Section 3.1: Section 3.1 Introduction to Predicates and Quantified Statements I

Helpful Notation for sets of numbers

Recall this definition from Section 2.1
A statement form is an expression made up of statement variables and logical symbols (so far, our only logical symbols are $\sim, \wedge, \mathrm{V}, \oplus$) that becomes a statement when actual statements are substituted for the statement variables.

A similar concept that is new for Section 3.1 is that of a predicate:
A predicate is a sentence that contains a finite number of variables and that becomes a statement when specific values are substituted in for the variables. The domain of a predicate variable is the set of all values that may be substituted in place of the variable.

We will be interested in identifying the values of the variables that will make a predicate true. If $P(x)$ is a predicate and x has a domain D, the truth set of $P(x)$ is the set of all elements of D that make $P(x)$ true when they are substituted for x. The truth set of $P(x)$ is denoted $\{x \in D \mid P(x)\}$. This is spoken The set of all x in D such that $P(x)$.
[Example 1] Predicate $\underbrace{A(x)}$ is the sentence $x^{2} \geq x$.
Let variable x have domain the set $D=\{-3,-2,2,3\}$. What is the truth set of predicate $A(x)$?

x	$A(x)$	
-3	$(-3)^{2} \geq-3$	true
-2	$(-2)^{2} \geq-2$	true
2	$(2)^{2} \geq 2$	true
3	$(3)^{2} \geq 3$	trace

the truth set is all of D. $\{-3,-2,2,3\}$

Now let variable x have domain the set $D=\boldsymbol{Z}$. What is the truth set of predicate $A(x)$?

x	$A(x)$
$x<0$ negative	X^{2} will be positive, so $x^{2} \geq x$ will be tine
$X=0$	$X^{2}=(0)^{2}=0, \quad$ so $X^{2} \geq X$ will betrue.
$0<X$	$X^{2} \geq X$ will be tine, by the calculation below

Since x is an integer, and we know $0<x$, we know $1 \leqslant x$ multiply both sides by the positive number x

$$
\begin{align*}
& 1 \leq x \\
& 1 \leq x \cdot x \\
& x \leq x^{2}
\end{align*}
$$

$$
\begin{aligned}
1 & \leqslant x \\
x \cdot 1 & \leqslant x \cdot x \quad \text { So the tenth set is the }
\end{aligned}
$$

Let variable x have domain the set $D=\boldsymbol{R}$. What is the truth set of predicate $A(x)$?
Make troth table

$$
x^{2} \geq X
$$

So the solution sat is $(-\infty, 0] \cup[1, \infty)$

Quantified Statements

A predicate $P(x)$ is a sentence about the variable x. The sentence is neither true nor false until one substitutes an actual value in for x.

It is often useful to make a summary statement about how many x in D make $P(x)$ true. In some situations, for a certain predicate $P(x)$ and domain D, every element x in D will turn $P(x)$ into a true statement. And in some situations, there are no elements x in D that will turn $P(x)$ into a true statement. And of course, in many situations, it is useful to know if there is at least one element x in D that will turn $P(x)$ into a true statement.

Statements about how many x in D make $P(x)$ true are called quantified statements. There are two types of quantified statements that are used in math: universally quantified statements and existentially quantified statements. Here are the definitions
Pe) is not enclosed in parentheses

Symbol: $\forall x \in D(P(x))$ And book's symbol has a comma.
Symbol used in book: $\forall x \in D_{C} P(x)$
Spoken: For all x in $D, P(x)$.
Usage: x is a variable with domain D, and $P(x)$ is a predicate with variable x.
Meaning: The domain D has the property that every element x in D, when substituted into predicate $P(x)$, will turn $P(x)$ into a true statement.

Remark: $\forall x \in D(P(x))$ is a statement about the domain D and the predicate $P(x)$. Additional Terminology: If there is an element x in the domain D that, when substituted into predicate $P(x)$, turns $P(x)$ into a false statement, then the statement $\forall x \in D(P(x))$ is a false statement, as well. An example of an $x \in D$ that does this is called a counterexample for the statement $\forall x \in D(P(x))$.

Additional Terminology: The phrase for all x in D, denoted by the symbol $\forall x \in D$, is called the universal quantifier.

