Topic for this Video:

Section 4.5: Direct Proof and Counterexample V:

Division into Cases and the Quotient-Remainder Theorem

In this chapter, we have discussed the following kinds of proof structures:

- An *existential statement* that is *true* is proved by *giving an example*.
- A universal statement that is false is disproved by giving an example (a counterexample).
- A *univeral statement* with *finite domain* that is a *true* statement can be proved by *The Method of Exhaustion*, which amounts to doing a bunch of examples.
- A *univeral statement* with an *infinite domain* that is a *true* statement must be proved by the method of *Generalizing from the Generic Particular*. (NOT by an example!)
 - An *existential statement* with an *infinite domain* that is a *false* statement will have a negation that is a *universal statement*. To *disprove* the original existential statement, one must *prove* the negation that is a universal statement. This will require the method of *Generalizing from the Generic Particular*.
 - When the method of *Generalizing from the Generic Particular* is applied to the special case of proving a *universal conditional statement* with an *infinite domain*, the resulting proof structure is called the *Method of Direct Proof*.

We have studied and written proofs involving a growing list of defined mathematical terms:

- even and odd numbers
- *composite* and *prime numbers*
- consecutive integers
- rational numbers and irrational numbers
- the zero product property
- the concept of *divisibility*

In Section 4.5, we will add to our list of defined mathematical terms and mathematical concepts. The new mathematical concepts are the absolute value function and also concepts related to the *Quotient Remainder Theorem*. We will also learn about a new kind of proof structure: *Division into Cases*. (used within the existing proof structure f and f and f and f and f and f and f are the proof of f and f and f are the function of f are the function of f and f are the function of f are the function of f and f are the function of f and f are the function of f are the function of f and f are the function of

We will start by discussing the Quotient Remainder Theorem.

Consider this collection of equations

:

$$71 = 9 \cdot 10 + (-19)$$

 $71 = 9 \cdot 9 + (-10)$
 $71 = 9 \cdot 8 + (-1)$
 $71 = 9 \cdot 7 + 8$
 $71 = 9 \cdot 6 + 17$
 $71 = 9 \cdot 5 + 26$
:

There is an infinite set of true equations involving 71 and 9, but only one equation

$$71 = 9 \cdot 7 + 8$$

has a red number that satisfies the inequality

٠

 $0 \le 8 < 9$

Now consider this collection of equations

:

$$72 = 9 \cdot 10 + (-18)$$

 $72 = 9 \cdot 9 + (-9)$
 $72 = 9 \cdot 8 + 0$
 $72 = 9 \cdot 7 + 9$
 $72 = 9 \cdot 6 + 18$
 $72 = 9 \cdot 5 + 27$
:

There is an infinite set of true equations involving 72 and 9 but only one equation

 $72 = 9 \cdot 6 + \mathbf{0}$

has a red number that satisfies the inequality $0 \le 0 \le 9$.

Finally, consider this collection of equations

:

$$-71 = 9 \cdot (-10) + 19$$

 $-71 = 9 \cdot (-9) + 10$
 $-71 = 9 \cdot (-8) + 1$
 $-71 = 9 \cdot (-7) + (-8)$
 $-71 = 9 \cdot (-6) + (-17)$
 $-71 = 9 \cdot (-5) + (-26)$
:
There is an infinite set of true equations involving -71 and 9, but only one equation
 $-71 = 9 \cdot (-8) + 1$

has a red number that satisfies the inequality

•

 $0 \le 1 < 9$

Those three examples should convince you of the truth of the following important theorem.

Words: The integer equation n = dq + r is in *special QRT form*

Meaning: the integers r, d satisfy the requirement $0 \le r < d$

There is a related definition of two expressions involving the words *div* and *mod*

Definition of *div* and *mod*.

Symbol: *n div d*

Usage: *n* is an integer and *d*, is a positive integer.

Meaning: the unique integer q such that n = dq + r and $0 \le r < d$

Symbol: *n* mod *d*

Usage: *n* is an integer and *d*, is a positive integer.

Meaning: the unique integer *r* such that n = dq + r and $0 \le r < d$

[Example 2] (similar to 4.5#21)

If *c* is an integer such that $c \mod 13 = 5$, then what is $6c \mod 13$?

$$c \mod 13 = 5$$

$$c = 139 + 5$$

$$multiply this equation by 6$$

$$6c = 6(139 + 5) = 13.69 + 30$$

$$= (3.69 + 26 + 4)$$

$$6c = 13.(69 + 2) + 4 \qquad 0.54 < 13$$

$$n \qquad d \qquad r$$

$$6c \mod 13 = 4$$

Using the Quotient-Remainder Theorem in proofs

[Example 3] Suppose that *n* is an integer.

(a) What does the Quotient Remainder Theorem with d = 2 tell us about *n*?

(b) What does the Quotient Remainder Theorem with d = 3 tell us about n? There exist unique integers $q_{1}r$ such that n=3q+r and $0\leq r\leq 3$ Rewrite with actual Values for r $(\exists q \in \mathbb{Z}(n=3q))$ or $(\exists q \in \mathbb{Z}(n=3q+1))$ or $(\exists q \in \mathbb{Z}(n=3q+2))$

Proof by Division into Cases

Recall the Rules of Inference (which are just known Valid Argument Forms).

