve sketching

4 X2+ 2x+4

SOLUTION We again follow Key Idea 3.5.1.

1. We assume that the domain of fis all real numbers and consider restric-
tions. The only restrictions come when the denominator is 0, but this
(©) never occurs. Therefore the domain of fis all real numbers, R.

B i —> x Sketch f(x) = w

2. We find the critical values of f by setting f'(x) = 0 and solving for x. We

Figure 3.5.4: Sketching fin Example 3.5.2. find
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) = XX +4) () = _—
f(x)i(x2+2x+4)2 = f'(x) =0when x = —4,0.

Notes:



3. We find the possible points of inflection by solving f”/(x) = 0 for x. We
find
30x3 + 180x* — 240
(x> +2x+4)3
The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = —5.759, x = —1.305 and x = 1.064.

f”(X) — _

4. There are no vertical asymptotes.

f(x) = lim f(x) =5.

5. We have a horizontal asymptote of y = 5,as |im
X—r— 00 X—r 00

6. We place the critical points and possible points on a number line as shown
in Figure 3.5.5 and mark each interval as increasing/decreasing, concave
up/down appropriately.

f’>0\’ncr f'>0incr f’<0decr f’<0decr f/>0incr f’>0decr
' >0cup f" < o0cdown f'" < 0c down ' >0cup " >0cup f'" < 0 c down
< | | | .
I I I I I
—5.579 —4 —1.305 0 1.064

Figure 3.5.5: Number line for fin Example 3.5.3.

7. In Figure 3.5.6(a) we plot the significant points from the number line as
well as the two roots of f, x = —1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
3.5.6(b), we add concavity. Figure 3.5.6(c) shows a computer generated
graph of f, affirming our results.

In each of our examples, we found a few, significant points on the graph of
f that corresponded to changes in increasing/decreasing or concavity. We con-
nected these points with straight lines, then adjusted for concavity, and finished
by showing a very accurate, computer generated graph.

Why are computer graphics so good? Itis not because computers are “smart-
er” than we are. Rather, it is largely because computers are much faster at com-
puting than we are. In general, computers graph functions much like most stu-
dents do when first learning to draw graphs: they plot equally spaced points,
then connect the dots using lines. By using lots of points, the connecting lines
are short and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noticeable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as

Notes:

3.5 Curve Sketching

(c)

Figure 3.5.6: Sketching fin Example 3.5.3.
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Mathematica, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 3.5.7, a graph of y = sinx is given, generated by Mathematica.
The small points represent each of the places Mathematica sampled the func-
tion. Notice how at the “bends” of sin x, lots of points are used; where sin x is
relatively straight, fewer points are used. (Many points are also used at the end-
points to ensure the “end behavior” is accurate.) In fact, in the interval of length
0.2 centered around 7/2, Mathematica plots 72 of the 431 points plotted; that
is, it plots about 17% of its points in a subinterval that accounts for about 3% of
the total interval length.

10F

05

-05+

-10+

Figure 3.5.7: A graph of y = sin x generated by Mathematica.

How does Mathematica know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivatives of a function work together to provide a measurement of “curvi-
ness.” Mathematica employs algorithms to determine regions of “high curva-
ture” and plots extra points there.

Again, the goal of this section is not “How to graph a function when there
is no computer to help.” Rather, the goal is “Understand that the shape of the
graph of a function is largely determined by understanding the behavior of the
function at a few key places.” In Example 3.5.3, we were able to accurately sketch
a complicated graph using only 5 points and knowledge of asymptotes!

There are many applications of our understanding of derivatives beyond curve
sketching. The next chapter explores some of these applications, demonstrat-
ing just a few kinds of problems that can be solved with a basic knowledge of
differentiation.

Notes:



Exercises 3.5

Terms and Concepts

1. Why is sketching curves by hand beneficial even though
technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of functions, it is useful to find
the critical points.

4. T/F: When sketching graphs of functions, it is useful to find
the possible points of inflection.

5. T/F: When sketching graphs of functions, it is useful to find
the horizontal and vertical asymptotes.

6. T/F: When sketching graphs of functions, one need not plot
any points at all.
Problems

In Exercises 7 — 12, practice using Key Idea 3.5.1 by applying
the principles to the given functions with familiar graphs.

7. f(x) = 2x+ 4

8 f(x) = —x+1

9. f(x) =sinx
10. f(x) =€*
11, f(x) = %
12. f(x) = Xlz

In Exercises 13 — 26, sketch a graph of the given function us-
ing Key Idea 3.5.1. Show all work; check your answer with
technology.

13. f(x) =x> —2X" +4x+1

14. f(x) = —x* + 55 —3x+2

15. f(x) =x + 38 +3x+1
16. fx) =x =X —x+1
17. f(x) = (x —2)In(x — 2)

18. f(x) = (x—2)*In(x — 2)

X —4
19. f(x) = "

X —4x+3
20. f(x) = P

X —2x+1
2L ) = et s

22, f(x) =xvx+1
23. f(x) = x*e"

24. f(x) = sinxcosxon [—m, 7]

25. f(x) = (x—3)*> 42
a\2/3
26. f(x) = %

In Exercises 27 — 30, a function with the parameters g and b
are given. Describe the critical points and possible points of
inflection of fin terms of a and b.

_a
x2 + b?

27. f(x) =
28. f(x) = ax* +bx+1
29. f(x) = sin(ax + b)
30. f(x) = (x—a)(x — b)

31. Given x> +y* = 1, use implicit differentiation to find £
and %. Use this information to justify the sketch of the

unit circle.
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4: APPLICATIONS OF THE
DERIVATIVE

In Chapter 3, we learned how the first and second derivatives of a function influ-
ence its graph. In this chapter we explore other applications of the derivative.

4.1 Newton’s Method

Solving equations is one of the most important things we do in mathematics,
yet we are surprisingly limited in what we can solve analytically. For instance,
equations as simple as x> + x4 1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar functions. Fortunately, there are methods that
can give us approximate solutions to equations like these. These methods can
usually give an approximation correct to as many decimal places as we like. In
Section 1.5 we learned about the Bisection Method. This section focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an initial guess about roughly where the
root is. Call this xy. (See Figure 4.1.1(a).) Draw the tangent line to the graph at
(xo0,f(x0)) and see where it meets the x-axis. Call this point x;. Then repeat the
process —draw the tangent line to the graph at (x1, f(x1)) and see where it meets
the x-axis. (See Figure 4.1.1(b).) Call this point x,. Repeat the process again to
get x3, X4, etc. This sequence of points will often converge rather quickly to a
root of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x;. We started with the tangent line to the graph at (xo, f(xo)).
The slope of this tangent line is f/(xo) and the equation of the line is

y = f'(xo0)(x — Xo) + f(xo)-

This line crosses the x-axis when y = 0, and the x—value where it crosses is what
we called x;. So let y = 0 and replace x with x;, giving the equation:

0 =f"(x0)(x1 — Xo) + f(xo).

Now solve for x;:
f(Xo)
f'(x0)

X1 = Xo —

A
I
l
0.5 + |
I
I
|

—0.5 +

é_
05 \
1 . !
Xo X2 X
|
—05 | |
|

0.5 +

x
S
x L __
9
X
&
x
s

—0.5 +

(c)

Figure 4.1.1: Demonstrating the geo-
metric concept behind Newton’s Method.
Note how x3 is very close to a solution to

f(x)=0.



Chapter 4

Note: Newton’s Method is not infalli- 2
ble. The sequence of approximate values
may not converge, or it may converge so

Applications of the Derivative

Since we repeat the same geometric process to find x, from x;, we have

flxa)
flia)

X2 = X1 —

In general, given an approximation x,, we can find the next approximation, x,+1
as follows:

f(xn)

Xn+1 = Xn _f'(X )
n

We summarize this process as follows.

Key Idea 4.1.1 Newton’s Method

Let f be a differentiable function on an interval / with a root in /. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value xq as an initial approximation of the root. (This is
often done by looking at a graph of f.)

. Create successive approximations iteratively; given an approxima-
tion x,, compute the next approximation x,, 41 as

slowly that one is “tricked” into thinking a f(x )
certain approximation is better than it ac- Xn+1 = Xn — ; u
tually is. These issues will be discussed at f (X")

the end of the section.

168

3. Stop the iterations when successive approximations do not differ
in the first d places after the decimal point.

Let’s practice Newton’s Method with a concrete example.

Example 4.1.1 Using Newton’s Method
Approximate the real root of x> — x> — 1 = 0, accurate to the first 3 places after
the decimal, using Newton’s Method and an initial approximation of xo = 1.

SOLUTION To begin, we compute f’(x) = 3x*> — 2x. Then we apply the

Notes:



4.1 Newton’s Method

Newton’s Method algorithm, outlined in Key Idea 4.1.1.

1 ’-12-1
x3=1-— ) _ - =2
(1) 3.12-2-1
2 23-22-1
X3 =2— f2) =2— ———— =1.625,
f(2) 3.22-2.2
f(1.625) 1.625% — 1.6252 — 1
x3=1.625— - =1.625 — ~ 1.48579. y
f/(1.625) 3-1.6252 —2-1.625 A
f(1.48579)
X4 = 1.48579 — - ~ 1.46596
f'(1.48579) ; ; ;
f(1.46596) 0.5 ! L5
Xs = 1.46596 — " ~ 1.46557
f'(1.46596) —0.5 |

We performed 5 iterations of Newton’s Method to find a root accurate to the
first 3 places after the decimal; our final approximation is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our xs is accurate
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.1.2. We can see from the graph that our
initial approximation of x, = 1 was not particularly accurate; a closer guess
would have been xg = 1.5. Our choice was based on ease of initial calculation,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate initial approximation.

—-1.5

Figure 4.1.2: Agraphof f(x) = X —x* —1
in Example 4.1.1.

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculation. Start by pressing 1 and then Enter.
(We have just entered our initial guess, xo = 1.) Now compute

f(Ans)
f'(Ans)

by entering the following and repeatedly press the Enter key:

Ans —

Ans-(Ans~3-Ans~2-1)/(3*xAns”2-2*Ans)

Each time we press the Enter key, we are finding the successive approximations,
X1, X2, ..., and each one is getting closer to the root. In fact, once we get past
around x; or so, the approximations don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
pretty confident that we have found an accurate approximation.

Using a calculator in this manner makes the calculations simple; many iter-
ations can be computed very quickly.

Notes:
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Chapter 4 Applications of the Derivative

Figure 4.1.3: A graph of f(x) = cosx — x
used to find an initial approximation of its
root.
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Example 4.1.2 Using Newton’s Method to find where functions intersect
Use Newton’s Method to approximate a solution to cosx = x, accurate to 5
places after the decimal.

SOLUTION Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equations like f(x) = g(x). However, this is
not a problem; we can rewrite the latter equation as f(x) — g(x) = 0 and then
use Newton’s Method.

So we rewrite cosx = x as cosx — x = 0. Written this way, we are finding
a root of f(x) = cosx — x. We compute f'(x) = —sinx — 1. Next we need a
starting value, xo. Consider Figure 4.1.3, where f(x) = cosx — x is graphed. It
seems that xo = 0.75 is pretty close to the root, so we will use that as our xg.
(The figure also shows the graphs of y = cosx and y = x, drawn with dashed
lines. Note how they intersect at the same x value as when f(x) = 0.)

We now compute X3, X, etc. The formula for x; is

cos(0.75) — 0.75

- ~ 0.7391111388.
—sin(0.75) — 1

x1 =0.75 —

Apply Newton’s Method again to find x;:

cos(0.7391111388) — 0.7391111388

X, = 0.7391111388 — :
—sin(0.7391111388) — 1

~ 0.7390851334.

We can continue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inputting
our initial approximation. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approximations. We
quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approximations x, and x3 did not differ for at least the first 5 places after the
decimal, so we could have stopped. However, using our calculator in the man-
ner described is easy, so finding x, was not hard. It is interesting to see how we
found an approximation, accurate to as many decimal places as our calculator
displays, in just 4 iterations.

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computation in this problem.

Notes:



x = .75
while true
oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001
break

This code calculates x3, x,, etc., storing each result in the variable x. The pre-
vious approximation is stored in the variable o1dx. We continue looping until
the difference between two successive approximations, abs (x-o0ldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method

What should one use for the initial guess, xo? Generally, the closer to the
actual root the initial guess is, the better. However, some initial guesses should
be avoided. For instance, consider Example 4.1.1 where we sought the root to
flx) = x3 —x? — 1. Choosing xo = 0 would have been a particularly poor choice.
Consider Figure 4.1.4, where f(x) is graphed along with its tangent line at x = 0.
Since f'(0) = 0, the tangent line is horizontal and does not intersect the x—axis.
Graphically, we see that Newton’s Method fails.

We can also see analytically that it fails. Since

f(0)
f'(0)

and f’(0) = 0, we see that x; is not well defined.

This problem can also occur if, for instance, it turns out that f'(xs) = 0.
Adjusting the initial approximation xo by a very small amount will likely fix the
problem.

Itis also possible for Newton’s Method to not converge while each successive
approximation is well defined. Consider f(x) = x1/3, as shown in Figure 4.1.5. It
is clear that the root is x = 0, but let’s approximate this with x, = 0.1. Figure
4.1.5(a) shows graphically the calculation of x;; notice how it is farther from the
root than xq. Figures 4.1.5(b) and (c) show the calculation of x, and x3, which are
even farther away; our successive approximations are getting worse. (It turns
out that in this particular example, each successive approximation is twice as far
from the true answer as the previous approximation.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
time,” and itis generally very fast. Once the approximations get close to the root,

X1:0—

Notes:

4.1 Newton’s Method

Figure 4.1.4: Agraph of f(x) = x* —x*—1,
showing why an initial approximation of
Xo = 0 with Newton’s Method fails.

(a)

(c)

Figure 4.1.5: Newton’s Method fails to
find a root of f(x) = x/*, regardless of
the choice of xo.
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Chapter 4 Applications of the Derivative

Newton’s Method can as much as double the number of correct decimal places
with each successive approximation. A course in Numerical Analysis will intro-
duce the reader to more iterative root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.

Notes:
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Exercises 4.1

Terms and Concepts

1. T/F: Given a function f(x), Newton’s Method produces an
exact solution to f(x) = 0.

2. T/F: In order to get a solution to f(x) = O accurate to d

places after the decimal, at least d + 1 iterations of New-
tons’ Method must be used.

Problems

In Exercises 3 — 8, the roots of f(x) are known or are easily
found. Use 5 iterations of Newton’s Method with the given
initial approximation to approximate the root. Compare it to
the known value of the root.

3. f(x) = cosx,xo = 1.5

4. f(x) =sinx,xo =1

5. f(x) =xX* +x—2,% =0

6. fx) =x* —2,x0=1.5

7. f(x) =Inx,xo =2

8 fX)=x - +x—1,%=1

In Exercises 9 — 12, use Newton’s Method to approximate all
roots of the given functions accurate to 3 places after the dec-

imal. If an interval is given, find only the roots that lie in
that interval. Use technology to obtain good initial approx-
imations.

9. fX) =X +5¢ —x—1

10. f(x) =x"+2¢ —7x* —x+5

11. f(x) = x7 — 2x® —10x® + 10 0n (-2,2)

12. f(x) = x¥* cosx + (x — 1) sinx on (-3, 3)

In Exercises 13 — 16, use Newton’s Method to approximate
when the given functions are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good initial approx-
imations.

13. f(x) = x*, g(x) = cosx

14. f(x) = x* — 1,9(x) = sinx

15. f(x) = e’ g(x) = cosx

16. f(x) = x, g(x) = tanxon [—6, 6]

17. Why does Newton’s Method fail in finding a root of f(x) =
X —3x* + x4+ 3whenx, = 1?

18. Why does Newton’s Method fail in finding a root of f(x) =
—17x* + 130x* — 301x* 4 156x + 156 when xo = 1?
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Chapter 4 Applications of the Derivative

Note: This section relies heavily on im-
plicit differentiation, so referring back to
Section 2.6 may help.
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4.2 Related Rates

When two quantities are related by an equation, knowing the value of one quan-
tity can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 27r; knowing that C = 6in determines the
radius must be 3in.

The topic of related rates takes this one step further: knowing the rate
at which one quantity is changing can determine the rate at which another
changes.

We demonstrate the concepts of related rates through examples.

Example 4.2.1 Understanding related rates
The radius of a circle is growing at a rate of 5in/hr. At what rate is the circumfer-
ence growing?

SOLUTION The circumference and radius of a circle are related by C =
27r. We are given information about how the length of r changes with respect

to time; that is, we are told % = 5in/hr. We want to know how the length of C
changes with respect to time, i.e., we want to know %.

Implicitly differentiate both sides of C = 2zr with respect to t:

C=2nr

d d
dc_, o
at

As we know Z—: = 5in/hr, we know

dc .
i 275 = 107 ~ 31.4in/hr.

Consider another, similar example.

Example 4.2.2 Finding related rates
Water streams out of a faucet at a rate of 2in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Notes:



SOLUTION

1. We can answer this question two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2in3/s, where

volume of puddle = area of circle x depth.

Since the depth is constant at 1/8in, the area must be growing by 16in?/s.

This approach reveals the underlying related—rates principle. Let Vand A
represent the Volume and Area of the puddle. We know V = A x % Take
the derivative of both sides with respect to t, employing implicit differen-

tiation.
1
V=-A
8
d d /1
—(vV)=—(=A
&= ()
dv  1dA
dt ~ 8dt
dv __ __1dA dA __ H
As & = 2, we know 2 = 39 and hence & = 16. Thus the area is

growing by 16in?/s.

2. To start, we need an equation that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = 7rr2. We should be able to learn about the rate at which
the radius is growing with this information.

Implicitly derive both sides of A = 7r? with respect to t:

A=Tr
d d )
E( ) = &(W)
dA 2t r
= onr—
dt dt
Our work above told us that % = 16in?/s. Solving for %, we have
dr 8
dt  wr’

Note how our answer is not a number, but rather a function of r. In other
words, the rate at which the radius is growing depends on how big the

Notes:

4.2

Related Rates
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Figure 4.2.1: A sketch of a police car
(at bottom) attempting to measure the
speed of a car (at right) in Example 4.2.3.

176

circle already is. If the circle is very large, adding 2in® of water will not
make the circle much bigger at all. If the circle is dime—sized, adding the
same amount of water will make a radical change in the radius of the circle.

In some ways, our problem was (intentionally) ill-posed. We need to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10in, the radius is growing at a rate of

ar 8 4 0.25in/s
—_— = — = — 0. | .
dt 10w 57

Example 4.2.3 Studying related rates

Radar guns measure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“—25mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, attached to a police car) then radar readouts
are only immediately understandable if the gun and the object are moving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75mph. (This straight—line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at 30 mph and sees a car moving due
east, as shown in Figure 4.2.1. Using his radar gun, he measures a reading of
20mph. By using landmarks, he believes both he and the other car are about
1/2 mile from the intersection of their two roads.

If the speed limit on the other road is 55mph, is the other driver speeding?

SOLUTION Using the diagram in Figure 4.2.1, let’s label what we know
about the situation. As both the police officer and other driver are 1/2 mile from
the intersection, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/1/2 ~ 0.707.

94 — _30. The

We know the police officer is traveling at 30mph; that is, 7
reason this rate of change is negative is that A is getting smaller; the distance
between the officer and the intersection is shrinking. The radar measurement
is % = 20. We want to find 2.

We need an equation that relates Bto A and/or C. The Pythagorean Theorem

Notes:



is a good choice: A2 + B> = (2. Differentiate both sides with respect to t:

A2+ B =7

d d
— (A2 +B%) = — (C?
2498 | g% _ 5%
dt dt " dt

We have values for everything except %. Solving for this we have

dB  CL — A%
P % ~ 58.28mph.

The other driver appears to be speeding slightly.

Example 4.2.4 Studying related rates

A camera is placed on a tripod 10ft from the side of a road. The camerais to turn
to track a car that is to drive by at 100mph for a promotional video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.2.2 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

SOLUTION We seek information about how fast the camera is to turn;
therefore, we need an equation that will relate an angle 6 to the position of the
camera and the speed and position of the car.

Figure 4.2.2 suggests we use a trigonometric equation. Letting x represent
the distance the car is from the point on the road directly in front of the camera,
we have

tanf = . (4.1)
10

As the car is moving at 100mph, we have % = —100mph (asin the last example,
dx

since x is getting smaller as the car travels, g is negative). We need to convert

the measurements so they use the same units; rewrite —100mph in terms of
ft/s:
X _ _100™ = 100
dt hr hr

m ft 1 hr _
— .5280— - —— — = —146.6ft/s.
m 3600 s

Now take the derivative of both sides of Equation (4.1) using implicit differenti-

Notes:

4.2 Related Rates

Note: Example 4.2.3 is both interesting
and impractical. It highlights the difficulty
in using radar in a non—linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.

The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances, radar—like
measurements and the concepts of
related rates.

100mph

A
p
Y

10ft

Figure 4.2.2: Tracking a speeding car (at
left) with a rotating camera.
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ation:
tanG:L
10
d d /s x
—(tanf) = — (—
g (ten?) dt<10)
do 1 dx
297:77
Yt T 104
i&_coszﬁg (4.2)
dt = 10 dt '

We want to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when 8 = 0). Our mathe-
matics bears this out. In Equation (4.2) we see this is when cos? @ is largest; this
is when cosf = 1, or when 6§ = 0.

With & ~ —146.67ft/s, we have

do 1rad
— = ———146. = —14. i .
; 1 6.67ft/s 667radians/s

We find that z—f is negative; this matches our diagram in Figure 4.2.2 for 6 is
getting smaller as the car approaches the camera.

What is the practical meaning of —14.667radians/s? Recall that 1 circular
revolution goes through 27 radians, thus 14.667rad/s means 14.667/(27) ~
2.33 revolutions per second. The negative sign indicates the camera is rotating

in a clockwise fashion.

We introduced the derivative as a function that gives the slopes of tangent
lines of functions. This chapter emphasizes using the derivative in other ways.
Newton’s Method uses the derivative to approximate roots of functions; this
section stresses the “rate of change” aspect of the derivative to find a relation-
ship between the rates of change of two related quantities.

In the next section we use Extreme Value concepts to optimize quantities.

Notes:



Exercises 4.2

Terms and Concepts

1. T/F: Implicit differentiation is often used when solving “re-
lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems

3. Water flows onto a flat surface at a rate of 5cm?/s forming a
circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1cm?
(b) 10 cm?
(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm®/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1cm?
(b) 10 cm?
(c) 100 cm?

5. Consider the traffic situation introduced in Example 4.2.3.
How fast is the “other car” traveling if the officer and the
other car are each 1/2 mile from the intersection, the other
car is traveling due west, the officer is traveling north at
50mph, and the radar reading is —80mph?

6. Consider the traffic situation introduced in Example 4.2.3.
Calculate how fast the “other car” is traveling in each of the
following situations.

(a) The officer is traveling due north at 50mph and is
1/2 mile from the intersection, while the other car
is 1 mile from the intersection traveling west and the
radar reading is —80mph?

(b) The officer is traveling due north at 50mph and is
1 mile from the intersection, while the other car is
1/2 mile from the intersection traveling west and the
radar reading is —80mph?

7. An F-22 aircraft is flying at 500mph with an elevation of
10,000ft on a straight—line path that will take it directly over
an anti—aircraft gun.

4

10,000 ft

-
-

X

How fast must the gun be able to turn to accurately track
the aircraft when the plane is:

8.

10.

11.

(a) 1 mile away?
(b) 1/5 mile away?

(c) Directly overhead?

An F-22 aircraft is flying at 500mph with an elevation of
100ft on a straight-line path that will take it directly over
an anti—aircraft gun as in Exercise 7 (note the lower eleva-
tion here).

How fast must the gun be able to turn to accurately track
the aircraft when the plane is:

(a) 1000 feet away?
(b) 100 feet away?

(c) Directly overhead?

A 24ft. ladder is leaning against a house while the base is
pulled away at a constant rate of 1ft/s.

=
Gi 1ft/s
—

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?
(b) 10 feet from the house?
(c) 23 feet from the house?

(d) 24 feet from the house?

A boat is being pulled into a dock at a constant rate of
30ft/min by a winch located 10ft above the deck of the
boat.

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?
(b) 15 feet out?
(c) 1foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

An inverted cylindrical cone, 20ft deep and 10ft across at
the top, is being filled with water at a rate of 10ft3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1foot?
(b) 10 feet?
(c) 19 feet?

How long will the tank take to fill when starting at empty?
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12.

13.

A rope, attached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connection point between
rope and weight.

2 ft/s
—

— 30ft —

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 ft) and begins to walk away at a rate
of 2ft/s. How fast is the weight rising when the man has
walked:

(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

Consider the situation described in Exercise 12. Suppose
the man starts 40ft from the weight and begins to walk
away at a rate of 2ft/s.

(a) How long is the rope?

(b) How fastis the weight rising after the man has walked
10 feet?

(c) How fastisthe weight rising after the man has walked
30 feet?

(d) How far must the man walk to raise the weight all the
way to the pulley?

14. A hot air balloon lifts off from ground rising vertically. From

15.

100 feet away, a 5’ woman tracks the path of the balloon.
When her sightline with the balloon makes a 45° angle with
the horizontal, she notes the angle is increasing at about
5°/min.

(a) What is the elevation of the balloon?

(b) How fast is it rising?

A company that produces landscaping materials is dumping
sand into a conical pile. The sand is being poured at a rate
of 5ft3/sec; the physical properties of the sand, in conjunc-
tion with gravity, ensure that the cone’s height is roughly
2/3 the length of the diameter of the circular base.

How fast is the cone rising when it has a height of 30 feet?



4.3 Optimization

In Section 3.1 we learned about extreme values —the largest and smallest values
a function attains on an interval. We motivated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this section we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situations that require us to create the appropriate mathematical
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of optimization.

Example 4.3.1 Optimization: perimeter and area

A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

SOLUTION One can likely guess the correct answer — that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situation. Our enclosure is sketched twice
in Figure 4.3.1, either with green grass and nice fence boards or as a simple
rectangle. Either way, drawing a rectangle forces us to realize that we need to
know the dimensions of this rectangle so we can create an area function — after
all, we are trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle functions with 2 variables; we need to
reduce this down to a single variable. We know more about the situation: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equation:

Perimeter = 100 = 2x + 2y.

We now have 2 equations and 2 unknowns. In the latter equation, we solve
fory:
y =50 —x.

Now substitute this expression for y in the area equation:
Area = A(x) = x(50 — x).

Note we now have an equation of one variable; we can truly call the Area a
function of x.

Notes:

4.3 Optimization

X

Figure 4.3.1: A sketch of the enclosure in
Example 4.3.1.
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This function only makes sense when 0 < x < 50, otherwise we get negative
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the critical points, we take the derivative of A(x) and set it equal to
0, then solve for x.

A(x) = x(50 — x)
=50x — X
A'(x) = 50 — 2x

We solve 50 — 2x = 0 to find x = 25; this is the only critical point. We evaluate
A(x) at the endpoints of our interval and at this critical point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625ft>. This is the max-
imum. Since we earlier found y = 50 — x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 ft. with maxi-
mum area is a square, with sides of length 25 ft.

This example is very simplistic and a bit contrived. (After all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equations that de-
scribe a situation, reduce an equation to a single variable, then find the needed
extreme value.

“In real life,” problems are much more complex. The equations are often
not reducible to a single variable (hence multi-variable calculus is needed) and
the equations themselves may be difficult to form. Understanding the princi-
ples here will provide a good foundation for the mathematics you will likely en-
counter later.

We outline here the basic process of solving these optimization problems.

Key Idea 4.3.1 Solving Optimization Problems

1. Understand the problem. Clearly identify what quantity is to be
maximized or minimized. Make a sketch if helpful.

2. Create equations relevant to the context of the problem, using the
information given. (One of these should describe the quantity to
be optimized. We'll call this the fundamental equation.)

3. If the fundamental equation defines the quantity to be optimized
as a function of more than one variable, reduce it to a single vari-
able function using substitutions derived from the other equa-
tions.

(continued). . .

Notes:



Key Idea 4.3.1 Solving Optimization Problems — Continued

4. |dentify the domain of this function, keeping in mind the context
of the problem.

