
Topic for this Video: Section 4.1: Dirct Proof and Counterexample I 

In this section, we begin discussing how to build proofs. Learning to build proofs is the 

biggest hurdle in the transition from lower level, computation-based courses like Calculus, to 

upper level, more abstract courses like Analysis or Abstract Algebra. I find that there is a 

rather frustrating attitude among some math teachers that writing proofs is a mysterious art 

that cannot be taught, that students either have the knack for it, or they don’t. 

 

While I certainly agree that there is often something mysterious about building a proof—a  

certain leap that has to be made, a connection that has to be spotted—I feel very strongly that 

there is much about building proofs that is not mysterious, and that can be taught. Much about 

the structure of a proof is inevitable: How the proof must begin and end, how definitions must 

be used in a proof, for example, do not involve any choices on the part of the proof writer. 

These things have to be done a certain way. Knowing what aspects of proof structure are 

inevitable allows the proof writer to build a sort of frame for the proof and to put in some 

proof steps. There may still remain leaps that have to be made, connections that have to be 

spotted, but they will be smaller leaps. That is what our book’s Chapter 4 is about.  



Because learning to build proofs can be difficult, it helps to start with proofs that are about 

very basic mathematical concepts. That way, the focus can be on the building of the proof, 

without the confusion of also having to understand a difficult mathematical concept. The 

concepts that we will use are just three: 

• Even & Odd Numbers 

• Composite Numbers 

• Prime Numbers. 

The definitions follow 

 

Definition of Even and Odd Numbers 

Words: 𝑛 is even 

Meaning:  ∃𝑘 ∈ 𝒁(𝑛 = 2𝑘) 

Words: 𝑛 is odd 

Meaning:  ∃𝑘 ∈ 𝑍(𝑛 = 2𝑘 + 1) 

 

Remark: As a consequence of the definition, even and odd numbers are integers.  



 

Definition of Composite Numbers 

Words: 𝑛 is composite 

Meaning:  ∃𝑟, 𝑠 ∈ 𝒁((1 < 𝑟 < 𝑛) ∧ (1 < 𝑠 < 𝑛) ∧ (𝑛 = 𝑟𝑠)) 

 

Remark: As a consequence of the definition, every composite number will be an integer and 

will be greater than 1. 

 

Definition of Prime Numbers 

Words: 𝑛 is prime 

Meaning:  (𝑛 ∈ 𝒁) ∧ (𝑛 > 1) ∧ (𝑛  is not composite) 

 

Remark: As a consequence of the definition, every integer that is greater than 1 will be either 

composite or prime. (exclusive or) 

  



You will notice that the book presents its definitions as if and only if statements, written in 

words. For instance, the book’s definition of Even and Odd Numbers is 

 

Personally, I prefer to write definitions in a way that makes it clear that the definitions are 

simply the introduction of new terminology, or new symbols. I feel that presenting definitions 

the way that I do makes it easier to understand how definitions must be used in a proof. That is 

the subject of our first discussion about proof structure. 

 

 

  



Proof  Structure: Using Definitions in a Proof 

As mentioned earlier, I feel that there is much about building proofs that is not mysterious, and 

that can be taught. Much about the structure of a proof is inevitable. The first aspect of proof 

structure that we will discuss is how one uses a definition in a proof. 

 

Suppose that, at some point in a proof, one wishes to prove that some number 𝑛 is even. Since 

even is a defined term, there is no choice about how the proof would have to go. 

 

⋮ 

(7) ∃𝑘 ∈ 𝒁(𝑛 = 2𝑘)  (some justification provided for this step) 

(8) 𝑛 is even (by (7) and the definition of even) 

⋮ 

 

On the other hand, suppose that one is given that a number 𝑛 is even. The only thing that one 

can do with that information is include some lines in a proof like the following 

 



⋮ 

(4) 𝑛 is even (by given information) 

(5) ∃𝑘 ∈ 𝒁(𝑛 = 2𝑘)  (by (5) and the definition of even) 

⋮ 

 

I refer to this second use of a definition as unpacking the definition. That is, we were given 

some information that included words that were defined terms—we were told that 𝑛 is even—

and we unpacked that abbreviated sentence and wrote what it really means on the next line. 

 

The previous use of the definition could be thought of as packing up the definition. That is, we 

had some lengthy information, that ∃𝑘 ∈ 𝒁(𝑛 = 2𝑘), and we packed it up into the more 

abbreviated expression 𝑛 is even. 

  



[Example 1] (4.1#3) Suppose that 𝑚 and 𝑛 are particular integers. 

(a) Is 6𝑚 + 8𝑛 even? 

 

 

 

(b) Is 10𝑚𝑛 + 7 odd? 

 

 

 

(c) If 𝑚 > 𝑛 > 0, is 𝑚2
− 𝑛

2 composite?  



Proof Structure: Proving Existential Statements 

We have discussed how there is no choice about how definitions must be used in a proof. 

