Topic for this Video:

Section 4.5: Direct Proof and Counterexample V:
Division into Cases and the Quotient-Remainder Theorem

In this chapter, we have discussed the following kinds of proof structures:

- An existential statement that is true is proved by giving an example.
- A universal statement that is false is disproved by giving an example (a counterexample).
- A univeral statement with finite domain that is a true statement can be proved by The Method of Exhaustion, which amounts to doing a bunch of examples.
- A univeral statement with an infinite domain that is a true statement must be proved by the method of Generalizing from the Generic Particular. (NOT by an example!)
- An existential statement with an infinite domain that is a false statement will have a negation that is a universal statement. To disprove the original existential statement, one must prove the negation that is a universal statement. This will require the method of Generalizing from the Generic Particular.
- When the method of Generalizing from the Generic Particular is applied to the special case of proving a universal conditional statement with an infinite domain, the resulting proof structure is called the Method of Direct Proof.

We have studied and written proofs involving a growing list of defined mathematical terms:

- even and odd numbers
- composite and prime numbers
- consecutive integers
- rational numbers and irrational numbers
- the zero product property
- the concept of divisibility

In Section 4.5, we will add to our list of defined mathematical terms and mathematical concepts. The new mathematical concepts are the absolute value function and also concepts related to the Quotient Remainder Theorem. We will also learn about a new kind of proof structure: Division into Cases. (used within the existing proof Stancture)
of Direct Proof

We will start by discussing the Quotient Remainder Theorem.

Consider this collection of equations

There is an infinite set of true equations involving 71 and 9 , but only one equation

$$
71=9 \cdot 7+8
$$

has a red number that satisfies the inequality

$$
0 \leq 8<9
$$

Now consider this collection of equations

There is an infinite set of true equations involving 72 and 9 . but only one equation

$$
72=9 \cdot 6+0
$$

has a red number that satisfies the inequality

Finally, consider this collection of equations

$$
\left\{\begin{array}{l}
\vdots \\
-71=9 \cdot(-10)+19 \\
-71=9 \cdot(-9)+10 \\
-71=9 \cdot(-8)+1 \\
-71=9 \cdot(-7)+(-8) \\
-71=9 \cdot(-6)+(-17) \\
-71=9 \cdot(-5)+(-26) \\
\vdots
\end{array}\right.
$$

There is an infinite set of true equations involving -71 and 9, but only one equation

$$
-71=9 \cdot(-8)+1
$$

has a red number that satisfies the inequality

$$
0 \leq 1<9
$$

Those three examples should convince you of the truth of the following important theorem.

Theorem 4.1.1 The Quotient-Remainder Theorem (QRT)

Informal presentation:

Given any integer n and any positive integer d,
there exist unique integers q and r such that $n=d q+r$ and $0 \leq r<d$
Formal (symbolic)presentation:

$$
\forall n \in \mathbf{Z}, d \in \mathbf{Z}^{+}(\exists!q, r \in \boldsymbol{Z}((n=d q+r) \wedge(0 \leq r<d)))
$$

Additional terminology

The number d is called the divisor.
The number q is called the quotient. Note that q can be any integer (including 0).
The number r is called the remainder. Note that r must be a non-negative integer.
Mark's special terminology
Words: The integer equation $n=d q+r$ is in special QRT form
Meaning: the integers r, d satisfy the requirement $0 \leq r<d$

There is a related definition of two expressions involving the words div and mod

Definition of $d i v$ and mod.

