L	A	S	T		N	A	M	E	S			

F	I	R	S	T		N	A	M	E	S

MATH 2301 GW20: Using the Graphing Strategy to Graph a Polynomial
The goal is to graph the function $f(x)=-x^{4}+4 x^{3}=-x^{3}(x-4)$
The instructions are organized into the Four Steps of Reference R05: Graphing Strategy
Step 1. Analyze $\boldsymbol{f}(\boldsymbol{x})$.

- Find the y-intercept and the x-intercepts.
- Determine the end-behavior.
- Make a sign chart for f and use it to determine where f is positive, negative, or zero.

Step 2. Analyze $\boldsymbol{f}^{\prime}(\boldsymbol{x})$.

- Find $f^{\prime}(x)$, factor it, and then find the partition numbers for $f^{\prime}(x)$.
- Construct a sign chart for $f^{\prime}(x)$ and use it to determine the intervals on which f is increasing and decreasing, and to find the x coordinates of all relative maxima and minima.
- Find the y coordinates of all relative maxima and minima.

Step 3. Analyze $\boldsymbol{f}^{\prime \prime}(\boldsymbol{x})$.

- Find $f^{\prime \prime}(x)$, factor it, and then find the partition numbers for $f^{\prime \prime}(x)$.
- Construct a sign chart for $f^{\prime \prime}(x)$ and use it to determine the intervals on which f is concave up and concave down, and to find the x coordinates of all inflection points.
- Find the y coordinates of all inflection points.

Step 4: Sketch the graph of \boldsymbol{f}.

- Plot the axis intercepts, relative maxima and minima, and inflection points, and label them with their (x, y) coordinates.
- Using the other information from steps 1, 2, and 3, draw the graph.

