

MATH 2301 GW14: Comparing Two Solutions to an Absolute Extrema Problem
Here is a problem about absolute extrema, along with two student solutions.
Find the absolute extrema of the function $f(x)=x^{4}-6 x^{2}+5$ on the interval $[-2,3]$.

Alan's Solution:

x	$f(x)$	
-2	$f(-2)=(-2)^{4}-6(-2)^{2}+5=\cdots=-3$	MIN
-1	$f(-1)=(-1)^{4}-6(-1)^{2}+5=\cdots=0$	
0	$f(0)=(0)^{4}-6(0)^{2}+5=\cdots=5$	
1	$f(1)=(1)^{4}-6(1)^{2}+5=\cdots=0$	
2	$f(2)=(2)^{4}-6(2)^{2}+5=\cdots=-3$	MIN
3	$f(3)=(3)^{4}-6(3)^{2}+5=\cdots=32$	MAX

Absolute max of $y=32$ (occurs at $x=3$).
Absolute min of $y=-3$ (occurs at $x=-2$ and $x=2$).

Betty's Solution:

Find Critical Numbers: $f^{\prime}(x)=4 x^{3}-12 x=4 x\left(x^{2}-3\right)=4 x(x+\sqrt{3})(x-\sqrt{3})=0$.
Critical numbers $x=0,-\sqrt{3}, \sqrt{3}$

Important x values	$f(x)$	
$-\sqrt{3}$ (critical)	$f(-\sqrt{3})=(-\sqrt{3})^{4}-6(-\sqrt{3})^{2}+5=\cdots=-4$	MIN
$x=0$ (critical)	$f(0)=(0)^{4}-6(0)^{2}+5=\cdots=5$	MAX
$x=-\sqrt{3}$ (critical)	$f(\sqrt{3})=(\sqrt{3})^{4}-6(\sqrt{3})^{2}+5=\cdots=-4$	MIN

Absolute max of $y=5$ (occurs at $x=0$).
Absolute min of $y=-4$ (occurs at $x=-\sqrt{3}$ and $x=\sqrt{3}$).

(Note: There are no arithmetic errors in either student's work.)

Comment on the two solutions. What is good and bad about each? Write on back.