Modus Ponens	$p \rightarrow q$		Elimination	a. $p \lor q$	b. $p \lor q$
	$p \\ \therefore q$			$\sim q$ $\therefore p$	$\sim p$ $\therefore q$
Modus Tollens	$p \rightarrow q$		Transitivity	$p \rightarrow q$	
	$\sim q$ $\therefore \sim p$			$\begin{array}{c} q \to r \\ \therefore p \to r \end{array}$	
Generalization	a. p $\therefore p \lor q$	b. q $\therefore p \lor q$	Proof by Division into Cases	$p \lor q$ $p \to r$	
Specialization	a. $p \wedge q$ $\therefore p$	b. $p \wedge q$ $\therefore q$		$\begin{array}{c} q \rightarrow r \\ \therefore r \end{array}$	
Conjunction	p q		Contradiction Rule	$\sim p \rightarrow \mathbf{c}$ $\therefore p$	
	$\therefore p \wedge q$				

 TABLE 2.3.1
 Valid Argument Forms

The Quotient Remainder Theorem (QRT) can be used to build proofs that use the method of

Division into Cases.

$$PVq$$

 $P \rightarrow r$
 $q \rightarrow r$
 $\delta \cdot r$

[Example 4] (similar to 4.5#27) Use the Quotient-Remainder Theorem with divisor
$$d = 3$$
 to
prove that the square of any integer has the form $3k$ or $3k + 1$ for some integer k .
 $\forall n \in \mathbb{Z} \left(\left(\exists k \in \mathbb{Z} \left(n^2 = 3k \right) \right) \text{ or } \left(\exists k \in \mathbb{Z} \left(n^2 = 3k + 1 \right) \right) \right)$
 $\frac{\Pr(o \circ f}{(1) \operatorname{Suppose}} n \in \mathbb{Z} \left(\operatorname{Generic} \operatorname{Particular} \operatorname{clement} \right)$
 $(2) \left(\exists q \in \mathbb{Z} \left(n = 3q \right) \right) \text{ or } \left(\exists q \in \mathbb{Z} \left(n = 3q + 2 \right) \right)$ by $\operatorname{Get} on^{4n} d = 3$
 $(3) \left(\operatorname{Case1} \right) \operatorname{Suppose} n = 3q \operatorname{Fur} \operatorname{Some} \operatorname{integer} q$
 (4) then $n^2 = (3q)^2 = 3 \cdot 3q^2$
 (5) let $k = 3q^2$. Obscrue that k is an integer and $n^2 = 3k$
 $\operatorname{So} \operatorname{Fne} \operatorname{conclusion} \operatorname{Is true} \operatorname{In} \operatorname{trus} \operatorname{conse}$

(b) ((a) c^{-1} > 9[1] v^{-1} ($-3q \pm 1$ for some integer q(7) Then $N^2 = (3q \pm 1)^2 = 9q^2 \pm 6q \pm 1 = 3(3q^2 \pm 2q) \pm 1$

(8) Let
$$k = 3g^2 + 2g$$
 Observe that k is an integer and
So the conclusion is true in this case.
(9) (case 3) Suppose $n = 3g + 2$
(10) Then $n^2 = (3g+2)^2 = 9g^2 + 12g + 4 =$
 $= 9g^2 + 12g + 3 + 1$
 $= 3(3g^2 + 3g + 1) + 1$
(1) Let $k = 3g^2 + 3g + 1$. Observe that k is an integer and $n^2 = 3k+1$
So our conclusion is true in this case, as well.
(12) Observe that the conclusion is true in every case
therefore, $(\exists k \in \mathbb{Z}(n^2 = 3k)) \circ r(\exists k \in \mathbb{Z}(n^2 = 3k+1))$
End of proof.

The Absolute Value Function

You are familiar with the behavior of the absolute value function when the thing inside is a *number*. For example,

|5| = 5|-5| = 5|0| = 0 But you are probably not so familiar with the absolute value in abstract settings, where the thing inside the absolute value involves a *variable*. The absolute value is defined piecewise. That is, the meaning of the symbol |x| depends on which piece of the domain x is in.

[Example 5] Prove that for every real number r, |-r| = |r|

Proof
(1) Let
$$\Gamma$$
 be a real number (generic particular)
(2) Then ($\Gamma > 0$) or ($\Gamma = 0$) or ($\Gamma < 0$) property of
(3) Cased Suppose $\Gamma > 0$
(4) Then $-\Gamma < 0$
(5) So $|-\Gamma| = -(-\Gamma) = \Gamma$
Use appropriate formula
and $|\Gamma| = \Gamma$
(6) So in this case, $|-\Gamma| = |\Gamma|$

(7) (lase 2) Suppose
$$\Gamma = 0$$

(8) then $|\Gamma| = |0| = 0$
by definition of absolute value.
then $|-\Gamma| = |-0| = |0| = 0$
(9) So $|-\Gamma| = |\Gamma|$ in this case as well
(10) (case 3) Suppose $\Gamma \ge 0$
(11) Then $-\Gamma \ge 0$
(12) So $|-\Gamma| = -\Gamma$
(13) and $|\Gamma| = -\Gamma$
(14) Observe that $|-\Gamma| = |\Gamma|$ in this case as well
(15) We have Shown that $|-\Gamma| = |\Gamma|$ (became it is time)
in chergicase

[Example 6] Prove that all real numbers $x, y, |x| \cdot |y| = |xy|$