RSA Cryptography

Alice wants to receive a secure one-word message from Bob

- Alice Chooses prime numbers p,q whose product is greater than 26.
- (in practice, these would be very large numbers, and their product would be huge.)
- Ann computes $\mathrm{n}=\mathrm{pq}$
- Alice chooses a positive integer e that is relatively prime to (p-1)(q-1)
- Alice computes the an integer d that is a positive multiplicative inverse of $e, \bmod (p-1)(q-1)$
- The numbers n,e are called the Public Key. Alice sends Bob the n and the e, the Public Key. (Alice does not send Bob the values of $\mathrm{p}, \mathrm{q}, \mathrm{d}$.)

Bob has a word consisting consisting of k letters chosen from the set $\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$. The letters are denoted $\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{k}$ (The word would be written with the letters side-by-side with no commas, $\mathcal{L}_{1} \mathcal{L}_{2} \ldots \mathcal{L}_{k}$)

- Bob receives the Public Key n, e from Alice.
- Bob repeats the following steps for each letter \mathcal{L}_{j} in his word, for $j=1,2, \ldots k$
- He converts the letter \mathcal{L}_{j} to a number in the range 1-26, called M_{j}
- Then he computes $\left(M_{j}\right)^{e} \bmod n$. The result is denoted C_{j}. So

$$
C_{j}=\left(M_{j}\right)^{e} \bmod n
$$

- Bob sends Alice the list of numbers $C_{1}, C_{2}, \ldots, C_{k}$

Alice

- Alice receives the list of numbers $C_{1}, C_{2}, \ldots, C_{k}$ from Bob
- Alice repeats the following steps for each number C_{j} in the list, for $j=1,2, \ldots k$
- She computes $\left(C_{j}\right)^{d} \bmod n$. The result is M_{j}.That is,

$$
M_{j}=\left(C_{j}\right)^{d} \bmod n
$$

- She converts converts the number M_{j} to letter \mathcal{L}_{j}
- The result is a list of letters $\mathcal{L}_{1}, \mathcal{L}_{2}, \ldots, \mathcal{L}_{k}$
- The resulting word is $\mathcal{L}_{1} \mathcal{L}_{2} \ldots \mathcal{L}_{k}$

Observations:

- Alice does not send p,q,or d. She only sends Bob n and e.
- Without knowing the value of d, one cannot decrypt Bob's message.
- And without knowing the values of p, q, one cannot find d.
- One could guess values of p, q by factoring n. But in practice, n is a very large number, and so factoring n is not feasable in a reasonable time scale.

