Solutions to Group Work GW06 Limits Involving Infinity for a Rational Function

Part I: $f(x)=\frac{5 x^{2}-40 x+35}{3 x^{2}-27 x+42}=\frac{5(x-1)(x-7)}{3(x-2)(x-7)}$
(a) Find $f(1)$. Solution: $f(1)=\frac{5((1)-1)((1)-7)}{3((1)-2)((1)-7)}=\frac{5(0)(-6)}{3(-1)(-6)}=\frac{0}{18}=0$.
(b) Find $\lim _{x \rightarrow 1} f(x)$. Solution: $\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{5(x-1)(x-7)}{3(x-2)(x-7)}$ Thm 1.3.3.2 $\frac{5((1)-1)((1)-7)}{3((1)-2)((1)-7)}=\cdots=0$. Since we are taking the limit, as $x \rightarrow 1$, of a rational function, and $x=1$ is in the domain of the rational function, Theorem 1.3.3.2 tells us that we can just substitute in $x=1$.
(c) Based on (a),(b), what does the factor $(x-1)$ cause in the graph of $f(x)$?

The factor causes an x intercept at $(x, y)=(1,0)$
(d) Find $f(2)$. Solution: $f(2)=\frac{5((2)-1)((2)-7)}{3((2)-2)((2)-7)}=\frac{5(1)(-5)}{3(0)(-5)}=\frac{-10}{0}$ does not exist
(e) Find $\lim _{x \rightarrow 2^{-}} f(x)$. Solution: $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} \frac{5(x-1)(x-7)}{3(x-2)(x-7)} \underset{\text { can }}{\text { cancel }} \lim _{x \rightarrow 2^{-}} \frac{5(x-1)}{3(x-2)}$

- Since $x \rightarrow 2^{-}$, we know that $x \neq 7$, so $x-7 \neq 0$, so we can cancel $\frac{x-7}{x-7}$.
- Since $x \rightarrow 2^{-}$, the term $(x-1)$ will be close to 1 . So numerator $5(x-1)$ will be close to 5 .
- Since x is close to 2 , but less than 2 , we know that the term $(x-0)$ will be close to 0 and negative. So the denominator $3(x-2)$ will be very close to 0 and negative.
- Therefore, the ratio $\frac{\text { numerator }}{\text { denominator }}=\frac{5(x-1)}{3(x-2)}=\frac{\text { close to } 5}{\text { close to } 0 \text { and neg }}$ will be a large, negative number.
- The as x gets closer and closer to 2 but less than 2 , the value of the ratio will grow more and more negative, without bound.
- Therefore $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$.
(f) Find $\lim _{x \rightarrow 2^{+}} f(x)$.
- Steps similar to the steps in (e), except that the denominator will be very close to 0 and pos.
- Therefore, $\lim _{x \rightarrow 2^{+}} f(x)=\infty$
(g) Find $\lim _{x \rightarrow 2} f(x)$.

Limit does not exist, because the left \& right limits don't match.
(h) Based on (d), (g), what does the factor $(x-2)$ cause in the graph of $f(x)$?

The factor causes a vertical asymptote with line equation $x=2$. The graph goes down along the left side of the asymptote and up along the right side of the asymptote.
(i) Find $f(7)$. Solution: $f(7)=\frac{5((7)-1)((7)-7)}{3((7)-2)((7)-7)}=\frac{5(6)(0)}{3(5)(0)}=\frac{0}{0}$ does not exist
(j) Find $\lim _{x \rightarrow 7} f(x)$. Solution: $\lim _{x \rightarrow 7} f(x)=\lim _{x \rightarrow 2^{-}} \frac{5(x-1)(x-7)}{3(x-2)(x-7)} \underset{\text { can }}{=} \lim _{x \rightarrow 2^{-}} \frac{5(x-1)}{3(x-2)}$ Thm 1.3.3.2 $\frac{5((7)-1)}{3((7)-2)}=\frac{5(6)}{3(5)}=2$

