Reference 1: Definition of Limit

The Definition of Limit

Symbol: $\lim _{x \rightarrow c} f(x)=L$.
Spoken: "The limit, as x approaches c, of $f(x)$ is L."
Less-Abbreviated Symbol: $f(x) \rightarrow L$ as $x \rightarrow c$.
Spoken: " $f(x)$ approaches L as x approaches c."
Usage: x is a variable, f is a function, c is a real number, and L is a real number.
Informal Meaning: as x gets closer and closer to c, but not equal to c, the value of $f(x)$ gets closer and closer to L (and may actually equal L).
Precise Meaning: For every number $\epsilon>0$, there exists a number $\delta>0$ such that

$$
\text { If } x \neq c \text { and }|x-c|<\delta, \text { then }|f(x)|<\epsilon
$$

Graphical Significance: The graph of f appears to be heading for location $(x, y)=(c, L)$ from both sides.

The Definition of Limit from the Left

Symbol: $\lim _{x \rightarrow c^{-}} f(x)=L$.
Spoken: "The limit, as x approaches c from the left, of $f(x)$ is L."
Less-Abbreviated Symbol: $f(x) \rightarrow L$ as $x \rightarrow c^{-}$.
Spoken: " $f(x)$ approaches L as x approaches c from the left."
Usage: x is a variable, f is a function, c is a real number, and L is a real number.
Informal Meaning: as x gets closer and closer to c, but less than c, the value of $f(x)$ gets closer and closer to L (and may actually equal L).
Precise Meaning: For every number $\epsilon>0$, there exists a number $\delta>0$ such that

$$
\text { If } x<c \text { and }|x-c|<\delta, \text { then }|f(x)|<\epsilon
$$

Graphical Significance: The graph of f appears to be heading for location $(x, y)=(c, L)$ from the left.

