Video for Homework H05.2 on Concepts from Section 5.2 Induction

Closed form Expressions of Sums

- Introducing Closed Form Expressions for two important sums
- Sum of the first n positive integers
- Sum of a Geometric Sequence
- Using the Closed Form Expressions of Sums
- Using Arithmetic to Prove the Closed Form Expressions for Sums

The Principle of Induction

Using the Principle of Induction to prove the closed form expressions for sums.

- Sum of the first n positive integers
- Sum of the first n positive perfect squares

Closed form Expressions of Sums

Sum of the first \boldsymbol{n} positive integers
\qquad

It is known that the following equation is true

Formula for the sum of the first \boldsymbol{n} positive integers
If $n \geq 1$, then

$$
1+2+3+\cdots+n=\sum_{k=1}^{k=n} k=\frac{n(n+1)}{2}
$$

[Example 1] Consider the following quantity

$$
S=1+2+3+\cdots+7
$$

(a) Compute S directly by finding the sum.
(b) Compute S by using the formula $S=\frac{n(n+1)}{2}$

In both (a) and (b), count the number of operations used to compute S.
(a) $s=1+2+3+4+5+6+7=28$ sixoperations
(b) $S=\frac{7(7+1)}{2}=\frac{7.8}{2}=\frac{56}{2}=28$ three operations
[Example 2] Consider the following quantity

$$
\begin{aligned}
& \text { lowing quantity } \\
& S=1+2+3+\cdots+200^{2}
\end{aligned}
$$

(a) Compute S directly by finding the sum.
(b) Compute S by using the formula $S=\frac{n(n+1)}{2}$

In both (a) and (b), count the number of operations used to compute S.
(a) Too tedious! It would require 199 operations
(b) $S=\frac{200(200+1)}{2}=100(201)=20,100 \quad$ 3opecations
[Example 3] Consider the following quantity

$$
S=1+2+3+\cdots+n
$$

(a) How many operations are required to compute S directly by finding the sum?
(b) How many operations are required to compute S by using the formula $S=\frac{n(n+1)}{2}$?
(a) n-1 operations. (unknown, because n is unknown)

$$
\text { (b) } 3 \text { operations }
$$

Definition of Closed Form Expression

A closed form expression is a mathematical expression that involves a known (finite) number of standard operations.

Notice that the expression $1+2+3+\cdots+n$ contains $n-1$ operations. This is a finite but unknown number. So the expression is not a closed form expression.

But the expression $\frac{n(n+1)}{2}$ contains exactly three operations. It is a closed form expression.

The equation $1+2+3+\cdots+n=\frac{n(n+1)}{2}$ gives us a closed form expression for computing the value of the sum. The equation is useful because

- When n is known, the formula enables us to compute the value of the sum with fewer operations, as in [Examples 1,2].
- When n is unknown, the equation enables us to replace the sum that has an unknown number of operations with an expression that has a known (finite) number of operations.

Another equation giving a closed form expression that is equal to a sum:

Formula for the Sum of a Geometric Sequence

If $r \in \boldsymbol{R}, r \neq 0,1$ and $n \geq 0$, then

$$
1+r+r^{2}+r^{3}+\cdots+r^{n}=\sum_{k=0}^{k=n} r^{k}=\frac{r^{n+1}-1}{r-1}
$$

[Example 4] Consider the following quantity

$$
\begin{aligned}
& \text { ing quantity } \\
& s=1+2^{2}+4+\cdots+(64)
\end{aligned} \quad 64=2^{3} \text { son } n=7
$$

(a) Compute S directly by finding the sum.
(b) Compute S by using the formula $S=\frac{r^{n+1}-1}{r-1}$
(a) $S=1+2+4+8+16+32+64=127$
(b) $S=\frac{2^{2+1}-1}{2-1}=\frac{2^{8}-1}{1}=128-1=127$
[Example 5] Consider the following quantity
(a) Compute S directly by finding the sum.