5. Find the extreme values of this function on the determined do-
main.

6. ldentify the values of all relevant quantities of the problem.

We will use Key Idea 4.3.1 in a variety of examples.

Example 4.3.2 Optimization: perimeter and area

Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SOLUTION We will follow the steps outlined by Key Idea 4.3.1.

1.

We are maximizing area. A sketch of the region will help; Figure 4.3.2
gives two sketches of the proposed enclosed area. A key feature of the
sketches is to acknowledge that one side is not fenced.

We want to maximize the area; as in the example before,
Area = xy.

This is our fundamental equation. This defines area as a function of two
variables, so we need another equation to reduce it to one variable.

We again appeal to the perimeter; here the perimeter is
Perimeter = 100 = x + 2y.
Note how this is different than in our previous example.

We now reduce the fundamental equation to a single variable. In the
perimeter equation, solve for y: y = 50 — x/2. We can now write Area as

1
Area = A(x) = x(50 — x/2) = 50x — EXZ'

Area is now defined as a function of one variable.

Notes:

4.3 Optimization

Figure 4.3.2: A sketch of the enclosure in
Example 4.3.2.
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2 1000 ft

5000 ft
Figure 4.3.3: Running a power line from

the power station to an offshore facility
with minimal cost in Example 4.3.3.

. (O
-
#f’ 1000 ft
/’,
—
X

5000 — x

Figure 4.3.4: Labeling unknown distances
in Example 4.3.3.
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4. We want the area to be nonnegative. Since A(x) = x(50 — x/2), we want
x > 0and 50 — x/2 > 0. The latter inequality implies that x < 100, so
0 < x < 100.

5. We now find the extreme values. At the endpoints, the minimum is found,
giving an area of 0.

Find the critical points. We have A’(x) = 50 — x; setting this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 — x/2; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
ft2.

Keep in mind as we do these problems that we are practicing a process; that
is, we are learning to turn a situation into a system of equations. These equa-
tions allow us to write a certain quantity as a function of one variable, which we
then optimize.

Example 4.3.3 Optimization: minimizing cost
A power line needs to be run from a power station located on the beach to an
offshore facility. Figure 4.3.3 shows the distances between the power station to
the facility.

It costs $50/ft. to run a power line along the land, and $130/ft. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

SOLUTION We will follow the strategy of Key Idea 4.3.1 implicitly, with-
out specifically numbering steps.

There are two immediate solutions that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecting the two locations with a straight line. However, this requires
that all the wire be laid underwater, the most costly option. Second, we could
minimize the underwater length by running a wire all 5000 ft. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non—minimal cost.

The optimal solution likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances — the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.3.4.

Notes:



By choosing x as we did, we make the expression under the square root sim-
ple. We now create the cost function.

Cost = land cost + water cost
$50 x land distance + $130 x water distance

50(5000 —x)  +  130v/x? + 10002.

So we have ¢(x) = 50(5000 — x) + 130v/x? 4+ 10002. This function only
makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we still evaluate c(x) at each to verify.

c(0) = 380,000  ¢(5000) ~ 662,873.

We now find the critical values of ¢c(x). We compute ¢’(x) as

c’'(x) = —50 + 130X
VX2 + 10002

Recognize that this is never undefined. Setting ¢’(x) = 0 and solving for x,
we have:
130x

S — )|
VX2 410002
13x
VX2 + 10002
1302 _
x2 4+ 10002
130%* = 50 (x* + 1000?)
130%x* — 50°x*> = 507 - 10007
(130% — 50%)x* = 50,0007
2 %0 0002
1302 — 502
50,000
v/1302 — 502
L 50,000 _ 1250

— =~ 416.67.
120 3

—50 +

Evaluating c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000 — 416.67 = 4583.33 ft., and the under-

water distance is v/416.672 + 10002 ~ 1083 ft.

Notes:

4.3

Optimization
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In the exercises you will see a variety of situations that require you to com-
bine problem—solving skills with calculus. Focus on the process; learn how to
form equations from situations that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

The next section introduces our final application of the derivative: differen-
tials. Given y = f(x), they offer a method of approximating the change in y after
x changes by a small amount.

Notes:



Exercises 4.3

Terms and Concepts

. T/F: An “optimization problem” is essentially an “extreme

values” problem in a “story problem” setting.

. T/F: This section teaches one to find the extreme values of

a function that has more than one variable.

Problems

10.

11.

. Find the maximum product of two numbers (not necessar-

ily integers) that have a sum of 100.

. Find the minimum sum of two positive numbers whose

product is 500.

. Find the maximum sum of two positive numbers whose

product is 500.

. Find the maximum sum of two numbers, each of which is

in [0,300] whose product is 500.

. Find the maximal area of a right triangle with hypotenuse

of length 1.

. A rancher has 1000 feet of fencing in which to construct

adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

. Astandard soda can is roughly cylindrical and holds 355cm?

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

Find the dimensions of a cylindrical can with a volume of
206in° that minimizes the surface area.

The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in® with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
were chosen with minimization in mind?

The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108" (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross section, i.e., 2w + 2h).

12.

13.

14.

15.

16.

17.

What is the maximum volume of a package with a square
cross section (w = h) that does not exceed the 108” stan-
dard?

The strength S of a wooden beam is directly proportional
to its cross sectional width w and the square of its height h;
that is, S = kwh? for some constant k.

w

12 |h

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 2
miles at sea and 5 miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.

How much of the power line should be run underground to
minimize the overall costs?

A power line is to be run to an offshore facility in the man-
ner described in Example 4.3.3. The offshore facility is 5
miles at sea and 2 miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.

How much of the power line should be run underground to
minimize the overall costs?

A woman throws a stick into a lake for her dog to fetch;
the stick is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.

How far along the shore should the dog run to minimize
the time it takes to get to the stick? (Hint: the figure from
Example 4.3.3 can be useful.)

A woman throws a stick into a lake for her dog to fetch;
the stick is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the stick before swimming. The dog runs about 22ft/s and
swims about 1.5ft/s.

How far along the shore should the dog run to minimize the
time it takes to get to the stick? (Google “calculus dog” to learn
more about a dog’s ability to minimize times.)

What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Figure 4.4.1: Graphing f(x) = sinxand its
tangent line at x = 7/3 in order to esti-
mate sin 1.1.
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4.4 Differentials

In Section 2.2 we explored the meaning and use of the derivative. This section
starts by revisiting some of those ideas.

Recall that the derivative of a function f can be used to find the slopes of
lines tangent to the graph of f. At x = ¢, the tangent line to the graph of f has
equation

y =f'(©)(x =) +flc).

The tangent line can be used to find good approximations of f(x) for values of x
near c.

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sinx at x = 7/3 = 1.05. Recall that sin(7/3) = v/3/2 ~ 0.866, and
cos(m/3) = 1/2. Thus the tangent line to f(x) = sinxatx = 7/3 is:

() = %(X ~ 7/3) + 0.866.

In Figure 4.4.1(a), we see a graph of f(x) = sinx graphed along with its tan-
gent line at x = /3. The small rectangle shows the region that is displayed in
Figure 4.4.1(b). In this figure, we see how we are approximating sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

0(1.1) = %(1.1 —m/3) 4+ 0.866

1
= 5(0‘053) + 0.866 = 0.8925.
(We leave it to the reader to see how good of an approximation this is.)

We now generalize this concept. Given f(x) and an x—value c, the tangent
lineis £(x) = f'(c)(x — c) 4+ f(c). Clearly, f(c) = ¢(c). Let Ax be a small number,
representing a small change in x value. We assert that:

flc+ Ax) = l(c + Ax),

since the tangent line to a function approximates well the values of that function
near x = c.

As the x-value changes from c to ¢ + Ax, the y-value of f changes from f(c)
to f(c + Ax). We call this change of y value Ay. That is:

Ay = f(c + Ax) — f(c).

Notes:



Replacing f(c + Ax) with its tangent line approximation, we have

Ay =~ l(c + Ax) — f(c)
=£'(c)((c + Ax) — ¢) + f(c) — f(c)
= f'(c)Ax (4.3)

This final equation is important; it becomes the basis of the upcoming Def-
inition and Key Idea. In short, it says that when the x-value changes from c to
¢ + Ax, the y value of a function f changes by about f'(c) Ax.

We introduce two new variables, dx and dy in the context of a formal defini-
tion.

Definition 4.4.1 Differentials of x and y.

Let y = f(x) be differentiable. The differential of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
ential of y, denoted dy, is

dy = f'(x)dx.

We can solve for f'(x) in the above equation: f’(x) = dy/dx. This states that
the derivative of f with respect to x is the differential of y divided by the differ-
ential of x; this is not the alternate notation for the derivative, %. This latter
notation was chosen because of the fraction—like qualities of the derivative, but
again, it is one symbol and not a fraction.

It is helpful to organize our new concepts and notations in one place.

Key Idea 4.4.1 Differential Notation
Let y = f(x) be a differentiable function.

1. Let Ax represent a small, nonzero change in x value.
2. Let dxrepresent a small, nonzero change in x value (i.e., Ax = dx).

3. Let Ay be the change in y value as x changes by Ax; hence
Ay = f(x + Ax) — f(x).

4. Let dy = f’(x)dx which, by Equation (4.3), is an approximation of
the change in y value as x changes by Ax; dy =~ Ay.

Notes:

4.4 Differentials
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What is the value of differentials? Like many mathematical concepts, differ-
entials provide both practical and theoretical benefits. We explore both here.

Example 4.4.1 Finding and using differentials
Consider f(x) = x*. Knowing f(3) = 9, approximate f(3.1).

SOLUTION The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know how much the y value changes from f(3) to f(3.1)
(i-e., if we know Ay), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate Ay with dy.

Ay ~ dy
=f'(3)dx
=2-3-0.1=0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) =
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differential to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6.

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximation is really good!)

So why bother?

In “most” real life situations, we do not know the function that describes
a particular behavior. Instead, we can only take measurements of how things
change — measurements of the derivative.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direction (i.e., the velocity) of water at any location. It is very hard
to create a function that describes the overall flow, hence it is hard to predict
where a floating object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differentials. Over small
intervals, the path taken by a floating object is essentially linear. Differentials
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
tial Equations courses.

We use differentials once more to approximate the value of a function. Even
though calculators are very accessible, it is neat to see how these techniques can
sometimes be used to easily compute something that looks rather hard.

Notes:
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Example 4.4.2 Using differentials to approximate a function value
Approximate v/4.5.

SOLUTION We expect V4.5 = 2, yet we can do better. Let f(x) = VX,
and let ¢ = 4. Thus f(4) = 2. We can compute f'(x) = 1/(2y/x), so f'(4) =
1/4.

We approximate the difference between f(4.5) and f(4) using differentials,
with dx = 0.5:

f(4.5) —f(4) = Ay~ dy =f'(4) -dx = 1/4-1/2 = 1/8 = 0.125.

The approximate change in ffrom x = 4 to x = 4.5is 0.125, so we approximate

V4.5 ~ 2.125.

Differentials are important when we discuss integration. When we study
that topic, we will use notation such as

/ f(x) dx

quite often. While we don’t discuss here what all of that notation means, note
the existence of the differential dx. Proper handling of integrals comes with
proper handling of differentials.

In light of that, we practice finding differentials in general.

Example 4.4.3 Finding differentials
In each of the following, find the differential dy.

1.y =sinx 2.y =¢e"(x*+2) .y=vx2+3x-1

SOLUTION
1. y=sinx:  Asf(x) = sinx, f'(x) = cosx. Thus

dy = cos(x)dx.

2.y = e(x* +2): Letf(x) = e(x* + 2). We need f'(x), requiring the
Product Rule.

We have f'(x) = e*(x* 4 2) + 2xe*, so

dy = ("(x* +2) + 2xe*)dx.

Notes:
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3. y = vx*+3x—1: Letf(x) = vx%+ 3x — 1; we need f’(x), requiring

the Chain Rule.

1 1 2 3
We have f'(x) = E(x2 +3x—1)77(2x+3) = 2\/% Thus
dy = (2x + 3)dx
RN R

Finding the differential dy of y = f(x) is really no harder than finding the
derivative of f; we just multiply f'(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a practical use of differentials as they offer a good method of
making certain approximations. Another use is error propagation. Suppose a
length is measured to be x, although the actual value is x + Ax (where Ax is the
error, which we hope is small). This measurement of x may be used to compute
some other value; we can think of this latter value as f(x) for some function f.
As the true length is x + Ax, one really should have computed f(x + Ax). The
difference between f(x) and f(x + Ax) is the propagated error.

How close are f(x) and f(x + Ax)? This is a difference in “y” values:

fix+ Ax) — f(x) = Ay =~ dy.

We can approximate the propagated error using differentials.

Example 4.4.4 Using differentials to approximate propagated error

A steel ball bearing is to be manufactured with a diameter of 2cm. The manu-
facturing process has a tolerance of ==0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm?, estimate the propagated error in the mass
of the ball bearing.

SOLUTION The mass of a ball bearing is found using the equation “mass
=volume x density.” In this situation the mass function is a product of the radius
of the ball bearing, hence itism = 7.85§7Tr3. The differential of the mass is

dm = 31.4xrdr.

The radius is to be 1cm; the manufacturing tolerance in the radius is #=0.05mm,
or +0.005cm. The propagated error is approximately:
Am =~ dm
= 31.47(1)%(40.005)
= +0.493g

Notes:



Is this error significant? It certainly depends on the application, but we can get
an idea by computing the relative error. The ratio between amount of error to
the total mass is

dm | 0.493
m " 7.85%x
0.493
T 3288
= £0.015,

or +1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was
supposed to be 10cm, the same manufacturing tolerance would give a propa-

gated errorin mass of 12.33g, which corresponds to a percent error of £0.188%.

While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower.

We first learned of the derivative in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivative by studying how it relates to the graph of a function
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivative to yet more uses:

¢ Equation solving (Newton’s Method),

¢ Related Rates (furthering our use of the derivative to find instantaneous
rates of change),

e Optimization (applied extreme values), and

¢ Differentials (useful for various approximations and for something called
integration).

In the next chapters, we will consider the “reverse” problem to computing
the derivative: given a function f, can we find a function whose derivative is f?
Being able to do so opens up an incredible world of mathematics and applica-
tions.

Notes:

4.4 Differentials
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Exercises 4.4

Terms and Concepts

. T/F: Given a differentiable function y = f(x), we are gen-
erally free to choose a value for dx, which then determines
the value of dy.

. T/F: The symbols “dx” and “Ax” represent the same con-
cept.

T/F: The symbols “dy” and “Ay” represent the same con-
cept.

T/F: Differentials are important in the study of integration.
. How are differentials and tangent lines related?

. T/F: In real life, differentials are used to approximate func-
tion values when the function itself is not known.

Problems

In Exercises 7 — 16, use differentials to approximate the given
value by hand.

7

10.

11.

12.

13.

14.

15.

16.

. 2.05?
5.93?
5.13

6.8°

In Exercises 17 — 30, compute the differential dy.

17

18

19.

20

21.

.y=x*+3x—5
y=x —x
1
V=
.y = (2x+sinx)’
y:X2e3X

22. y:%

2.y = tanzxﬁ
24. y = In(5x)
25. y = €“sinx
26. y = cos(sinx)
ni
28. y=3"Inx
29. y=xlnx—x

30.

f(x) = In (secx)

Exercises 31 — 34 use differentials to approximate propagated
error.

31.

32.

33.

34.

A set of plastic spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t%. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the bottom. What
is the propagated error if the time measurement is accurate
to 2/10™ of a second and the measured time is:

(a) 2 seconds?

(b) 5 seconds?

What is the propagated error in the measurement of the
cross sectional area of a circular log if the diameter is mea-
sured at 15", accurate to 1/4”?

A wall is to be painted that is 8’ high and is measured to
be 10’, 7 long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rateto 1/2".

Exercises 35 — 39 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before computing.)

35.

The length | of a long wall is to be approximated. The angle
0, as shown in the diagram (not to scale), is measured to be
85.2°, accurate to 1°. Assume that the triangle formed is a
right triangle.



(a) What is the measured length / of the wall?
(b) What is the propagated error?
(c) What is the percent error?

36. Answer the questions of Exercise 35, but with a measured
angle of 71.5°, accurate to 1°, measured from a point 100’
from the wall.

37. The length / of a long wall is to be calculated by measuring
the angle 8 shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143°, accurate to 1°.

38.

39.

(a) What is the measured length of the wall?
(b) What is the propagated error?
(c) What is the percent error?

The length of the walls in Exercises 35 — 37 are essentially
the same. Which setup gives the most accurate result?

Consider the setup in Exercise 37. This time, assume the
angle measurement of 143° is exact but the measured 50’
from the wall is accurate to 6”. What is the approximate
percent error?
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5: INTEGRATION

We have spent considerable time considering the derivatives of a function and
their applications. In the following chapters, we are going to starting thinking
in “the other direction.” That is, given a function f(x), we are going to consider
functions F(x) such that F'(x) = f(x). There are numerous reasons this will
prove to be useful: these functions will help us compute area, volume, mass,
force, pressure, work, and much more.

5.1 Antiderivatives and Indefinite Integration

Given a function y = f(x), a differential equation is one that incorporates y, x,
and the derivatives of y. For instance, a simple differential equation is:

y' = 2x.

Solving a differential equation amounts to finding a function y that satisfies
the given equation. Take a moment and consider that equation; can you find a
function y such thaty’ = 2x?

Can you find another?

And yet another?

Hopefully one was able to come up with at least one solution: y = x*. “Find-
ing another” may have seemed impossible until one realizes that a function like
y = x> + 1 also has a derivative of 2x. Once that discovery is made, finding “yet
another” is not difficult; the function y = x?> + 123,456, 789 also has a deriva-
tive of 2x. The differential equation y’ = 2x has many solutions. This leads us
to some definitions.

Definition 5.1.1 Antiderivatives and Indefinite Integrals

Let a function f(x) be given. An antiderivative of f(x) is a function F(x)
such that F’'(x) = f(x).

The set of all antiderivatives of f(x) is the indefinite integral of f, denoted

by
/ f(x) dx.

Make a note about our definition: we refer to an antiderivative of f, as op-
posed to the antiderivative of f, since there is always an infinite number of them.
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We often use upper-case letters to denote antiderivatives.

Knowing one antiderivative of f allows us to find infinitely more, simply by
adding a constant. Not only does this give us more antiderivatives, it gives us all
of them.

Theorem 5.1.1 Antiderivative Forms

Let F(x) and G(x) be antiderivatives of f(x) on an interval /. Then there
exists a constant C such that, on /,

Given a function f defined on an interval / and one of its antiderivatives F,
we know all antiderivatives of f on I have the form F(x) + C for some constant
C. Using Definition 5.1.1, we can say that

Let’s analyze this indefinite integral notation.

Integration Differential ~ Constant of
symbol of x integration

/ |
\/f(x) dx = FT(X) +C
f

One

Integrand antiderivative

Figure 5.1.1: Understanding the indefinite integral notation.

Figure 5.1.1 shows the typical notation of the indefinite integral. The inte-
gration symbol, f, is in reality an “elongated S,” representing “take the sum.”
We will later see how sums and antiderivatives are related.

The function we want to find an antiderivative of is called the integrand. It
contains the differential of the variable we are integrating with respect to. The f
symbol and the differential dx are not “bookends” with a function sandwiched in
between; rather, the symbol f means “find all antiderivatives of what follows,”
and the function f(x) and dx are multiplied together; the dx does not “just sit
there.”

Let’s practice using this notation.

Notes:
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Example 5.1.1 Evaluating indefinite integrals

Evaluate/sinxdx.

SOLUTION We are asked to find all functions F(x) such that F'(x) =
sin x. Some thought will lead us to one solution: F(x) = — cos x, because 2 (— cos x) =
sinx.

The indefinite integral of sin x is thus — cos x, plus a constant of integration.
So:

/sinxdx: —cosx + C.

A commonly asked question is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of antidifferentiation is really solving a differential question. The

integral
/ sinx dx

presents us with a differential, dy = sin x dx. Itis asking: “What is y?” We found
lots of solutions, all of the formy = — cosx + C.
Letting dy = sin x dx, rewrite

/sinxdx as /dy.

This is asking: “What functions have a differential of the form dy?” The answer
is “Functions of the form y + C, where Cis a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = — cos x.

Understanding all of this is more important later as we try to find antideriva-
tives of more complicated functions. In this section, we will simply explore the
rules of indefinite integration, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s practice once more before stating integration rules.

Example 5.1.2 Evaluating indefinite integrals
Evaluate /(3x2 + 4x + 5) dx.

SOLUTION We seek a function F(x) whose derivative is 3x* + 4x + 5.
When taking derivatives, we can consider functions term—by—term, so we can
likely do that here.

What functions have a derivative of 3x*? Some thought will lead us to a
cubic, specifically x> 4+ C;, where C; is a constant.

Notes:
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What functions have a derivative of 4x? Here the x term is raised to the first
power, so we likely seek a quadratic. Some thought should lead us to 2x? + G,
where G, is a constant.

Finally, what functions have a derivative of 5? Functions of the form 5x + C;,
where C; is a constant.

Our answer appears to be
/(3X2+4x+5)dx:x3+C1—|—2x2+C2+5x+C3.

We do not need three separate constants of integration; combine them as one
constant, giving the final answer of

/(3x2+4x+5)dx:x3+2xz+5x+C.

It is easy to verify our answer; take the derivative of x> + 2x3 + 5x + C and
see we indeed get 3x% + 4x + 5.

This final step of “verifying our answer” is important both practically and
theoretically. In general, taking derivatives is easier than finding antiderivatives
so checking our work is easy and vital as we learn.

We also see that taking the derivative of our answer returns the function in
the integrand. Thus we can say that:

a ( [ 19 dx) — 1.

Differentiation “undoes” the work done by antidifferentiation.

Theorem 2.7.3 gave a list of the derivatives of common functions we had
learned at that point. We restate part of that list here to stress the relationship
between derivatives and antiderivatives. This list will also be useful as a glossary
of common antiderivatives as we learn.

Notes:
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Theorem 5.1.2 Derivatives and Antiderivatives

Common Differentiation Rules Common Indefinite Integral Rules

1 Z(cf(x) =c-f'(x) 1. [c-f(x)dx=c- [f(x)dx
2. L(f(x) £g(x)) = 2. [ (f(x) £g(x)) dx =
f'(x) £ d'(x) [ f(x) dx £ [ g(x) dx
3. £(¢)=0 3. fodx=C
4. Z(x) =1 4. [ldx= [dx=x+C
5. L (x") =n-x""1 5. [Xdx= 55X 4 C £ -1
6. Z(sinx) = cosx 6. [cosxdx=sinx+C
7. Z(cosx) = —sinx 7. [sinxdx= —cosx+C
8. Z(tanx) = sec’x 8. [sec?xdx=tanx+C
9. Z(cscx) = —cscxcotx 9. [cescxcotxdx = —cscx+ C
10. 4 (secx) = secxtanx 10. [secxtanxdx = secx + C
11. Z(cotx) = —csc®x 11. [esc?xdx = —cotx+ C
12. L(e) = ¢ 12. [e*dx=e"+C
13. Z(a*) =Ina-a* 13. [a¥dx=1L-a"+C
14. Z(Inx) =1 14. [Ldx=In|x|+C

We highlight a few important points from Theorem 5.1.2:

* Rule #1 states [ ¢ - f(x) dx = c- [ f(x) dx. This is the Constant Multiple
Rule: we can temporarily ignore constants when finding antiderivatives,
just as we did when computing derivatives (i.e., d% (3x2) is just as easy to
compute as & (x?)). An example:

/5cosxdx:5~/cosxdx:5-(sinx—|—C)=55inx—|—C.

In the last step we can consider the constant as also being multiplied by

Notes:
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5, but “5 times a constant” is still a constant, so we just write “C”.

¢ Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
5.1.2. So:

/(3x2+4x+5)dx:/3x2dx+/4xdx+/5dx
:3/x2dx+4/xdx+/5dx
1

:3-}x3+4~7x2+5x+c
3 2

=x*4+ 2% +5x+C

In practice we generally do not write out all these steps, but we demon-
strate them here for completeness.

¢ Rule #5 is the Power Rule of indefinite integration. There are two impor-
tant things to keep in mind:

1. Notice the restriction that n # —1. This is important: f% dx #
“2x% + C”; rather, see Rule #14.

2. We are presenting antidifferentiation as the “inverse operation” of
differentiation. Here is a useful quote to remember:

“Inverse operations do the opposite things in the opposite
order.”

When taking a derivative using the Power Rule, we first multiply by
the power, then second subtract 1 from the power. To find the an-
tiderivative, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

¢ Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

Initial Value Problems

In Section 2.3 we saw that the derivative of a position function gave a velocity
function, and the derivative of a velocity function describes acceleration. We
can now go “the other way:” the antiderivative of an acceleration function gives
a velocity function, etc. While there is just one derivative of a given function,
there are infinitely many antiderivatives. Therefore we cannot ask “What is the
velocity of an object whose acceleration is —32ft/s%?”, since there is more than
one answer.

Notes:
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We can find the answer if we provide more information with the question,
as done in the following example. Often the additional information comes in the
form of an initial value, a value of the function that one knows beforehand.

Example 5.1.3 Solving initial value problems
The acceleration due to gravity of a falling object is —32 ft/s?. At timet = 3,
a falling object had a velocity of —10 ft/s. Find the equation of the object’s

velocity.

SOLUTION We want to know a velocity function, v(t). We know two
things:

* The acceleration, i.e., v/(t) = —32, and

* the velocity at a specific time, i.e., v(3) = —10.

Using the first piece of information, we know that v(t) is an antiderivative of
v’(t) = —32. So we begin by finding the indefinite integral of —32:

/(—32) dt = =32t + C = v(t).
Now we use the fact that v(3) = —10 to find C:
v(t) = =32t +C

v(3) = —10
~32(3)+C=-10
C=86

Thus v(t) = —32t + 86. We can use this equation to understand the motion
of the object: when t = 0, the object had a velocity of v(0) = 86 ft/s. Since the
velocity is positive, the object was moving upward.

When did the object begin moving down? Immediately after v(t) = 0:

43
—32t+86 =0 = t:1—6z2.695.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleration and its velocity at a single point in time.

Example 5.1.4 Solving initial value problems
Find f(t), given that f”/(t) = cost, f/(0) = 3 and f(0) = 5.

SOLUTION We start by finding f’(t), which is an antiderivative of f”(t):

/f”(t) dt:/costdt:sint+C:f/(t)-

Notes:
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So f'(t) = sint + C for the correct value of C. We are given that f/(0) = 3,
so:
f[(0)=3 = sin0+C=3 = C(=3.

Using the initial value, we have found f'(t) = sint + 3.
We now find f(t) by integrating again.

/f /smt+3)d t = —cost+3t+C.

We are given that f(0) = 5, so

—cos0+3(0)+C=5
-1+C=5
C=6

Thus f(t) = — cost + 3t + 6.

This section introduced antiderivatives and the indefinite integral. We found
they are needed when finding a function given information about its deriva-
tive(s). For instance, we found a velocity function given an acceleration func-
tion.

In the next section, we will see how position and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity function. Then,
in Section 5.4, we will see how areas and antiderivatives are closely tied together.
This connection is incredibly important, as indicated by the name of the theorem
that describes it: The Fundamental Theorem of Calculus.

Notes:
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Exercises 5.1

Terms and Concepts

1.

. The derivative of a position function is a

Define the term “antiderivative” in your own words.

. Is it more accurate to refer to “the” antiderivative of f(x) or

“an” antiderivative of f(x)?

. Use your own words to define the indefinite integral of

fx).

. Fill in the blanks: “Inverse operations do the

things in the order.”

. What is an “initial value problem”?

func-
tion.

. The antiderivative of an acceleration functionis a

function.

. If F(x) is an antiderivative of f(x), and G(x) is an antideriva-

tive of g(x), give an antiderivative of f(x) + g(x).

Problems

In Exercises 9 — 27, evaluate the given indefinite integral.

9.

10.

11.

12.

13.

14

15.

16

17.

18.

/3x3dx
/xsdx
/(1Ox2—2)dx
[

/lds

[ b
[2a
./%dx
/sec29d0
/sin9d0

19.

20.

21.

22

23.