Definition of Existentially Quantified Statement In books symbol, $P(x)$ is not in Symbol: $\exists x \in D(P(x))$
Symbol used in book: $\exists x \in D$ such that $P(x)$
parentheses, and the words such that are inserted.

Spoken: There exists an x in D such that $P(x)$.
Usage: x is a variable with domain D, and $P(x)$ is a predicate with variable x.
Meaning: The domain D has the property that there is an element x in D (at least one) that, when substituted into predicate $P(x)$, will turn $P(x)$ into a true statement.

Remark: $\exists x \in D(P(x))$ is a statement about the domain D and the predicate $P(x)$. Additional Terminology: The phrase there exists an x in D such that, denoted by the symbol $\exists x \in D$, is called the existential quantifier.

Remark:

- It is easy to see that a predicate $P(x)$ is a sentence and not a statement, because it contains a variable. The sentence is about x, and the sentence does not become true or false (does not become a statement) until an actual value is substituted in for the variable x.
- Less obvious is that a symbol like $\forall x \in D(P(x))$ is a statement and not a predicate. After all, the sentence does include the letter x. But the difference is that in the quantified statement $\forall x \in D(P(x))$, something is being said about the domain D and the predicate $P(x)$. The letter x is needed to construct the sentence, but the x is playing a different role in the sentence than it plays in the sentence a predicate. We say that the x is a bound variable in the sentence $\forall x \in D(P(x))$. A bound variable is a different thing from a variable.
[Example 2] Which of the statements A, B, C, D, E is true, and which is false? Explain.
Let A be the statement $\forall x \in \boldsymbol{Z}\left(x^{2} \geq x\right)$.
Domain is \mathbb{Z}, predicate $P(x)$ is $x^{2} \geq x$.
In earlier example, we fond that for domain \geq and predicate $X^{2} \geq X$, the truth set was all integers. (All of the domain)
So $\forall x \in \mathbb{Z}\left(X^{2} \geq x\right)$ is tine

Let B be the statement $\forall x \in \boldsymbol{R}\left(x^{2} \geq x\right)$.
Domain is $\mathbb{R}^{\mathcal{T}}$ Predicate $P(X)$ is $X^{2} \geq X$
Observe that $x=\frac{1}{2}$ is in \mathbb{R}, and when We substitute x into $P(x)$ we get

$$
\begin{aligned}
\left(\frac{1}{2}\right)^{2} & \geq \frac{1}{2} \\
\frac{1}{4} & \geq \frac{1}{2} \text { whichis false }
\end{aligned}
$$

So the universal statement $\forall x \in \mathbb{R}\left(x^{2} \geq x\right)$ is false, an the counterexample $x=\frac{1}{2}$ shows it.

Let C be the statement $\exists x \in \boldsymbol{Z}\left(x^{2} \geq x\right)$.
There exists an X in the integers such that $X^{2} \geq X$
This is true.
Fir example let $x=2$
then $x \in \mathbb{Z}$
and when we substitute X into the predicate, we get

$$
\begin{aligned}
(2)^{2} & \geq 2 \\
4 & \geq 2 \quad \text { which istine } .
\end{aligned}
$$

Let D be the statement $\exists x \in \boldsymbol{R}\left(x^{2} \geq x\right)$.
This existential statement is true.
For example, let $x=2$,

Let E be the statement $\exists x \in \boldsymbol{Z}\left(x^{2}<x\right)$.
This is false!
There is no integer that makes $x^{2}<x$ true because we already know that every integer makes $x^{2} \geq x$ true

Quantified Conditional Statements

Consider the sentence

One might be tempted to say that this is a false statement. For instance, the number -7 is less than or equal to 5 , but $(-7)^{2}=49$, which is not less than or equal to 25 .

But in the context of this course, the sentence above is not a statement. It is a predicate containing the variable x. The sentence does not become true or false until we substitute an actual value in for x. Let's name this predicate.

Let $P(x)$ be the predicate $\underbrace{I F x \leq 5 \text { THEN } x^{2} \leq 25 \text {. }}$

And $P(x)$ can be abbreviated in symbols $x \leq 5 \rightarrow \underbrace{x^{2} \leq 25}$

But you must be careful not to write $P(x)=x \leq 5 \rightarrow x^{2} \leq 25$
Doint wate this!!