- Since $x \rightarrow 7$, we know that $x \neq 7$, so $x-7 \neq 0$, so we can cancel $\frac{x-7}{x-7}$.
- In the next step, we are taking the limit, as $x \rightarrow 7$, of a rational function, and $x=7$ is in the domain of the rational function, Theorem 1.3.3.2 tells us that we can just substitute in $x=7$.
(k) Based on (i),(j), what do the factors $\frac{(x-7)}{(x-7)}$ cause in the graph of $f(x)$? Question (i) tells us that there is no point on the graph with x coordinate $x=7$. But question (j) tells us the graph is heading for the location $(x, y)=(7,2)$. In other words, there is a hole in the graph at the location $(x, y)=(7,2)$.
(l) Find $\lim _{x \rightarrow \infty} f(x)$. Solution: $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{5 x^{2}-40 x+35}{3 x^{2}-27 x+42} \underset{\begin{array}{c}\text { keep } \\ \text { dominant } \\ \text { terms }\end{array}}{=} \lim _{x \rightarrow \infty} \frac{5 x^{2}}{3 x^{2}} \underset{\begin{array}{c}\text { can } \\ \text { cancel }\end{array}}{\lim _{x \rightarrow \infty} \frac{5}{3}}=\frac{5}{3}$
- Since $x \rightarrow \infty$, we know that $x \neq 0$, so we can cancel $\frac{x^{2}}{x^{2}}$.
- The limit is telling us to consider what happens to the value of $\frac{5}{3}$ when x gets more and more positive, without bound. Well, the value of $\frac{5}{3}$ never changes. So the limit is just $\frac{5}{3}$.
(m) Based on (1), what is the behavior of the right end of the graph of $f(x)$?

The graph of $f(x)$ has a horizontal asymptote on the right, with line equation $y=\frac{5}{3}$.
(n) Find $\lim _{x \rightarrow-\infty} f(x)$. Solution: $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{5 x^{2}-40 x+35}{3 x^{2}-27 x+42} \underset{\substack{\text { keep } \\ \text { dominant } \\ \text { terms }}}{=} \lim _{x \rightarrow-\infty} \frac{5 x^{2}}{3 x^{2}} \underset{\text { cancel }}{=} \lim _{x \rightarrow-\infty} \frac{5}{3}=\frac{5}{3}$

- Since $x \rightarrow-\infty$, we know that $x \neq 0$, so we can cancel $\frac{x^{2}}{x^{2}}$.
- The limit is telling us to consider what happens to the value of $\frac{5}{3}$ when x gets more and more negative, without bound. Well, the value of $\frac{5}{3}$ never changes. So the limit is just $\frac{5}{3}$.
(o) Based on (n), what is the behavior of the left end of the graph of $f(x)$?

The graph of $f(x)$ has a horizontal asymptote on the left, with line equation $y=\frac{5}{3}$.
(p) List all the asymptotes of $f(x)$. Give their line equations and say whether they are horizontal or vertical.

Vertical asymptote at $x=2$. Horizontal asymptote (left and right) at $y=\frac{5}{3}$.

Part II: $g(x)=\frac{5 x^{3}-75 x^{2}+315 x-245}{3 x^{2}-27 x+42}=\frac{5(x-1)(x-7)^{2}}{3(x-2)(x-7)}$
(a) Find $g(1)$. Solution: $g(1)=\frac{5((1)-1)((1)-7)^{2}}{3((1)-2)((1)-7)}=\frac{5(0)(-6)^{2}}{3(-1)(-6)}=\frac{0}{18}=0$.
(b) Find $\lim _{x \rightarrow 1} g(x)$. Solution: $\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} \frac{5(x-1)(x-7)^{2}}{3(x-2)(x-7)}$ Thm 1.3.3.2 $\frac{5((1)-1)((1)-7)^{2}}{3((1)-2)((1)-7)}=\cdots=0$.

Since we are taking the limit, as $x \rightarrow 1$, of a rational function, and $x=1$ is in the domain of the rational function, Theorem 1.3.3.2 tells us that we can just substitute in $x=1$.
(c) Based on (a),(b), what does the factor $(x-1)$ cause in the graph of $g(x)$?

The factor causes an x intercept at $(x, y)=(1,0)$
(d) Find $g(2)$. Solution: $g(2)=\frac{5((2)-1)((2)-7)^{2}}{3((2)-2)((2)-7)}=\frac{5(1)(-5)^{2}}{3(0)(-5)}=\frac{125}{0}$ does not exist
(e) Find $\lim _{x \rightarrow 2^{-}} g(x)$. Solution: $\lim _{x \rightarrow 2^{-}} g(x)=\lim _{x \rightarrow 2^{-}} \frac{5(x-1)(x-7)^{2}}{3(x-2)(x-7)} \underset{\text { cancel }}{=} \lim _{x \rightarrow 2^{-}} \frac{5(x-1)(x-7)}{3(x-2)}$