24

25.

26.

27.

28

/(secxtanx + cscx cot x) dx

/Se(’ do
/3f dt
i
2
/(2t+ 3)% dt
. /(t2 +3)(£ — 2t) dt
/sza dx
/e” dx
/adx

. This problem investigates why Theorem 5.1.2 states that
1
/fdx: In|x| + C.
X

(a) What is the domain of y = Inx?

(b) Find dix(ln x).

(c) What is the domain of y = In(—x)?
(d) Find £ (In(—x)).

(e) You should find that 1/x has two types of antideriva-
tives, depending on whether x > O orx < 0. In

1
one expression, give a formula for / 5 dx that takes

these different domains into account, and explain
your answer.

In Exercises 29 — 39, find f(x) described by the given initial
value problem.

29. f'(x) = sinxand f(0) = 2

30. f'(x) = 5¢* and f(0) = 10

31. f'(x) = 4x® —3x*and f(—1) = 9

32. f'(x) = sec?xand f(/4) = 5

33. f/(x) =7"andf(2) =1

34. f"(x) =5andf'(0) =7,f(0) =3

35. f"(x) = 7xand f'(1) = —1,(1) = 10
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36. f”(x) = 5¢" and f'(0) = 3,(0) = 5 Review

37. f"(0) =sinfandf'(m) = 2,f(r) = 4 40. Use information gained from the first and second deriva-
1
tives to sketch = .
38. f”(x) = 24x* + 2 — cosxand f'(0) = 5, f(0) = 0 ves to sketeh flx) = 5=
39. f"(x) =0andf'(1) =3,f(1) =1 41. Giveny = x*e* cosx, find dy.
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5.2 The Definite Integral

We start with an easy problem. An object travels in a straight line at a constant
velocity of 5ft/s for 10 seconds. How far away from its starting point is the ob-
ject?

We approach this problem with the familiar “Distance = Rate x Time” equa-
tion. In this case, Distance = 5ft/s x 10s = 50 feet.

Itis interesting to note that this solution of 50 feet can be represented graph-
ically. Consider Figure 5.2.1, where the constant velocity of 5ft/s is graphed on
the axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 ft.

Now consider a slightly harder situation (and not particularly realistic): an
object travels in a straight line with a constant velocity of 5ft/s for 10 seconds,
then instantly reverses course at a rate of 2ft/s for 4 seconds. (Since the object
is traveling in the opposite direction when reversing course, we say the velocity
is a constant —2ft/s.) How far away from the starting point is the object — what
is its displacement?

Here we use “Distance = Rate; x Time; + Rate, x Time,,” which is

Distance =5-10+ (—2) -4 =42 ft.

Hence the object is 42 feet from its starting location.

We can again depict this situation graphically. In Figure 5.2.2 we have the
velocities graphed as straight lines on [0, 10] and [10, 14], respectively. The dis-
placement of the object is

“Area above the t—axis — Area below the t—axis,”
which is easy to calculate as 50 — 8 = 42 feet.

Now consider a more difficult problem.

Example 5.2.1 Finding position using velocity

The velocity of an object moving straight up/down under the acceleration of
gravity is given as v(t) = —32t+48, where time tis given in seconds and velocity
is in ft/s. When t = 0, the object had a height of O ft.

1. What was the initial velocity of the object?
2. What was the maximum height of the object?

3. What was the height of the object at time t = 2?

SOLUTION It is straightforward to find the initial velocity; at time t = 0,
v(0) = —32-0+ 48 = 48 ft/s.

Notes:

5.2 The Definite Integral

y (ft/s)

5

- - t(s)
5 10

Figure 5.2.1: The area under a constant
velocity function corresponds to distance
traveled.

y (ft/s)

5

- - > t(s)
5 10 15

Figure 5.2.2: The total displacement is the
area above the t—axis minus the area be-
low the t-axis.
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y (ft/s)
50

—50 |+
Figure 5.2.3: A graph of v(t) = —32t +

48; the shaded areas help determine dis-
placement.
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To answer questions about the height of the object, we need to find the
object’s position function s(t). This is an initial value problem, which we studied
in the previous section. We are told the initial height is 0, i.e., s(0) = 0. We
know s’(t) = v(t) = —32t+48. To find s, we find the indefinite integral of v(t):

/v(t) dt = /(—32t + 48) dt = —16t* + 48t + C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = —16t + 48t.

To find the maximum height of the object, we need to find the maximum of
s. Recalling our work finding extreme values, we find the critical points of s by
setting its derivative equal to 0 and solving for t:

s'(t)=-32t+48=0 = t=48/32=15s.

(Notice how we ended up just finding when the velocity was 0ft/s!) The first
derivative test shows this is a maximum, so the maximum height of the object
is found at

s(1.5) = —16(1.5)* + 48(1.5) = 36ft.

The height at time t = 2 is now straightforward to compute: it is s(2) = 32ft.

While we have answered all three questions, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.2.3 shows a graph of v(t) on axes fromt = Oto t = 3. It is again
straightforward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t—axis that is below the
t—axis counted as “negative” area. That is, it represents the object coming back
toward its starting position. So to find the maximum distance from the starting
point — the maximum height — we find the area under the velocity line that is
above the t—axis, i.e., from t = 0 to t = 1.5. This region is a triangle; its area is

1 1
Area = EBase X Height = 5 x 1.5s x 48ft/s = 36ft,

which matches our previous calculation of the maximum height.

Finally, to find the height of the object at time t = 2 we calculate the total
“signed area” (where some area is negative) under the velocity function from
t = 0tot = 2. This signed area is equal to s(2), the displacement (i.e., signed
distance) from the starting position at t = 0 to the position at time t = 2. That
is,

Displacement = Area above the t—axis — Area below t—axis.

Notes:



The regions are triangles, and we find
1 1
Displacement = 5(1.55)(48ft/s) — E(.Ss)(let/s) = 32ft.

This also matches our previous calculation of the height at t = 2.

Notice how we answered each question in this example in two ways. Our first
method was to manipulate equations using our understanding of antiderivatives
and derivatives. Our second method was geometric: we answered questions
looking at a graph and finding the areas of certain regions of this graph.

The above example does not prove a relationship between area under a ve-
locity function and displacement, but it does imply a relationship exists. Section
5.4 will fully establish fact that the area under a velocity function is displace-
ment.

Given a graph of a function y = f(x), we will find that there is great use in
computing the area between the curve y = f(x) and the x-axis. Because of this,
we need to define some terms.

Definition 5.2.1 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area

from x = a to x = b under fis:

(area under f and above the x—axis on [a, b]) — (area above f and under
the x—axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],

denoted .
/ f(x) dx,
a

where a and b are the bounds of integration.

By our definition, the definite integral gives the “signed area under f” We
usually drop the word “signed” when talking about the definite integral, and
simply say the definite integral gives “the area under f” or, more commonly,
“the area under the curve.”

The previous section introduced the indefinite integral, which related to an-
tiderivatives. We have now defined the definite integral, which relates to areas
under a function. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in Section 5.4. Recall that earlier we said
that the ”f" symbol was an “elongated S” that represented finding a “sum.” In
the context of the definite integral, this notation makes a bit more sense, as we
are adding up areas under the function f.

Notes:

5.2 The Definite Integral
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-1 1

Figure 5.2.4: A graph of f(x) in Example
5.2.2.

-5 |

Figure 5.2.5: A graph of 5f in Example
5.2.2. (Yes, it looks just like the graph of
fin Figure 5.2.4, just with a different y-
scale.)
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We practice using this notation.

Example 5.2.2 Evaluating definite integrals
Consider the function f given in Figure 5.2.4.

Find:
3 3
1./f(x) dx 4, / 5f(x) dx
0 0
5 1
2. / f(x) dx 5. f(x) dx
3 1
5
3. / f(x) dx
0
SOLUTION

. fosf(x) dxis the area under fon the interval [0, 3]. This region is a triangle,

so the area is fogf(x) dx=1(3)(1) = 1.5.

. fasf(x) dx represents the area of the triangle found under the x—axis on

[3,5]. The areais 3(2)(1) = 1; since it is found under the x—axis, this is

“negative area.” Therefore f35 f(x) dx = —1.

. fosf(x) dxisthe total signed area under fon [0, 5]. Thisis 1.5+ (—1) = 0.5.

. f03 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.2.5.

Again, the region is a triangle, with height 5 times that of the height of the
original triangle. Thus the area is f03 5f(x) dx = 3(15)(1) = 7.5.

. fllf(x) dx is the area under f on the “interval” [1, 1]. This describes a line

segment, not a region; it has no width. Therefore the area is 0.

This example illustrates some of the properties of the definite integral, given

Notes:



5.2 The Definite Integral

Theorem 5.2.1 Properties of the Definite Integral

Let f and g be defined on a closed interval / that contains the values a, b
and ¢, and let k be a constant. The following hold:

1. /aaf(x)dx:o

./abf(x)dx—l—/bcf(x)dx:/acf(x)dx

. /abf(x)dx:—/baf(x)dx
b

. /a (f(x) £ g(x)) dx = /abf(x) dx + /ab g(x) dx

N

w

S

u

. /abk~f(x)dx:k~/abf(x)dx

We give a brief justification of Theorem 5.2.1 here.

1. As demonstrated in Example 5.2.2, there is no “area under the curve”
when the region has no width; hence this definite integral is 0.

2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, ] into
two subintervals, [a, b] and [b, c]. The total area over [a, c| is the area over
[a, b] plus the area over [b, c].

It is important to note that this still holds true evenif a < b < cis not
true. We discuss this in the next point.

3. This property can be viewed a merely a convention to make other proper-
ties work well. (Later we will see how this property has a justification all its
own, not necessarily in support of other properties.) Suppose b < a < c.
The discussion from the previous point clearly justifies

/b.af(x) dx + /acf(x) dx = /bcf(x) dx. (5.1)

However, we still claim that, as originally stated,

/abf(x) dx + /bcf(x) dx = /acf(x) dx. (5.2)

Notes:
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Chapter 5 Integration

Figure 5.2.6: A graph of a function in Ex-
ample 5.2.3.

212

How do Equations (5.1) and (5.2) relate? Start with Equation (5.1):

/baf(x)dx—k/acf(x)dx:/bcf(x)dx
/acf(x)dx:—/baf(x)dx—&—/bcf(x)dx

Property (3) justifies changing the sign and switching the bounds of inte-
a
gration on the — | f(x) dx term; when this is done, Equations (5.1) and

b
(5.2) are equivalent.

The conclusion is this: by adopting the convention of Property (3), Prop-
erty (2) holds no matter the order of a, b and c. Again, in the next section
we will see another justification for this property.

4,5. Each of these may be non—intuitive. Property (5) states that when one
scales a function by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both Properties (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Example 5.2.3 Evaluating definite integrals using Theorem 5.2.1.
Consider the graph of a function f(x) shown in Figure 5.2.6. Answer the follow-
ing:

b c
1. Which value is greater: / f(x) dx or/ f(x) dx?
a b

C
2. 1Is / f(x) dx greater or less than 0?
a

b b
3. Which value is greater: / f(x) dx or/ f(x) dx?
a c

SOLUTION

1. fabf(x) dx has a positive value (since the area is above the x—axis) whereas
fbcf(x) dx has a negative value. Hence fabf(x) dx is bigger.

2. f:f(x) dx is the total signed area under f between x = g and x = c. Since

the region below the x—axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore fcbf(x) dx
represents a positive number, greater than the area described by the first
definite integral. Hence fcbf(x) dx is greater.

Notes:



The area definition of the definite integral allows us to use geometry to com-
pute the definite integral of some simple functions.

Example 5.2.4 Evaluating definite integrals using geometry
Evaluate the following definite integrals:

5 3
1. / (2x—4)dx 2. / V9 — x% dx.
-3

-2

SOLUTION

1. It is useful to sketch the function in the integrand, as shown in Figure
5.2.7(a). We see we need to compute the areas of two regions, which
we have labeled R; and R,. Both are triangles, so the area computation is
straightforward:

Region R, lies under the x—axis, hence it is counted as negative area (we
can think of the triangle’s height as being “—8”), so

5
/ (2x—4)dx=—-164+9=—7.

-2

2. Recognize that the integrand of this definite integral describes a half circle,
as sketched in Figure 5.2.7(b), with radius 3. Thus the area is:

3
1 9
/ 9—x2dx=—nr’ = =
L 2 2

Example 5.2.5 Understanding motion given velocity

Consider the graph of a velocity function of an object moving in a straight line,
given in Figure 5.2.8, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity function gives dis-
placement. Find the maximum speed of the object and its maximum displace-
ment from its starting position.

SOLUTION Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15ft/s.

At time t = 0, the displacement is 0; the object is at its starting position. At
time t = g, the object has moved backward 11 feet. Between times t = a and

Notes:

5.2 The Definite Integral

10 +

(=2,-8) 10 |

(b)
Figure 5.2.7: A graph of f(x) = 2x — 4 in

(a) and f(x) = /9 — x%in (b), from Exam-
ple 5.2.4.

y (ft/s)

15 +

10 +

11 11

Figure 5.2.8: A graph of a velocity in Ex-
ample 5.2.5.
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10 +

t t t X

1 2 3

Figure 5.2.9: What is the area below y =
x* on [0, 3]? The region is not a usual ge-
ometric shape.
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t = b, the object moves forward 38 feet, bringing it into a position 27 feet for-
ward of its starting position. Fromt = btot = cthe object is moving backwards
again, hence its maximum displacement is 27 feet from its starting position.

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.2.9, where a region below y = x? is shaded. What
is its area? The function y = x? is relatively simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next section we will explore how to find the areas of such regions.

Notes:



Exercises 5.2

Terms and Concepts

1. What is “total signed area”?

2. What is “displacement”?

3
3. What is/
3

4. Give a single definite integral that has the same value as

sin x dx?

/01(2X+ 3) dx + /12(2x+ 3) dx.

Problems

In Exercises 5 — 10, a graph of a function f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

—2

—4 |

2
(b) / (—2x+4) dx
0

@ [

—2x+4) dx

(a) f(x) dx
0
3
(b) f(x) dx
0
5
(c) f(x) dx

(a) /1(—2x+ 4) dx (d) /3(—2x+ 4) dx
0 1

(e) /2

4(72)( + 4) dx
(f) /1(—6x+ 12) dx
0

(x—1)dx
(x—1)dx
(x—1)dx

fx) = /84— (x=2)

(d) /B(X— 1) dx
(e) /4()(7 1) dx

(f) /4((x—1)+1) dx
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10+ f(x) =3x* -3
y
fx) =3 .l
3 13.
4 4 ;
10. ° - —\yl 2
1 -5
—1 1
: > x (a) f(x) dx (c) f(x) dx
5 10 2 —1
5 0 2 1
@ [ flx)dx () / f(x) dx (b) [ flx)dx (d) [ f(x)dx
0 0 1 0
7 b
(b) f(x) dx (d) / f(x) dx, where y
3 a 4
0<a<b<10 !
3+ fx) =%
In Exercises 11 — 14, a graph of a function f(x) is given; the 14. 2
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa- Y !
tion. s | 7/3 .
1 2
2 3
y (a) / 5x° dx (c) / (x— 1)2 dx
50 0 1
y = f(x) 2 5 4 5
& - (b) / (x* +3) dx (d) / ((x—2)*+5) dx
11. wh 2 s ’ ’

_s0 | In Exercises 15 — 16, a graph of the velocity function of an ob-
ject moving in a straight line is given. Answer the questions
based on that graph.

—100
1 3
(@ [ f(x)dx (© [ fx)dx ()
0 0 27
2 2
(b) | fx) o @ [ 300 o 1
0 ! 15.

/ N
ty 1
4/ f(x) = sin(mx/2) =
12 (a) What is the object’s maximum velocity?
: 2 ; L (b) What is the object’s maximum displacement?
a/m (c) What is the object’s total displacement on [0, 3]?
—1
) 4 y (ft/s)
(@) [ f(x)dx () [ f(x)dx *
0 0
4 1 2
(b) [ f(x)dx (d) [ f(x)dx 16.
2 0

t(s)

1 2 3 4 5

(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 5]?
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17. An object is thrown straight up with a velocity, in ft/s, given
by v(t) = —32t + 64, where t is in seconds, from a height

of 48 feet.
(a) What is the object’s maximum velocity?
(b) What is the object’s maximum displacement?
(c) When does the maximum displacement occur?

(d) When will the object reach a height of 0? (Hint: find

when the displacement is —48ft.)

18. An object is thrown straight up with a velocity, in ft/s, given
by v(t) = —32t + 96, where t is in seconds, from a height

of 64 feet.
(a) What is the object’s initial velocity?
(b) When is the object’s displacement 0?

(c) How long does it take for the object to return to its

initial height?
(d) When will the object reach a height of 210 feet?

In Exercises 19 - 22, let

o [[0an=s,

3
/ f(x)dx =7,
0
2
/ g(x) dx = —3, and

0

o /ng(x)dx:s.

Use these values to evaluate the given definite integrals.

19. / ") + 9(0) o
20. /03 (f(x) — g(x)) dx

21. /23 (3f(x) + 2g(x)) dx

22. Find nonzero values for a and b such that

/03 (af(x) + bg(x)) dx =0

In Exercises 23 — 26, let

Use these values to evaluate the given definite integrals.

23 /3 (s(t) 4+ r(t)) dt
2. /5 " (s(0) - r(0)) dt

25. /3 (ws(t) — 7r(t)) dt

26. Find nonzero values for a and b such that

/5 (ar(t) + bs(t)) dt =0

Review

In Exercises 27 — 30, evaluate the given indefinite integral.

27. / (¢ — 2% +7x— 9) dx
28. /(sinx—cosx—l—seczx) dx

29. /(G/E+t12+2f) dt

30. /(%—cscxcotx) dx
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Figure 5.3.1: A graph of f(x) = 4x — x°.
What is the area of the shaded region?

| \

RHR MPR LHR other

Figure 5.3.2: Approximating f04(4x -
xz) dx using rectangles. The heights of the
rectangles are determined using different
rules.
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5.3 Riemann Sums

In the previous section we defined the definite integral of a function on [a, b] to
be the signed area between the curve and the x—axis. Some areas were simple
to compute; we ended the section with a region whose area was not simple to
compute. In this section we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximation, then refine that approximation to make it better, then use limits
in the refining process to find the exact answer. That is what we will do here.

Consider the region given in Figure 5.3.1, which is the area under y = 4x —x?
on [0, 4]. What is the signed area of this region —i.e., what is f04(4x —x%) dx?

We start by approximating. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over—approximation; we are including area in the rectangle
that is not under the parabola.

We have an approximation of the area, using one rectangle. How can we
refine our approximation to make it better? The key to this section is this answer:
use more rectangles.

Let’s use 4 rectangles with an equal width of 1. This partitions the interval
[0, 4] into 4 subintervals, [0, 1], [1,2], [2,3] and [3,4]. On each subinterval we
will draw a rectangle.

There are three common ways to determine the height of these rectangles:
the Left Hand Rule, the Right Hand Rule, and the Midpoint Rule. The Left Hand
Rule says to evaluate the function at the left—hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.3.2, the rectangle drawn on the
interval [2, 3] has height determined by the Left Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
function at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the function at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proximating rectangles, but one is not forced to use one of these three methods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under fon [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of f04(4x — x%) dx using
these rules.

Notes:



Example 5.3.1 Using the Left Hand, Right Hand and Midpoint Rules
Approximate the value of f04(4x — x%) dx using the Left Hand Rule, the Right
Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SOLUTION We break the interval [0, 4] into four subintervals as before.
In Figure 5.3.3(a) we see 4 rectangles drawn on f(x) = 4x — x* using the Left
Hand Rule. (The areas of the rectangles are given in each figure.)

Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0.
We add up the areas of each rectangle (heightx width) for our Left Hand Rule
approximation:

fO)-14f(1)-1+f(2)-1+f3)-1=
0+3+4+3=10.

Figure 5.3.3(b) shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.

In this example, these rectangle seem to be the mirror image of those found
in part (a) of the Figure. This is because of the symmetry of our shaded region.
Our approximation gives the same answer as before, though calculated a differ-
ent way:

A1) 14+52) - 1+53) - 14+5(4) 1=
3+4+3+0=10.

Figure 5.3.3(c) shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approximation of f04(4x — x%) dx as:

£(0.5) -1+ f(1.5)- 1+ f(2.5) - 14+ f(3.5)- 1 =
1.75 +3.75 4 3.75 + 1.75 = 11.

Our three methods provide two approximations of f04(4x — x?) dx: 10 and 11.
Summation Notation

It is hard to tell at this moment which is a better approximation: 10 or 11?
We can continue to refine our approximation by using more rectangles. The

notation can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summation notation to ameliorate this problem.

Notes:

5.3 Riemann Sums

\d X
1 2 3 4
(b)
y
4,
N Ve N
| / \
1
1.75 | 3.75 [ 3.75 | 1.75 ;
1 2 3 4

(c)

Figure 5.3.3: Approximating f04(4x —
x*) dx in Example 5.3.1. In (a), the Left
Hand Rule is used; in (b), the Right Hand
Rule is used; in (c), the Midpoint Rule is
used.
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Suppose we wish to add up a list of numbers ay, a,, a3, ..., ag. Instead of
writing
a1+ 0, +03+04+0s +ag + a7 + ag + ag,
we use summation notation and write

upper

bound summand

., /
E a;.
—1
o N
i=index lower
of summation bound

Figure 5.3.4: Understanding summation notation.

The upper case sigma represents the term “sum.” The index of summation
in this example is i; any symbol can be used. By convention, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s practice using this notation.

Example 5.3.2 Using summation notation

Let the numbers {a;} be defined as a; = 2/ — 1 for integers i, where i > 1. So
a, = 1,a, = 3, a3 = 5, etc. (The output is the positive odd integers). Evaluate
the following summations:

6 7 4
1Y a 2. (3a;—4) 3. (@)
i=1 i=3 i=1
SOLUTION
6
1. Zai201+02+03+04+05+06

i=1
=1+3+5+7+9+11
= 36.

2. Note the starting value is different than 1:

7
> (3a;— 4) = (303 — 4) + (324 — 4) + (3a5 — 4) + (305 — 4) + (3a7 — 4)
i=3
=11+4+17+423429+35
= 115.

Notes:
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Z(C’i)z = (a1)* + (a2)? + (a3)? + (aa)?

=1°+32+5°+7
— 84,

It might seem odd to stress a new, concise way of writing summations only
to write each term out as we add them up. It is. The following theorem gives
some of the properties of summations that allow us to work with them without
writing individual terms. Examples will follow.

Theorem 5.3.1 Properties of Summations

n

1. E ¢ = c - n, where cis a constant. 5. i=
i=1 i=1

>

[e)}
N
Il

2.§a,ib Za,iZb i j w

2
3.2’7:00,:6-2’7:0; 7. ; i3:<n(nz+1))
i=m i=m i
4. ZaﬂrZa,fZa,

i=j+1

Example 5.3.3 Evaluating summations using Theorem 5.3.1
Revisit Example 5.3.2 and, using Theorem 5.3.1, evaluate

Notes:

5.3 Riemann Sums
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0 1 2 3 4
X1 X5 X9 X13 X17

Figure 5.3.5: Dividing [0,4] into 16
equally spaced subintervals.
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SOLUTION

6 6

> (@i-1)= Zz:’- > @)

i=1 i=1

)

6(6+1

:2&,6
2

=42 -6 =136

We obtained the same answer without writing out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 5.3.1 is incredibly important when dealing with large sums as we’ll
soon see.

Riemann Sums

Consider again j64(4x — xz) dx. We will approximate this definite integral
using 16 equally spaced subintervals and the Right Hand Rule in Example 5.3.4.
Before doing so, it will pay to do some careful preparation.

Figure 5.3.5 shows a number line of [0, 4] divided, or partitioned, into 16
equally spaced subintervals. We denote 0 as x;; we have marked the values of xs,
Xg, X13 and x17. We could mark them all, but the figure would get crowded. While
itis easy to figure that x;,g = 2.25, in general, we want a method of determining
the value of x; without consulting the figure. Consider:

number of
subintervals
between x; and x;

l

xi=x1+ (i—1)Ax

f \

starting subinterval
value size

So x10 = x1 + 9(4/16) = 2.25.
If we had partitioned [0, 4] into 100 equally spaced subintervals, each subin-
terval would have length Ax = 4/100 = 0.04. We could compute x3; as
X33 = x1 + 31(4/100) = 1.24.

(That was far faster than creating a sketch first.)

Notes:



Given any subdivision of [0, 4], the first subinterval is [x1, x;]; the second is
[x2,x3]; the i ™ subinterval is [x;, x;11].

When using the Left Hand Rule, the height of the i*" rectangle will be f(x;).
When using the Right Hand Rule, the height of the i ™" rectangle will be f(x;1).

X + X;
When using the Midpoint Rule, the height of the i ™" rectangle will be f <'+2'+1> .

Thus approximating fo4(4x — xz) dx with 16 equally spaced subintervals can
be expressed as follows, where Ax = 4/16 = 1/4:

16
Left Hand Rule: Zf(x;)Ax

i=1

16
Right Hand Rule: Zf(x,+1)Ax

i=1

16
X; + X
Midpoint Rule: Zf <'+2'+1> Ax
i—1

We use these formulas in the next two examples. The following example lets

us practice using the Right Hand Rule and the summation formulas introduced
in Theorem 5.3.1.

Example 5.3.4 Approximating definite integrals using sums
Approximate f04(4x—x2) dx using the Right Hand Rule and summation formulas
with 16 and 1000 equally spaced intervals.

SOLUTION Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16
Zf(X,‘+1)AX.
i=1

We have Ax = 4/16 = 0.25. Since x; = 0 + (i — 1) Ax, we have

Xig1 =0+ ((i+1) — 1) Ax
=iAx

Notes:

5.3 Riemann Sums
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Figure 5.3.6: Approximating f04(4x —
x*) dx with the Right Hand Rule and 16
evenly spaced subintervals.

224

Using the summation formulas, consider:
4 16
/ (4x — x*) dx ~ Zf(x,-H)Ax
0 i=1

16
= Z f(iAx) Ax
i=1
16

= (4iAx — (iAx)?) Ax

i=1

16
= (4iA — AL
i=1

16 16

= (4A)> i—ACY P (5.3)
i=1 i=1

= (4Ax2)16£717 - Ax3w (Ax = 0.25)

= 10.625

We were able to sum up the areas of 16 rectangles with very little computation.
In Figure 5.3.6 the function and the 16 rectangles are graphed. While some
rectangles over—approximate the area, other under—approximate the area (by
about the same amount). Thus our approximate area of 10.625 is likely a fairly
good approximation.

Notice Equation (5.3); by changing the 16’s to 1,000’s (and appropriately
changing the value of Ax), we can use that equation to sum up 1000 rectan-
gles! We do so here, skipping from the original summand to the equivalent of
Equation (5.3) to save space. Note that Ax = 4/1000 = 0.004.

1000

4
/ (4x — x*) dx =~ Zf(XH—l)AX
0 i=1

1000 1000
= (8AX%)) Ti—AC) 7
i=1 i=1
_a AX2)1000~ 1001 51000(1001)(2001)
2 6
— 10.666656

Using many, many rectangles, we have a likely good approximation of
f04(4x — x?) Ax. That is,

4
/ (4x — x*) dx ~ 10.666656.
0

Notes:



Before the above example, we stated what the summations for the Left Hand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure,
which was:

1. each rectangle has the same width, which we referred to as Ax, and

2. each rectangle’s height is determined by evaluating f at a particular point
in each subinterval. For instance, the Left Hand Rule states that each rect-
angle’s height is determined by evaluating f at the left hand endpoint of
the subinterval the rectangle lives on.

One could partition an interval [a, b] with subintervals that do not have the same
size. We refer to the length of the it subinterval as Ax;. Also, one could deter-
mine each rectangle’s height by evaluating f at any point c; in the i " subinterval.
Thus the height of the i " subinterval would be f(c;), and the area of the i " rect-
angle would be f(c;) Ax;. These ideas are formally defined below.

Definition 5.3.1 Partition

A partition Ax of a closed interval [a, b] is a set of numbers xq, x5, ...
Xn+1 Where

a=x1 <X <...<Xp <Xn+1:b.
The length of the i™ subinterval, [x;, Xi11], is Ax; = xiy1 — x;. If [a, b] is
partitioned into subintervals of equal length, we let Ax represent the
length of each subinterval.