Let's make a truth table for $P(x)$, where we substitute in different values for x and see what the resulting truth value of $P(x)$. Since x is a variable, it represents a number, and so it can take on many different values. That is different from a statement variable, that just represents a statement, and so can only be true or false. So the column for x in our truth table will be more complicated than the column for a statement variable in a truth table.

x	$x \leq 5$	$x^{2} \leq 25$	$P(x)$
$x<-5$	$-T$	F	$F\left(x^{2} \leq 25\right)$
$-5 \leq x \leq 5$	F	F	
$5<x$	F		

We see that there are some values of x for which $P(x)$ is false -we already knew that -but there are also some values of x for which $P(x)$ is true.

So, to reiterate, $P(x)$ is a predicate. One cannot say whether $P(x)$ is true or false, because it contains a variable.

But there are some quantified conditional statements that we can build involving the predicate $P(x)$, and these do have a definite truth value.
This existential statement

$$
\exists x \in \mathbb{R}\left(\text { IF } x \leq 5 \text { THEN } x^{2} \leq 25\right)
$$

is true!

But this universal statement

$$
\forall X \in \mathbb{R}\left(\frac{T}{\text { is false! }}\right.
$$

Implicitly Quantified Statements

It is worth returning to the sentence that started this discussion, to summarize what we have discussed about what this predicate means in this course and outside of this course.

Sentence	What it means to most mathematicians	What it means in our course
$x \leq 5 \rightarrow x^{2} \leq 25$	false statement.	predicate that can be true or false
$\forall x \in \boldsymbol{R}\left(x \leq 5 \rightarrow x^{2} \leq 25\right)$	huh? What is that?	A false statement.

It is very important to keep in mind, in this course, that a sentence like $x \leq 5 \rightarrow x^{2} \leq 25$ that contains a variable is to be interpreted as a predicate.

But outside of this course, it will be important to keep in mind that to most mathematicians, the sentence $x \leq 5 \rightarrow x^{2} \leq 25$ is really meant to mean what we would express with the sentence $\forall x \in \boldsymbol{R}\left(x \leq 5 \rightarrow x^{2} \leq 25\right)$. We would say that when most mathematicians write $x \leq 5 \rightarrow x^{2} \leq 25$, the quantifier is implicit. That is, the sentence $x \leq 5 \rightarrow x^{2} \leq 25$ is implicitly quantified, and really means $\forall x \in \boldsymbol{R}\left(x \leq 5 \rightarrow x^{2} \leq 25\right)$.

Equivalent forms of Universal and Universal Conditional Statements

Let x be a variable with domain the set of integers, \boldsymbol{Z}.

Let $P(x)$ be the predicate x^{2}

$$
X^{2}>0
$$

Let's make a truth table for $P(x)$

X	$X^{2}>0$
X neyatue	$X^{2}>0$ is true
$X=0$	$X^{2}>0$ is false
X positive	$X^{2}>0$ is true

Observe that any non-zero integer x will make $P(x)$ true.

We can express that observation with the following universal statement:

$$
\forall x \in \mathbb{R}^{*}\left(x^{2}>0\right)
$$

But we can also express the observation with this universal conditional statement:

$$
\forall x \in \mathbb{Z}\left(I F \quad x \neq 0 \quad \text { THEN } x^{2}>0\right)
$$

The two statements are both about x that have two qualifications.

- $x \in \mathbb{Z}$
$\cdot x \neq 0$

In the universal statement, both qualifications are ensured by using the domain \boldsymbol{Z}^{*}.
In the universal conditional statement, the one qualification is ensured by using the domain \boldsymbol{Z} and the other qualification is ensured by having the hypothesis $x \neq 0$.

It might seem that the universal statement is the better way of expressing the observation, because it is more concise. But it will turn out that there are situations where the universal conditional statement is more helpful. (When we get to the part of the course where we are building proofs, it will turn out that having the statement expressed in universal conditional form will often make it easier to frame a proof structure.)

In your homework exercises, you have a problem that involves rewriting a univeral statement as a universal conditional statement.

End of Video

