

MATH 2301 GW14: Comparing Two Solutions to an Absolute Extrema Problem

Here is a problem about absolute extrema, along with two student solutions.

Find the absolute extrema of the function $f(x) = x^4 - 6x^2 + 5$ on the interval [-2,3].

Alan's Solution:

x	f(x)	
-2	$f(-2) = (-2)^4 - 6(-2)^2 + 5 = \dots = -3$	MIN
-1	$f(-1) = (-1)^4 - 6(-1)^2 + 5 = \dots = 0$	
0	$f(0) = (0)^4 - 6(0)^2 + 5 = \dots = 5$	
1	$f(1) = (1)^4 - 6(1)^2 + 5 = \dots = 0$	
2	$f(2) = (2)^4 - 6(2)^2 + 5 = \dots = -3$	MIN
3	$f(3) = (3)^4 - 6(3)^2 + 5 = \dots = 32$	MAX

Absolute max of y = 32 (occurs at x = 3).

Absolute min of y = -3 (occurs at x = -2 and x = 2).

Betty's Solution:

Find Critical Numbers: $f'(x) = 4x^3 - 12x = 4x(x^2 - 3) = 4x(x + \sqrt{3})(x - \sqrt{3}) = 0$. Critical numbers $x = 0, -\sqrt{3}, \sqrt{3}$

Important x values	f(x)	
$-\sqrt{3}$ (critical)	$f(-\sqrt{3}) = (-\sqrt{3})^4 - 6(-\sqrt{3})^2 + 5 = \dots = -4$	MIN
x = 0 (critical)	$f(0) = (0)^4 - 6(0)^2 + 5 = \dots = 5$	MAX
$x = -\sqrt{3}$ (critical)	$f(\sqrt{3}) = (\sqrt{3})^4 - 6(\sqrt{3})^2 + 5 = \dots = -4$	MIN

Absolute max of y = 5 (occurs at x = 0).

Absolute min of y = -4 (occurs at $x = -\sqrt{3}$ and $x = \sqrt{3}$).

(Note: There are no arithmetic errors in either student's work.)

Comment on the two solutions. What is good and bad about each? Write on back.