Symbol: n div d
Usage: n is an integer and d, is a positive integer.
Meaning: the unique integer q such that $n=d q+r$ and $0 \leq r<d$

Symbol: $n \bmod d$
Usage: n is an integer and d, is a positive integer.
Meaning: the unique integer r such that $n=d q+r$ and $0 \leq r<d$
(a) Find $28 \operatorname{div} 5$ and $28 \bmod 5$
(d) find 3 div 5 and $3 \bmod 5$
(b) Find $-28 \operatorname{div} 5$ and $-28 \bmod 5$
(c) Find $30 \operatorname{div} 5$ and $30 \bmod 5$

Solution
(a) Find $28 \operatorname{div} 5$ and $28 \bmod 5$.

$$
\underbrace{28 \operatorname{div} 5}_{\text {the special } q} \underbrace{28 \bmod 5}_{\text {the special }}
$$

Strategy. Write the special equation

$$
\begin{aligned}
& \text { Write the special equation } \\
& n=d q+r \quad \text { satisfying } \quad 0 \leq r<d
\end{aligned}
$$

- Then identify $28 d 105=q$ and $28 \bmod 5=c$

$$
28=5.5+3 \quad 28 \operatorname{div} 5=5 \quad 28 \bmod 5=3
$$

(b) Find -28 div 5 and $-28 \bmod 5$

Solution Start by writing the special equation $n=d q+r$

$$
-28=5 \cdot(-6)+2 \quad \begin{aligned}
& 0 \leq 2<5 \\
& q \\
& -28 \operatorname{div} 5=-6 \\
& -28 \bmod 5=2
\end{aligned}
$$

(c) find 30 div 5 and $30 \bmod 5$

Solution write social equation

$$
\begin{aligned}
& 30=5 \cdot(6)+0 \\
& 30 \operatorname{div} 5=6 \quad 30
\end{aligned}
$$

$30 \bmod 5=0$
(d) find 3 div 5 and $3 \bmod 5$

$$
3 d, 05=0
$$

Solution: wrote special equation

$$
3=5 \cdot(0)+3
$$

[Example 2] (similar to 4.5\#21)
If c is an integer such that $c \bmod 13=5$, then what is $6 c \bmod 13$?
Strategy
$c \bmod 13=5$
\downarrow
Special equation involving $c, 13,5$
Vg
Special equation involving bc, 13
\forall
identity the value of r

$$
\begin{gathered}
c \bmod 13=5 \\
c=13 q+5
\end{gathered}
$$

multiply this equation by 6

$$
\begin{array}{rl}
6 C & =6(13 q+5)=13.6 q+30 \\
& =13.6 q+26+4 \\
6 C & =13 \cdot(\underbrace{6 q+2)}+4 \quad 0 \leq 4<13 \\
n & 6 c \bmod 13=4
\end{array}
$$

Using the Quotient-Remainder Theorem in proofs
[Example 3] Suppose that n is an integer.
(a) What does the Quotient Remainder Theorem with $d=2$ tell us about n ?

There exist unique integers q, r such that $n=2 q+r$ and $0 \leq r<2$
There are only too possibilities!
That is
There exists integer q such that $n=2 q$
or there exists an integer q such that $n=2 q+1$
(b) What does the Quotient Remainder Theorem wish $d=3$ tell about n ?

There exist unique integers q, r such that $n=3 q+r$ and $0 \leq r<3$ Rewnte with actual Values for r

$$
(\exists q \in \mathbb{Z}(n=3 q)) \text { or }(7 q \in \mathbb{Z}(n=3 q+1)) \text { or }(\exists q \in \mathbb{Z}(n=3 q+2))
$$

Proof by Division into Cases

Recall the Rules of Inference (which are just known Valid Argument Forms).
table 2.3.1 Valid Argument Forms

The Quotient Remainder Theorem ($Q R T$) can be used to build proofs that use the method of
Division into Cases.

[Example 4] (similar to 4.5\#27) Use the Quotient-Remainder Theorem with divisor $d=3$ to prove that the square of any integer has the form $3 k$ or $3 k+1$ for some integer k.

$$
\forall n \in \mathbb{Z}\left(\left(\exists k \in \mathbb{Z}\left(n^{2}=3 k\right)\right) \text { or }\left(\exists k \in \mathbb{Z}\left(n^{2}=3 k+1\right)\right)\right)
$$

Proof
(1) Suppose $n \in \mathbb{Z}$ (Generic particular element)

$$
V(2)(\exists q \in \mathbb{Z}(n=3 q)) \operatorname{or}(\exists q \in \mathbb{Z}(n=3 q+1)) \text { or }(\exists q \in \mathbb{Z}(n=3 q+2)) \operatorname{by}_{d=3}^{\operatorname{QRT} \text { with }}
$$