The size of the partition, denoted ||Ax||, is the length of the largest
subinterval of the partition.

Summations of rectangles with area f(c;) Ax; are named after mathematician
Georg Friedrich Bernhard Riemann, as given in the following definition.

Definition 5.3.2 Riemann Sum

Let f be defined on a closed interval [a, b], let Ax be a partition of [a, b]
and let ¢; denote any value in the it subinterval.
The sum

Zf(ci)AXi
i=1

is a Riemann sum of fon [a, b].

Notes:

5.3 Riemann Sums
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Figure 5.3.7 shows the approximating rectangles of a Riemann sum of f04(4x—
x2) dx. While the rectangles in this example do not approximate well the shaded
area, they demonstrate that the subinterval widths may vary and the heights of

3+ the rectangles can be determined without following a particular rule.
5 L \ “Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construction makes computations easier.
e XYI Before working another example, let’s summarize some of what we have learned
1 1 L, x in a convenient way.
1 2 3 4
Figure 5.3.7: An example of a general Rie- Key Idea 5.3.1 Riemann Sum Concepts

mann sum to approximate [ (4x—x*) dx.

b n
Consider/ f(x) dx =~ Zf(c;)Ax,-.

i=1

1. When the n subintervals have equal length, Ax; = Ax =
n

2. The i™ term of an equally spaced partition is x; = a + (i — 1) Ax.
(Thus x; = aand x,+1 = b.)

n
3. The Left Hand Rule summation is: Zf(x,-)Ax.
i=1

n
4. The Right Hand Rule summation is: Zf(x,-H)Ax.
i=1

w

n
. The Midpoint Rule summation is: Zf (X—’ +2X’+1) Ax.
i=1

Let’s do another example.

Example 5.3.5 Approximating definite integrals with sums
Approximate sz(Sx + 2) dx using the Midpoint Rule and 10 equally spaced
intervals.
SOLUTION Following Key Idea 5.3.1, we have
3—(-2) . .
Ax="——2=1/2 and x=(-2)+(1/2)(i—1)=1i/2-5/2.

10

Notes:
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Xi + Xit1

As we are using the Midpoint Rule, we will also need x;4; and . Since

Xi=1/2—-5/2, X1 = (i+1)/2—-5/2=1i/2— 2. This gives
X,'+X,'+1 . (1/2—5/2)+(I/2—2)
2 2

We now construct the Riemann sum and compute its value using summation
formulas.

= i_f/z =i/2—9/a.

3 10
- Xi + Xip1
/2(5x+2)dx~i_zlf<2 >Ax

= fli/2—9/4)Ax

- ioj (5(i/2 — 9/4) 4+ 2) Ax
-3 (5

i=1 i=1
1 /5 10(11)
= —(=- —2 —-10- —
2\ 2 2
45
= — =225
2

Note the graph of f(x) = 5x + 2 in Figure 5.3.8. The regions whose area is
computed by the definite integral are triangles, meaning we can find the exact
answer without summation techniques. We find that the exact answer is indeed
22.5. One of the strengths of the Midpoint Rule is that often each rectangle
includes area that should not be counted, but misses other area that should.
When the partition size is small, these two amounts are about equal and these
errors almost “cancel each other out.” In this example, since our function is a
line, these errors are exactly equal and they do cancel each other out, giving us
the exact answer.

Note too that when the function is negative, the rectangles have a “negative”
height. When we compute the area of the rectangle, we use f(c;) Ax; when fis
negative, the area is counted as negative.

Notice in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculations until the very end.

Notes:

5.3 Riemann Sums

Figure 5.3.8: Approximating sz(Sx +
2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
5.3.5.
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Mathematicians love to abstract ideas; let’s approximate the area of another re-
gion using n subintervals, where we do not specify a value of n until the very end.

Example 5.3.6 Approximating definite integrals with a formula, using sums
Revisit f04(4x—x2) dxyetagain. Approximate this definite integral using the Right
Hand Rule with n equally spaced subintervals.

SOLUTION Using Key Idea 5.3.1, we know Ax = =2 = 4/n. We also
find x; = 0+ Ax(i — 1) = 4(i — 1)/n. The Right Hand Rule uses x;;1, which is
Xi+1 = 4//n

We construct the Right Hand Rule Riemann sum as follows. Be sure to fol-
low each step carefully. If you get stuck, and do not understand how one line
proceeds to the next, you may skip to the result and consider how this result
is used. You should come back, though, and work through each step for full
understanding.

Z”: (16Ax> 5

16 Ax n(n +
— —

32(n+1) 32(n +1)(2n+1)
= 3 (now simplify)

6

The result is an amazing, easy to use formula. To approximate the definite
integral with 10 equally spaced subintervals and the Right Hand Rule, setn = 10

and compute
4
32 1
/ (4x —x*)dx~ = (1— — | = 10.56.
0 3 102

Notes:

Ax =4/n

<16Ax) n(n+1)(2n+1) ( recall

)



Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

Itis now easy to approximate the integral with 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathematics has been
limited to geometry and algebra (finding areas and manipulating expressions).
Now we apply calculus. For any finite n, we know that

4
32 1

/ (4x—x2)dxz(1—2>.
0 3 n

Both common sense and high—level mathematics tell us that as n gets large, the
approximation gets better. In fact, if we take the limit as n — oo, we get the
exact area described by f04(4x — x?) dx. Thatis,

4
32 1

/ (4x —x*) dx = lim = (1— 2)
0 n—oco 3 n

32

=—(1-0

= (1-0)
32 _

= — =10.6
3

This is a fantastic result. By considering n equally—spaced subintervals, we ob-
tained a formula for an approximation of the definite integral that involved our
variable n. As n grows large — without bound — the error shrinks to zero and we
obtain the exact area.

This section started with a fundamental calculus technique: make an ap-
proximation, refine the approximation to make it better, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s practice this again.

Example 5.3.7 Approximating definite integrals with a formula, using sums
Find a formula that approximates fflx3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n — oo to find the exact
area.

SOLUTION Following Key Idea 5.3.1, we have Ax = 5_(;1) = 6/n.
We have x; = (—1) + (i — 1) Ax; as the Right Hand Rule uses x;y1, we have
Xiy1 = (—1) +iAx.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-

Notes:

5.3 Riemann Sums
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100 + 7

50 +

— . g t t X

_1 1 2 3 4 s
Figure 5.3.9: Approximating ffl X dx us-

ing the Right Hand Rule and 10 evenly
spaced subintervals.
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plifications):

5 n
/ X3 dx ~ Zf(x,-H)Ax
i—1

-1

n
=) f(—1+iAx)Ax
i=1
n
= Z(fl +iAx)3 Ax
i=1
- Z ((iAx)* = 3(iAx)* + 3iAx — 1) Ax  (now distribute Ax)
i=1
n
= Z (f3AX4 — 3f2AX3 + 3iAX2 — AX) (now split up summation)

i=1

= AX4Zi3 - 3Axaz:i2 +3Ax22i— ZAX
i=1 i=1 i=1 =1
2
W (n(n;— 1)) B 3Ax3n(n+ 1);2n +1) N 3szn(n +1) 0 Ax

(use Ax = 6/n)

n* 4 m 6 n? 2

1296 n*(n+1)° 5216 n(n+1)(2n+1)+336n(n+1)

(now do a sizable amount of algebra to simplify)

378 216
=156+ —+ —
n n
Once again, we have found a compact formula for approximating the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximation of 195.96 (these rectangles are shown
in Figure 5.3.9). Using n = 100 gives an approximation of 159.802.
Now find the exact answer using a limit:

> _ 378 216
x> dx = lim 156 + — + —- ] = 156.
4 n n n

e el

Limits of Riemann Sums

We have used limits to evaluate given definite integrals. Will this always
work? We will show, given not-very—restrictive conditions, that yes, it will al-
ways work.

Notes:



The previous two examples demonstrated how an expression such as
n
Zf(XH_l)AX
i=1

can be rewritten as an expression explicitly involving n, such as 32/3(1 — 1/n?).

Viewed in this manner, we can think of the summation as a function of n.
An n value is given (where n is a positive integer), and the sum of areas of n
equally spaced rectangles is returned, using the Left Hand, Right Hand, or Mid-
point Rules.

Given a definite integral fabf(x) dx, let:

n

e S (n) = Zf(x,)Ax, the sum of equally spaced rectangles formed using

i=1
the Left Hand Rule,

n
e Sp(n) = Zf(x,url)Ax, the sum of equally spaced rectangles formed us-

i=1
ing the Right Hand Rule, and

n
Xi + X
* Su(n) = Zf (,-1—2,“) Ax, the sum of equally spaced rectangles
i=1

formed using the Midpoint Rule.

Recall the definition of a limitas n — co: lim S;(n) = Kif, givenany e > 0,
n—oo
there exists N > 0 such that

|St(n) — K| <e when n>N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral f:f(x) dx. It also goes two steps further.
The theorem states that the height of each rectangle doesn’t have to be deter-
mined following a specific rule, but could be f(c;), where ¢; is any point in the ith
subinterval, as discussed before Riemann Sums were defined in Definition 5.3.2.

The theorem goes on to state that the rectangles do not need to be of the
same width. Using the notation of Definition 5.3.1, let Ax; denote the length
of the i subinterval in a partition of [a, b] and let || Ax|| represent the length
of the largest subinterval in the partition: that is, || Ax|| is the largest of all the
Axj’s. If || Ax|| is small, then [a, b] must be partitioned into many subintervals,
since all subintervals must have small lengths. “Taking the limit as || Ax|| goes
to zero” implies that the number n of subintervals in the partition is growing to

Notes:

5.3 Riemann Sums
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infinity, as the largest subinterval length is becoming arbitrarily small. We then

interp

s “th

ret the expression
n

lim Zf(c,-)Ax;

|| Ax||—0 4
i=1

e limit of the sum of the areas of rectangles, where the width of each

rectangle can be different but getting small, and the height of each rectangle is
not necessarily determined by a particular rule.” The theorem states that this
Riemann Sum also gives the value of the definite integral of f over [a, b].

Theorem 5.3.2 Definite Integrals and the Limit of Riemann Sums

Let f be continuous on the closed interval [a, b] and let S;(n), Sg(n),
Sm(n), Ax, Ax; and ¢; be defined as before. Then:

1. lim S$;(n) = lim Sg(n) = I|m Sm(n) = lim Zf c)A

n—oo n—oo n—o0

n b
2. nangOZf(Ci)AXZ/ f(x) dx, and
i=1 <

‘ ||AILT|TLOZ]C = /f

We summarize what we have learned over the past few sections here.

Knowing the “area under the curve” can be useful. One common example:
the area under a velocity curve is displacement.

We have defined the definite integral, fabf(x) dx, to be the signed area
under fon the interval [a, b].

While we can approximate a definite integral many ways, we have focused
on using rectangles whose heights can be determined using the Left Hand
Rule, the Right Hand Rule and the Midpoint Rule.

Sums of rectangles of this type are called Riemann sums.

The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

Notes:



We first learned of derivatives through limits then learned rules that made
the process simpler. We know of a way to evaluate a definite integral using limits;
in the next section we will see how the Fundamental Theorem of Calculus makes
the process simpler. The key feature of this theorem is its connection between
the indefinite integral and the definite integral.

Notes:

5.3 Riemann Sums
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Exercises 5.3

Terms and Concepts

1. Afundamental calculus technique is to use tore-

fine approximations to get an exact answer.

2. What is the upper bound in the summation
14

> (a8i — 201)?

i=7

3. This section approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems

In Exercises 5 — 12, write out each term of the summation and
compute the sum.

4
5.3 F
i=2

6. i(mfz)

7. sin(i/2)

i=—2
10
8. > 5
i=1
5
1
9. -

10. > (-1l

4
1 1
11. - —
>(G-)

12.  (—1)' cos(ri)

i=0
In Exercises 13 — 16, write each sum in summation notation.
13. 3+6+9+4+ 12415

14, -1+0+3+8+15+24+35+48+63

N

1 3 4
15 S+ -4 242
St3tats

w

16. 1,e+32,e3+e4

In Exercises 17 — 24, evaluate the summation using Theorem
5.3.1.

10
17. Zs
i=1

25
18. Zi
i=1

10

19. ) (37 —2i)

i=1

15

20. ) (27 - 10)

i=1

10
21. ) (—4 + 107 - 7i 4 11)

i=1

10
22. Y (P -3 +2i+7)

i=1

23. 14+2+4+3+...+994 100

24. 1+4+9+ ...+ 361+ 400

Theorem 5.3.1 states

n k n
E ai = E aji + E aj, so
i=1 i=1 i=k+1

n

n k
E a; = E a; — E a;i.
i=1 i=1

i=k+1
Use this fact, along with other parts of Theorem 5.3.1, to eval-
uate the summations given in Exercises 25 — 28.

20
25. Zi

i=11

25
26. Z i
i=16

12
27. 24
i=7

10
28. 24:'3
i=5



In Exercises 29 — 34, a definite integral
/ f(x) dx is given.
a

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

b
(c) Approximate / f(x) dx by summing the areas of the

rectangles.

3
29. / x* dx, with 6 rectangles using the Left Hand Rule.
-3

30. ) dx, with 4 rectangles using the Midpoint Rule.

X

2" dx, with 5 rectangles using the Left Hand Rule.

31. / sin x dx, with 6 rectangles using the Right Hand Rule.
32. /

0

33. / In x dx, with 3 rectangles using the Midpoint Rule.

9
1
34, / o dx, with 4 rectangles using the Right Hand Rule.
1

In Exercises 35 — 40, a definite integral
b

f(x) dx is given. As demonstrated in Examples 5.3.6

and 573.7, do the following.
b
(a) Find a formula to approximate f(x) dx using n
subintervals and the provided ruIe.a
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n — oo, to find the
b

exact value of / f(x) dx.

1
35. / X3 dx, using the Right Hand Rule.
0

1
36. / 3x° dx, using the Left Hand Rule.

—1

3
37. / (3x — 1) dx, using the Midpoint Rule.

—1

4
38. / (2x* — 3) dx, using the Left Hand Rule.
1

10
39. / (5 — x) dx, using the Right Hand Rule.

—10

1
40. / (x* — x*) dx, using the Right Hand Rule.
0

Review

In Exercises 41 — 46, find an antiderivative of the given func-
tion.

41. f(x) = 5sec’x

7
42, ==
fl) =~

43. g(t) =4 -5t + 8

44. g(t) =5-8*

45. g(t) = cost+sint

46. f(x) = %
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Figure 5.4.1: The area of the shaded re-
gionis F(x) = [ f(t) dt.
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5.4 The Fundamental Theorem of Calculus

Let f(t) be a continuous function defined on [a, b]. The definite integral fabf(x) dx
is the “area under f” on [a, b]. We can turn this concept into a function by letting
the upper (or lower) bound vary.

Let F(x) = [ f(t) dt. It computes the area under f on [a, x] as illustrated
in Figure 5.4.1. We can study this function using our knowledge of the definite
integral. For instance, F(a) = 0 since f:f(t) dt=0.

We can also apply calculus ideas to F(x); in particular, we can compute its
derivative. While this may seem like an innocuous thing to do, it has far—reaching
implications, as demonstrated by the fact that the result is given as an important
theorem.

Theorem 5.4.1 The Fundamental Theorem of Calculus, Part 1

Let f be continuous on [a, b] and let F(x) = f;f(t) dt. Then Fis a differ-
entiable function on (a, b), and

Initially this seems simple, as demonstrated in the following example.

Example 5.4.1 Using the Fundamental Theorem of Calculus, Part 1

X
Let F(x) = / (t* 4 sint) dt. What is F/(x)?

-5

SOLUTION Using the Fundamental Theorem of Calculus, we have F'(x) =
X2 + sinx.

This simple example reveals something incredible: F(x) is an antiderivative
of X + sinx! Therefore, F(x) = 2x* — cosx + C for some value of C. (We can
find C, but generally we do not care. We know that F(—5) = 0, which allows us

to compute C. In this case, C = cos(—5) + 122,

We have done more than found a complicated way of computing an an-
tiderivative. Consider a function f defined on an open interval containing a, b
and c. Suppose we want to compute fabf(t) dt. First, let F(x) = [ f(t) dt. Using

Notes:



the properties of the definite integral found in Theorem 5.2.1, we know

/abf(t)dt—/acf(t)dt—i—/cbf(t)dt

—/af(t) dt+/bf(t) dt
= —F(a) + F(b)
= F(b) — F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using antiderivatives! This is the second part of the
Fundamental Theorem of Calculus.

Theorem 5.4.2 The Fundamental Theorem of Calculus, Part 2

Let f be continuous on [a, b] and let F be any antiderivative of f. Then

b
/ f(x) dx = F(b) — F(a).

Example 5.4.2 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of time in the previous section studying f04(4x — x%) dx.
Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SOLUTION We need an antiderivative of f(x) = 4x — x*. All antideriva-
tives of f have the form F(x) = 2x* — %x3 + C; for simplicity, choose C = 0.
The Fundamental Theorem of Calculus states

/4(4x—x2) dx = F(4) — F(0) = (2(4)* - %43) —(0-0)=32— % =32/3.

This is the same answer we obtained using limits in the previous section, just
with much less work.

Notation: A special notation is often used in the process of evaluating definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-

ing F(b) — F(a), the notation F(x)
would be written as:

/04(4x ) dx = (zx2 - ;x3>

b
is used. Thus the solution to Example 5.4.2
a

= (2(4)* - §43) —(0-0) =32/3.

0

Notes:

5.4 The Fundamental Theorem of Calculus
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The Constant C: Any antiderivative F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evaluating F(b) — F(a), so it does not matter what value is picked. This being
the case, we might as well let C = 0.

Example 5.4.3 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

2 T 5 9 5
1./ X3 dx 2./ sinx dx 3./ et dt 4./ Vudu 5./ 2 dx
2 0 0 4 1

SOLUTION
2
1 1
= (24) - ((—2)4> =0.
L, \a 4

2
1
1. / Xdx= Zx*
3 4
™

™
2./sinxdx:—cosx =—cosT— (—cos0) =1+1=2.
0

0

(This is interesting; it says that the area under one “hump” of a sine curve
is 2.)

5
3./etdt:et
0
9 s )
4./\/ﬂdu:/ufdu:7u
4 4 3

5
5. / 2dx = 2x
1

This integral is interesting; the integrand is a constant function, hence we
are finding the area of a rectangle with width (5 — 1) = 4 and height 2.
Notice how the evaluation of the definite integral led to 2(4) = 8.

5
=e° —e¥=¢° — 1=~ 147.41.
0

9 38

2,5 o\ 2
:7(92 —42) —Z(27-8) ==,
3 3 3

Nlw

4

5
1

—2(5)-2=2(5-1) =8.

In general, if ¢ is a constant, then fab cdx=c(b—a).

Understanding Motion with the Fundamental Theorem of
Calculus

We established, starting with Key Idea 2.2.1, that the derivative of a position
function is a velocity function, and the derivative of a velocity function is an ac-
celeration function. Now consider definite integrals of velocity and acceleration

b
functions. Specifically, if v(t) is a velocity function, what does / v(t) dt mean?
a

Notes:



The Fundamental Theorem of Calculus states that

/ ’ v(t) dt = V(b) — V(a),

where V(t) is any antiderivative of v(t). Since v(t) is a velocity function, V(t)
must be a position function, and V(b) — V(a) measures a change in position, or
displacement.

Example 5.4.4 Finding displacement
A ball is thrown straight up with velocity given by v(t) = —32t + 20ft/s, where

1
tis measured in seconds. Find, and interpret, / v(t) dt.
0

SOLUTION Using the Fundamental Theorem of Calculus, we have

/01 v(t) dt = /01(32t+ 20) dt

1
= —16t° + ZOt’

0
= 4.

Thus if a ball is thrown straight up into the air with velocity v(t) = —32t + 20,
the height of the ball, 1 second later, will be 4 feet above the initial height. (Note
that the ball has traveled much farther. It has gone up to its peak and is falling
down, but the difference between its height att = 0 and t = 1 is 4ft.)

Integrating a rate of change function gives total change. Velocity is the rate
of position change; integrating velocity gives the total change of position, i.e.,
displacement.

Integrating a speed function gives a similar, though different, result. Speed
is also the rate of position change, but does not account for direction. So inte-
grating a speed function gives total change of position, without the possibility
of “negative position change.” Hence the integral of a speed function gives dis-
tance traveled.

As acceleration is the rate of velocity change, integrating an acceleration
function gives total change in velocity. We do not have a simple term for this
analogous to displacement. If a(t) = S5miles/h? and t is measured in hours,

then s
/ a(t) dt =15
0

means the velocity has increased by 15m/h fromt =0tot = 3.

Notes:

5.4 The Fundamental Theorem of Calculus
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The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theorem of Calculus (FTC) states that given F(x) =
X d
/ f(t) dt, F’(x) = f(x). Using other notation, ™ (F(x)) = f(x). While we have
X

a
just practiced evaluating definite integrals, sometimes finding antiderivatives is

impossible and we need to rely on other techniques to approximate the value
of a definite integral. Functions written as F(x) = f:f(t) dt are useful in such
situations.

It may be of further use to compose such a function with another. As an
example, we may compose F(x) with g(x) to get

g(x)

Flow) = [ ft)dt.

a

What is the derivative of such a function? The Chain Rule can be employed to

state
d

—(Fla)) = F'(900)g"(x) = f(g(x))g'(x).

An example will help us understand this.

Example 5.4.5 The FTC, Part 1, and the Chain Rule
XZ

Find the derivative of F(x) = / Intdt.
2

X
SOLUTION We can view F(x) as being the function G(x) = / Int dt
2

composed with g(x) = x%; thatis, F(x) = G(g(x)). The Fundamental Theorem
of Calculus states that G’(x) = Inx. The Chain Rule gives us

F'(x) = G'(g(x))g’ (x)
=In(g(x))g’(x)
= In(x*)2x

= 2xInx?

Normally, the steps defining G(x) and g(x) are skipped.
Practice this once more.

Example 5.4.6 The FTC, Part 1, and the Chain Rule
5

Find the derivative of F(x) = / £ dt.

Cos X

Notes:



Cos x
SOLUTION Note that F(x) = — / t* dt. Viewed this way, the deriva-
5

tive of F is straightforward:

F'(x) = sinxcos® x.

Area Between Curves

Consider continuous functions f(x) and g(x) defined on [a, b], where f(x) >
g(x) for all x in [a, b], as demonstrated in Figure 5.4.2. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f —
the area under g.” Using mathematical notation, the area is

/abf(x) dx — /ab g(x) dx.

Properties of the definite integral allow us to simplify this expression to

b
/ (F0) — g(x)) dx.

Theorem 5.4.3 Area Between Curves

Let f(x) and g(x) be continuous functions defined on [a, b] where f(x) >
g(x) for all x in [a,b]. The area of the region bounded by the curves
y = f(x),y = g(x) and the linesx = aand x = b is

b
/ (Fx) — g(x)) dix.

Example 5.4.7 Finding area between curves
Find the area of the region enclosed by y = x> +x — 5and y = 3x — 2.

SOLUTION It will help to sketch these two functions, as done in Figure
5.4.3. The region whose area we seek is completely bounded by these two
functions; they seem to intersect at x = —1 and x = 3. To check, set x> +x—5 =

Notes:

5.4
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g(x)

g(x)

Figure 5.4.2: Finding the area bounded by
two functions on an interval; it is found
by subtracting the area under g from the
area under f.

y=3x-—2
Figure 5.4.3: Sketching the region en-

closedbyy =x* +x—5andy = 3x — 2
in Example 5.4.7.
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Figure 5.4.4: A graph of a function fto in-
troduce the Mean Value Theorem.

(b)
y
/
1 2 3 4

Figure 5.4.5: Differently sized rectan-
gles give upper and lower bounds on
fff(x) dx; the last rectangle matches the
area exactly.
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3x — 2 and solve for x:

X +x—5=3x—2
(X*+x—5)—(3x—2)=0
¥ —2x—3=0
(x—3)(x+1)=0

x= -1, 3.

Following Theorem 5.4.3, the area is

/3 (3x—2—(x2+x—5))dx:/3(—x2+2x+3)dx

-1 -1

1
= (—x3 +x* + 3x>
3 -1

1 1
=3 +9+9- (+13>

3

3

2 _
=10- =10.6
3

The Mean Value Theorem and Average Value

Consider the graph of a function f in Figure 5.4.4 and the area defined by
fff(x) dx. Three rectangles are drawn in Figure 5.4.5; in (a), the height of the
rectangle is greater than fon [1, 4], hence the area of this rectangle is is greater

than [} f(x) dx.

In (b), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than fff(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of fo4f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too little,” as in (b), give areas greater/lesser than fff(x) dx,
it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

Notes:



Theorem 5.4.4 The Mean Value Theorem of Integration

Let f be continuous on [a, b]. There exists a value c in [a, b] such that

b
/ fx) dx = £(c) (b — a).

This is an existential statement; c exists, but we do not provide a method of
finding it. Theorem 5.4.4 is directly connected to the Mean Value Theorem of
Differentiation, given as Theorem 3.2.1; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Example 5.4.8 Using the Mean Value Theorem
Consider foﬂ sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SOLUTION We first need to evaluate foﬁ sinx dx. (This was previously
done in Example 5.4.3.)

K
/ sinxdx = — cos x
0

Thus we seek a value cin [0, 7] such that 7sinc = 2.

T
=2.
0

wsinc=2 = sinc=2/r = c=arcsin(2/m) ~ 0.69.
In Figure 5.4.6 sin x is sketched along with a rectangle with height sin(0.69).

The area of the rectangle is the same as the area under sinx on [0, 7].

Let fbe a function on [a, b] with c such that f(c)(b—a) = f:f(x) dx. Consider
(f(x) — f(c)) dx:

b b b
/ (f(x) = f(c)) dx = / flx) — / £(c) dx
=f(c)(b—a) — flc)(b—a)

I

=0.

When f(x) is shifted by —f(c), the amount of area under f above the x—axis on
[a, b] is the same as the amount of area below the x—axis above f; see Figure
5.4.7 for an illustration of this. In this sense, we can say that f(c) is the average
value of fon [a, b].

Notes:

5.4
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| /\
sin 0.69

Figure 5.4.6: A graph of y = sinx on
[0, 7] and the rectangle guaranteed by
the Mean Value Theorem.

y = f(x)
fle) +
: X
a c b
(@)
y
y = f(x) — f(c)
fle) +
X
a c b
(b)
Figure 5.4.7: In (a), a graph of y =

f(x) and the rectangle guaranteed by the
Mean Value Theorem. In (b), y = f(x) is
shifted down by f(c); the resulting “area
under the curve” is 0.

243



Chapter 5

244

Integration

The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewritten as

b
)= 5y [ A0 o

for some value of c in [a,b]. Next, partition the interval [a, b] into n equally
spaced subintervals, a = x; < x; < ... < X,41 = b and choose any ¢; in
[Xi, Xi+-1]. The average of the numbers f(c1), f(¢3), ..., f(cn) is:

(e @)+ ) = 3 A

(b—a).
(b—a)"

Multiply this last expression by 1 in the form of

» 2fle) =D fle);

1 n
= Zf(c,—)AX (where Ax = (b — a)/n)
i=1

b—a“

Now take the limitas n — oco:

n b
lim Lz:f(c,')Ax = ! /f(x)dx = f(o).

n—oo b — @ 4 b—a

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n — occ.
This leads us to a definition.

Definition 5.4.1 The Average Value of fon [, b)

Let f be continuous on [a, b]. The average value of f on [a, b] is f(c),
where cis a value in [a, b] guaranteed by the Mean Value Theorem. l.e.,

1 b
Average Value of fon [a, b] = ﬁ/ f(x) dx.
- a

Notes:



An application of this definition is given in the following example.

Example 5.4.9 Finding the average value of a function
An object moves back and forth along a straight line with a velocity given by
v(t) = (t — 1)? on [0, 3], where t is measured in seconds and v(t) is measured
in ft/s.

What is the average velocity of the object?