- Since $x \rightarrow 2^{-}$, we know that $x \neq 7$, so $x-7 \neq 0$, so we can cancel $\frac{x-7}{x-7}$.
- Furthermore, since $x \rightarrow 2^{-}$, we know that $(x-1)$ will be very close to 1 and $(x-7)$ will be close to -5 . So the numerator $5(x-1)(x-7)$ will be very close to -25 .
- Since x is very close to 2 , but less than 2 , we know that the term $(x-0)$ will be very close to 0 and negative. So the denominator $3(x-2)$ will be very close to 0 and negative.
- Therefore, the ratio $\frac{\text { numerator }}{\text { denominator }}=\frac{5(x-1)}{3(x-2)}=\frac{\text { close to }-25}{\text { close to } 0 \text { and } \text { neg }}$ will be a large, positive number.
- The as x gets closer and closer to 2 but less than 2 , the value of the ratio will grow more and more positive, without bound.
- Therefore $\lim _{x \rightarrow 2^{-}} g(x)=\infty$.
(f) Find $\lim _{x \rightarrow 2^{+}} g(x)$.
- Steps similar to the steps in (e), except that the denominator will be very close to 0 and pos.
- Therefore, $\lim _{x \rightarrow 2^{+}} g(x)=-\infty$
(g) Find $\lim _{x \rightarrow 2} g(x)$.

Limit does not exist, because the left \& right limits don't match.
(h) Based on (d), (g), what does the factor $(x-2)$ cause in the graph of $g(x)$?

The factor causes a vertical asymptote with line equation $x=2$. The graph goes up along the left side of the asymptote and down along the right side of the asymptote.
(i) Find $g(7)$. Solution: $g(7)=\frac{5((7)-1)((7)-7)^{2}}{3((7)-2)((7)-7)}=\frac{5(6)(0)^{2}}{3(5)(0)}=\frac{0}{0}$ does not exist.
(j) Find $\lim _{x \rightarrow 7} g(x)$.

Solution: $\lim _{x \rightarrow 7} g(x)=\lim _{x \rightarrow 2^{-}} \frac{5(x-1)(x-7)^{2}}{3(x-2)(x-7)} \underset{\substack{\text { can } \\ \text { cancel }}}{ } \lim _{x \rightarrow 2^{-}} \frac{5(x-1)(x-7)}{3(x-2)}$ Thm 1.3.3.2 $\frac{5((7)-1)((7)-7)}{3((7)-2)}=\frac{5(6)(0)}{3(5)}=0$

- Since $x \rightarrow 7$, we know that $x \neq 7$, so $x-7 \neq 0$, so we can cancel $\frac{x-7}{x-7}$.
- In the next step, we are taking the limit, as $x \rightarrow 7$, of a rational function, and $x=7$ is in the domain of the rational function, Theorem 1.3.3.2 tells us that we can just substitute in $x=7$.
(k) Based on (i),(j), what do the factors $\frac{(x-7)^{2}}{(x-7)}$ cause in the graph of $g(x)$?
Question (i) tells us that there is no point on the graph with x coordinate $x=7$. But question (j) tells us the graph is heading for the location $(x, y)=(7,0)$. In other words, there is a hole in the graph at the location $(x, y)=(7,0)$.
(1) Find $\lim _{x \rightarrow \infty} g(x)$. Solution: $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \frac{5 x^{3}-75 x^{2}+315 x-245}{3 x^{2}-27 x+42} \underset{\begin{array}{c}\text { keep } \\ \text { dominant } \\ \text { terms }\end{array}}{=} \lim _{x \rightarrow \infty} \frac{5 x^{3}}{3 x^{2}} \underset{\text { cancel }}{\overline{\text { can }}} \lim _{x \rightarrow \infty} \frac{5 x}{3}=\infty$
- Since $x \rightarrow \infty$, we know that $x \neq 0$, so we can cancel $\frac{x^{2}}{x^{2}}$.
- When x gets more and more positive, without bound, the value of $\frac{5 x}{3}$ will also be getting more and more positive, without bound. So the limit is ∞.
(m) Based on (l), what is the behavior of the right end of the graph of $g(x)$?
The right end of the graph goes up, without bound. (no norizontal asymptote)
(n) Find $\lim _{x \rightarrow-\infty} g(x)$. Sol: $\lim _{x \rightarrow-\infty} g(x)=\lim _{x \rightarrow-\infty} \frac{5 x^{3}-75 x^{2}+315 x-245}{3 x^{2}-27 x+42} \underset{\begin{array}{c}\text { keep } \\ \text { dominant } \\ \text { terms }\end{array}}{=\lim _{x \rightarrow-\infty} \frac{5 x^{3}}{3 x^{2}} \underset{\text { can }}{\overline{\text { cancel }}} \lim _{x \rightarrow-\infty} \frac{5 x}{3}=-\infty}$
- Since $x \rightarrow-\infty$, we know that $x \neq 0$, so we can cancel $\frac{x^{2}}{x^{2}}$.
- When x gets more and more negative, without bound, the value of $\frac{5 x}{3}$ will also be getting more and more negative, without bound. So the limit is $-\infty$.
(o) Based on (n), what is the behavior of the left end of the graph of $g(x)$?

