										,										
										,										
										,										
L	А	S	Т	N	Α	М	Е	S		,	F	Ι	R	S	Т	N	А	М	Е	S

Group Work GW19: The Idea Behind Newton's Method

(a) In the triangle shown, find an equation for the slope *m* of the hypotenuse in terms of the lengths *a* and *b*.

m =

(b) Solve the equation for *a* in terms of *m* and *b*:

a =

(c) In the triangle shown, the upper right vertex lies on the graph of *f*.

How tall is the right leg?

b =

(d) Suppose that it is also known that the hypotenuse of the triangle lies on the line that is tangent to the graph of *f* at the point where $x = x_1$

What is the hypotenuse slope *m*?

f(x)

m =

The Group Work continues on back →

b = ?

► X

n *x*₁