SOLUTION By our definition, the average velocity is:

3

=1 ft/s.
0

1 3 1 /3 1/1
— t—1)2dt== 2 —2t+1)dt= =23 -+t
3-0 0( ) 3/0 ( +1) 3(3 +

We can understand the above example through a simpler situation. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/time = 100 miles/2 hours = 50 mph.

What was the displacement of the ob;ect in Example 5.4.9? We calculate
this by integrating its velocity function: [ (t — 1)2 dt = 3 ft. Its final position
was 3 feet from its initial position after 3 seconds: its average velocity was 1 ft/s.

This section has laid the groundwork for a lot of great mathematics to fol-
low. The most important lesson is this: definite integrals can be evaluated using
antiderivatives. Since the previous section established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, computing antiderivatives is much
more difficult than computing derivatives. The next chapter is devoted to tech-
niques of finding antiderivatives so that a wide variety of definite integrals can
be evaluated. Before that, the next section explores techniques of approximat-
ing the value of definite integrals beyond using the Left Hand, Right Hand and
Midpoint Rules. These techniques are invaluable when antiderivatives cannot
be computed, or when the actual function fis unknown and all we know is the
value of f at certain x-values.

Notes:

5.4 The Fundamental Theorem of Calculus
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Exercises 5.4

Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integration is most commonly used when
evaluating definite integrals?

3. T/F: If fis a continuous function, then F(x) = / f(t) dtis

also a continuous function.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems

In Exercises 5 — 28, evaluate the definite integral.

3
5. / (3% — 2x + 1) dx
1

. /04(x— 1) dx

7. /1 (x* —x°) dx

-1

8. / cos x dx
/2

w/4
9. / sec? x dx
0

[e)]

-1
12./ (4 — 2x%) dx

2

13. / (2cosx — 2sinx) dx
0

3
14. / e dx
1

4
15. / Vitdt
0
25
1
16. = dt
s Vit

8
17. / /x dx
1

2
18. / de
;X
2

1
1 X
2
20. / %dx
1 X
1
21. / X dx
0
1
22. / X dx
0
1
23. / X dx
0
1
24, / X% dx
0
4
25./ dx
—4
-5
26./ 3 dx
—10
2
27. / 0 dx
—2

/3
28. / cscx cot x dx
/6

29. Explain why:

1
(a) x" dx = 0, when n is a positive, odd integer, and
—1

1 1
(b) X dx = 2/ X" dx when n is a positive, even
—1 0
integer.

~a+27
30. Explain why/ sint dt = 0 for all values of a.

a



In Exercises 31 — 34, find a value c guaranteed by the Mean
Value Theorem.

2
31. / X dx
0
2
32. / X dx
-2
1
33. / e dx
0

16
34, / VX dx
0

In Exercises 35 — 40, find the average value of the function on
the given interval.

35. f(x) =sinxon [0,7/2]

36. y =sinxon [0, 7]

37. y=xon|0,4]

38. y=x"on [0, 4]

39. y =x*on [0, 4]

40. g(t) =1/ton|[1,¢]
In Exercises 41 — 46, a velocity function of an object moving
along a straight line is given. Find the displacement of the
object over the given time interval.

41. v(t) = —32t 4+ 20ft/son [0, 5]

42. v(t) = —32t + 200ft/s on [0, 10]

43. y(t) = 10ft/s on [0, 3].

44. v(t) = 2'mphon[-1,1]

45. v(t) = costft/son [0,37/2]

46. v(t) = v/tft/son [0, 16]

In Exercises 47 — 50, an acceleration function of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given time interval.

47. a(t) = —32ft/s’ on [0, 2]
48. a(t) = 10ft/s” on [0, 5]
49. a(t) = tft/s> on [0, 2]

50. a(t) = cost ft/s* on [0, 7]

In Exercises 51 — 54, sketch the given functions and find the
area of the enclosed region.

51. y = 2x,y = 5x,and x = 3.
52. y=—x+1,y=3x+6,x=2andx = —1.
53. y=x>—2x+5,y="5x—5.

54, y =2 +2x—5,y=x*+3x+7.

In Exercises 55 — 58, find F'(x).

X3+x 1
55. F(x) :/ ~dt
2 t

0
56. F(x) :/ £ dt

3

2

57. F(x) = / (t+2)dt

X

€
58. F(x) :/ sint dt
[

nx
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—0.5 |+

(b)

0.5 +

(c)
Figure 5.5.1: Graphically representing

three definite integrals that cannot be
evaluated using antiderivatives.
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5.5 Numerical Integration

The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on computing an-
tiderivatives. Despite the power of this theorem, there are still situations where
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situation we explore is where we cannot compute the an-
tiderivative of the integrand. The second case is when we actually do not know
the function in the integrand, but only its value when evaluated at certain points.

An elementary function is any function that is a combination of polynomial,
n™ root, rational, exponential, logarithmic and trigonometric functions. We can
compute the derivative of any elementary function, but there are many elemen-
tary functions of which we cannot compute an antiderivative. For example, the
following functions do not have antiderivatives that we can express with ele-
mentary functions:

e™, sin(x*) and

sinx

The simplest way to refer to the antiderivatives of e is to simply write
[e dx.

This section outlines three common methods of approximating the value of
definite integrals. We describe each as a systematic method of approximating
area under a curve. By approximating this area accurately, we find an accurate
approximation of the corresponding definite integral.

We will apply the methods we learn in this section to the following definite

integrals:
1 s
/ e ™ dx, /
0 s

5

N

4m s
sin(x*) dx, and / sin(x) dx,
; 0

5 X

as pictured in Figure 5.5.1.
The Left and Right Hand Rule Methods

In Section 5.3 we addressed the problem of evaluating definite integrals by
approximating the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximating definite integrals.

We start with a review of notation. Let f be a continuous function on the

b
interval [a, b]. We wish to approximate / f(x) dx. We partition [a, b] into n
a

b—a
equally spaced subintervals, each of length Ax = 7 The endpoints of these

Notes:



subintervals are labeled as
x1=a,% =0+ x3=a+2A4x, ..., x;=a+ (i—1)Ax, ..., X,11 = b.

Key Idea 5.3.1 states that to use the Left Hand Rule we use the summation

n n
Zf(x,-)Ax and to use the Right Hand Rule we use Zf(x,+1)Ax. We review
=1 =1
the use of these rules in the context of examples.

Example 5.5.1 Approximating definite integrals with rectangles
1

Approximate / e dx using the Left and Right Hand Rules with 5 equally

0
spaced subintervals.

SOLUTION We begin by partitioning the interval [0, 1] into 5 equally
spaced intervals. We have Ax = 2% = 1/5 = 0.2, so

X1 = O, Xy = 027 X3 = 04, Xq = 06, X5 = 08, and Xe = 1.

Using the Left Hand Rule, we have:

Zf(XI)AX = (f(x1) + f(x2) + f(x3) + f(xa) + f(x5)) Ax

= (f(0) + £(0.2) + £(0.4) + £(0.6) + £(0.8)) Ax
~ (1+ 0.961 + 0.852 + 0.698 + 0.527)(0.2)
~ 0.808.

Using the Right Hand Rule, we have:

Zf(x,-H)Ax = (f(x2) + f(x3) + f(xa) + fxs) + f(xs)) Ax

= (f(0.2) + f(0.4) + £(0.6) + f(0.8) + (1)) Ax
~ (0.961 + 0.852 + 0.698 + 0.527 + 0.368)(0.2)
~ 0.681.

Figure 5.5.2 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this particular case, the Left Hand
Rule is an over approximation and the Right Hand Rule is an under approxima-
tion. To get a better approximation, we could use more rectangles, as we did in

Notes:
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0.5 |

02 04 06 0.8 1

0.5

0.2 04 06 0.8 1

(b)

Figure 5.5.2: Approximating fol e_"2 dxin
Example 5.5.1.
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Xi Exact Approx.  sin(x?)
x1 —n/4  —0.785 —0.466
X2 —77r/40 —0.550 —0.165
X3 —7T/10 —0.314 —0.031
Xs —m/40 —0.0785 0

Xs 7T/20 0.157 0.004
X6 7r/8 0.393 0.061
X7 7r/5 0.628 0.246
Xg 117T/40 0.864 0.601
Xog 77r/20 1.10 0.971
X1  177/40 1.34 0.690
X11 7r/2 1.57 —0.670

Figure 5.5.3: Table of values used to
approximate [ 2, sin(x’) dx in Example
r

5.5.2.

0.5

(a)

y = sin(x*)

—0.5

(b)

Figure 5.5.4: Approximating
[, sin(x*) dx in Example 5.5.2.
4
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Section 5.3. We could also average the Left and Right Hand Rule results together,
giving
0.808 + 0.681
2
The actual answer, accurate to 4 places after the decimal, is 0.7468, showing
our average is a good approximation.

= 0.7445.

Example 5.5.2 Approximating definite integrals with rectangles

s

2
Approximate / sin(x®) dx using the Left and Right Hand Rules with 10 equally

7
spaced subintervals.

SOLUTION We begin by finding Ax:

b (=
a_m/2=(=1/8) 3T 56,
n 10 40

It is useful to write out the endpoints of the subintervals in a table; in Figure
5.5.3, we give the exact values of the endpoints, their decimal approximations,
and decimal approximations of sin(x3) evaluated at these points.

Once this table is created, it is straightforward to approximate the definite
integral using the Left and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The Left Hand Rule sums the first 10 values
of sin(x}) and multiplies the sum by Ax; the Right Hand Rule sums the last 10
values of sin(x?) and multiplies by Ax. Therefore we have:

Left Hand Rule: /

' sin(x*) dx ~ (1.91)(0.236) = 0.451.

)

2
Right Hand Rule: / sin(x®) dx ~ (1.71)(0.236) = 0.404.

Average of the Left a%d Right Hand Rules: 0.4275.

The actual answer, accurate to 3 places after the decimal, is 0.460. Our ap-
proximations were once again fairly good. The rectangles used in each approx-
imation are shown in Figure 5.5.4. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approximation.

The Trapezoidal Rule

1

In Example 5.5.1 we approximated the value of e dxwith5 rectangles

0
of equal width. Figure 5.5.2 shows the rectangles used in the Left and Right

Notes:
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Hand Rules. These graphs clearly show that rectangles do not match the shape
of the graph all that well, and that accurate approximations will only come by
using lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.5.5, we show the region under f(x) = e~ on [0, 1] y
approximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a better

N 1 2 . .
approximation of fo e ™ dx. (In fact, these trapezoids seem to give a great ap-
proximation of the area!) 0571

The formula for the area of a trapezoid is given in Figure 5.5.6. We approxi-

mate fol e~ dx with these trapezoids in the following example.

02 04 06 0.8 1

Example 5.5.3 Approximating definite integrals using trapezoids
1
Use 5 trapezoids of equal width to approximate / e dx. Figure 5.5.5: Approximating fol e dx
0 using 5 trapezoids of equal widths.
SOLUTION To compute the areas of the 5 trapezoids in Figure 5.5.5, it

will again be useful to create a table of values as shown in Figure 5.5.7.
The leftmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leftmost trapezoid is:

1+40.961 _ath
%(o_z) — 0.1961. y b Area=%tth
Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height h

of 0.2. Thus its area is:
Figure 5.5.6: The area of a trapezoid.

0.961 + 0.852
%(0.2) —=0.1813.
The sum of the areas of all 5 trapezoids is: X et
1+0.961 0.961 + 0.852 0.852 + 0.698 0 1
f(O.Z) + f(O.Z) + f(O.Z)—f— 0.2 0.961
0.698 + 0.527 0.527 + 0.368 04 0.852
——(0.2) + —————(0.2) = 0.7445. 0.6 0.698
2 2 0.8 0.527
1 0368

1
We approximate / e~ dx ~ 0.7445.
0

X

Figure 5.5.7: A table of values of e™ g
There are many things to observe in this example. Note how each term in

the final summation was multiplied by both 1/2 and by Ax = 0.2. We can factor

these coefficients out, leaving a more concise summation as:

%(o.z) [(1+0.961)+(0.961+0.852)+(0.852+04698)+(0.698+0.527)+(0.527+0.368)] .

Notes:
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Now notice that all numbers except for the first and the last are added twice.
Therefore we can write the summation even more concisely as

0.2
= [1 +2(0.961 + 0.852 + 0.698 + 0.527) + 0.368} .

b
Thisis the heart of the Trapezoidal Rule, wherein a definite integral / f(x) dx
a

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x;,

. —a
X2, - - - Xp+1, We again have Ax = ——. Thus:
n

n

/ f(x) dx ~ Zfi(x') +flxis )Ax

i=1 2
- % ' (F(xi) + f(Xit1))
= X [f) + 23 00) + fresn)]

Example 5.5.4 Using the Trapezoidal Rule

2
Revisit Example 5.5.2 and approximate / sin(x3) dx using the Trapezoidal Rule

&=

and 10 equally spaced subintervals.

SOLUTION We refer back to Figure 5.5.3 for the table of values of sin(x*).
Recall that Ax = 37/40 ~ 0.236. Thus we have:

e

/ sin(x®) dx ~ &;6 [ —0.466 + 2( ~0.165 + (—0.031) + ...+ 0.69) + (—0.67)]

7

= 0.4275.

Notice how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this section;
the real work is creating a table of x; and f(x;) values. Once this is completed, ap-
proximating the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computations and make using lots
of subintervals easy.

Also notice the approximations the Trapezoidal Rule gives. It is the average
of the approximations given by the Left and Right Hand Rules! This effectively

Notes:
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renders the Left and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximation is needed, one is gener-
ally better off using the Trapezoidal Rule instead of either the Left or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The Left Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a function f with constant functions
on small subintervals and then computes the definite integral of these constant
functions. The Trapezoidal Rule is really approximating a function f with a linear
function on a small subinterval, then computes the definite integral of this linear
function. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximating f with a constant func-
tion and then with a linear function. What is next? A quadratic function. By
approximating the curve of a function with lots of parabolas, we generally get
an even better approximation of the definite integral. We call this process Simp-
son’s Rule, named after Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant function that goes through that
point. Given two points, we can create a linear function that goes through those
points. Given three points, we can create a quadratic function that goes through
those three points (given that no two have the same x—value).

Consider three points (x1, y1), (X2, ¥2) and (x3, y3) whose x—values are equally
spacedand x; < x, < x3. Let fbe the quadratic function that goes through these

three points. It is not hard to show that 1 ) 3
X3
X3 — X1
/ f(x) dx = 6 (yl + 4y, + yg). (5.4) Figure 5.5.8: A graph of a function f and
X1 a parabola that approximates it well on
Consider Figure 5.5.8. A function f goes through the 3 points shown and the [1,3].

parabola g that also goes through those points is graphed with a dashed line.
Using our equation from above, we know exactly that

3—-1

/Bg(X) dx = T(3+4(1)+2) =3.

Since g is a good approximation for f on [1, 3], we can state that

3
/ f(x) dx ~ 3.
1

Notes:
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Xi e

0 1
0.25 0.939
0.5 0.779
0.75 0.570

1 0.368

(a)

(b)

Figure 5.5.9: A table of values to approxi-
2

mate fol e dx, along with a graph of the

function.

Xi sin(x7)
—0.785 —0.466
—0.550 —0.165
—0.314 —0.031
—0.0785 0

0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601

1.10 0.971
1.34 0.690
1.57 —0.670

Figure 5.5.10: Table of values used to

approximate [ 2, sin(x’) dx in Example
1

5.5.6.
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Notice how the interval [1, 3] was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

b

In general, to approximate / f(x) dx using Simpson’s Rule, subdivide [a, b]

a
into n subintervals, where n is even and each subinterval has width Ax = (b —
a)/n. We approximate f with n/2 parabolic curves, using Equation (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:

b
/ (x) dx ~ % [f(xl)+4f(x2)+2f(x3)+4f(x4)+. . .+zf(xn,1)+4f(xn)+f(xn+1)].

Note how the coefficients of the terms in the summation have the pattern 1, 4,
2,4,2,4,...,2,4,1.
Let’s demonstrate Simpson’s Rule with a concrete example.

Example 5.5.5 Using Simpson’s Rule

1
Approximate/ e dx using Simpson’s Rule and 4 equally spaced subintervals.
0

SOLUTION We begin by making a table of values as we have in the past,
as shown in Figure 5.5.9(a). Simpson’s Rule states that

o 0.25 -
e dxa —= [1 + 4(0.939) + 2(0.779) + 4(0.570) + 0.368} = 0.74683.
0

Recall in Example 5.5.1 we stated that the correct answer, accurate to 4
places after the decimal, was 0.7468. Our approximation with Simpson’s Rule,
with 4 subintervals, is better than our approximation with the Trapezoidal Rule
using 5!

Figure 5.5.9(b) shows f(x) = e along with its approximating parabolas,
demonstrating how good our approximation is. The approximating curves are
nearly indistinguishable from the actual function.

Example 5.5.6 Using Simpson’s Rule

2
Approximate / sin(x®) dx using Simpson’s Rule and 10 equally spaced inter-

s
)

vals.

SOLUTION Figure 5.5.10 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, Ax = (7/2 +
7/4)/10 ~ 0.236.

Notes:



Simpson’s Rule states that

/2 sin(x*) dx ~ O‘ij [(—0.466) +4(—0.165) + 2(—0.031) + ...

...+ 2(0.971) + 4(0.69) + (—0.67)]
= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap-

proximation is within one 1/100™" of the correct value. The graph in Figure 5.5.11
shows how closely the parabolas match the shape of the graph.

Summary and Error Analysis

We summarize the key concepts of this section thus far in the following Key
Idea.

5.5 Numerical Integration

1
y = sin(x®)
0.5 +
: : X
1 V 1
705 £4
Figure 5.5.11: Approximating

f_i sin(x*) dx in Example 5.5.6 with
4

Simpson’s Rule and 10 equally spaced

intervals.

Key Idea 5.5.1 Numerical Integration

Setx; =a,x, =a+ Ax,...,x;=a+ (i— 1)Ax, x,01 = b.

b
Consider/ f(x) dx.

Left Hand Rule: /bf(x) dx = Ax [f(xl) + f(x2) + ...+ f(xa)].

b
Right Hand Rule: / f(x) dx =~ Ax [f(xz) + f(x3) + ... + f(Xnt1) .

Let f be a continuous function on [a, b], let n be a positive integer, and let Ax =

b
Trapezoidal Rule: / f(x) dx ~ % [f(xl) + 2f(x2) + 2f(X3) + . .. + 2f(Xn) + f(Xn31)]

b
Simpson’s Rule: / f(x) dx ~ % [f(xl) + 4f(x2) + 2f(X3) + . .. + 4f(Xn) + f(Xn11)] (n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several questions in the reader’s mind, such as:

1. How was the “right” answer computed?
2. If the right answer can be found, what is the point of approximating?

3. If there is value to approximating, how are we supposed to know if the
approximation is any good?

Notes:
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These are good questions, and their answers are educational. In the exam-
ples, the right answer was never computed. Rather, an approximation accurate
to a certain number of places after the decimal was given. In Example 5.5.1, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximations were computed using numerical integration but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximation still has its place.
How are we to tell if the approximation is any good?

“Trial and error” provides one way. Using technology, make an approxima-
tion with, say, 10, 100, and 200 subintervals. This likely will not take much time
atall, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximation will be. For instance, the formula might state that the approx-
imation is within 0.1 of the correct answer. If the approximation is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approximation as accurate as one likes. Theorem
5.5.1 states what these bounds are.

Theorem 5.5.1 Error Bounds in the Trapezoidal Rule and
Simpson’s Rule

b
1. Let Er be the error in approximating / f(x) dx using the Trape-
zoidal Rule with n subintervals. ’

If f has a continuous 2" derivative on [a, b] and M is any upper
bound of |f”(x)| on [a, b], then

(b—a)?
Er< 29
T="12pn2

b
2. Let Es be the error in approximating / f(x) dx using Simpson’s
a
Rule with n subintervals.

If f has a continuous 4™ derivative on [a, b] and M is any upper
bound of |[f*)| on [a, b], then

Es < (b—ap
5= "180n%

Notes:



There are some key things to note about this theorem.

1. The larger the interval, the larger the error. This should make sense intu-
itively.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The error in Simpson’s Rule has a term relating to the 4t derivative of f.
Consider a cubic polynomial: it’s 4" derivative is 0. Therefore, the error in
approximating the definite integral of a cubic polynomial with Simpson’s
Rule is 0 — Simpson’s Rule computes the exact answer!

We revisit Examples 5.5.3 and 5.5.5 and compute the error bounds using
Theorem 5.5.1 in the following example.

Example 5.5.7 Computing error bounds
1

Find the error bounds when approximating e ™ dx using the Trapezoidal

0
Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

SOLUTION
Trapezoidal Rule with n = 5:

2

We start by computing the 2" derivative of f(x) = e~ :

F(x) = e (42 — 2).

Figure 5.5.12 shows a graph of f”/(x) on [0, 1]. It is clear that the largest value of
f", in absolute value, is 2. Thus we let M = 2 and apply the error formula from
Theorem 5.5.1.

(1-0)°
12 - 52
Our error estimation formula states that our approximation of 0.7445 found
in Example 5.5.3 is within 0.0067 of the correct answer, hence we know that

Er = -2 = 0.006.

1
0.7445 — 0.0067 = .7378 < / e dx < 0.7512 = 0.7445 + 0.0067.
0

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 5.5.1.

Simpson’s Rule with n = 4:
2
We start by computing the 4" derivative of f(x) = e~ :

FO(x) = e (16x* — 48x2 + 12).

Notes:
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2
y=e (8¢ —2)

Figure 5.5.12: Graphing " (x) in Example
5.5.7 to help establish error bounds.
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y = e (16x* — 48x2 + 12)

Figure 5.5.13: Graphing f (x) in Exam-
ple 5.5.7 to help establish error bounds.

Figure 5.5.14: Speed data collected at 30

. Speed
Time (mph)
0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51
10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

[

second intervals for Example 5.5.8.
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Figure 5.5.13 shows a graph of f(4) (x) on [0, 1]. Itis clear that the largest value
of f*), in absolute value, is 12. Thus we let M = 12 and apply the error formula
from Theorem 5.5.1.

(1-0y

180 . 4% 12 = 0.00026.

Es =

Our error estimation formula states that our approximation of 0.74683 found
in Example 5.5.5 is within 0.00026 of the correct answer, hence we know that

1
0.74683 — 0.00026 = .74657 < / e dx < 0.74709 = 0.74683 + 0.00026.
0

Once again we affirm the validity of Theorem 5.5.1.

At the beginning of this section we mentioned two main situations where
numerical integration was desirable. We have considered the case where an
antiderivative of the integrand cannot be computed. We now investigate the
situation where the integrand is not known. This is, in fact, the most widely
used application of Numerical Integration methods. “Most of the time” we ob-
serve behavior but do not know “the” function that describes it. We instead
collect data about the behavior and make approximations based on this data.
We demonstrate this in an example.

Example 5.5.8 Approximating distance traveled

One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 5.5.14. Approximate
the distance they traveled.

SOLUTION Recall that by integrating a speed function we get distance
traveled. We have information about v(t); we will use Simpson’s Rule to approx-
b
imate / v(t) dt.
a

The most difficult aspect of this problem is converting the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
time is measured in 30 second increments.

We need to compute Ax = (b — a)/n. Clearly, n = 24. What are a and b?
Since we start at time t = 0, we have that a = 0. The final recorded time came
after 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

b—a 1/5-0 1 Ax 1

Ax = Lo 2
n 24 120

3 360

Notes:



Thus the distance traveled is approximately:

/0 v(t) dt = %O [f(xl) FAf(xy) + 2f(x3) + - - - + 4f(x,) —I—f(x,,H)}

1
:ﬁ[o+4~25+2-22+---+2-4o+4.23+o}

~ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.)

We started this chapter learning about antiderivatives and indefinite inte-
grals. We then seemed to change focus by looking at areas between the graph
of a function and the x-axis. We defined these areas as the definite integral of
the function, using a notation very similar to the notation of the indefinite inte-
gral. The Fundamental Theorem of Calculus tied these two seemingly separate
concepts together: we can find areas under a curve, i.e., we can evaluate a def-
inite integral, using antiderivatives.

We ended the chapter by noting that antiderivatives are sometimes more
than difficult to find: they are impossible. Therefore we developed numerical
techniques that gave us good approximations of definite integrals.

We used the definite integral to compute areas, and also to compute dis-
placements and distances traveled. There is far more we can do than that. In
Chapter 7 we’ll see more applications of the definite integral. Before that, in
Chapter 6 we’ll learn advanced techniques of integration, analogous to learning
rules like the Product, Quotient and Chain Rules of differentiation.

Notes:

5.5 Numerical Integration
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Exercises 5.5

Terms and Concepts

1. T/F: Simpson’s Rule is a method of approximating an-
tiderivatives.

2. What are the two basic situations where approximating the
value of a definite integral is necessary?

3. Why are the Left and Right Hand Rules rarely used?

4. Simpson’s Rule is based on approximating portions of a
function with what type of function?

Problems

In Exercises 5 — 12, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
andn = 4.

(c) Find the exact value of the integral.

1
/xzdx
-1
10
6./ 5x dx
0
7. / sin x dx
0
4
./ﬁdx
0
3
9./(X3+2x275x+7)dx
0
1
10. / x* dx
0

27
11. / cos x dx
0

3
12./ V9 — x2dx
-3

v

(o]

In Exercises 13 — 20, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

1
13. / cos (xz) dx
0

1 2
14. / e dx
-1

5
15. / Vx%+ 1dx
0

16. / xsinx dx
0

/2
17. / \/cos x dx
0

4
18. / Inx dx
1
1
19./ ;dx
_ySinx+42

° 1
o Sinx—+2

In Exercises 21 — 24, find n such that the error in approximat-
ing the given definite integral is less than 0.0001 when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

21. / sin x dx
0
4
1
22. / — dx
1 VX

23. /W cos (xz) dx
0

5
24, / x* dx
0

In Exercises 25 — 26, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in centimeters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

N
_— \

4.7
6.3
6.9

25.

6.6

5.1

N




26.

3.6

4.5

6.6
5.6
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6: TECHNIQUES OF
ANTIDIFFERENTIATION

The previous chapter introduced the antiderivative and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applications of definite integrals than just area. As eval-
uating definite integrals will become important, we will want to find antideriva-
tives of a variety of functions.

This chapter is devoted to exploring techniques of antidifferentiation. While
not every function has an antiderivative in terms of elementary functions (a
concept introduced in the section on Numerical Integration), we can still find
antiderivatives of a wide variety of functions.

6.1 Substitution

We motivate this section with an example. Let f(x) = (x* + 3x — 5)%°. We can
compute f'(x) using the Chain Rule. It is:

f(x) =100 + 3x — 5)° - (2x + 3) = (20x + 30)(x* + 3x — 5)°.

Now consider this: What is [(20x 4 30)(x*> + 3x — 5)° dx? We have the answer
in front of us;

/(20x +30)(x* +3x— 57 dx = (xX* +3x — 5)° - C.

How would we have evaluated this indefinite integral without starting with f(x)
as we did?

This section explores integration by substitution. It allows us to “undo the
Chain Rule.” Substitution allows us to evaluate the above integral without know-
ing the original function first.

The underlying principle is to rewrite a “complicated” integral of the form
J f(x) dx as a not—so—complicated integral [ h(u) du. We’'ll formally establish
later how this is done. First, consider again our introductory indefinite integral,
J(20x + 30)(x* + 3x — 5)° dx. Arguably the most “complicated” part of the
integrand is (x> + 3x — 5)°. We wish to make this simpler; we do so through a
substitution. Let u = x> 4+ 3x — 5. Thus

(x* +3x—5)° =u°.
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We have established u as a function of x, so now consider the differential of u:
du = (2x + 3)dx.

Keep in mind that (2x+3) and dx are multiplied; the dx is not “just sitting there.”
Return to the original integral and do some substitutions through algebra:

/(20x +30)(x* +3x—5)? dx = / 10(2x + 3)(x* + 3x — 5)° dx

:/1O(x2+3x—5)9 (2x+3) dx
— ~—

u du

= / 10¢° du

= U10 + C  (replace u with x> + 3x — 5)
=(x+3x-5%+cC
One might well look at this and think “I (sort of) followed how that worked,
but | could never come up with that on my own,” but the process is learnable.
This section contains numerous examples through which the reader will gain
understanding and mathematical maturity enabling them to regard substitution
as a natural tool when evaluating integrals.
We stated before that integration by substitution “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differentiable functions and consider the deriva-
tive of their composition:

Thus

/ F(g(0))g’ (x) dx = F(g(x)) + C.