The left end of the graph goes down, without bound. (no norizontal asymptote)
(p) List all the asymptotes of $g(x)$. Give their line equations and say whether they are horizontal or vertical. Solution: Vertical asymptote at $x=2$.

Part III: $h(x)=\frac{5 x^{2}-40 x+35}{3 x^{3}-48 x^{2}+231 x-294}=\frac{5(x-1)(x-7)}{3(x-2)(x-7)^{2}}$
(a) Find $h(1)$. Solution: $h(1)=\frac{5((1)-1)((1)-7)}{3((1)-2)((1)-7)^{2}}=\frac{5(0)(-6)}{3(-1)(-6)^{2}}=\frac{0}{-108}=0$.
(b) Find $\lim _{x \rightarrow 1} h(x)$. Solution: $\lim _{x \rightarrow 1} h(x)=\lim _{x \rightarrow 1} \frac{5(x-1)(x-7)}{3(x-2)(x-7)^{2}} \mathrm{Thm} \underset{1 \text { 1.3.3.2 }}{=} \frac{5((1)-1)((1)-7)}{3((1)-2)((1)-7)^{2}}=\cdots=0$.

Since we are taking the limit, as $x \rightarrow 1$, of a rational function, and $x=1$ is in the domain of the rational function, Theorem 1.3.3.2 tells us that we can just substitute in $x=1$.
(c) Based on (a),(b), what does the factor $(x-1)$ cause in the graph of $h(x)$? The factor causes an x intercept at $(x, y)=(1,0)$
(d) Find $h(2)$. Solution: $h(2)=\frac{5((2)-1)((2)-7)}{3((2)-2)((2)-7)^{2}}=\frac{5(1)(-5)}{3(0)(-5)^{2}}=\frac{-10}{0}$ does not exist
(e) Find $\lim _{x \rightarrow 2^{-}} h(x)$. Solution: $\lim _{x \rightarrow 2^{-}} h(x)=\lim _{x \rightarrow 2^{-}} \frac{5(x-1)(x-7)}{3(x-2)(x-7)^{2}} \underset{\text { cancel }}{=} \lim _{x \rightarrow 2^{-}} \frac{5(x-1)}{3(x-2)(x-7)}$

- Since $x \rightarrow 2^{-}$, we know that $x \neq 7$, so $x-7 \neq 0$, so we can cancel $\frac{x-7}{x-7}$.
- Furthermore, since $x \rightarrow 2^{-}$, we know that $(x-1)$ will be very close to 1 . So the numerator $5(x-1)$ will be very close to 5 .
- Since x is very close to 2 , but less than 2 , we know that $(x-2)$ will be very close to 0 and negative and and $(x-7)$ will be very close to -5 . So the denominator $3(x-2)(x-7)$ will be very close to 0 and positive.
- Therefore, the ratio $\frac{\text { numerator }}{\text { denominator }}=\frac{5(x-1)}{3(x-2)}=\frac{\text { close to } 5}{\text { close to } 0 \text { and pos }}$ will be a large, positive number.
- The as x gets closer and closer to 2 but less than 2 , the value of the ratio will grow more and more positive, without bound.
- Therefore $\lim _{x \rightarrow 2^{-}} h(x)=\infty$.
(f) Find $\lim _{x \rightarrow 2^{+}} h(x)$.
- Steps similar to the steps in (e), except that the denominator will be very close to 0 and neg.
- Therefore, $\lim _{x \rightarrow 2^{+}} g(x)=-\infty$
(g) Find $\lim _{x \rightarrow 2} h(x)$.

