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In this chapter, we have discussed the following kinds of proof structures: 

• An existential statement that is true is proved by giving an example. 

• A universal statement that is false is disproved by giving an example (a counterexample). 

• A univeral statement with finite domain that is a true statement can be proved by The 

Method of Exhaustion, which amounts to doing a bunch of examples. 

• A univeral statement with an infinite domain that is a true statement must be proved by 

the method of Generalizing from the Generic Particular. (NOT by an example!) 

o An existential statement with an infinite domain that is a false statement will have a 

negation that is a universal statement. To disprove the original existential statement, 

one must prove the negation that is a universal statement. This will require the 

method of Generalizing from the Generic Particular. 

o When the method of Generalizing from the Generic Particular is applied to the 

special case of proving a universal conditional statement with an infinite domain, 

the resulting proof structure is called the Method of Direct Proof. 

 

  



We have studied and written proofs involving a growing list of defined mathematical terms: 

• even and odd numbers 

• composite and prime numbers 

• consecutive integers 

• rational numbers and irrational numbers 

• the zero product property 

• the concept of divisibility 

 

In Section 4.5, we will add to our list of defined mathematical terms and mathematical 

concepts. The new mathematical concepts are the absolute value function and also concepts 

related to the Quotient Remainder Theorem. We will also learn about a new kind of proof 

structure: Division into Cases. 

 

We will start by discussing the Quotient Remainder Theorem. 

  



Consider this collection of equations 

⋮ 

71 = 9 ⋅ 10 + (−19) 

71 = 9 ⋅ 9 + (−10) 

71 = 9 ⋅ 8 + (−1) 

71 = 9 ⋅ 7 + 8 

71 = 9 ⋅ 6 + 17 

71 = 9 ⋅ 5 + 26 

⋮  

There is an infinite set of true equations involving 71 and 9, but only one equation 

 

71 = 9 ⋅ 7 + 8 

 

has a red number that satisfies the inequality 

 

0 ≤ 8 < 9 

.  



Now consider this collection of equations 

⋮ 

72 = 9 ⋅ 10 + (−18) 

72 = 9 ⋅ 9 + (−9) 

72 = 9 ⋅ 8 + 0 

72 = 9 ⋅ 7 + 9 

72 = 9 ⋅ 6 + 18 

72 = 9 ⋅ 5 + 27 

⋮  

There is an infinite set of true equations involving 72 and 9, but only one equation 

 

72 = 9 ⋅ 6 + 0 

 

has a red number that satisfies the inequality 

 

0 ≤ 0 < 9 

. 

  



Finally, consider this collection of equations 

⋮ 

−71 = 9 ⋅ (−10) + 19 

−71 = 9 ⋅ (−9) + 10 

−71 = 9 ⋅ (−8) + 1 

−71 = 9 ⋅ (−7) + (−8) 

−71 = 9 ⋅ (−6) + (−17) 

−71 = 9 ⋅ (−5) + (−26) 

⋮  

There is an infinite set of true equations involving −71 and 9, but only one equation 

 

−71 = 9 ⋅ (−8) + 1 

 

has a red number that satisfies the inequality 

 

0 ≤ 1 < 9 

.  



Those three examples should convince you of the truth of the following important theorem. 

 

Theorem 4.1.1 The Quotient-Remainder Theorem (QRT) 

Informal presentation: 

Given any integer 𝑛 and any positive integer 𝑑, 

there exist unique integers 𝑞 and 𝑟 such that  𝑛 = 𝑑𝑞 + 𝑟  and 0 ≤ 𝑟 < 𝑑 

Formal (symbolic)presentation: 

∀𝑛 ∈ 𝒁, 𝑑 ∈ 𝒁
+

(∃! 𝑞, 𝑟 ∈ 𝒁((𝑛 = 𝑑𝑞 + 𝑟) ∧ (0 ≤ 𝑟 < 𝑑))) 

Additional terminology 

The number 𝑑 is called the divisor. 

