Handout: Induction

New Rule of Inference: The Principle of Induction

P(a) is true For all integers $k \ge a$, if P(k) is true, then P(k + 1) is true. ∴ For all integers $n \ge a$, P(n) is true.

Usage:

- The letter *a* represents some fixed integer.
- The letters *k* and *n* represent variables whose domain is the set of all integers greater than or equal to *a*.
- The symbol *P*(*n*) represents a predicate whose domain is the set of all integers greater than or equal to *a*

This new rule of inference will be used to prove statements of the form

Statement *S*: For all integers $n \ge a$, P(n) is true.

Strategy for using the Principle of Induction

Preliminary work:

- Identify the number playing the role of *a*. (Introduce it.)
- Identify the predicate *P*(*n*). (Introduce it in a sentence.)
- Figure out what the expressions for P(a), P(k), P(k + 1) look like. (Write them down.)

Build a proof of Statement S using the following structure:

Proof of Statement S:

Basis Step: Prove that P(a) is true.

(1) The proof will begin somehow.

A bunch of steps may be involved. Usually a computation.

(xx) P(a) is true.

Inductive Step: Prove that for all integers $k \ge a$, if P(k) is true, then P(k + 1) is true. (1) Suppose that k is an integer such that $k \ge a$ and that P(k) is true.

*

* a bunch of steps may be involved

(xx) P(k + 1) is true. (some justification goes here.)

Conclusion: For all integers $n \ge a$, P(n) is true. (by the principle of induction) **End of Proof of Statement** *S*.

The Principle of Strong Mathematical Induction

P(a), P(a + 1), ..., P(b) are all true For all integers $k \ge b$, if P(a), P(a + 1), ..., P(k) are all true, then P(k + 1) is true. ∴ For all integers $n \ge a, P(n)$ is true.

Usage:

- The letter *a* represents some fixed integer.
- The letter *n* is a variable whose domain is the set of all integers greater than or equal to *a*.
- The symbol *P*(*n*) represents a predicate whose domain is the set of all integers greater than or equal to *a*
- The letter *b* represents some fixed integer, with $a \le b$.
- The letter *k* is a variable whose domain is the set of all integers greater than or equal to *b*.

This rule of inference will be used to prove statements of the form

Statement *S*: For all integers $n \ge a$, P(n) is true.

Strategy for using the Principle of Strong Mathematical Induction

Preliminary work:

- Identify the number playing the role of *a*. (Introduce it.)
- Identify the predicate *P*(*n*). (Introduce it in a sentence.)
- Write down the expressions for P(a), P(a + 1), ..., P(b), P(k + 1).

Build a proof of Statement S using the following structure:

Proof of Statement S:

Basis Step: Prove that P(a), P(a + 1), ..., P(b) are all true.

Inductive Step: Prove that for all integers $k \ge b$, if P(a), P(a + 1), ..., P(k) are all true, then P(k + 1) is true.

(1) Suppose that k is an integer such that $k \ge a$ and P(a), P(a + 1), ..., P(k) are all true.

*

- * a bunch of steps may be involved
- *

(xx) P(k + 1) is true. (some justification goes here.)

Conclusion: For all integers $n \ge a$, P(n) is true. (by the principle of induction)

End of Proof of Statement S