$$
\begin{aligned}
& \text { ty } \frac{\left.5=\frac{1}{2}\right)+\frac{1}{4}+\left(\frac{1}{8}\right)^{2}}{}
\end{aligned}
$$

(b) Compute S by using the formula $S=\frac{r^{n+1}-1}{r-1}$
(a) $S=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{8}{8}+\frac{4}{8}+\frac{2}{8}+\frac{1}{8}=\frac{15}{8}$
(b)

$$
\begin{aligned}
S= & \frac{\left(\frac{1}{2}\right)^{3+1}-1}{\left(\frac{1}{2}\right)-1}=\frac{\left(\frac{1}{2}\right)^{4}-1}{\frac{-1}{2}}=\frac{\frac{1}{16}-1}{-\frac{1}{2}}= \\
& =\frac{-\frac{15}{16}}{-\frac{1}{2}}=-\frac{15}{16} \cdot\left(-\frac{2}{1}\right)=\frac{15}{8}
\end{aligned}
$$

Using the formulas for the standard sums to find values for sums that are not standard
[Example 6] (a) Find the sum $15+20+25+\cdots+2000$

$$
S=15+20+25+\cdots+2000
$$

factor out 5

$$
=5(3+4+5+\cdots+400)
$$

$$
\begin{aligned}
& \text { Trick } \\
& =5(1+2+3+4+5+\cdots+400-3) \\
& =5\left(\frac{1+2+3+\cdots+400}{\text { sum of the first } 400 \text { positineintegers }}-5(3)\right. \\
& =5\left(\frac{400(400+1)}{2}\right)-15 \\
& =\frac{5(200) 401-15}{400,985}=1000(401)-15=401,000-15 \\
& =\frac{40}{40}
\end{aligned}
$$

(b) Find the sum $18+54+162+\cdots+13122$

Solution.

$$
S=18+54+162+\cdots+13,122
$$

factor out a 2

$$
\begin{aligned}
& =2(9+27+81+\cdots+6561) \\
& =2\left(3^{2}+3^{3}+3^{4}+\cdots+3^{8}\right) \\
& \text { trick } \\
& =2\left(1+3^{1}+3^{2}+3^{4}+\cdots+3^{8}-4\right) \\
& =2\left(1^{\left.1+3^{1}+3^{2}+\cdots+3^{8}\right)-2(4)}\right. \\
& =2\left(\frac{33^{+1}-1}{3-1}\right)-8 \\
& =\frac{2\left(3^{9}-1\right)}{\not 2}-8=(19,683-1)-8=19,674
\end{aligned}
$$

Some closed form expressiong for sums can be proved easily, using arithmetic.
[Example 7] Prove the formula for the sum of the first n positive integers
If $n \geq 1$, then

$$
1+2+3+\cdots+n=\sum_{k=1}^{k=n} k=\frac{n(n+1)}{2}
$$

Let $S=1+2+3+\cdots+n$

$$
\begin{aligned}
\text { trick } S+S & =1+2+3+\cdots+(n-2)+(n-1)+n \\
& =\frac{+n+(n-1)+(n-2)+\cdots+3+2+1}{(n+1)+(n+1)+(n+1)+\cdots+(n+1)+(n+1)+(n+1)} \\
2 S & =n(n+1) \quad \text { of these } \\
S & =\frac{n(n+1)}{2}
\end{aligned}
$$

[Example 8] Prove the formula for the sum of a geometric sequence
If $r \in \boldsymbol{R}, r \neq 0,1$ and $n \geq 0$, then

$$
1+r+r^{2}+r^{3}+\cdots+r^{n}=\sum_{k=0}^{k=n} r^{k}=\frac{r^{n+1}-1}{r-1}
$$

Let $S=1+r+r^{2}+\cdots+r^{n}$
then $r S=r\left(1+r+r^{2}+\cdots+r^{n}\right)=r+r^{2}+r^{3}+\cdots+r^{n+1}$

$$
\begin{aligned}
r S-S & =\left(\hat{r}+r^{2}+r^{3}+\cdots+\left(\begin{array}{r}
n \\
r^{n} \\
\\
\\
\\
-(1+r)+r^{n+1}+r^{2}+\cdots+(r-1) \\
S(r) \\
S
\end{array}\right)=\frac{r^{n+1}-1}{r-1}\right.
\end{aligned}
$$

But some equations that give closed form expressiong for sums must be proven using the

Principle of Induction.

