### **Negating Quantified Statements**

**Reading:** Section 3.2 Intro to Predicates and Quantified Statements II **Homework:** 3.2 # 4, 10, 15, 17, 25, 27, 38, 44 H D 3 J

#### **Concepts and tools from previous sections that we will use:**

Recall that in the video for Section 2.1, it it was mentioned about negations:

In the coming week, we will encounter this idea again, that there may be a simple way to construct the sentence for a negation, but that simple way of constructing the sentence might not be the clearest. We will look for clearer ways of writing the sentence.

Definition *logically equivalent statement forms* (From Section 2.1) symbols:  $P \equiv Q$ spoken: P *is logically equivalent to Q* usage: P, Q are statement forms meaning: For all possible substitutions of statements for their statement variables, the resulting truth values of P, Q match.

**De Morgan's Laws (from Section 2.1)** 

 $\sim (p \land q) \equiv \sim p \lor \sim q$  $\sim (p \lor q) \equiv \sim p \land \sim q$ 

**Definition of the** *Conditional Statement Form* (from Section 2.2)

**symbols:**  $p \rightarrow q$  also denoted *IF* p *THEN* q

**spoken:** *if p then q* 

**meaning:**  $p \rightarrow q$  is a statement form whose truth is given by the following table

| truth of <i>p</i> | truth of <i>q</i> | truth of $p \to q$ |
|-------------------|-------------------|--------------------|
| Т                 | Т                 | Т                  |
| Т                 | F                 | F                  |
| F                 | Т                 | Т                  |
| F                 | F                 | Т                  |

additional terminology: p is called the hypothesis, q is called the conclusion.

The Negation of the Conditional Statement Form (from Section 2.2) For the conditional statement form  $S: p \rightarrow q$ The negation of S is the statement form:  $p \wedge \sim q$ That is,  $\sim (p \rightarrow q) \equiv p \wedge \sim q$ 

| Definition of the <i>Converse, the Inverse, and the Contrapositive</i> (from Section 2.2) |  |  |
|-------------------------------------------------------------------------------------------|--|--|
| For a statement form $S: p \rightarrow q$                                                 |  |  |
| Symbol: contrapositive(S)                                                                 |  |  |
| • <b>Spoken:</b> the <i>contrapositive of S</i>                                           |  |  |
| • Meaning: the statement form: $\sim q \rightarrow \sim p$                                |  |  |
| Symbol: converse(S)                                                                       |  |  |
| • <b>Spoken:</b> the <i>converse of S</i>                                                 |  |  |
| • Meaning: the statement form: $q \rightarrow p$                                          |  |  |
| Symbol: inverse(S)                                                                        |  |  |
| • <b>Spoken:</b> the <i>inverse of S</i>                                                  |  |  |
| • Meaning: the statement form: $\sim p \rightarrow \sim q$                                |  |  |

**Definition of Universally Quantified Statement** From Section 311 **Symbol:**  $\forall x \in D(P(x))$ **Symbol used in book:**  $\forall x \in D, P(x)$ **Spoken:** For all x in D, P(x). **Usage:** x is a variable with domain D, and P(x) is a *predicate* with variable x. **Meaning:** The domain D has the property that every element x in D, when substituted into predicate P(x), will turn P(x) into a *true* statement. **Remark:**  $\forall x \in D(P(x))$  is a *statement* about the domain *D* and the predicate P(x). Additional Terminology: If there is an element x in the domain D that, when substituted into predicate P(x), turns P(x) into a *false* statement, then the statement  $\forall x \in D(P(x))$  is a *false* statement, as well. An example of an  $x \in D$  that does this is called a *counterexample* for the statement  $\forall x \in D(P(x))$ . Additional Terminology: The phrase for all x in D, denoted by the symbol  $\forall x \in D$ , is called the universal quantifier.

From Section 311 **Definition of Existentially Quantified Statement** Symbol:  $\exists x \in D(P(x))$ **Symbol used in book:**  $\exists x \in D$  such that P(x)**Spoken:** There exists an x in D such that P(x). **Usage:** x is a variable with domain D, and P(x) is a *predicate* with variable x. **Meaning:** The domain *D* has the property that there is an element *x* in *D* (at least one) that, when substituted into predicate P(x), will turn P(x) into a *true* statement. **Remark:**  $\exists x \in D(P(x))$  is a *statement* about the domain D and the predicate P(x). Additional Terminology: The phrase *there exists an x in D such that*, denoted by the symbol  $\exists x \in D$ , is called the *existential quantifier*.

### Negating a Universally Quantified Statement

[Example 1] Let A be the universally quantified statement

Every car in the Morton Hall parking lot is silver.