(3) Case 1) buppose $n=3 q$ for some integer q
(4) then $n^{2}=(3 q)^{2}=3.3 q^{2}$
(5) let $k=3 q^{2}$. Observe that k is an integer and $n^{2}=3 k$ So the conclusion is tone in this case.
[(6) (case 2) suppose $n=3 q+1$ for some integer q
(7) Then $n^{2}=(3 q+1)^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1$
(8) Lect $k=3 q^{2}+2 q$ observe that k is an integer and
so the conclusion is true inthis case.
(g) (case 3) Suppose $n=3 q+2$
(10) Then

$$
\begin{aligned}
n^{2} & =(3 q+2)^{2}=9 q^{2}+12 q+4= \\
& =9 q^{2}+12 q+3+1 \\
& =3\left(3 q^{2}+3 q+1\right)+1
\end{aligned}
$$

(1) Let $k=3 q^{2}+3 q+1$. Observe that k is an integer and $n^{2}=3 k+1$

So our conclusion is true in this case, as well.
(12) Observe that the conclusion is true in every case thecctore, $\left(\exists k \in \mathbb{Z}\left(n^{2}=3 k\right)\right)$ or $\left(\exists k \in \mathbb{Z}\left(n^{2}=3 k+1\right)\right)$ End ot proof.

The Absolute Value Function
You are familiar with the behavior of the absolute value function when the thing inside is a number. For example,

$$
\begin{aligned}
& |5|=5 \\
& |-5|=5 \\
& |0|=0
\end{aligned}
$$

But you are probably not so familiar with the absolute value in abstract settings, where the thing inside the absolute value involves a variable. The absolute value is defined piecewise. That is, the meaning of the symbol $|x|$ depends on which piece of the domain x is in.

Definition of the Absolute Value

Symbol: $|x|$
Spoken: the absolute value of \boldsymbol{x}
Usage: x is a real number
Meaning: $|x|$ is a real number, defined by

$$
|x|=\left\{\begin{array}{cc}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array}\right.
$$

Less Appreviated Expression:

$$
|x|= \begin{cases}x & \text { if } x>0 \\ 0 & \text { if } x=0 \\ -x & \text { if } x<0\end{cases}
$$

$$
\text { Example: } \left\lvert\, \begin{aligned}
& |-5| \\
& \text { observe that }-5<0 \\
& \text { So use formula }|x|=-x
\end{aligned}\right.
$$

[Example 5] Prove that for every real number $r,|-r|=|r|$
Proof
(1) Let r be a real number (generi cparticular)
(2) Then $(r>0)$ or $(r=0)$ or $(r<0)$ perpectyof
(3) Case l Suppose $r>0$ real numbers
(4) Then (-7) <0
(5) So $|-r|=-(-r)=r$
formula
and $|r|=$
use mpocoprinte formula
(6) So in this case, $|-r|=|r|$
(7) (case2) Sunpose $r=0$
(8) then $|r|=|0|=0$
by definition of absolute value.
then $|-r|=|-0|=|0|=0$
(9) So $|-r|=|r|$ in this case detintion of abs value
((10) (case 3) suppose $r<0$
(11) Then $-r>0$
(12) So $|-r|=-r$
(13) and $|r|=-r$
(14) Ohsere tuse anpocpriate form
(15) we have shown that $|-\delta|=|\sigma|$
$\left.\begin{array}{c}\text { (becance it is tere } \\ \text { in cerey case }\end{array}\right)$
[Example 6] Prove that all real numbers $x, y,|x| \cdot|y|=|x y|$
Proof
(1) Let x, y be real numbers (generic particular cements)
(2) Then $((x>0) \wedge(y>0)) \cdot f((x>0) \wedge(y=0)) c r((x>0) \wedge(y<0))$

Case 1 both $x>0$ and $y>0$
case 2 both $x<0$ and $y<0$
case 3 one is >0 and mine is <0
case 4 one or both is equal to zero.