New Rule of Inference: The Principle of Induction

$P(a)$ is true
For all integers $k \geq a$ if $P(k)$ is true, then $P(k+1)$ is true.
\therefore For all integers $n \geq a, P(n)$ is true.
Usage:

- The letter a represents some fixed integer.
- The letters k and n represent variables whose domain is the set of all integers greater than or equal to a.
- The symbol $P(n)$ represents a predicate.

This new rule of inference will be used to prove statements of the form

Statement S : For all integers $n \geq a, P(n)$ is true.

Strategy for using the Principle of Induction

Preliminary work:

- Identify the number playing the role of a. (Introduce it.)
- Identify the predicate $P(n)$. (Introduce it in a sentence.)
- Figure out what the expressions for $P(a), P(k), P(k+1)$ look like. (Write them down.)

Build a proof of Statement S using the following structure:

Proof of Statement S :

Basis Step: Prove that $P(a)$ is true.
A bunch of steps may be involved. Usually a computation.
Inductive Step: Prove that for all integers $k \geq a) f(P(k)$ is true, then $\overparen{P(k+1) \text { is true }) ~}$
Proof for Inductive Step (Direct Proof)
$p(k)$
(1) Suppose that k is an integer such that $k \geq a$ and that *

* a bunch of steps will be involved
*

$\left.{ }^{* *}{ }^{*}\right) P(k+1)$ is true. (some justification goes here.)

End of Proof for the Inductive Step

Conclusion: Therefore, for all integers $n \geq a, P(n)$ is true. (by the Principle of Induction) End of Proof of Statement S
[Example 9] Use the Method of Induction to prove the formula for the sum of the first n positive integers. (This is presented as Theorem 5.2.1 on p. 280 of the book.)

$$
\begin{aligned}
& \forall n \in \boldsymbol{Z}, n \geq 1\left(1+2+3+\cdots+n=\frac{n(n+1)}{2}\right) \\
& \text { work: }
\end{aligned}
$$

Preliminary work: a is the number 1
$P(n)$ is the predicate $1+2+3+\cdots+n=\frac{n(n+1)}{2}$
$P(k)$ is this equation $1+2+3+\cdots+k=\frac{k(k+1)}{2}$
$P(k+1)$ is this equation $1+2+3+\cdots+(k+1)=\frac{(k+1)((k+1)+1)}{2}$
$P(a)$ is $P(1)$ which is

$$
\begin{aligned}
1+2+3+\cdots+1 & =\frac{1(1+1)}{2} \\
& =\frac{1(1+1)}{2}
\end{aligned}
$$

Proof (proof that $\forall n \geq 1(P(n)$ is true)
By method of induction
Basis Step Drove that $P(a)$ is tone $P(a)$ is $P(1)$ which is the equation

$$
\begin{aligned}
& 1=\frac{1(1+1)}{2} \\
& 1=\frac{1(2)}{2} \\
& 1=1 \text { tine }
\end{aligned}
$$

Inductive step Prove that $\forall k \geq a($ If $P(k)$ then $P(k+1))$ Proof (Direct Proof)
(1) Suppose that $K \geq 1$ and $P(k)$ is tine (generic particular