Integration by substitution works by recognizing the “inside” function g(x) and
replacing it with a variable. By setting u = g(x), we can rewrite the derivative

dix (F(u)) =F'(u)u'.

Since du = g’(x)dx, we can rewrite the above integral as

/ F(g()g" (x) dx = / F(u)du = F(u) + C = Fg(x)) + C

This concept is important so we restate it in the context of a theorem.

Notes:
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Theorem 6.1.1 Integration by Substitution

Let F and g be differentiable functions, where the range of g is an interval
| contained in the domain of F. Then

If u = g(x), then du = g’(x)dx and

/F'(g(x))g'(x) dx — /F'(u) du = F(u) + C = F(g(x)) + C.

The point of substitution is to make the integration step easy. Indeed, the
step [ F'(u) du = F(u)+ Clooks easy, as the antiderivative of the derivative of F
is just F, pIus a constant. The “work” involved is making the proper substitution.
There is not a step—by—step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

Example 6.1.1 Integrating by substitution

Evaluate /xsin(x2 +5) dx.

SOLUTION Knowing that substitution is related to the Chain Rule, we
choose to let u be the “inside” function of sin(x? +5). (This is not always a good
choice, but it is often the best place to start.)

let u = x> + 5, hence du = 2xdx. The integrand has an xdx term, but
not a 2x dx term. (Recall that multiplication is commutative, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

1
du=2xdx = Edu = xdx.

We can now substitute.

/xsmx +5

||
—
1%}
5
><N
{+
(0]
><
%

Notes:
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= —E cosuU + C  (now replace u with x* + 5)
1 2
= cos(x” +5) +C.

Thus [ xsin(x? + 5) dx = —1 cos(x* + 5) -+ C. We can check our work by eval-
uating the derivative of the right hand side.

Example 6.1.2 Integrating by substitution
Evaluate /cos(Sx) dx.

SOLUTION Again let u replace the “inside” function. Letting u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equation by 5 to obtain %du = dx. We can now substitute.

/cos(Sx) dx = /cos(\S:(/)\dL

u 1
sdu

1
:/fcosudu
5

Ly +C
—sinu
5

1
= —sin(5x) + C.
5
We can again check our work through differentiation.

The previous example exhibited a common, and simple, type of substitution.
The “inside” function was a linear function (in this case, y = 5x). When the
inside function is linear, the resulting integration is very predictable, outlined
here.

Key Idea 6.1.1 Substitution With A Linear Function

Consider [ F’(ax + b) dx, where a # 0 and b are constants. Letting
u = ax + b gives du = a - dx, leading to the result

1
/F’(ax+ b) dx = EF(ax—i— b) +C.

Thus [ sin(7x — 4) dx = —1 cos(7x — 4) + C. Our next example can use Key
Idea 6.1.1, but we will only employ it after going through all of the steps.

Notes:



Example 6.1.3 Integrating by substituting a linear function
7
Evaluate / —— dx.
—3x+1
SOLUTION View the integrand as the composition of functions f(g(x)),

where f(x) = 7/x and g(x) = —3x + 1. Employing our understanding of substi-
tution, we let u = —3x+ 1, the inside function. Thus du = —3dx. The integrand
lacks a —3; hence divide the previous equation by —3 to obtain —du/3 = dx.
We can now evaluate the integral through substitution.

/ 7 /7du
——dx= | ——
—3x+1 u-—-3

=7 [du

"3 ) u

:_—7In|u\+C
3

7
—3In|-3x+1+cC

Using Key Idea 6.1.1 is faster, recognizing that u is linear and a = —3. One may
want to continue writing out all the steps until they are comfortable with this
particular shortcut.

Not all integrals that benefit from substitution have a clear “inside” function.
Several of the following examples will demonstrate ways in which this occurs.

Example 6.1.4 Integrating by substitution
Evaluate / sin x cos x dx.

SOLUTION There is not a composition of function here to exploit; rather,
just a product of functions. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is often beneficial to think “If | let u be this, then du must be
that ...” and see if this helps simplify the integral at all.

In this example, let’s set u = sinx. Then du = cos x dx, which we have as
part of the integrand! The substitution becomes very straightforward:

/sinxcosxdx:/udu

! 24 cC
=-u
2

= 1sin2x+c
= :

Notes:
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One would do well to ask “What would happen if we let u = cos x?” The result
is just as easy to find, yet looks very different. The challenge to the reader is to
evaluate the integral letting u = cos x and discover why the answer is the same,
vet looks different.

Our examples so far have required “basic substitution.” The next example
demonstrates how substitutions can be made that often strike the new learner
as being “nonstandard.”

Example 6.1.5 Integrating by substitution
Evaluate /x\/x + 3 dx.
SOLUTION Recognizing the composition of functions, set u = x + 3.

Then du = dx, giving what seems initially to be a simple substitution. But at this
stage, we have:

/X\/mm:/xﬁdu.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+ 3, we can also state that u — 3 = x. Thus we can replace
x in the integrand with u — 3. It will also be helpful to rewrite \/u as uz.

/xﬁdx:/(u—.%)u% du
= / (u% —3u%) du

= Zu% 2u%+C
5
2
=—-(x+3
S (x+3)

5
2

—2(x+3)? +C

Checking your work is always a good idea. In this particular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem.

Example 6.1.6 Integrating by substitution
1
Evaluate / — dx.
xInx
SOLUTION This is another example where there does not seem to be

an obvious composition of functions. The line of thinking used in Example 6.1.5
is useful here: choose something for u and consider what this implies du must

Notes:



be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/x makes du = —1/x? dx; that does not seem helpful. How-
ever, setting u = In x makes du = 1/x dx, which is part of the integrand. Thus:

a5k
xInx Inx x
:/fdu
u

=Inlul+C
=In|Inx| + C.

The final answer is interesting; the natural log of the natural log. Take the deriva-
tive to confirm this answer is indeed correct.

Integrals Involving Trigonometric Functions

Section 6.3 delves deeper into integrals of a variety of trigonometric func-
tions; here we use substitution to establish a foundation that we will build upon.

The next three examples will help fill in some missing pieces of our antideriva-
tive knowledge. We know the antiderivatives of the sine and cosine functions;
what about the other standard functions tangent, cotangent, secant and cose-
cant? We discover these next.

Example 6.1.7 Integration by substitution: antiderivatives of tan x
Evaluate /tanxdx.

SOLUTION The previous paragraph established that we did not know
the antiderivatives of tangent, hence we must assume that we have learned
something in this section that can help us evaluate this indefinite integral.

Rewrite tan x as sinx/ cosx. While the presence of a composition of func-
tions may not be immediately obvious, recognize that cosx is “inside” the 1/x
function. Therefore, we see if setting u = cos x returns usable results. We have

Notes:
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that du = — sin x dx, hence —du = sin x dx. We can integrate:

sinx
/tanxdx: / dx
. J cosx

1
= sin x dx
COS X ~——
M~~~ —du

u
-1
/—du
u
=—Injul+C

—In]|cosx| + C.

Some texts prefer to bring the —1 inside the logarithm as a power of cos x, as in:

—In|cosx| +C=In|(cosx)"'|+C

=In +C

Cos X

=In|secx| + C.

Thus the result they give is [tanx dx = In|secx| + C. These two answers are
equivalent.

Example 6.1.8 Integrating by substitution: antiderivatives of sec x

EvaIuate/secx dx.

SOLUTION This example employs a wonderful trick: multiply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
lllll as
secx + tanx
secx +tanx’

This may seem like it came out of left field, but it works beautifully. Consider:

secx + tanx
secxdx = | secx- ——  dx
secx + tanx
sec? x + secxtanx
= dx
secx + tanx

270
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Now let u = secx + tanx; this means du = (secxtanx + sec? x) dx, which is
our numerator. Thus:

du

u

=Inlul+C
=In|secx + tanx| + C.

We can use similar techniques to those used in Examples 6.1.7 and 6.1.8
to find antiderivatives of cot x and cscx (which the reader can explore in the
exercises.) We summarize our results here.

Theorem 6.1.2 Antiderivatives of Trigonometric Functions
1. /sinxdx: —cosx+ C 4. /cscxdx: —In|cscx + cotx| + C
2. /cosxdx:sinx+C 5. /secxdx:ln|secx+tanx|+C

3. /tanxdx:—ln|cosx|+C 6. /cotxdx:ln|sinx|—|—C

We explore one more common trigonometric integral.

Example 6.1.9 Integration by substitution: powers of cos x and sin x

Evaluate / cos? x dx.

SOLUTION We have a composition of functions as cos? x = (cos x)z.
However, setting u = cos x means du = — sin x dx, which we do not have in the
integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos? x (per-
haps consult the back of this text for this formula), which states

1 + cos(2x)

cos’x=— "
2

The right hand side of this equation is not difficult to integrate. We have:

1 2
/coszxdx:/%s(x)dx

= / (;—f— ;cos(2x)> dx.

Notes:
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Now use Key ldea 6.1.1:

1 1 sin(2x)
x4 =

2 2 2

1 sin(2x)
=X

2 * 4

+C

+C.

We'll make significant use of this power—reducing technique in future sections.
Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integration is tenuous and one may think that working with
the integrand will improperly change the results. Integration by substitution
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integration
easier to perform.

Example 6.1.10 Integration by substitution: simplifying first

341 4x2 +8x+5
Evaluate/x A Xt dx
X2+ 2x+1

SOLUTION One may try to start by setting u equal to either the numer-
ator or denominator; in each instance, the result is not workable.

When dealing with rational functions (i.e., quotients made up of polynomial
functions), it is an almost universal rule that everything works better when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x? + 2x + 1 is divided
into x3 + 4x*> 4 8x + 5, it goes in x + 2 times with a remainder of 3x 4 3. Thus

X} +4x* +8x+5 Las 3x+ 3
=x - -
X2 +2x+1 X2+ 2x+1

Integrating x + 2 is simple. The fraction can be integrated by setting u = x* +
2x+ 1, giving du = (2x + 2) dx. This is very similar to the numerator. Note that

Notes:



du/2 = (x + 1) dx and then consider the following:

31 4x% +8x+5 3x+3
/X+X+X+ dx:/ X+2+L dx
X2 +2x+1 X2 +2x+1

:/(x—l—z)dx—&—/de

X2 +2x+1

—1%+y+c+/§@
T2 ! u2

1, 3
:Ex+H+Q+EMM+Q

1, 31,2
=X +2x+iln|x +2x+ 1|+ C.

In some ways, we “lucked out” in that after dividing, substitution was able to be
done. In later sections we’ll develop techniques for handling rational functions
where substitution is not directly feasible.

Example 6.1.11 Integration by alternate methods
x>+ 2x+3

VX
SOLUTION We already know how to integrate this particular example.
. 1 . . .
Rewrite v/x as x2 and simplify the fraction:

Evaluate dx with, and without, substitution.

xX*+2x+3 3 1 _1
— 5, =X>+2x +3x 2.
x1/2

We can now integrate using the Power Rule:

2 2 3 1 1
/)(74_1)(4—3dx:/<xE +2x5+3x_5) dx
x1/2
2

P ded e tc
= —X =X X
5 3
This is a perfectly fine approach. We demonstrate how this can also be solved
using substitution as its implementation is rather clever.

Let u = \/x = x2; therefore

1 1 1
du= -x"idx=—=dx = 2du= —dx.
2 2y/x VX
x*+2x+3
This gives us % dx = /(x2 + 2x+ 3) - 2 du. What are we to do
. x

2

with the other x terms? Since u = x%, u? = x, etc. We can then replace x? and

Notes:
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x with appropriate powers of u. We thus have

2+ 2x+3
%dXZ/(XZ-I-ZX-F.%)-ZdU
:/2(u4+2u2+3)du

26+ 2P et C
=-u+-u u

50 3
IR . B
—X =X X ,
5773

which is obviously the same answer we obtained before. In this situation, sub-
stitution is arguably more work than our other method. The fantastic thing is
that it works. It demonstrates how flexible integration is.

Substitution and Inverse Trigonometric Functions

When studying derivatives of inverse functions, we learned that

1

d 1
— (tan x)fm.

dx
Applying the Chain Rule to this is not difficult; for instance,

5

d . _
— (tan™'5x) = Troee:

dx
We now explore how Substitution can be used to “undo” certain derivatives that
are the result of the Chain Rule applied to Inverse Trigonometric functions. We
begin with an example.

Example 6.1.12 Integrating by substitution: inverse trigonometric functions
1
Evaluate [ ———— dx
25 4 x2
SOLUTION The integrand looks similar to the derivative of the arctan-

gent function. Note:

11
25+x  25(1+ %)
B 1
25(1+ (5)°)
B 1
B ()]

Notes:
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Thus
1 1 1
X 1+(5)

This can be integrated using Substitution. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus

1 1 1
/7dx:— ———— dx
25 +x? 25 14 (%)

I

|
-
o
S

AN

<
+
(@}

Example 6.1.12 demonstrates a general technique that can be applied to
other integrands that result in inverse trigonometric functions. The results are
summarized here.

Theorem 6.1.3 Integrals Involving Inverse Trigonometric Functions

Leta > 0.

1 1. _i/x
1. ———— dx = —tan (7)+C
a? + x?2 a a

dx = sin™! (g) +C

1
2. —
/ Vva? — x?

3 / ! dx = 1sec_1 X 4+ C
’ xVx% — a? a a

Let’s practice using Theorem 6.1.3.

Example 6.1.13 Integrating by substitution: inverse trigonometric functions
Evaluate the given indefinite integrals.

1
dx 3. — dx.
/\/5—X2

1 1
Llgrae®™ 2|
xX\/X* = 150

Notes:
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SOLUTION Each can be answered using a straightforward application of
Theorem 6.1.3.

1 1 . x
1. ———dx=—tan " - +C,asa = 3.
9 4 x2 3 3

dx =10sec ' 10x+ G asa = =.

/ 1

2. )
/ 1

X XZ—W

Most applications of Theorem 6.1.3 are not as straightforward. The next
examples show some common integrals that can still be approached with this
theorem.

Example 6.1.14 Integrating by substitution: completing the square
Evaluate / —— dx
x2 —4x+13

SOLUTION Initially, this integral seems to have nothing in common with
the integrals in Theorem 6.1.3. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. Itis, however, related to the arctangent function.

We see this by completing the square in the denominator. We give a brief
reminder of the process here.

Start with a quadratic with a leading coefficient of 1. It will have the form of
x% +bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
l.e.,

2 bZ
x2+bx+c:x2+bx+7—z+c

(x+b/2)?

= x+é 2—|—c—b—2
o 2 4

In our example, we take half of —4 and square it, getting 4. We add/subtract it
into the denominator as follows:

1 1
X2 —4x+13 X’ —4x+4—4+13
N———
(x—2)2
_ 1
 (x—2)2+9

276
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We can now integrate this using the arctangent rule. Technically, we need to
substitute first with u = x — 2, but we can employ Key Idea 6.1.1 instead. Thus
we have

1 1 1. x—2
——dx= | —————dx=-tan" - —— +C.
x> —4x+13 (x—2)2+9 3 3

Example 6.1.15 Integrals requiring multiple methods
4 —x
Evaluate / —dx.

V16 — x2

SOLUTION This integral requires two different methods to evaluate it.
We get to those methods by splitting up the integral:

4 —x 4 X
7dx:/7dx—/7dx.
V16 — x2 V16 — x? V16 — x?
The first integral is handled using a straightforward application of Theorem 6.1.3;
the second integral is handled by substitution, with u = 16 —x%. We handle each

separately.
b ax—asintX1c
V16 — X2 4
X
————— dx: Setu = 16 — x?, so du = —2xdx and xdx = —du/2. We
/\/16—x2
have
/ X 4 —du/2
7 dx=
V16 — x? Vu
1 1
=—= [ —=du
2./ Vu
=—Vu+cC

—v16 — x> + C.

Combining these together, we have
4 —x X
——— _dx=4sin"1Z 4+ /16 — x>+ C

/ V16 — x2 4

Substitution and Definite Integration

This section has focused on evaluating indefinite integrals as we are learning
a new technique for finding antiderivatives. However, much of the time integra-
tion is used in the context of a definite integral. Definite integrals that require
substitution can be calculated using the following workflow:

Notes:

6.1 Substitution

277



Chapter 6 Techniques of Antidifferentiation

278

b
1. Start with a definite integral / f(x) dx that requires substitution.
a

2. Ignore the bounds; use substitution to evaluate /f(x) dx and find an an-
tiderivative F(x).

b
= F(b) — F(a).

a

3. Evaluate F(x) at the bounds; that is, evaluate F(x)

This workflow works fine, but substitution offers an alternative that is powerful
and amazing (and a little time saving).

At its heart, (using the notation of Theorem 6.1.1) substitution converts inte-
grals of the form [ F/(g(x))g’(x) dx into an integral of the form [ F’(u) du with
the substitution of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the substitution is performed.

Theorem 6.1.4 Substitution with Definite Integrals

Let Fand g be differentiable functions, where the range of g is an interval
I that is contained in the domain of F. Then

b g(b)
/ F'(g(x))g’(x) dx = / F'(u) du.
a 9(a)

In effect, Theorem 6.1.4 states that once you convert to integrating with re-
spect to u, you do not need to switch back to evaluating with respect to x. A few
examples will help one understand.

Example 6.1.16 Definite integrals and substitution: changing the bounds

2
Evaluate / cos(3x — 1) dx using Theorem 6.1.4.
0

SOLUTION Observing the composition of functions, let u = 3x — 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the latter
equation by 3 to get du/3 = dx.

By setting u = 3x — 1, we are implicitly stating that g(x) = 3x — 1. Theorem
6.1.4 states that the new lower bound is g(0) = —1; the new upper bound is

Notes:



g(2) = 5. We now evaluate the definite integral:

2 5
d

/ cos(3x — 1) dx_/ cosu™
0 -1 3

’ 5

1.
= —sinu
—1

%(sinS —sin(—1)) ~ —0.039.
Notice how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1.1 tell more of the story. In (a) the area defined by
the original integrand is shaded, whereas in (b) the area defined by the new in-
tegrand is shaded. In this particular situation, the areas look very similar; the
new region is “shorter” but “wider,” giving the same area.

Example 6.1.17 Definite integrals and substitution: changing the bounds

/2
Evaluate / sin x cos x dx using Theorem 6.1.4.
0

SOLUTION
In that example we set u = sin x but stated that we could have let u = cosx.
For variety, we do the latter here.

Let u = g(x) = cos x, giving du = — sin x dx and hence sinx dx = —du. The
new upper bound is g(w/2) = 0; the new lower bound is g(0) = 1. Note how
the lower bound is actually larger than the upper bound now. We have

/2 0
/ sinxcosx dx = / —udu (switch bounds & change sign)
0 1

1
/udu
0

1
=1/2.
=Y

1

2
In Figure 6.1.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 6.1.4 guarantees that they have the same area.

Integration by substitution is a powerful and useful integration technique.
The next section introduces another technique, called Integration by Parts. As
substitution “undoes” the Chain Rule, integration by parts “undoes” the Product
Rule. Together, these two techniques provide a strong foundation on which most
other integration techniques are based.

Notes:

We saw the corresponding indefinite integral in Example 6.1.4.

6.1 Substitution

1 y =cos(3x — 1)
O.Sﬂ
| t T - X

0.5 + y = 1 cos(u)

(b)

Figure 6.1.1: Graphing the areas de-
fined by the definite integrals of Example
6.1.16.

1 €1
y = sinx cos x
0.5 +
} X
1 ;\
—0.5 |+
(a)
y
11 y=u
0.5 +
t t u
1
—0.5 +

(b)
Figure 6.1.2: Graphing the areas de-

fined by the definite integrals of Example
6.1.17.
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Exercises 6.1

Terms and Concepts
1. Substitution “undoes” what derivative rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems

In Exercises 3 — 14, evaluate the indefinite integral to develop
an understanding of Substitution.

3. /.%x2 (x3—5)7dx

a. /(2x—5)(x2—5x+7)3dx
5. /x(x2+1)8dx

6. /(12x+ 14) (3¢ 4+ 7x — 1) dx
7. /2)(7%0—701)(

' 1
8. ——dx
/VU+3

X dx
vVX+3

X3 — X
10. d
/ Vx X

e X
11. d
Vo
X
12. | ———dx
/\/x5+1

1
=+1
13. /"+ dx
XZ

14. /@dx

In Exercises 15 — 24, use Substitution to evaluate the indefi-
nite integral involving trigonometric functions.

15. /sinz(x) cos(x)dx

16. /coss(x) sin(x)dx

17. [ cos(3 — 6x)dx

18. sec’

19. sec

21. xcos

22. tan

23. cotx dx. Do not just refer to Theorem 6.1.2 for the an-

/
o
/
o /m w0
/
e
/

swer; justify it through Substitution.

24, /cscx dx. Do not just refer to Theorem 6.1.2 for the an-
swer; justify it through Substitution.

In Exercises 25 — 32, use Substitution to evaluate the indefi-
nite integral involving exponential functions.

25. /e3x71dx
26. /exaxzdx

27. /ex T2t (x — 1)dx
28, /ex—&—l
29/

ex
30. /e —e”
31 /3xdx

32. / 4%dx

In Exercises 33 — 36, use Substitution to evaluate the indefi-
nite integral involving logarithmic functions.

33, /Inx

34. /(Inxx)zdx



35. /@dx
1
36. /mdx

In Exercises 37 — 42, use Substitution to evaluate the indefi-
nite integral involving rational functions.

2
37. / wdx

38.

39.

2
41 /3x 5x—|—7dx
x+1

2
4y [ XE2XFT
x3 4 3x2 4 3x

In Exercises 43 — 52, use Substitution to evaluate the indefi-
nite integral involving inverse trigonometric functions.

43.

! X
x2+7

44.

/;dx

V9 — x2
14

45, ———dx

/ V5 —x?

46.

/#dx
XVx2 —9

47.

5
—dx
/ Vx* — 16x2

48.

/ X

N

29. / Y
X2 —2x+8

50. / R —
V—x*+6x+7

51.

/*w
vV—x2+8x+9

52. [ >
X2 + 6x + 34

In Exercises 53 — 78, evaluate the indefinite integral.

2
J 0 +3)
54. / (3 + 2x) (55 + 5% +2)" dx
x
55. —dx
/ V1—x?
56. /x2 esc? (x* + 1) dx
57. /sin(x)\/cos(x)dx

58. /sin (5x + 1) dx

59.
60.
3x
/3x 44X +2x— 22
61.
X2 +3x+5

2
62. X7 g
x+7x+3
63. / 92x+3 Px+3) 4
3x2+ 9%+ 7

6 —x +14x* — 46x — 7
x2 —7x+1

dx

X
65. —d.
/x4+81 x
66. /#dx
4x2 +1
67 /¥dx
' xVax2 —1

1
68. ——dx
/ V16 — 9x?2

0. [ - H=2 4
x2 —2x+10

7 — 2x
X
x2—|—12x+61

71 / x> 4+5x—2 X Ax—2
x2 — 10x + 32

70.

X
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3 p—
73. /Adx
X2 +4x+9
74, / _sinb) g
cos?(x) +1
75. /,?’Adx
sin®(x) + 1

cos(x)
76. / Tt sin2(x) dx

3x—3

77. ————dx
VX2 —2x—6

78. de
VX2 —6x+8

In Exercises 79 — 86, evaluate the definite integral.

3
1
79./ dx
1 X—5

80

81.

82.

83.

84.

85.

86

6
./X\/X—de
2

T/2
)
/ sin® x cos x dx

—7/2
1
/ 2x(1 — x*) dx
0

-1
/ (x+ l)e)‘ZH’(+1 dx

2

1
1
[ e
1 1+x

4 1
/zidx
, X —6x+10

V3 1
L
1 \/4*X2



A: SOLUTIONS TO SELECTED PROBLEMS

Chapter 1 7. Lete > 0 be given. We wish to find 6 > 0 such that when
|x —3| <4, |[f(x) — 6] <e.
Section 1.1 Consider [f(x) — 6| < ¢, keeping in mind we want to make a
statement about |x — 3|:
1. Answers will vary. If(x) — 6| <e
3. F ¥ —3—-6|<e¢
5. Answers will vary. ¥ -9 <e
7. -1 x=3]-|x+3|<e
9. Limit does not exist |x — 3| <e/|x+ 3]
11. 15
13. Limit does not exist. Since x is near 3, we can safely assume that, for instance,
15. 1 2 < x < 4.Thus
h flath)—f(a) 24+3<x+3<4+3
—0.1 —h7 5<x+3<7
17. —0.01 -7 The limit seems to be exactly 7. 1 1 1
0.01 —7 7 x+3 5
0.1 -7 5 € €
po feth—f@) 7 x+3 5
h
—0.1 4.9
19. —0.01 4.99 The limit is approx. 5. Letd = . Then:
0.01 5.01
0.1 5.1 I —3] <o
€
h)— x—3| < =
h flath) —f(a) =3 <<
—0.1 29.4 €
Lo x—3] <
21.  —0.01 29.04 The limit is approx. 29. X+ 3
0.01 28.96 3 3 € 3
0.1 28.6 Ix =3[ [x+ |<X+3'|X+ |
h f(a+h)—f(a)
h
—0.1 —0.998334 Assuming x is near 3, x 4 3 is positive and we can drop the
23.  —0.01 —0.999983 The limitis approx. —1. absolute value signs on the right.
0.01 —0.999983 €
01  —0.998334 =3 3l < g - (et 3)
Section 1.2 -9l <e

A - - |6 —3) —6| <¢,
1. e should be given first, and the restriction [x — a| < ¢ implies
If(x) — K| < &, not the other way around. which is what we wanted to prove.
3T 9. Lete > 0 be given. We wish to find 6 > 0 such that when
Ix —1] <6, |f(x) — 6] < e.
Consider |f(x) — 6| < ¢, keeping in mind we want to make a
statement about |x — 1]:

5. Lete > 0 be given. We wish to find 6 > 0 such that when
[x — 4] <6, |f(x) — 13| < e.
Consider [f(x) — 13| < e:

f(x) —6| < e
() — 13| < < e
l(2x+5)—13) <« (2 43 +1) — 6 <&
|2x— 8| < & 2% +3x—5| <¢
Ax— 4] < e [2x+5]-|x—1] <€

—e/2<x—4<¢/2. = 1] <e/l2x+5|

Since x is near 1, we can safely assume that, for instance,

This impli let§ = ¢/2. Then:
is implies we can le e/ en 0<x<2 Thus

Ix—4] <9 04+5<2x+5<4+5
TO<x=4<9 5<2+5<9
—e/2<x—4<¢/2 1 1 1
—e<2x—8<c¢ 9 <215 s
—e<(2x+5)—13<¢ Eoe_& €
[(2x +5) — 13| < ¢, 9 2x+5 5

which is what we wanted to prove.



Let 6 = 5. Then:
x—1] <é
x—1] < =
9
x—1] <
2x+5
= 1] [2x+ 5] < ——— - [2x + 5|
2x+5

Assuming x is near 1, 2x + 5 is positive and we can drop the
absolute value signs on the right.

€
2x+5
|2x* +3x — 5| < &
[(2¢ +3x+1) —6| <&,

[x —1]-[2x+ 5] < - (2x+5)

which is what we wanted to prove.

11. Lete > 0 be given. We wish to find § > 0 such that when
|x — 2] < 4, |f(x) — 5] < e. However, since f(x) = 5, a constant
function, the latter inequality is simply |5 — 5| < ¢, which is
always true. Thus we can choose any § we like; we arbitrarily
choose § = «.

13. Lete > 0 be given. We wish to find § > 0 such that when

|x —1] <6, [f(x) —1] < e.
Consider [f(x) — 1| < ¢, keeping in mind we want to make a
statement about |x — 1]|:

If) -1 <e

[1/x—1| <e

[(1—x)/x] < e

x—1|/|x| <€

x =1 <e-|x|

Since x is near 1, we can safely assume that, for instance,
1/2 < x<3/2.Thuse/2 < e-x.
Letd = 5. Then:

x—1] <3¢
x—1] < =
x—1 <e-x
x—1]/x < e

Assuming x is near 1, x is positive and we can bring it into the
absolute value signs on the left.

l(x—=1)/x| <e
[1—1/x <e
I(1/x) =1 <e,

which is what we wanted to prove.

