										,										
										,										
										,										
L	Α	S	Т	Ν	Α	М	E	S		,	F	Ι	R	S	Т	Ν	А	Μ	Е	S

MATH 2301 GW21: Newton's Method

Key Idea 4.1.2 Newton's Method

Given: A function f that is differentiable on an interval I and that has a root in I. That is, it is known that there exists an x = r somewhere in I such that f(r) = 0.

Goal: Find an approximate value for the root *r*, accurate to *d* decimal places.

Step 1: Choose a value x_0 as an initial approximation of the root. (This is often done by looking at a graph.)

Step 2: Create successive approximations iteratively; given an approximation x_n , compute the next approximation x_{n+1} by using the formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Step 3: Stop the iterations when successive approximations do not differ in the first *d* places after the decimal point.

Let $f(x) = x^3 - x^2 - 1$. Observe that the graph of f(x) obtained from Desmos shows an x intercept somewhere between x = 1 and x = 2.

The goal is to use Newton's method to find a root of f. That is, the goal is to find an x = r such that f(r) = 0. You will do the first two iterations only, using the initial approximation $x_0 = 1$. That is, you will find x_1 and x_2 .

The Group Work continues on back →

For the function $f(x) = x^3 - x^2 - 1$,

(a) Compute f'(x)

(b) Fill out the following table. (Do the details below.)

n	x _n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
0	$x_0 = 1$			$x_1 =$
1	<i>x</i> ₁ =			$x_2 =$
2	$x_2 =$			

(C) A zoomed-in graph of f(x) is shown below. You'll illustrate your results on this graph.

- Put a point at $(x_0, 0)$
- Put a point at $(x_0, f(x_0))$
- Put a point at $(x_1, 0)$.
- Draw the line that passes through (x₀, f(x₀)) and (x₁, 0). This line should appear to be tangent to the graph of f(x) at the point (x₀, f(x₀)).
- Put a point at $(x_1, f(x_1))$
- Put a point at $(x_2, 0)$.
- Draw the line that passes through $(x_1, f(x_1))$ and $(x_2, 0)$. This line should appear to be tangent to the graph of f(x) at the point $(x_1, f(x_1))$.

