L	A	S	T		N	A	M	E	S			

F	I	R	S	T		N	A	M	E	S

Group Work GW19: The Idea Behind Newton's Method

(a) In the triangle shown, find an equation for the slope m of the hypotenuse in terms of the lengths a and b.
$m=$

(b) Solve the equation for a in terms of m and b :
$a=$
(c) In the triangle shown, the upper right vertex lies on the graph of f.

How tall is the right leg?
$b=$

(d) Suppose that it is also known that the hypotenuse of the triangle lies on the line that is tangent to the graph of f at the point where $x=x_{1}$

What is the hypotenuse slope m ?

$m=$
(e) For the same triangle, what is the base Δx ?
$\Delta x=a=$

(f) For the same triangle, what is the x -coordinate x_{2} ?
$x_{2}=$