Limit does not exist, because the left \& right limits don't match.
(h) Based on (d), (g), what does the factor $(x-2)$ cause in the graph of $h(x)$?

The factor causes a vertical asymptote with line equation $x=2$. The graph goes up along the left side of the asymptote and down along the right side of the asymptote.
(i) Find $h(7)$. Solution: $h(7)=\frac{5((7)-1)((7)-7)}{3((7)-2)((7)-7)^{2}}=\frac{5(6)(0)}{3(5)(0)^{2}}=\frac{0}{0}$ does not exist
(j) Find $\lim _{x \rightarrow 7^{-}} h(x)$. Solution: $\lim _{x \rightarrow 7^{-}} 7(x)=\lim _{x \rightarrow 7^{-}} \frac{5(x-1)(x-7)}{3(x-2)(x-7)^{2}} \underset{\text { cancel }}{=} \lim _{x \rightarrow 2^{-}} \frac{5(x-1)}{3(x-2)(x-7)}$

- Since $x \rightarrow 7^{-}$, the term $(x-1)$ will be close to 6 . So numerator $5(x-1)$ will be close to 30 .
- Since x is close to 7 , but less than 7 , the term $(x-7)$ will be close to 0 and negative and the term $(x-5)$ will be close to 2 . So denominator $3(x-2)(x-7)$ will be close to 0 and neg.
- Therefore, the ratio $\frac{\text { numerator }}{\text { denominator }}=\frac{5(x-1)}{3(x-2)}=\frac{\text { close to } 30}{\text { close to } 0 \text { and } n e g}$ will be a large, negative number.
- The as x gets closer and closer to 7 but less than 7 , the value of the ratio will grow more and more negative, without bound. Therefore $\lim _{x \rightarrow 7^{-}} h(x)=-\infty$.
(k) Find $\lim _{x \rightarrow 7^{+}} h(x)$. Solution: Steps similar to the steps in (e), except that the denominator will be very close to 0 and pos. Therefore, $\lim _{x \rightarrow 7^{+}} h(x)=\infty$
(1) Find $\lim _{x \rightarrow 7} h(x)$. Solution: Limit does not exist, because the left \& right limits don't match.
(m) Based on (i)-(l), what do the factors $\frac{(x-7)}{(x-7)^{2}}$ cause in the graph of $h(x)$?

The factor causes a vertical asymptote with line equation $x=7$. The graph goes down along the left side of the asymptote and up along the right side of the asymptote.
(n) Find $\lim _{x \rightarrow \infty} h(x)$. Solution: $\lim _{x \rightarrow \infty} h(x)=\lim _{x \rightarrow \infty} \frac{5 x^{2}-40 x+35}{3 x^{3}-48 x^{2}+231 x-294} \underset{\substack{\text { keep } \\ \text { dominant } \\ \text { terms }}}{=} \lim _{x \rightarrow \infty} \frac{5 x^{2}}{3 x^{3}} \underset{\text { cancel }}{\overline{\overline{c a n}}} \lim _{x \rightarrow \infty} \frac{5}{3 x}=0$ When x gets more and more positive, without bound, the value of $\frac{5}{3 x}$ will get closer and closer to zero. So the limit is 0.
(o) Based on (n), what is the behavior of the right end of the graph of $h(x)$?

The graph of $h(x)$ has a horizontal asymptote on the right, with line equation $y=0$.
(p) Find $\lim _{x \rightarrow-\infty} h(x)$. Sol: $\lim _{x \rightarrow-\infty} h(x)=\lim _{x \rightarrow-\infty} \frac{5 x^{2}-40 x+35}{3 x^{3}-48 x^{2}+231 x-294} \underset{\begin{array}{c}\text { keep } \\ \text { dominant } \\ \text { terms }\end{array}}{=}-\lim _{x \rightarrow \infty} \frac{5 x^{2}}{3 x^{3}} \underset{\text { cancel }}{=} \lim _{x \rightarrow-\infty} \frac{5}{3 x}=0$

When x gets more and more negative, without bound, the value of $\frac{5}{3 x}$ will get closer and closer to zero. So the limit is just 0.
(q) Based on (p), what is the behavior of the left end of the graph of $h(x)$?

The graph of $h(x)$ has a horizontal asymptote on the left, with line equation $y=0$.
(r) List all the asymptotes of $h(x)$. Give their line equations and say whether they are horizontal or vertical.

Vertical asymptote at $x=2$. Horizontal asymptote (left and right) at $y=0$.