What is  $\sim A?$ 

# There exists a car in the morton Hall lot that is not silver.

More generally, let A be the universally quantified statement  $\forall x \in D(Q(x))$ 

What is  $\sim A$ ?

 $\exists x \in D(\sim Q(x))$ 

[Example 2] Let *B* be the statement

Every elephant at Ohio University is purple

Is this statement true or false?

Let D be the set of elephants at Ohio University  
Let X be a variable with domain D  
Let P(X) be the predicate (X is purgle!  
Then Statement B would be written "formally" (that is,  
abbreviated in symbols) as  
statement B: 
$$Y \times eD(P(X))$$
  
 $\sim B$ :  $J \times eD(P(X))$   
There axists an Elephant at Ohis University that is not purgle.  
We see that of is false. So B is true, "Verwordy true!

### Negating an Existentially Quantified Statement

[Example 3] Let *C* be the existentially quantified statement

There exists a car in the Morton Hall parking lot that is neon green.

What is  $\sim C$ ?

For every car in the Mortin Hall lot, the car is not near green.

More generally, let C be the existentially quantified statement

 $\exists x \in D(Q(x))$ 

What is  $\sim C$ ?

 $\forall x \in D(\sim Q(x))$ 

## Negating a Universal Conditional Statement

Let *D* be the *universal conditional statement*,

-

What is ~D?  

$$\begin{aligned}
\forall x \in D, IF P(x) THEN Q(x) \\
\forall x \in D(IF P(x) THEN q(x)) \\
\approx D = \left( \forall x \in D(IF P(x) THEN q(x)) \right) \\
\equiv \exists x \in D(\sim (IF P(x) THEN q(x)) \\
\equiv \exists x \in D(\sim (IF P(x) THEN q(x)))
\end{aligned}$$

[Example 4] Let *E* be the *universal conditional statement* introduced in the video for Homework H02.1; H03.1

$$\forall x \in \mathbf{R} (x \le 5 \to x^2 \le 25)$$

Find the negation ~E.  

$$v \in = v(\forall x \in \mathbb{R}((X \leq 5) \rightarrow (X^2 \leq \lambda 5)))$$
  
 $= \exists x \in \mathbb{R}(v((x \leq 5) \rightarrow (X^2 \leq \lambda 5)))$   
 $\cap_{ij \in \mathbb{R}}((x \leq 5) \rightarrow (X^2 \leq \lambda 5)))$   
 $\equiv \exists x \in \mathbb{R}((x \leq 5) \land A \land D \quad v(x^2 \leq \lambda 5))$   
 $\equiv \exists x \in \mathbb{R}((x \leq 5) \land A \land D \quad v(x^2 \leq \lambda 5))$ 

For the specific example given, which statement is true? *E* or  $\sim E$ ? Explain



A counterexample is

[Example 5] Let G be the universally quantified statement

*Every prime number is odd.* 

Find the negation,  $\sim G$ .

There exists a prime number that is not odd.

Which is true, *G* or  $\sim G$ ? Explain.

~ & istan, because X=2 is an example of a prime number that is not odd.

Start over.

Rewrite the original statement *G* as a *universal conditional statement* (also called *G*).

(= For all'integers X, if X is prime then X is odd

Find the *negation* of the *universal conditional statement* (The negation is denoted  $\sim G$ ).

 $NG = \mathcal{O}(For all'integers X, if X is prime then X is odd)$ = These wists an integer & such that ~ (if x is prime then x is odd) = There exists an integer & Snik that X is prime and X is odd

### **Contrapositive, Converse, and Inverse of Universal Conditional Statement**

[Example 6] Return to the *universal conditional statement E* discussed earlier:  
$$\forall x \in R(x \le 5 \rightarrow x^2 \le 25)$$

Write the *contrapositive*, *converse*, and *inverse* of Statement *E* 

$$E: \forall x \in R(P \longrightarrow q)$$

Converse(5): 
$$\forall x \in \mathbb{R}(q, \rightarrow p)$$
  
 $\forall x \in \mathbb{R}(x' \in J5 \rightarrow X \in 5)$   
 $\forall x \in \mathbb{R}(x p \rightarrow nq)$   
 $\forall x \in \mathbb{R}(np \rightarrow nq)$   
 $\forall x \in \mathbb{R}(np \rightarrow nq)$ 

End of Video

Which of the statuments E, contrapositive (E), consurre(E), inverse(E) are true and which are false? Mcknow for [Example 4] that Eisfalse. We know your controponitive (E) = E So controposition (E) is also false. It is easy to see that inverse (E) is true. the inverse (E) = converse (E), So that tells us your converse (E) is also fine.