Another aspect of proof structure that does not involve any choice is issue of how one proves 

an existential statement. An existential statement says that an object (at least one) exists that 

has a certain property. There is only one way to prove such a statement. 

 

Proving an Existential Statement 

To prove the existential statement 

There exists some 𝑥 ∈ 𝐷 such that 𝑃(𝑥). 

one must produce an example of an 𝑥 ∈ 𝐷 that makes 𝑃(𝑥) true. 

 

  



[Example 2] (4.1#8) Prove the following statement. 

There is an integer 𝑛 > 5 such that 2𝑛
− 1 is prime. 

 

  



Proof Structure: Disproving Universal Statements 

Recall that the negation of the universal statement 𝑆 

∀𝑥 ∈ 𝐷(𝑃(𝑥)) 

is the the statement ~𝑆 which is an existential statement 

∃𝑥 ∈ 𝐷(~𝑃(𝑥)) 

If one wishes to prove that the universal statement 𝑆 is false, then one needs to prove that ~𝑆 

is true. Since ~𝑆 is an existential statement, one proves ~𝑆 by providing an example. The 

example that proves ~𝑆 is true (and therefore 𝑆 is falase) is called a counterexample for 𝑆. 

 

Disroving a Universal Statement 

To disprove the universal statement 

For all 𝑥 ∈ 𝐷, 𝑃(𝑥). 

one must produce an example of an 𝑥 ∈ 𝐷 that makes 𝑃(𝑥) false. Such an example is 

called a counterexample. 

 

  



[Example 3] (4.1#15) Disprove the following statement. 

For every integer 𝑝, if 𝑝 is prime then 𝑝2
− 1 is even. 

 

  



Proof Structure: Proving Universal Statements by Method of Exhaustion 

 

When a domain set 𝐷 is a finite set, the universal statement 

∀𝑥 ∈ 𝐷(𝑃(𝑥)) 

can be proven by confirming that 𝑃(𝑥) for each element of the domain. 

This is called the Method of Exaustion. 

 

  



[Example 4] Let 𝐷 = {−3, −2,2,3}. Prove ∀𝑥 ∈ 𝐷(𝑥
2

≥ 𝑥) 

 

 

 

 

 

 

 

 

 

 

 

 

Remark: In the video for Section 3.1 we let domain 𝐷 = {−3, −2,2,3} and let 𝐴(𝑥) be the 

predicate 𝑥2
≥ 𝑥. We found that the truth set for the predicate 𝐴(𝑥) to be all of 𝐷. In other 

words, ∀𝑥 ∈ 𝐷(𝑥
2

≥ 𝑥).  



Proof Structure: Proving Universal Statements by Method of Generalizing from the 

Generic Particular 

When a domain set 𝐷 is an infinite set, it is not possible to prove a universal statement ∀𝑥 ∈

𝐷(𝑃(𝑥)) by the Method of Exhaustion. Instead, one must use the method of Generalizing 

from the Generic Particular. 

 

So the proof structure would be 

 

Start 

(1) Suppose 𝑥 ∈ 𝐷  (generic particular element) 

 

⋮  some steps here 

 

(*) we have shown that 𝑃(𝑥) is true. (some justification here) 

End of proof  



[Example 5] (4.1#31) Whenever 𝑛 is an odd integer, 5𝑛
2

+ 7 is even. 

 

 

  







Proof Structure: Proving Universal Conditional Statements by Method of Direct Proof 

In the Section 3.1 (and its accompanying video), universal conditional statements were 

discussed. It was also discussed that it is often possible to express a universal statement in an 

equivalent form that is a universal conditional statement. For example, the universal statement 

from the previous example 

 

Whenever 𝑛 is an odd integer, 5𝑛
2

+ 7 is even. 

 

can be rephrased as a more obviously universal statement 

 

For all 𝑛 in the set of odd integers, 5𝑛
2

+ 7 is even. 

 

And this universal statement can be rephrased as a universal conditional statement. 

 

For all 𝑛 in the set of integers, IF 𝑛 is odd THEN 5𝑛
2

+ 7 is even. 

 



When the method of generalizing from the generic particular is applied to a universal 

conditional statement, the resulting proof structure is called a direct proof. 

 

 

 

  



[Example 6] Revisit the universal statement from the previous example. 

Whenever 𝑛 is an odd integer, 5𝑛
2

+ 7 is even. 

Rewrite the universal statement as a universal conditional statement. 

Then write the frame of the proof of the rewritten statement. That is write the first statement of 

the proof and the last statement of the proof. 

 

  



[Example 7] Consider the following universal conditional statement 

For every integer 𝑚, IF 𝑚 > 1, THEN  0 <
1

𝑚
< 1. 

(a) (4.1#23) Write the frame of the proof. That is write the first statement of the proof and the 

last statement of the proof. 

(b) Fill in the details of the proof. 

  