Section 1.3

1. Answers will vary.
3. Answers will vary.

5. Asxisnear 1, both fand g are near 0, but f is approximately twice
the size of g. (l.e., f(x) ~ 2g(x).)

7. 9
9. 0
11. 3

A.2

13. 3
15. 1
17. 0
19. 7
21. 1/2
23. Limit does not exist
25. 2
m243745
27. IS~ 0.6064
29. —8
31. 10
33. —3)2
35. 0
37. 1
39. 3
41. 1
43, (a) Apply Part 1 of Theorem 1.3.1.
(b) Apply Theorem 1.3.6; g(x) = } isthe same asg(x) = 1
everywhere except at x = 0. Thus lim g(x) = lim 1 = 1.
x—0 x—0
(c) The function f(x) is always 0, so g(f(x)) is never defined as
g(x) is not defined at x = 0. Therefore the limit does not
exist.
(d) The Composition Rule requires that Iim0 g(x) be equal to
X—>
g(0). They are not equal, so the conditions of the
Composition Rule are not satisfied, and hence the rule is
not violated.
Section 1.4

1. The function approaches different values from the left and right;
the function grows without bound; the function oscillates.

3. F
5. (a) 2
(b) 2
() 2
(d) 1
(e) Asfis not defined for x < 0, this limit is not defined.

(f) 1

7. (a) Does not exist.
(b) Does not exist.
(c) Does not exist.
(d) Not defined.

(e) O
(f o
9 (a) 2
(b) 2
(c) 2
(d) 2
11. (a) 2
(b) 2
(c) 2
(d) o
(e) 2
(f) 2



(8) 2 31. (0,00)
(h) Not defined 33. (—o00,0]
13.  (a) 2 35. Yes, by the Intermediate Value Theorem.
(b) —4 37. We cannot say; the Intermediate Value Theorem only applies to
(c) Does not exist. function values between —10 and 10; as 11 is outside this range,
we do not know.
(d) 2
39. Approximate root is x = 1.23. The intervals used are:
15. f(a) 0 [1,1.5] [1,1.25] [1.125,1.25]
(b) 0 [1.1875,1.25] [1.21875,1.25] [1.234375,1.25]
[1.2.’:’»43757 1.2421875] [1.234375, 1.2382813}
(c) O
(d o 41. Approximate root is x = 0.69. The intervals used are:
[0.65,0.7] [0.675,0.7] [0.6875,0.7]
(e) 2 [0.6875,0.69375] [0.690625,0.69375]
(f) 2 43.  (a) 20
(8) 2 (b) 25
(h) 2 (c) Limit does not exist
17. (a) 1 —cos?a =sinZa (d) 25
02
(b) sin“a 45. Answers will vary.
(c) sin?a .
Section 1.6
(d) sinZa
19. (a) 4 1. F
(b) 4 3. F
(c) 4 5T
(d) 3 7. Answers will vary.
21. (a) —1 9. (@) oo
(b) 1 (b) oo
(c) Does not exist 11. (a) 1
(d) o (b) 0
23. 2/3 (c) 1/2
25. —9 (d) 1/2
Section 1.5 13. (a) Limit does not exist
(b) Limit does not exist
1. Answers will vary. .
15. Tables will vary.
3. Aroot of a function fis a value c such that f(c) = 0.
. x f0)
. 2.9 —15.1224 .
- (a) 599 _1591, Itseems lim, 53— f(x) = —oo.
2.999 —1599.12
9. F
11. No; lim f(x) = 2, while f(1) = 1 . 1)
- No; lim j(x) = £, while =1 3.1 16.8824
—1 i —
x (b) 301 160.88 It seems lim,_, 3+ f(x) = oco.
13. No; f(1) does not exist. 3.001  1600.88
15. Yes (c) It seems limy_,3 f(x) does not exist.
17. (a) No; Xirrlzf(x) #f(=2) 17. Tables will vary.
(b) Yes X )
(c) No;f(2) is not defined. (a) 2.9 132.857 Itseemslim,_, ;- f(x) = oo.
299 121244
19. (a) Yes
b) Y X f0)
(b) Yes (b) 3.1 108.039 It seemslim,_, 3 f(x) = occ.
21. (a) Yes 3.01 11876.4
(b) Yes (c) It seems limy—3 f(x) = oo.
23. (—o0,0) 19. Horizontal asymptote at y = 2; vertical asymptotes at x = —5, 4.
25. [—2, 2] 21. Horizontal asymptote at y = 0; vertical asymptotes at x = —1,0.
27. (—o0, —/6] and [v/6, 0) 23. No horizontal or vertical asymptotes.
29. (—00,0) 25. oo

A3



27. —oc0 35. lim,_ o+ ’w = 0; note also that lim,_, o+ f'(x) = 0. So f
is differentiable at x = 0.

29. Solution omitted. _
limy,_,o— M = —o0; note also that
31. Yes. The only “questionable” place is at x = 3, but the left and lim,_,,— f'(x) = —o0. So fis not differentiable at x = 1.
right limits agree. fis differentiable on [0, 1), not its entire domain.
Chapter 2 37. Approximately 24.

39.  (a) (—o0,00)

Section 2.1 (b) (00, 1) U (—1,1) U (1, 00)
.7 (c) (—o0,5]
d) [—V5,V5
3. Answers will vary. (d) [=V/5,V5]
5. Answers will vary. Section 2.2
7. flx =0 1. Velocity
9. f'(t) = -3 3. Linear functions.
11. h'(x) = 3x2 5. —17
13. r'(x) = ;—21 7. £(10.1) is likely most accurate, as accuracy is lost the farther from
x = 10 we go.
15. (a) y=6
(b) x=—2 9. 6
11. ft/s?

17. (a) y=—-3x+14

(b) y=1/3(x—7) — 17 13. (a) thousands of dollars per car

(b) Itis likely that P(0) < 0. That is, negative profit for not

19. (a) y=48(x—4)+64 producing any cars.
(b) y=—g5(x—4) +64 15. f(x) = g (x)
2. (@ y=-1/4(x+2)—1/2 17. Either g(x) = f’(x) or f(x) = g’(x) is acceptable. The actual
(b) y=4(x+2)—1/2 answer is g(x) = f’(x), but is very hard to show that f(x) # g’(x)

given the level of detail given in the graph.
19. f’(x) = 10x
21. f/(m) = 0.

23. y=8.1(x—3)+16

25. y=7.77(x —2) + €%, ory = 7.77(x — 2) + 7.39.

27. (a) Approximations will vary; they should match (c) closely.
(b) f'(x) = 2x
(c) At(—1,0), slopeis —2. At (0, —1), slope is 0. At (2, 3), 1. Power Rule.

Section 2.3

slope s 4. 3. One answer is f(x) = 10€*.
! 5. g(x) and h(x)
* 7. One possible answer is f(x) = 17x — 205.
27 9. f’(x) is a velocity function, and f”/ (x) is acceleration.
1 11. f/(x) =14x—5
. R 13. m/(t) =45t* — 312 +3
=2 -1 12 3 4 15. f/(r) = 6€’
29. - 17. f/(x) = 2 — 1
y 19. h'(t) = €' —cost +sint
| 21 /() =0
23. g'(x) = 24x% — 120x + 150
o\ g . 25. f/(x) = 18x — 12
-2 A\ 2 27. f/(x) = 6x° £/ (x) = 30x* "' (x) = 120x3 f*) (x) = 360x2
29. W (t)=2t—eth”’(t) =2 —et W (t) = —et N (t) = —et
31, s 31. f/(0) = cosO +sinff"(0) = —sinf + cos
f"(6) = —cos® — sinf f4) () = sinf — cos
33.  (a) Approximately on (—2,0) and (2, c0). 33. Tangent line: y = 2(x — 1)
(b) Approximately on (—oo, —2) and (0, 2). Normal line: y = —1/2(x — 1)
(c) Approximately at x = 0, £2. 35. Tangentline:y =x—1
(d) Approximately on (—oo, —1) and (1, c0). Normal line: y = —x + 1
(e) Approximately on (—1,1). 37. Tangentline: y = v/2(x — %) —V2
(f) Approximately at x = +1. Normal line: y = \’/—%(x -5 V2



39. Thetangentlineto f(x) = e*atx = 0isy = x + 1; thus
e%l ~ y(0.1) = 1.1.
Section 2.4
1. F
3.7
5. F
7. (a) f'(x) = (x* +3x) +x(2x + 3)

11.

13.

15.
17.

19.

21.

23.

25.
27.

29.

31.
33.
35.
37.

39.

41.
43.
45.
47.

49.

(b) f'(x) =3x* +6x

(c) They are equal.

(@) h'(s)=2(s+4)+ (2s—1)(1)
(b) W' (s) =4s+7

(c) They are equal.

(@) f/(x) = X20=fre

b) f/)=1—-3

(c) They are equal.

3(0)— 2
(@) H'(s) = %

(b) H'(s) = —9/4s™*
(c) They are equal.
f/(x) = sinx + xcos x
f'(x) = e"lnx—&—e"%
gx) =55
h(x) = —csc? x — &
W (t) =14t +6
F'(x) = (6x+8)e* + (3x* + 8x+ 7)e”
frl)=7
F(x) = sin® (x) +cos (x)+3 cos (x)

(cos(x)+3)?
. 2
! __ —XSInX—Cos X tan x—xsec” x
fx) = pei +

g'(t) = 128%e" + 4t3e! — cos? t +sin? t

2

f'(x) = 2xe* tan x = x2e* tan x + x%e* sec? x

Tangent line: y = 2x 4 2
Normal line:y = —1/2x + 2

Tangent line: y = 4
Normal line: x = 2

x=13/2

f’(x) is never 0.

f"(x) = 2cosx — xsinx
f"(x) = cot? xcscx + csc® x

y

6 4
2
Al
+ X
-2 -1 1 2 3 4 5
2]
—4
51. 6
Section 2.5
1.
3. F
5. T
7. f'(x) = 10(4x3 — x)% - (122 — 1) = (120x*> — 10)(4x® — x)°
9. g'(6) = 3(sin 0 + cos 0)(cos O — sin )
11. f'(x) =3(Inx+x )2( + 2x)
13, /() =4 < Db
15. ¢'(x) = 5sec(5x)
17. g/() = ( +1) (st - &)
19. p’(t) = —3cos?(t? + 3t + 1) sin(t> + 3t + 1)(2t + 3)
21, f'(x) =2/x
23. g'(r) =In4-4"
25. ¢'(t) =
(3'42) ((In2)2') — (2 +3) ((In 3)3*
27. /() = D02 @i (23)
2 2 2
2 (n33% 1) (3° In2-2"2
29. f/(x) = 23T 2k >22X(z +3)(In2:2" 26)
31 f'(x) =
502 +x)*(2x+ 1) (3x* +2x)3 +302 +x)5(3x* +2x)% (12x3 +-2)
33. f/(x) = 3cos(3x + 4) cos(5 — 2x) + 2sin(3x + 4) sin(5 — 2x)
_ 4(5x—9)3 cos(4x+1) —15 sin(4x+1) (5x—9)?
35. f/(X) - (5x—9)®
37. Tangentline:y =0
Normal line: x =0
39. Tangentline:y = —3(0 —7/2) +1
Normal line: y =1/3(6 — n/2) + 1
41. In both cases the derivative is the same: 1/x.
43, (a) ° F/mph
(b) The sign would be negative; when the wind is blowing at
10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.
Section 2.6
1. Answers will vary.
3.7
_1,-1/2 _1,-3/2 _ _1 1
S0 == = s s
I(f) — =t
7. f (t) - \/ﬁ
9. h'(x) = 1.5x%5 = 1.5\/x
_ VRO -(An@/a? 7
g’ = x RN AN
dy _ —ad
13. d%: - 2y-{)—(1
15. % = sin(x) sec(y)
d
17. &£ ="

A5



A.6

19.

21.

23.

25.
27.

29.

31.

33.

35.

37.

39.

41.

dy _ 2 sin(y) cos(y)

dx X
dy _ 1
dx — 2y+42

If one takes the derivative of the equation, as shown, using the

. 3 dy _ — cos(x)(x+cos(y))+sin(x)+y
Quotient Rule, one finds d% = 0GB el

If one first clears the denominator and writes

sin(x) + y = cos(y) + x then takes the derivative of both sides,
dy __ 1—cos(x)

dx — 1Fsin(y) "

These expressions, by themselves, are not equal. However, for
values of x and y that satisfy the original equation (i.e, for x and y

sin(x)+y) _ .
such that FOr 1), these expressions are equal.

dy _ _ 2x+y
dx T 2y+x

(@) y=0

(b) y = —1.859(x — 0.1) +0.281
(@) y=4

(b) y=0.93(x — 2) + v/108

one finds

(@) y=——J5(x~ 7) 4 6433

(b) y = V3(x— £5Y3) + 2

—a3
& (2y+1) (—12:2) +4¢° (2 Zyj‘:l)
a2 (y+1)2

ﬂ __ Cosxcos y+sin2 xtany
dx2 cos? y

X |
Y =+ 0V (g — )
Tangentline:y = (1 —2In2)(x — 1) + 2

y’:L(InX—&—l—i

x+1 x+1
Tangentline: y = (1/4)(x — 1) +1/2
;o oxt1l( 1 1
V=1 )

Tangent line: y = 1/9(x — 1) +2/3

Section 2.7

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

F

. The point (10, 1) lies on the graph of y = f~1(x) (assuming fis

invertible).

. Compose f(g(x)) and g(f(x)) to confirm that each equals x.
. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

: (f_l)/ (20) = f/%z) =1/5

() (V3/2) = iz = 1
(fil)/ (1/2) = f’:(ll) =2

0= i

g = e

sin(t)

V1i-t2

g’ (t) = cos~(t) cos(t) —

h,(X) _ sin ™ (x)4-cos ™1 (x)

V/1—x2 cos—1(x)2
F0 = -

1—x2
(@) f(x) =x,s0f'(x) =1
(b) f'(x) = cos(sin~1x) —=2

1—x2

=1.

y=V2(x—2/2) +1/4

dy _ y(y=2x)

dx x(x—2y)

31

3x2 41

Chapter 3

Section 3.1

1.
3.
5.
7.

11.
13.
15.
17.

19.

21.

23.

25.

Answers will vary.
Answers will vary.
F

A: none; the function isn’t defined here. B: abs. max & rel. max C:
rel. min D: none; the function isn’t defined here. E: none F: rel.
min G: rel. max

f'(0)=o0

f'(n/2) =0f'(37/2) =0
f(2) is not defined f/(6) = 0
f'(0)=o0

min: (—0.5,3.75)

max: (2, 10)

min: (7/4,3v/2/2)

max: (7/2,3)

min: (v/3,2v/3)

max: (5,28/5)

min: (7, —e™)

max: (r/a, Y2

min: (1,0)

max: (e, 1/e)

dy _ y(y=2x)

27. dx — x(x—2y)
29. 3x2 +1
Section 3.2
1. Answers will vary.

3.
5.
7.
9.
11.
13.
15.
17.

19.
21.

23.

Any cin [—1, 1] is valid.

c=-1/2

Rolle’s Thm. does not apply.

Rolle’s Thm. does not apply.

c=0

c= 3/\/2

The Mean Value Theorem does not apply.
c= +sec 1(2//7)

Max value of 19 at x = —2 and x = 5; min value of 6.75 at
x = 1.5.

They are the odd, integer valued multiples of 7/2 (such as
0,+m/2,4+3m/2,£57/2, etc.)

Section 3.3

Answers will vary.

Answers will vary; graphs should be steeper near x = 0 than near
X =2.

False; for instance, y = x3 is always increasing though it has a
critical point at x = 0.

Graph and verify.
Graph and verify.



11.
13.
15.

17.

19.

21.

23.

25.

Graph and verify.

Graph and verify.

domain: (—o0, 00)

c.p.atc=—1;

decreasing on (—oo, —1);

increasing on (—1, 0o0);

rel. minatx = —1.

domain=(—o0, o)

cp.atc= %(—1 +/7);

decreasing on (%(—1 —7), %(—1 +V7));

increasing on (—oo, %(71 —+/7)) and (%(71 +4/7),00);
rel. minatx = %(—1 +/7);

rel. maxatx = %(—1 - \ﬁ)

domain=(—o0, 00)

cp.atc=1;

decreasing on (1, c0)

increasing on (—oo, 1);

rel. maxatx = 1.

domain=(—oo, —2) U (—2,4) U (4, )

noc.p.;

decreasing on entire domain, (—oo, —2), (—2,4) and (4, o)
domain=(—o0, o)

c.p.atc = —3n/4, —7/4,7/4,37/4;

decreasing on (—37/4, —m/4) and (7/4,37/4);
increasing on (—m, —37/4), (—7/4,7/4) and (37/4,7);
rel. minatx = —w /4,371 /4;

rel. max atx = —37 /4, /4.

c=1/2

Section 3.4

L N W

11.
13.
15.
17.

19.

21.
23.

25.

27.

29.
31.
33.
35.

Answers will vary.

Yes; Answers will vary.

Graph and verify.

Graph and verify.

Graph and verify.

Graph and verify.

Graph and verify.

Possible points of inflection: none; concave up on (—oo, 00)

Possible points of inflection: x = 0; concave down on (—o0, 0);
concave up on (0, 00)

Possible points of inflection: x = —2/3, 0; concave down on
(—2/3,0); concave up on (—oo, —2/3) and (0, co)

Possible points of inflection: x = 1; concave up on (—oo, 00)

Possible points of inflection: x = il/\/‘;‘; concave down on

(—1/+/3,1/+/3); concave up on (—oo, —1/+/3) and (1/+/3, o0)

Possible points of inflection: x = — /4, 37/4; concave down on
(—m/4,3m/4) concave up on (—m, —7/4) and (37 /4, )

Possible points of inflection: x = 1/e3/2; concave down on
(0,1/e3/2) concave up on (1/€3/2, c0)

min: x =1
max: x = —1/\/§min:x: 1/\/§
min: x =1
min: x =1

37.
39.
41.
43.
45,
47.

49,
51.
53.

55.

max: x =0

max: x = 7/4; min: x = —37 /4
min: x = 1//e

£’ has no maximal or minimal value.
£’ has a minimal value atx = 0

Possible points of inflection: x = —2/3, 0; f has a relative min
at: x = 0; relative max at: x = —2/3

£/ has no relative extrema
£/ has a relative max at x = 71/\/§; relative min at x = 1/\/§

f' has a relative min at x = 37/4; relative maxatx = —7 /4

f’ has a relative min atx = 1/v/e3 = e—3/2

Section 3.5

11.
13.
15.
17.
19.
21.
23.
25.
27.

29.

31.

N ouow e

Answers will vary.
T
T

A good sketch will include the x and y intercepts and draw the
appropriate line.

Use technology to verify sketch.
Use technology to verify sketch.
Use technology to verify sketch.
Use technology to verify sketch.
Use technology to verify sketch.
Use technology to verify sketch.
Use technology to verify sketch.
Use technology to verify sketch.
Use technology to verify sketch.
Critical point: x = 0 Points of inflection: :I:b/\@

Critical points: x = M, where n is an odd integer Points of

inflection: (nm — b)/a, where n is an integer.

% = —x/y, so the function is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.

2

% = —1/y — x*/y3, which is positive when y < 0 and is

negative when y > 0. Hence the function is concave down in the

first and second quadrants and concave up in the third and fourth

quadrants.

Chapter 4

Section 4.1
1. F
3. xp = 1.5, x; = 1.5709148, x, = 1.5707963, x3 = 1.5707963,

11.
13.
15.
17.

X4 = 1.5707963, xs = 1.5707963

Xo =0,x1 =2,x = 1.2, x3 = 1.0117647, x4, = 1.0000458,
X5 = 1

Xo = 2, x1 = 0.6137056389, x, = 0.9133412072,
x3 = 0.9961317034, x4 = 0.9999925085, x5 = 1

roots are: x = —5.156, x = —0.369 and x = 0.525
roots are: x = —1.013, x = 0.988, and x = 1.393
x = £0.824,

x = 1+0.743

The approximations alternate between x = 1 and x = 2.

A7



Section 4.2

1.
3.

11.

15.

T
(a) 5/(2m) = 0.796cm/s
(b) 1/(4m) =~ 0.0796 cm/s
(c) 1/(40m) =~ 0.00796 cm/s
63.14mph

Due to the height of the plane, the gun does not have to rotate
very fast.

(a) 0.0573rad/s

(b) 0.0725 rad/s

(c) Inthe limit, rate goes to 0.0733 rad/s
(a) 0.04 ft/s

(b) 0.458 ft/s

(c) 3.35ft/s

(d) Not defined; as the distance approaches 24, the rates
approaches co.

(a) 50.92 ft/min
(b) 0.509 ft/min
(c) 0.141 ft/min
As the tank holds about 523.6ft3, it will take about 52.36 minutes.
(a) The rope is 80ft long.
(b) 1.71 ft/sec
(c) 1.84 ft/sec
(d) About 34 feet.
The cone is rising at a rate of 0.003ft/s.

Section 4.3

11.

13.

15.

17.

T

. 2500; the two numbers are each 50.

. There is no maximum sum; the fundamental equation has only 1

critical value that corresponds to a minimum.

. Area = 1/4, with sides of length 1/\/5
. The radius should be about 3.84cm and the height should be

2r = 7.67cm. No, this is not the size of the standard can.

The height and width should be 18 and the length should be 36,
giving a volume of 11, 664in3.

5 — 10/+/39 = 3.4 miles should be run underground, giving a
minimum cost of $374,899.96.

The dog should run about 19 feet along the shore before starting
to swim.

The largest area is 2 formed by a square with sides of length v/2.

Section 4.4

11.

A.8

Nouowoe

T
F
Answers will vary.

Usey = x%; dy = 2x - dx with x = 2 and dx = 0.05. Thus
dy = .2; knowing 22 = 4, we have 2.05% ~ 4.2.

Usey = x3; dy = 3x? - dx with x = 5 and dx = 0.1. Thus
dy = 7.5; knowing 53 = 125, we have 5.13 =~ 132.5.

Usey = v/x; dy = 1/(2+/x) - dx with x = 16 and dx = 0.5. Thus
dy = .0625; knowing /16 = 4, we have v/16.5 ~ 4.0625.

13.

15.

17.
19.

21.

23.

25.
27. d
29.
31.
33.
35.

37.

39.

Usey = ¥/x; dy = 1/(3V/x%) - dx with x = 64 and dx = —1.
Thus dy = —1/48 = 0.0208; we could use

—1/48 ~ —1/50 = —0.02; knowing /64 = 4, we have
/63 ~ 3.98.

Use y = sinx; dy = cos x - dx with x = 7 and dx ~ —0.14. Thus
dy = 0.14; knowing sin m = 0, we have sin3 =~ 0.14.

dy = (2x + 3)dx

dy = ;—gdx

dy = (2xe® + 3x%e>) dx

2(tan x41) — 2x sec? X g
(tan x+1)2

dy =
dy = (€*sinx + € cos x)dx
ly = ﬁdx
dy = (Inx)dx
dV = £0.157
+157/8 ~ 45.89in?
(a) 297.8 feet
(b) £62.3ft
(c) +20.9%
(a) 298.9 feet
(b) +8.67ft
(c) £2.9%
1%

Chapter 5

Section 5.1

1.

3.

5.

7.

9.
11.
13.
15.
17.
19.
21.
23.
25.
27.
29.
31.
33.

35.
37.
39.
41.

Answers will vary.
Answers will vary.
Answers will vary.
velocity

3/4x* + C

10/33 — 2x+C
s+C

—-3/(t)+C

tanf + C

secx —cscx + C
3t/In3+C

4/383 4 6t> +9t+C
x0/6+C

ax + C

—cosx+3

¥ —x3+7
7/In74+1—-49/In7

3
7x 9x 40
T "2t3

0 —sin(d) —m+4
3x —2
dy = (2xe* cos x + x?e* cos x — x?e* sin x)dx

Section 5.2

1.

Answers will vary.



3.0 19. 1045

5. (a) 3 21. —8525
(b) 4 23. 5050
(c) 3 25. 155
(d) o 27. 24
(e) —4 29. 19
(f) 9 31, 7/3 +7/(2v/3) ~ 1.954
7. f(a) 4 33. 0.388584
(b) 2 35. (a) Exact expressions will vary; (1:;'2’)2.
(c) 4 (b) 121/400, 10201/40000, 1002001,/4000000
(d) 2 (c) 1/4
(e) 1 37.  (a) 8.
(f) 2 (b) 88,8
9. (@« (c) 8
(b) = 39. (a) Exact expressions will vary; 100 — 200/n.
(c) 27 (b) 80,98,499/5
(d) 107w (c) 100
1. (a) —59 41. F(x) =5tanx+4
(b) —48 43. G(t) = 4/6t5 —5/4t* + 8t +9
() —27 45. G(t) =sint — cost — 78
(d) —33 Section 5.4
13. (a) 4
(b) 4 1. Answers will vary.
(c) —4 3.7
(d) —2 5. 20
15.  (a) 2ft/s 7.0
(b) 2ft 9.1
(c) 1.5ft 11. (5—1/5)/In5
17.  (a) 64ft/s 13. —4
(b) 64ft 15. 16/3
(c) t=2 17. 45/4
(d) t =24 /7 =~ 4.65 seconds 19. 1/2
19. 2 21. 1/2
21. 16 23. 1/4
23. 24 25. 8
25. =7 27. 0
27. 1/4x* —2/33 +7/2x% —9x + C 29. Explanations will vary. A sketch will help.
29. 3/4t*/3 —1/t4+2t/In2+C 31. c=2/V3
Section 5.3 33. c=In(e—1)~0.54
35. 2/7
1. limits 37. 2
3. Rectangles. 39. 16
5.22+32+42=29 41 —300ft
7. 0-14+0+14+0=0 43. 30ft
9. 14+1/2+1/3+1/4+1/5 =137/60 45 _1ft
11. 1/2+1/6+1/12 +1/20 = 4/5 47. —6aft)s
13. Answers may vary; Z;r’:l 3i 49, 2ft/s
15. Answers may vary; Zle ,Jr#l 51. 27/2

17. 5-10 =50 53. 9/2



A.10

55.

Fl(x) = (3x* + 1) 5

x34x

57. F/(x) = 2x(x* +2) — (x +2)
Section 5.5
1. F
3. They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.
5. (a) 3/4
(b) 2/3
(c) 2/3
7. (@) ;(1+V2)r~1.8%
(b) £(1+2v2)m = 2.005
(c) 2
9. (a) 38.5781
(b) 147/4 ~ 36.75
(c) 147/4 =~ 36.75
1. (@) 0
(b) O
(c) 0
13. Trapezoidal Rule: 0.9006
Simpson’s Rule: 0.90452
15. Trapezoidal Rule: 13.9604
Simpson’s Rule: 13.9066
17. Trapezoidal Rule: 1.1703
Simpson’s Rule: 1.1873
19. Trapezoidal Rule: 1.0803
Simpson’s Rule: 1.077
21, (a) n =161 (usingmax (f"(x)) = 1)
(b) n = 12 (using max (j‘(“> (x) =1)
23.  (a) n = 1004 (using max (f"'(x)) = 39)
(b) n = 62 (using max () (x)) = 800)
25.  (a) Areais30.8667 cm?.
(b) Areais 308, 667 yd?2.
Chapter 6
Section 6.1
1. Chain Rule.
3. L@ -5+
5. L(@+1)’+c
7. injax+7]+¢C
9. 2(x+3)¥2—6(x+3)2+C=2(x—6)Vx+3+C
11. 2eV¥ ¢
13, -5 — 3 +4C
15. mﬁ% +C

17.

19.

21.

23.
25.

27.

29.

31.

33.

35.

37.

39.

41.

43.

45,

47.

49.

51.

53.

55.

57.

59.

61.

63.

65.

67.
69.

71.

73.

75.
77.
79.
81.
83.
85.