The number 𝑞 is called the quotient. Note that 𝑞 can be any integer (including 0). 

The number 𝑟 is called the remainder. Note that 𝑟 must be a non-negative integer. 

Mark’s special terminology 

Words: The integer equation 𝑛 = 𝑑𝑞 + 𝑟 is in special QRT form  

Meaning: the integers 𝑟, 𝑑 satisfy the requirement 0 ≤ 𝑟 < 𝑑 

.  



There is a related definition of two expressions involving the words 𝑑𝑖𝑣 and 𝑚𝑜𝑑 

 

Definition of 𝒅𝒊𝒗 and 𝒎𝒐𝒅.  

Symbol: 𝑛 𝑑𝑖𝑣 𝑑 

Usage: 𝑛 is an integer and 𝑑, is a positive integer. 

Meaning: the unique integer 𝑞 such that  𝑛 = 𝑑𝑞 + 𝑟  and 0 ≤ 𝑟 < 𝑑 

 

Symbol: 𝑛 𝑚𝑜𝑑 𝑑 

Usage: 𝑛 is an integer and 𝑑, is a positive integer. 

Meaning: the unique integer 𝑟 such that  𝑛 = 𝑑𝑞 + 𝑟  and 0 ≤ 𝑟 < 𝑑 

 

  



[Example 1] (Similar to 4.5#8) 

(a) Find 28 𝑑𝑖𝑣 5  and 28 𝑚𝑜𝑑 5 

(b) Find −28 𝑑𝑖𝑣 5  and −28 𝑚𝑜𝑑 5 

(c) Find 30 𝑑𝑖𝑣 5  and 30 𝑚𝑜𝑑 5 

  





[Example 2] (similar to 4.5#21) 

If 𝑐 is an integer such that 𝑐 𝑚𝑜𝑑 13 = 5, then what is 6𝑐 𝑚𝑜𝑑 13? 

 

 

 

  





Using the Quotient-Remainder Theorem in proofs 

 

[Example 3] Suppose that 𝑛 is an integer. 

(a) What does the Quotient Remainder Theorem with 𝑑 = 2 tell us about 𝑛? 

 

 

  



(b) What does the Quotient Remainder Theorem with 𝑑 = 3 tell us about 𝑛? 

  



Proof by Division into Cases 

 

Recall the Rules of Inference (which are just known Valid Argument Forms). 

 

The Quotient Remainder Theorem (QRT) can be used to build proofs that use the method of 

Division into Cases. 

 

 



[Example 4] (similar to 4.5#27) Use the Quotient-Remainder Theorem with divisor 𝑑 = 3 to 

prove that the square of any integer has the form 3𝑘 or 3𝑘 + 1 for some integer 𝑘. 

  





The Absolute Value Function 

You are familiar with the behavior of the absolute value function when the thing inside is a 

number. For example, 

 

 

 

  



But you are probably not so familiar with the absolute value in abstract settings, where the 

thing inside the absolute value involves a variable. The absolute value is defined piecewise. 

That is, the meaning of the symbol |𝑥| depends on which piece of the domain 𝑥 is in. 

 

Definition of the Absolute Value 

Symbol: |𝑥| 

Spoken: the absolute value of 𝒙 

Usage: 𝑥 is a real number 

Meaning: |𝑥| is a real number, defined by  

|𝑥| = {
𝑥 if  𝑥 ≥ 0

−𝑥 if  𝑥 < 0
 

Less Appreviated Expression:  

|𝑥| = {

𝑥 if  𝑥 > 0

0 if  𝑥 = 0

−𝑥 if  𝑥 < 0

 

 

  



[Example 5] Prove that for every real number 𝑟, |−𝑟| = |𝑟| 

 

  





[Example 6] Prove that all real numbers 𝑥, 𝑦, |𝑥| ⋅ |𝑦| = |𝑥𝑦| 

 

 

 

  


