L	A	S	T			N	A	M	E	S		

MATH 2301 GW21: Newton's Method

F	I	R	S	T		N	A	M	E	S

Key Idea 4.1.2 Newton's Method

Given: A function f that is differentiable on an interval I and that has a root in I. That is, it is known that there exists an $x=r$ somewhere in I such that $f(r)=0$.
Goal: Find an approximate value for the root r, accurate to d decimal places.
Step 1: Choose a value x_{0} as an initial approximation of the root. (This is often done by looking at a graph.)
Step 2: Create successive approximations iteratively; given an approximation x_{n}, compute the next approximation x_{n+1} by using the formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Step 3: Stop the iterations when successive approximations do not differ in the first d places after the decimal point.

Let $f(x)=x^{3}-x^{2}-1$. Observe that the graph of $f(x)$ obtained from Desmos shows an x intercept somewhere between $x=1$ and $x=2$.

The goal is to use Newton's method to find a root of f. That is, the goal is to find an $x=r$ such that $f(r)=0$. You will do the first two iterations only, using the initial approximation $x_{0}=1$. That is, you will find x_{1} and x_{2}.

For the function $f(x)=x^{3}-x^{2}-1$,
(a) Compute $f^{\prime}(x)$
(b) Fill out the following table. (Do the details below.)

n	x_{n}	$f\left(x_{n}\right)$	$f^{\prime}\left(x_{n}\right)$	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
0	$x_{0}=1$			$x_{1}=$
1	$x_{1}=$			$x_{2}=$
2	$x_{2}=$			

(C) A zoomed-in graph of $f(x)$ is shown below. You'll illustrate your results on this graph.

- Put a point at $\left(x_{0}, 0\right)$
- Put a point at $\left(x_{0}, f\left(x_{0}\right)\right)$
- Put a point at $\left(x_{1}, 0\right)$.
- Draw the line that passes through $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, 0\right)$. This line should appear to be tangent to the graph of $f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$.
- Put a point at $\left(x_{1}, f\left(x_{1}\right)\right)$
- Put a point at $\left(x_{2}, 0\right)$.
- Draw the line that passes through $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, 0\right)$. This line should appear to be tangent to the graph of $f(x)$ at the point $\left(x_{1}, f\left(x_{1}\right)\right)$.