—Lsin(3—6x)+C
% In | sec(2x) + tan(2x)| + C

sin(xz)

—— +C
The key is to rewrite cot x as cos x/ sinx, and let u = sin x.
1,3x—1

;€7 +C

%e("*l)z +cC
In(ex+1)+¢C

27%

Lin?(x) + ¢

2nx)?2+cC

XZ

S +3x+Inix +C

3

Lf%+xlen\x+1\+c

3
3x2 —8x+15In|x+ 1| +C

\ﬁtan*1< X )—I—C

=
14sin—t (%) +C

%sec‘1(|x|/4) +C

e
tan éﬁ)%

3sin7t (5%) + ¢

1
T 3(643) +¢

—V1-x2+C
3
—%cosf(x)—i-c

In|jx—5/+¢C

3 L in|x2 +3x+ 5| —5x 4 C
3|32 + 9% +7|+C

14n—1 (2

55 tan <%>+C

sec™1(|2x|) + €

3in|x® —2x+10[ + 2 tan—t (231) 4 ¢

—1(x=5
175In|x2710x+32|+x+41tan\ﬁ(\ﬁ)+C

2 —1(x+2
§+3|n\x2+4x+9)_4x+4“+5(¢5)+c

tan~1(sin(x)) + C

3V —2x—6+C
—1In2

2/3

(1-e)/2

/2



Index

1, 405
Absolute Convergence Theorem, 456
absolute maximum, 129
absolute minimum, 129
Absolute Value Theorem, 410
acceleration, 77, 651
Alternating Harmonic Series, 427, 454, 467
Alternating Series Test, 450
ay, 669, 679
analytic function, 488
angle of elevation, 656
antiderivative, 197

of vector—valued function, 646
arc length, 379, 527, 553, 648, 673
arc length parameter, 673, 675
asymptote

horizontal, 50

vertical, 48
ar, 669, 679
average rate of change, 635
average value of a function, 777
average value of function, 244

Binomial Series, 489
Bisection Method, 42
boundary point, 690
bounded sequence, 412
convergence, 413
bounded set, 690

center of mass, 791-793, 795, 822

Chain Rule, 101
multivariable, 721, 724
notation, 107

circle of curvature, 678

circulation, 870

closed, 690

closed disk, 690

concave down, 151

concave up, 151

concavity, 151, 524
inflection point, 152
test for, 152

conic sections, 498
degenerate, 498
ellipse, 501
hyperbola, 504
parabola, 498

connected, 865
simply, 865

conservative field, 865, 866, 868

Constant Multiple Rule
of derivatives, 84
of integration, 201
of series, 427
constrained optimization, 754
continuous function, 37, 696
properties, 40, 697
vector—valued, 638
contour lines, 684
convergence
absolute, 454, 456
Alternating Series Test, 450
conditional, 454
Direct Comparison Test, 437
for integration, 347
Integral Test, 434
interval of, 462
Limit Comparison Test, 438
for integration, 349
nth—term test, 429
of geometric series, 422
of improper int., 342, 347, 349
of monotonic sequences, 416
of p-series, 423
of power series, 461
of sequence, 408, 413
of series, 419
radius of, 462
Ratio Comparison Test, 443
Root Comparison Test, 446
coordinates
cylindrical, 828
polar, 533
spherical, 831
critical number, 131
critical point, 131, 749-751
cross product
and derivatives, 643
applications, 605
area of parallelogram, 606
torque, 608
volume of parallelepiped, 607
definition, 601
properties, 603, 604
curl, 853
of conservative fields, 868
curvature, 675
and motion, 679
equations for, 677
of circle, 677, 678
radius of, 678



curve
parametrically defined, 511
rectangular equation, 511
smooth, 517

curve sketching, 159

cusp, 517

cycloid, 633

cylinder, 563

cylindrical coordinates, 828

decreasing function, 142
finding intervals, 143

definite integral, 209
and substitution, 278
of vector—valued function, 646
properties, 211

del operator, 851

derivative
acceleration, 78
as a function, 66
at a point, 62
basic rules, 82
Chain Rule, 101, 107, 721, 724
Constant Multiple Rule, 84
Constant Rule, 82
differential, 189
directional, 729, 731, 732, 735, 736
exponential functions, 107
First Deriv. Test, 145
Generalized Power Rule, 102
higher order, 85

interpretation, 86

hyperbolic funct., 324
implicit, 111, 726
interpretation, 75
inverse function, 122
inverse hyper., 327
inverse trig., 125
logarithmic differentiation, 118
Mean Value Theorem, 138
mixed partial, 704
motion, 78

multivariable differentiability, 713, 718

normal line, 63

notation, 66, 85
parametric equations, 521
partial, 700, 708

Power Rule, 82, 95, 116
power series, 465

Product Rule, 89

Quotient Rule, 92

second, 85

Second Deriv. Test, 155
Sum/Difference Rule, 84
tangent line, 62

third, 85

trigonometric functions, 94

vector—valued functions, 639, 640, 643

velocity, 78
differentiable, 62, 713, 718

differential, 189
notation, 189
Direct Comparison Test
for integration, 347

for series, 437

directional derivative, 729, 731, 732, 735, 736

directrix, 498, 563
Disk Method, 364
displacement, 238, 634, 648
distance
between lines, 619
between point and line, 619
between point and plane, 628
between points in space, 560
traveled, 659
divergence, 852, 853
Alternating Series Test, 450
Direct Comparison Test, 437
for integration, 347
Integral Test, 434
Limit Comparison Test, 438
for integration, 349
nth—term test, 429
of geometric series, 422
of improper int., 342, 347, 349
of p-series, 423
of sequence, 408
of series, 419
Ratio Comparison Test, 443
Root Comparison Test, 446
Divergence Theorem
in space, 900
in the plane, 877
dot product
and derivatives, 643
definition, 588
properties, 589, 590
double integral, 770, 771
in polar, 781
properties, 774

eccentricity, 503, 507
elementary function, 248
ellipse
definition, 501
eccentricity, 503
parametric equations, 517
reflective property, 504
standard equation, 502
extrema
absolute, 129, 749
and First Deriv. Test, 145
and Second Deriv. Test, 155
finding, 132
relative, 130, 749, 750
Extreme Value Theorem, 130, 754
extreme values, 129

factorial, 405
First Derivative Test, 145



first octant, 560
floor function, 38
flow, 870, 872
fluid pressure/force, 397, 399
flux, 870, 872, 893, 894
focus, 498, 501, 504
Fubini’s Theorem, 771
function
of three variables, 687
of two variables, 683
vector—valued, 631
Fundamental Theorem of Calculus, 236, 237
and Chain Rule, 240
Fundamental Theorem of Line Integrals, 864, 866

Gabriel’s Horn, 384
Gauss’s Law, 904
Generalized Power Rule, 102
geometric series, 421, 422
gradient, 731, 732, 735, 736, 746
and level curves, 732
and level surfaces, 746
Green’s Theorem, 874

Harmonic Series, 427
Head To Tail Rule, 578
Hooke’s Law, 390
hyperbola
definition, 504
eccentricity, 507
parametric equations, 517
reflective property, 507
standard equation, 505
hyperbolic function
definition, 321
derivatives, 324
identities, 324
integrals, 324
inverse, 325
derivative, 327
integration, 327
logarithmic def., 326

implicit differentiation, 111, 726
improper integration, 342, 345
incompressible vector field, 852
increasing function, 142

finding intervals, 143
indefinite integral, 197

of vector—valued function, 646
indeterminate form, 2, 49, 335, 336
inflection point, 152
initial point, 574
initial value problem, 202
Integral Test, 434
integration

arc length, 379

area, 209, 762, 763

area between curves, 241, 354

average value, 244

by parts, 283

by substitution, 265
definite, 209
and substitution, 278
properties, 211
Riemann Sums, 232
displacement, 238
distance traveled, 659
double, 770
fluid force, 397, 399
Fun. Thm. of Calc., 236, 237
general application technique, 353
hyperbolic funct., 324
improper, 342, 345, 347, 349
indefinite, 197
inverse hyper., 327
iterated, 761
Mean Value Theorem, 243
multiple, 761
notation, 198, 209, 237, 761
numerical, 248
Left/Right Hand Rule, 248, 255
Simpson’s Rule, 253, 255, 256
Trapezoidal Rule, 251, 255, 256
of multivariable functions, 759
of power series, 465
of trig. functions, 271
of trig. powers, 294, 299
of vector—valued function, 646
of vector—valued functions, 646
partial fraction decomp., 314
Power Rule, 202
Sum/Difference Rule, 202
surface area, 383, 529, 554
trig. subst., 305
triple, 808, 819-821
volume
cross-sectional area, 362
Disk Method, 364
Shell Method, 371, 375
Washer Method, 366, 375
with cylindrical coordinates, 829
with spherical coordinates, 833
work, 387
interior point, 690
Intermediate Value Theorem, 42
interval of convergence, 462
iterated integration, 761, 770, 771, 808, 819-821
changing order, 765
properties, 774, 814

L'Hépital’s Rule, 332, 334
lamina, 787
Left Hand Rule, 218, 223, 248
Left/Right Hand Rule, 255
level curves, 684, 732
level surface, 688, 746
limit
Absolute Value Theorem, 410
at infinity, 50
definition, 10



difference quotient, 6
does not exist, 4, 32
indeterminate form, 2, 49, 335, 336
L'Hopital’s Rule, 332, 334
left handed, 30
of infinity, 46
of multivariable function, 691, 692, 698
of sequence, 408
of vector—valued functions, 637
one sided, 30
properties, 18, 692
pseudo-definition, 2
right handed, 30
Squeeze Theorem, 22
Limit Comparison Test
for integration, 349
for series, 438
line integral
Fundamental Theorem, 864, 866
over scalar field, 841, 843, 859
over vector field, 860
path independent, 865, 866
properties over a scalar field, 846
properties over a vector field, 863
lines, 612
distances between, 619
equations for, 614
intersecting, 615
parallel, 615
skew, 615
logarithmic differentiation, 118

Mobius band, 881

Maclaurin Polynomial, see Taylor Polynomial
definition, 474

Maclaurin Series, see Taylor Series
definition, 485

magnitude of vector, 574

mass, 787, 788, 822, 847
center of, 791, 847

maximum
absolute, 129, 749
and First Deriv. Test, 145
and Second Deriv. Test, 155
relative/local, 130, 749, 752

Mean Value Theorem
of differentiation, 138
of integration, 243

Midpoint Rule, 218, 223

minimum
absolute, 129, 749
and First Deriv. Test, 145, 155
relative/local, 130, 749, 752

moment, 793, 795, 822

monotonic sequence, 414

multiple integration, see iterated integration

multivariable function, 683, 687
continuity, 696-698, 714, 719
differentiability, 713, 714, 718, 719
domain, 683, 687

level curves, 684
level surface, 688
limit, 691, 692, 698
range, 683, 687

Newton’s Method, 168
norm, 574
normal line, 63, 521, 742
normal vector, 623
nth—term test, 429
numerical integration, 248
Left/Right Hand Rule, 248, 255
Simpson’s Rule, 253, 255
error bounds, 256
Trapezoidal Rule, 251, 255
error bounds, 256

octant
first, 560

one to one, 880

open, 690

open ball, 698

open disk, 690

optimization, 181
constrained, 754

orientable, 880

orthogonal, 592, 742
decomposition, 596

orthogonal decomposition of vectors, 596

orthogonal projection, 594

osculating circle, 678

outer unit normal vector, 900

p-series, 423
parabola
definition, 498
general equation, 499
reflective property, 501
parallel vectors, 582
Parallelogram Law, 578
parametric equations
arc length, 527
concavity, 524
deﬁnitiog, 511
finding %, 525
finding %, 521
normal line, 521
of a surface, 880
surface area, 529
tangent line, 521
parametrized surface, 880
partial derivative, 700, 708
high order, 708
meaning, 702
mixed, 704
second derivative, 704
total differential, 712, 718
partition, 225
size of, 225
path independent, 865, 866



perpendicular, see orthogonal
piecewise smooth curve, 846
planes

coordinate plane, 562

distance between point and plane, 628

equations of, 624
introduction, 562
normal vector, 623
tangent, 745
point of inflection, 152
polar
coordinates, 533
function
arc length, 553
gallery of graphs, 540
surface area, 554
functions, 536
area, 549
area between curves, 551
finding %, 546
graphing, 536
polar coordinates, 533
plotting points, 533
potential function, 857, 866
Power Rule
differentiation, 82, 89, 95, 116
integration, 202
power series, 460
algebra of, 491
convergence, 461
derivatives and integrals, 465
projectile motion, 656, 657, 670

quadric surface
definition, 566
ellipsoid, 568
elliptic cone, 567
elliptic paraboloid, 567
gallery, 567-569
hyperbolic paraboloid, 569
hyperboloid of one sheet, 568
hyperboloid of two sheets, 569
sphere, 568
trace, 566

Quotient Rule, 92

R, 574
radius of convergence, 462
radius of curvature, 678
Ratio Comparison Test
for series, 443
rearrangements of series, 455, 456
related rates, 174
Riemann Sum, 218, 222, 225
and definite integral, 232
Right Hand Rule, 218, 223, 248
right hand rule
of Cartesian coordinates, 560
of the cross product, 605
Rolle’s Theorem, 138

Root Comparison Test
for series, 446

saddle point, 751, 752
Second Derivative Test, 155, 752
sensitivity analysis, 717
sequence
Absolute Value Theorem, 410
positive, 437
sequences
boundedness, 412
convergent, 408, 413, 416
definition, 405
divergent, 408
limit, 408
limit properties, 411
monotonic, 414
series
absolute convergence, 454

Absolute Convergence Theorem, 456

alternating, 449
Approximation Theorem, 452
Alternating Series Test, 450
Binomial, 489
conditional convergence, 454
convergent, 419
definition, 419
Direct Comparison Test, 437
divergent, 419
geometric, 421, 422
Integral Test, 434
interval of convergence, 462
Limit Comparison Test, 438
Maclaurin, 485
nth—term test, 429
p-series, 423
partial sums, 419
power, 460, 461
derivatives and integrals, 465

properties, 427
radius of convergence, 462
Ratio Comparison Test, 443
rearrangements, 455, 456
Root Comparison Test, 446
Taylor, 485
telescoping, 424, 425

Shell Method, 371, 375

signed area, 209

signed volume, 770, 771

simple curve, 865

simply connected, 865

Simpson’s Rule, 253, 255
error bounds, 256

smooth, 642
curve, 517
surface, 880

smooth curve
piecewise, 846

speed, 651

sphere, 561



spherical coordinates, 831
Squeeze Theorem, 22
Stokes’ Theorem, 906
Sum/Difference Rule
of derivatives, 84
of integration, 202
of series, 427
summation
notation, 219
properties, 221
surface, 880
smooth, 880
surface area, 800
of parametrized surface, 886, 887
solid of revolution, 383, 529, 554
surface integral, 891
surface of revolution, 564, 565

tangent line, 62, 521, 546, 641
directional, 739
tangent plane, 745
Taylor Polynomial
definition, 474
Taylor’s Theorem, 477
Taylor Series
common series, 491
definition, 485
equality with generating function, 487
Taylor’s Theorem, 477
telescoping series, 424, 425
terminal point, 574
torque, 608
total differential, 712, 718
sensitivity analysis, 717
total signed area, 209
trace, 566
Trapezoidal Rule, 251, 255
error bounds, 256
triple integral, 808, 819-821
properties, 814

unbounded sequence, 412
unbounded set, 690
unit normal vector
ay, 669
and acceleration, 668, 669
and curvature, 679
definition, 666
in R?, 668
unit tangent vector
and acceleration, 668, 669
and curvature, 675, 679
ar, 669
definition, 664
in R?, 668
unit vector, 580
properties, 582
standard unit vector, 584
unit normal vector, 666
unit tangent vector, 664

vector field, 850
conservative, 865, 866
curl of, 853
divergence of, 852, 853
over vector field, 860
potential function of, 857, 866
vector—valued function
algebra of, 632
arc length, 648
average rate of change, 635
continuity, 638
definition, 631
derivatives, 639, 640, 643
describing motion, 651
displacement, 634
distance traveled, 659
graphing, 631
integration, 646
limits, 637
of constant length, 645, 655, 656, 665
projectile motion, 656, 657
smooth, 642
tangent line, 641
vectors, 574
algebra of, 577
algebraic properties, 580
component form, 575
cross product, 601, 603, 604
definition, 574
dot product, 588-590
Head To Tail Rule, 578
magnitude, 574
norm, 574
normal vector, 623
orthogonal, 592
orthogonal decomposition, 596
orthogonal projection, 594
parallel, 582
Parallelogram Law, 578
resultant, 578
standard unit vector, 584
unit vector, 580, 582
zero vector, 578
velocity, 77, 651
volume, 770, 771, 806

Washer Method, 366, 375
work, 387, 599



Differentiation Rules

d d d 1 d
1. —(x)=¢ 10. — (@) =Ina-d* 19. — (sin"lx) = —— 28. — (sechx) = —sechxtanhx
dx( ) dx( ) dx( ) V1—x2 dx( )
d d 1 d -1 d
2. —(utv)=u £V 11. — (Inx) = = 20. — (cos™lx) = —— 29. — (cschx) = — csch xcoth x
dx dx X dx V1 —x2 dx
d d 1 1 -1 d
3. —(u-v)=uw +dv 12. — (log,x) = — - 21, — (csc1x) = 30. — (cothx) = —csch? x
dx( ) x( 8aX) Ina x dx( ) [x|vx* —1 dx( )
;e d d 1 d 1
4, g (uy_w—w 13. — (sinx) = cosx 22, — (sec™lx) = ——— 31. — (cosh™1x) = ———
dx \v v2 dx dx [x|[vx? — 1 dx x2—1
d o d _ d, 1 d, 1
. — = 14. — (cosx) = —sinx 23, — (tan” "x) = —— 32. — (sinh™ " X) = ———
5. = (u(v)) = o' (W = (cosx) o) = g () = e
d d d, -1 d i -1
. — = 15. — (cscx) = —cscxcotx 24, — (cot” "x) = —— 33, — (sech™ X)) = ——=
6 dx (=0 dx( ) dx( ) 14 x2 dx( ) xV1 — x2
d d d _ d . —1
7. — =1 16. — (secx) = secxtanx 25. — (coshx) = sinhx 34, — (csch™ " X) = ——
ax ) a (Y e O o ) = e
d d d 1
8. % (™) =mx""1 17. o (tanx) = sec? x 26. o (sinh x) = coshx 35. o (tanh~1x) = T
d . d R d 5 d . 1
L — = 18. — (cotx) = —csc 27. — (tanhx) = sech 36. — (coth =
o. ~()=e . (cotx) x o (@nhx) x o (coth ™) = 7=
Integration Rules
1 X
1. c- flx dx:c/fx dx 12. /tanxdx:fln cosx| + C 23. /7dx:sin’1(7)+c
[ e 0 |cosx S x
1 1 (¥
2. /f(x +g(x)dx = 13. /secxdx:ln|secx+tanx +C 24. /761 = Zsec (X c
) ) ‘ X\/Xz 702 X a a +
/f(x) dxi/g(x) dx 14. /cscde=fInICSCX+cotXI +C 25. /coshxdx:sinhx+c
3. /de:C 15. /cotxdx:Inlsinx|+c 26. /sinhxdx:coshx+C
4. /1dx:x+C 16. /seczxdx:tanx+C 27. /tanhxdx:ln(coshx)+C
5 x"dxfix"+1+c n#-—1 2
. i1 ) 17. csc” xdx = —cotx + C 28. /cothxdx:ln|sinhx|+C
6. /e"dx:e"+c 18 /secxtanxdx—secx-i—(.‘ / ! v/
. = 29. ————dx=In|x+Vx2—ad?|+C
7. /Inxdx:xlnx—x+C 19. /cscxcotxdx:—cscx+C 30 /#dx:ln x4+ VX2 +a2|+cC
Vx2 + a? } |
1 101
8 /a"dx:—a-a"+c 20. /coszxdx:ix—s—zsin(Zx)—i-C 31. /721 de:im atx +C
as — x 2a a—x
9. /%dX*In|x|+C 21. /sinzxdx:lx—lsin(ZX)—&-C 32. /71 dx:lm( X >+C
2 4 xvVa? — x2 a a+ Va2 —x?
10. /cosxdx:sinx+(.‘ 22. 1 dx:}tan’I X +c 1 :1 X
2+ a? a a 33. ——dx In|————|+C
xVx% + a? a |la+vVx2+a?

11. /sinxdx: —cosx+ C



The Unit Circle

Common Trigonometric Identities

Pythagorean Identities
sin®x+cos’x =1
tan?x 4+ 1 = sec’x

1+ cot? x = csc? x

Sum to Product Formulas

X
sinx+siny25in< ty

. . . X
sinx —siny = Zsm(

X+
COSX + cosy = 2cos(

Cofunction Identities

LT

sin{ — —x) = cosx
2
™ .

cos | = —x) =sinx
2

T
tan (— —x) = cotx
2

X—Yy
2
X+y
2
)eos (57
cos

2

-y

. X+y\ . X
cosx—cosy:—25|n( 5 )sm( 5

Product to Sum Formulas

1
sinxsiny = 3 ( cos(x — y) — cos(x + y))

COSXCOosy =

NP -

sinxcosy =

(cos(x —y) + cos(x +y))

(sin(x +y) +sin(x — y))

Definitions of the Trigonometric Functions

Unit Circle Definition

Double Angle Formulas

0
csc (5 —x) = secx sin2x = 2sinxcos x
T cos 2x = cos? x — sin® x
sec (— —x) = cscx
2 =2cos’x—1
™
cot(z—x):tanx —=1—2sin%x
2tanx
tan2x = ————
1—tan“x
Power—Reducing Formulas Even/Odd Identities
sin?x — 1 —cos2x sin(—x) = —sinx
2 cos(—x) = cosx
2. 1l4cos2x
cos x = 7 tan(—x) = —tanx
tanx — L €08 2X csc(—x) = —csex
1+ cos2x sec(—x) = secx
cot(—x) = —cotx

Angle Sum/Difference Formulas
sin(x £ y) = sinxcosy & cosxsiny

cos(x +y) = cosxcosy F sinxsiny

tan(x £ y) = tanx £ tany
)= 1T tanxtany

y
A
V2 X, .
TZ) () sinf =y cosf = x
|
2, %) V| 0 1
| \ cscld ==  secl =
< ‘ > X y
X
tand =7  coth=7%
X y
(1,0) — x
Y
Right Triangle Definition
. o H
s sinf = q csch = —
) g ©
©
o A H
%) 2. cosf = — sect = —
5] H A
0} A
Adjacent tand = — cotf = —
A 6}



Areas and Volumes

Triangles
h=asin
Area = %bh

Law of Cosines:

¢ =a*+b?>—2abcosh

Parallelograms
Area = bh

Trapezoids

Area = 2(a + b)h

Circles

Area = 7r?

Circumference = 27r

Sectors of Circles

0 in radians
Area = 161
s=rf

i
>

____

o
o
Q

-
o
(%)

Right Circular Cone
Volume = i7r2h

Surface Area =

V2 + h? + mr?

Right Circular Cylinder

Volume = 7r?h

Surface Area =
2nrh + 27r?

Sphere
Volume = $7r°

Surface Area =47r?

General Cone
Area of Base = A

Volume = 1Ah

General Right Cylinder

Area of Base = A
Volume = Ah

>




Algebra

Factors and Zeros of Polynomials
Let p(x) = apx" + ap_1X""1 + - - - + a1x + ag be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of
the equation p(x) = 0. Furthermore, (x — a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real

polynomial of odd degree must have at least one real zero.

Quadratic Formula
If p(x) = ax? + bx + ¢, and 0 < b? — 4ac, then the real zeros of p are x = (—b + v/b? — 4ac)/2a

Special Factors

X —a®>=(x—a)(x+a) X —a=(x—a)(®+ax+a*)

X +a® = (x+a)(x* — ax + a?) X —a* = (® —a*) (¥ + a?)

(X+ y)n =x" + nxn—ly+ "("le)Xn—ZyZ N ann—l +y

(X _ y)n —x" — nx”_ly—i— "("le)Xn—ZyZ — et ann—l Fy
Binomial Theorem

(x+y)? =x>+2xy + )2 (x—y)P?=x> =2y +y>?
(x+y)?=x+3C%y+3xy> + )3 (x—y)P =x -3y +3x2 — )3
(x+y)* =x*+ 43y + 6x°y2 + dxy> + y* (x —y)* =x* — 43y + 6x%y? — dxy? + y*

Rational Zero Theorem
If p(x) = apx" + ap—1X""1 4 - -+ + a1x + ag has integer coefficients, then every rational zero of p is of the form x = r/s,
where ris a factor of ap and s is a factor of a,,.

Factoring by Grouping
acx® + adx® + bex + bd = ax*(¢s + d) + b(ex + d) = (ax® + b)(cx + d)

Arithmetic Operations
ab+ac=a(b+c) g+£_ad+bc a+b_g+9
B b d  bd c ¢ ¢

a a

(b)_(a) dy _ ad (E)_g a _ac
(£>_ b) \c) bc c  bc b\ b

d c

g b\ _ab a—b b-a ab+ac_b+c
c)] ¢ c—d d-c N

Exponents and Radicals

=1 a#0 (ab)*=cb" =" Ja=a'l? %za"_y Va=a'/"

a\x o 1 a a
— = — /agm = m/n X = V = 4 Y XYW — g¥v N
( ) vam =a a p Vab=/avb  (a*) =a \/; 7



Additional Formulas

Summation Formulas:
n

iz"lz n(n+1)(2n+1) 0 5 [(nn+1)\?

Trapezoidal Rule:

b
/ f(x) dx ~ % [f(x1) + 2f(x2) + 2f(x3) + ... + 2f(xa) + f(Xn11)]

B maxf 00

with Error <

Simpson’s Rule:

b
/ f(x) dx =~ % [f(x1) + 4f(x2) + 2f(x3) + 4f(Xa) + ... + 2f(Xp—1) + 4f(Xn) + f(Xn11)]

(b—a)®

with Error < T80 [ max | (x)]]

Arc Length: Surface of Revolution:
b b
L:/ VI+f/(x)? dx 5:271'/ F)V/1+F/(x)2 dx

(where f(x) > 0)

b
S:27r/ x/ 14 f'(x)? dx

(wherea, b > 0)

Work Done by a Variable Force: Force Exerted by a Fluid:

b b
W:/ F(x) dx F:/ wd(y) ¢(y) dy

Taylor Series Expansion for f(x):

£(c)
2!

(x —¢)? +]¥(x—c)3+... +

pn(x) = flc) +f'(e)(x =€) +

Maclaurin Series Expansion for f(x), where ¢ = 0:

” m (n)
pn(x>=f<0)+f/(0)x+f2<?) , 1O fP0),

] X +TX + ... n!



Summary of Tests for Series:

Test Series Condition(s) of Con'dltlon(s) of Comment
Convergence Divergence
o
. This test cannot be used to
nth-Term Z; Gn n"JQO o 70 show convergence.
n=
> 1
Geometric Series r rl<1 rl>1 Sum = ——
> i > o
oo a
Telescoping Series Z (bp — bnta) lim b, =1L Sum = <Z b,,) —L
n=1 e n=1
= 1
-Series —_— >1 <1
p > @ 1 B p p<
n=1
50 (oo} oo
a(n)dn =
Integral Test Zan /1 a(n) dn /1 (n) a, = a(n) must be
. L continuous
n=0 is convergent is divergent
oo oo
o > b > bn
Direct Comparison Z an n=0 n=0
=0 converges and diverges and
0<a, <bh, 0<b,<a,
oo oo
b b
0 Z " Z " Also diverges if
Limit Comparison Z an n=0 n=0 .
converges and diverges and lim a,/b, = o0
n=0 n—o0
lim a,/b, >0 lim a,/b, >0
n— o0 n—oo
- {an} must be positive
a a . .
Ratio Test Z an lim 2 <1 lim = > 1 Also diverges if
n—oo  dp n—oo  dp, .
n=0 lim apy1/a, = 00
n—o0
{an} must be positive
o
Root Test Zan lim (an)l/n <1 lim (an)l/n >1 Also diverges if
n—00 n— 00 . 1/'7
n=0 lim (a,)”" = o0
n—oo
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