Topic for this Video: Section 4.1: Dirct Proof and Counterexample I

In this section, we begin discussing how to build proofs. Learning to build proofs is the
biggest hurdle in the transition from lower level, computation-based courses like Calculus, to
upper level, more abstract courses like Analysis or Abstract Algebra. I find that there is a
rather frustrating attitude among some math teachers that writing proofs is a mysterious art

that cannot be taught, that students either have the knack for it, or they don’t.

While I certainly agree that there is often something mysterious about building a proof—a
certain leap that has to be made, a connection that has to be spotted—I feel very strongly that
there 1s much about building proofs that is not mysterious, and that can be taught. Much about
the structure of a proof is inevitable: How the proof must begin and end, how definitions must
be used in a proof, for example, do not involve any choices on the part of the proof writer.
These things have to be done a certain way. Knowing what aspects of proof structure are
inevitable allows the proof writer to build a sort of frame for the proof and to put in some
proof steps. There may still remain leaps that have to be made, connections that have to be

spotted, but they will be smaller leaps. That is what our book’s Chapter 4 is about.



Because learning to build proofs can be difficult, it helps to start with proofs that are about
very basic mathematical concepts. That way, the focus can be on the building of the proof,
without the confusion of also having to understand a difficult mathematical concept. The
concepts that we will use are just three:

o Even & Odd Numbers

o Composite Numbers

e Prime Numbers.

The definitions follow

Definition of Even and Odd Numbers
Words: n is even
Meaning: 3k € Z(n = 2k)
Words: n is odd
Meaning: 3k € Z(n =2k + 1)

Remark: As a consequence of the definition, even and odd numbers are integers.



Definition of Composite Numbers

Words: n is composite

Meaning: 3r,s € Z((l <r<nA(l<s<n)An= rs))

Remark: As a consequence of the definition, every composite number will be an integer and

will be greater than 1.

Definition of Prime Numbers
Words: n is prime

Meaning: (n € Z) A (n > 1) A (n is not composite)

Remark: As a consequence of the definition, every integer that 1s greater than 1 will be either

composite or prime. (exclusive or)



You will notice that the book presents its definitions as if and only if statements, written in

words. For instance, the book’s definition of Even and Odd Numbers is

An integer n is even if, and only if, n equals twice some integer. An integer n is odd
if, and only if, n equals twice some integer plus 1.
Symbolically, for any integer, n
niseven < n = 2k for some integer k
nisodd < n=2k+ 1 for some integer k

Personally, I prefer to write definitions in a way that makes it clear that the definitions are
simply the introduction of new terminology, or new symbols. I feel that presenting definitions
the way that I do makes it easier to understand how definitions must be used in a proof. That is

the subject of our first discussion about proof structure.



Proof Structure: Using Definitions in a Proof
As mentioned earlier, I feel that there 1s much about building proofs that is not mysterious, and
that can be taught. Much about the structure of a proof is inevitable. The first aspect of proof

structure that we will discuss is how one uses a definition in a proof.

Suppose that, at some point in a proof, one wishes to prove that some number n is even. Since

even 1s a defined term, there is no choice about how the proof would have to go.

(7) Ak € Z(n = 2k) (some justification provided for this step)
(8) n 1s even (by (7) and the definition of even)

On the other hand, suppose that one is given that a number n is even. The only thing that one

can do with that information is include some lines in a proof like the following



(4) n 1s even (by given information)

(5) 3k € Z(n = 2k) (by (5) and the definition of even)

I refer to this second use of a definition as unpacking the definition. That is, we were given
some information that included words that were defined terms—we were told that n is even—

and we unpacked that abbreviated sentence and wrote what it really means on the next line.

The previous use of the definition could be thought of as packing up the definition. That 1s, we
had some lengthy information, that 3k € Z(n = 2k), and we packed it up into the more

abbreviated expression n is even.