Indurative hypothesis
(2) $1+2+3+\cdots+k=\frac{k(k+1)}{2} \quad$ by (2)
(4) Left side af p(k+1) $=1+2+3+\cdots+(k+1)$

$$
=1+2+3+\cdots+k+(k+1)
$$

using the inductive hypothesis $P(k)$

$$
\begin{aligned}
& =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k^{2}+k}{2}+\frac{2 k+2}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{k^{2}+k+2 k+2}{2} \\
& =\frac{k^{2}+3 k+2}{2} \\
& =\frac{(k+1)(k+2)}{}=\text { right side of } P(k+1)
\end{aligned}
$$

(**)

$$
\frac{\text { Lett side at } P(k+1)}{1+2+3+\cdots+(k+1)}=\frac{(k+1)(k+1)+1)}{2}
$$

(*)Therefore $P(k+1)$ is true End if proof if Inductive step.
Conclusion
Therefice, for all $n \geq 1\left(1+2+3+\cdots+n=\frac{n(n+1)}{2}\right)$ $\sigma=$ of proof $\begin{array}{r}B \\ \text { principle of induction }\end{array}$

In the book on page 283, you can see a proof, using the Principle of Induction, of the formula for the sum of a geometric sequence. (Theorem 5.2.2)

If $r \in \boldsymbol{R}, r \neq 0,1$ then

$$
\forall n \in \mathbf{Z}, n \geq 0\left(1+r+r^{2}+r^{3}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}\right)
$$

[Example 10] Use the Method of Induction to prove the formula for the sum of the first n positive perfect squares.

$$
\begin{aligned}
& \text { Preliminary work } \\
& \begin{array}{l}
\forall n \in Z, n \geq 1 \\
Q=1
\end{array}\left(1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}\right) \\
& P(n) \text { is } 1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

$P(a)$ is $P(1)$, which is

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\cdots+1^{2} & =\frac{1(1+1)(2(1)+1)}{6} \\
1 & =\frac{1(1+1)(2(1)+1)}{6}
\end{aligned}
$$

$P(k)$ is

$$
1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

$D(k+1)$ is $1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$

$$
1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}
$$

Basis ster Prove that $P(a)$ is true
$P(1)$ is the equation

$$
\begin{aligned}
& 1=\frac{1(1+1)(2(1)+1)}{6} \\
& 1=\frac{1(2)(3)}{6} \\
& 1=\frac{6}{6} \\
& 1=1
\end{aligned}
$$

Inductive step must prove that $\forall \underbrace{k \geq a}(I f P(k)$ then $\underbrace{P(k+1)})$
Prof (Direct Proof)
(1) Suppose $k \geq 1$ and that $\frac{P(k) \text { is true. }}{\text { Indudise hypothes }} \quad$ (generic particular element)
(2) $1^{2}+2^{2}+3^{2}+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}($ by 0$\left.)\right)$
(3) Left side of $P\left(k+1=1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}\right.$

$$
=\underbrace{1^{2}+2^{2}+3^{2}+\cdots+k^{2}}_{\text {The leftside of pp) }}+(k+1)^{2}
$$

use fact that $p(k)$ is true The right side of $P(k)$

$$
=\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2}
$$

$$
\begin{aligned}
& =\frac{k(k+1)(2 k+1)+\frac{6(k+1)^{2}}{6}}{6} \\
& =\frac{(k+1)\left(2 k^{2}+k\right)+6(k+1)(k+1)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+k\right)+(6 k+6)(k+1)}{6} \\
& =\frac{(k+1)\left(\left(2 k^{2}+k\right)+(6 k+6)\right)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \\
& =\text { right side of } P(k+1)
\end{aligned}
$$

$$
\frac{\text { Left side of } P(k+1)}{1^{2}+2^{2}+3^{2}+\cdots+(k+1)^{2}}=\overbrace{\frac{(k+1)(k+2)(2 k+3)}{6}}^{\text {Rightside ot } P(k+1)}
$$

(*) therctore $P\left(k_{+1}\right)$ is true
End of proof. (of the induitionstep)
Conclusion
Therefier for all $n \geq 1, \quad 1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ End ofproof

