Infinite Limits

Expanded Definition of Limit: Infinite Limits

Symbol: $\lim _{x \rightarrow c} f(x)=\infty$
Spoken: The limit, as x approaches c, of $f(x)$ is infinity.
Usage: x is a variable, c is a real number constant, and f is a function.
Informal Meaning: As x gets closer and closer to c but not equal to c, the values of $f(x)$ get more and more positive without bound.
Precise Meaning: There is an open interval I containing the number c, with function f defined on all of I, except possibly at c, and such that given any number $N>0$, there exists a number $\delta>0$ such that for all x in I, where $x \neq c$, if $|x-c|<\delta$ then $f(x)>N$.

Graphical Significance: The graph of f has a vertical asymptote at $x=c$, and the graph goes up along both sides of the asymptote. The line equation for the asymptote is $x=c$.

Graphical Example:

$$
\lim _{x \rightarrow 2} f(x)=\infty
$$

Remark: (a very important point) We have expanded the definition of limit!

Note the phrase "...without bound..." in the definition of Infinite Limit:

As x gets closer and closer to c but not equal to c, the values of $f(x)$ get more and more positive without bound.

What is the significance of that phrase without bound?

To understand the significance of the phrase, it is helpful to consider two examples:

$$
\lim _{x \rightarrow 2} f(x)=3
$$

$\lim _{x \rightarrow 2} f(x)=\infty$

In both graphs, as x approaches 2 , the y values get more and more positive. But in the graph on the left, the y values are getting more and more positive and approaching 3 , while in the graph on the right, the y values are getting more and more positive without bound.

Expanded Definition of Limit: One-Sided Infinite Limit from the Right

Symbol: $\lim _{x \rightarrow c^{+}} f(x)=\infty$
Spoken: The limit, as x approaches c from the right, of $f(x)$ is infinity.
Meaning: As x approaches c from the right, the values of $f(x)$ get more and more positive without bound.

Precise Meaning: There is an open interval I containing the number c, with function f defined on all of I, except possibly at c, and such that given any number $N>0$, there exists a number $\delta>0$ such that for all x in I, where $x<c$, if $|x-c|<\delta$ then $f(x)>N$.
Graphical Significance: The graph of f has a vertical asymptote at $x=c$, and the graph goes up along the left side of the asymptote. The line equation for the asymptote is $x=c$. Graphical Example:

Obvious variations that I won't discuss:

Expanded Definition of Limit: One Sided Infinite Limit from the Left
Symbol: $\lim _{x \rightarrow c^{+}} f(x)=\infty$

Expanded Definition of Limit: Negative Infinite Limits

Symbol: $\lim _{x \rightarrow c} f(x)=-\infty$
Spoken: The limit, as x approaches c, of $f(x)$ is negative infinity.
Informal Meaning: As x gets closer and closer to c but not equal to c, the values of $f(x)$ get more and more negative without bound.
Precise Meaning: There is an open interval I containing the number c, with function f defined on all of I, except possibly at c, and such that given any number $N<0$, there exists a number $\delta>0$ such that for all x in I, where $x \neq c$, if $|x-c|<\delta$ then $f(x)<N$.
Graphical Significance: The graph of f has a vertical asymptote at $x=c$, and the graph goes down along both sides of the asymptote. The line equation for the asymptote is $x=c$.

Graphical Example:

$$
\lim _{x \rightarrow 2} f(x)=-\infty
$$

Obvious variations that I won't discuss:

Expanded Definition of Limit: One Sided Negative Infinite Limits

Symbol: $\lim _{x \rightarrow c^{-}} f(x)=-\infty$ and $\lim _{x \rightarrow c^{+}} f(x)=-\infty$

Observations:

With the definition of infinite limits, we now have a shorthand notation to describe the situation where the y values of a function are getting more and more positive (or negative) without bound. This is a new kind of trend.

Limits at Infinity

Expanded Definition of Limit: Definition of Limits at Infinity

Symbol: $\lim _{x \rightarrow \infty} f(x)=L$
Spoken: The limit, as x goes to infinity, of $f(x)$ is L.
Usage: x is a variable, f is a function, and L is a real number.
Meaning: As x gets more and more positive without bound, the values of $f(x)$ get closer and closer to L, and may actually equal L.
Precise Meaning: There is an open interval (a, ∞) for some number a, with function f defined on all of the interval, and such that given any number $\epsilon>0$, there exists a number $M>a$ such that if $x>M$ then $|f(x)-L|<\epsilon$.
Graphical Significance: Graph of f has a horizontal asymptote on the right at $y=L$.
The line equation for the asymptote is $y=L$.
Graphical Example:

$$
\lim _{x \rightarrow \infty} f(x)=2
$$

Obvious variations that I won't discuss:

Expanded Definition of Limit: Definition of Limit at Negative Infinity

Symbol: $\lim _{x \rightarrow-\infty} f(x)=L$

Expanded Definition of Limit: Definition of Infinite Limits at Infinity

Symbol: $\lim _{x \rightarrow \infty} f(x)=\infty$
Spoken: The limit, as x goes to infinity, of $f(x)$ is infinity
Meaning: As x gets more and more positive without bound, the values of $f(x)$ get more and more positive without bound.

Precise Meaning: There is an open interval (a, ∞) for some number a, with function f defined on all of the interval, and such that given any number $N>0$, there exists a number $M>a$ such that if $x>M$ then $f(x)>N$.
Graphical Significance: The graph of f goes up on the right without bound.
Graphical Example:

$\lim _{x \rightarrow-\infty} f(x)=-1$
$\lim _{x \rightarrow \infty} f(x)=\infty$

Remark about End Behavior: The term limit at infinity (or limit at negative infinity) refers to what the right (or left) end of the graph is doing. This is called the end behavior of the graph

