Reference 1: Definition of Limit

The Definition of Limit

Symbol: $\lim_{x \to c} f(x) = L$.

Spoken: "The limit, as x approaches c, of f(x) is L."

Less-Abbreviated Symbol: $f(x) \rightarrow L$ as $x \rightarrow c$.

Spoken: "f(x) approaches L as x approaches c."

Usage: *x* is a variable, *f* is a function, *c* is a real number, and *L* is a real number.

Informal Meaning: as x gets closer and closer to c, but not equal to c, the value of f(x)

gets closer and closer to L (and may actually equal L).

Precise Meaning: For every number $\epsilon > 0$, there exists a number $\delta > 0$ such that

If
$$x \neq c$$
 and $|x - c| < \delta$, then $|f(x)| < \epsilon$

Graphical Significance: The graph of f appears to be heading for location (x, y) = (c, L)

from both sides.

The Definition of Limit from the Left

Symbol: $\lim_{x \to c^-} f(x) = L$.

Spoken: "The limit, as x approaches c from the left, of f(x) is L."

Less-Abbreviated Symbol: $f(x) \rightarrow L$ as $x \rightarrow c^-$.

Spoken: "f(x) approaches L as x approaches c from the left."

Usage: *x* is a variable, *f* is a function, *c* is a real number, and *L* is a real number.

Informal Meaning: as x gets closer and closer to c, but less than c, the value of f(x) gets closer and closer to L (and may actually equal L).

Precise Meaning: For every number $\epsilon>0$, there exists a number $\delta>0$ such that

If
$$x < c$$
 and $|x - c| < \delta$, then $|f(x)| < \epsilon$

Graphical Significance: The graph of f appears to be heading for location (x, y) = (c, L) from the left.

There is an analogous Definition of Limit from the Right.