[Example 1] (4.1#3) Suppose that m and n are particular integers.
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Proof Structure: Proving Existential Statements

We have discussed how there 1s no choice about how definitions must be used in a proof.
Another aspect of proof structure that does not involve any choice is issue of how one proves
an existential statement. An existential statement says that an object (at least one) exists that

has a certain property. There is only one way to prove such a statement.

Proving an Existential Statement
To prove the existential statement
There exists some x € D such that P(x).

one must produce an example of an x € D that makes P(x) true.




[Example 2] (4.1#8) Prove the following statement.

There is an integer n > 5 such that 2™ — 1 is prime.
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Proof Structure: Disproving Universal Statements
Recall that the negation of the universal statement S
Vx € D(P (x))
is the the statement ~S which is an existential statement
dx € D(~P(x))
If one wishes to prove that the universal statement S is false, then one needs to prove that ~S
1s true. Since ~S§ is an existential statement, one proves ~S by providing an example. The

example that proves ~S§ is true (and therefore S is falase) is called a counterexample for S.

False
NP e

M% Universal Statement

To disprove the universal statement
Forall x € D, P(x).
one must produce an example of an x € D that makes P(x) false. Such an example is

called a counterexample.




[Example 3] (4.1#15) Disprove the following statement.

Ctaktmant S For every integer p, if p is prime then p% — 1 is even.
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Proof Structure: Proving Universal Statements by Method of Exhaustion

When a domain set D is a finite set, the universal statement
Vx €D (P (x))
can be proven by confirming that P(x) for each element of the domain.

This 1s called the Method of Exaustion.
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Remark: In the video for Section 3.1 we let domain D = {—3, —2,2,3} and let A(x) be the
predicate x? > x. We found that the truth set for the predicate A(x) to be all of D. In other

words, Vx € D(x? > x).



Proof Structure: Proving Universal Statements by Method of Generalizing from the

Generic Particular
When a domain set D is an infinite set, it is not possible to prove a universal statement Vx €
D (P (x)) by the Method of Exhaustion. Instead, one must use the method of Generalizing

from the Generic Particular.

Generalizing from the Generic Particular

To show that every element of a set satisfies a certain property, suppose x is a
particular but arbitrarily chosen element of the set, and show that x satisfies
the property.

So the proof structure would be

Start
(1) Suppose x € D (generic particular element)

some steps here

(*) we have shown that P(x) is true. (some justification here)
End of proof



[Example 5] (4.1#31) Whenever n is an odd integer, 512 + 7 is even.
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Proof Structure: Proving Universal Conditional Statements by Method of Direct Proof
In the Section 3.1 (and its accompanying video), universal conditional statements were
discussed. It was also discussed that it is often possible to express a universal statement in an
equivalent form that is a universal conditional statement. For example, the universal statement
from the previous example
Whenever n is an odd integer, 5n* + 7 is even.

can be rephrased as a more obviously universal statement

For all n in the set of odd integers, 5n* + 7 is even.

And this universal statement can be rephrased as a universal conditional statement.

For all n in the set of integers, IF n is odd THEN 5n* + 7 is even.



When the method of generalizing from the generic particular is applied to a universal

—

conditional statement, the resulting proof structure is called a direct proof.
-

Method of Direct Proof

I. Express the statement to be proved in the form “For every x € D, if P(x) then
Q(x).” (This step 1s often done mentally.)

2

. Start the proof by supposing x is a particular but arbitrarily chosen element of D
for which the hypothesis P(x) is true. (This step is often abbreviated “Suppose
x € D and P(x).”)

3. Show that the conclusion Q(x) is true by using definitions, previously established
results, and the rules for logical inference.




[Example 6] Revisit the universal statement from the previous example.

Whenever n is an odd integer, 5n* + 7 is even.

Rewrite the universal statement as a universal conditional statement.

—

Then write the frame of the proof of the rewritten statement. That is write the first statement of

the proof and the last statement of the proof.
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[Example 7] Consider the following universal conditional statement
For every integer m, IFm > 1, THEN 0 < % < 1.

(a) (4.1#23) Write the frame of the proof. That is write the first statement of the proof and the

last statement of the proof.

(b) Fill in the details of the proof.
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