
Video for Homework H05.2 on Concepts from Section 5.2 Induction 

 

Closed form Expressions of Sums 

• Introducing Closed Form Expressions for two important sums 

o Sum of the first 𝑛 positive integers 

o Sum of a Geometric Sequence 

• Using the Closed Form Expressions of Sums 

• Using Arithmetic to Prove the Closed Form Expressions for Sums 

 

The Principle of Induction 

 

Using the Principle of Induction to prove the closed form expressions for sums. 

o Sum of the first 𝑛 positive integers 

o Sum of the first 𝑛 positive perfect squares 

  



 

Closed form Expressions of Sums 

 

Sum of the first 𝒏 positive integers 

 

It is known that the following equation is true 

 

Formula for the sum of the first 𝒏 positive integers 

If 𝑛 ≥ 1, then 

1 + 2 + 3 +⋯+ 𝑛 = ∑ 𝑘

𝑘=𝑛

𝑘=1

=
𝑛(𝑛 + 1)

2
 

 

  



[Example 1] Consider the following quantity 

𝑆 = 1 + 2 + 3 +⋯+ 7 

(a) Compute 𝑆 directly by finding the sum. 

(b) Compute 𝑆 by using the formula 𝑆 =
𝑛(𝑛 + 1)

2
 

In both (a) and (b), count the number of operations used to compute 𝑆. 

 

 

 

 

  



[Example 2] Consider the following quantity 

𝑆 = 1 + 2 + 3 +⋯+ 200 

(a) Compute 𝑆 directly by finding the sum. 

(b) Compute 𝑆 by using the formula 𝑆 =
𝑛(𝑛 + 1)

2
 

In both (a) and (b), count the number of operations used to compute 𝑆. 

 

  



[Example 3] Consider the following quantity 

𝑆 = 1 + 2 + 3 +⋯+ 𝑛 

(a) How many operations are required to compute 𝑆 directly by finding the sum? 

(b) How many operations are required to compute 𝑆 by using the formula 𝑆 =
𝑛(𝑛 + 1)

2
? 

 

 

 

 

  



Definition of Closed Form Expression 

A closed form expression is a mathematical expression that involves a known 

(finite) number of standard operations. 

 

Notice that the expression  1 + 2 + 3 +⋯+ 𝑛  contains 𝑛 − 1 operations. This is a finite but 

unknown number. So the expression is not a closed form expression. 

 

But the expression 
𝑛(𝑛+1)

2
 contains exactly three operations. It is a closed form expression.  

 

The equation 1 + 2 + 3 +⋯+ 𝑛 =
𝑛(𝑛+1)

2
 gives us a closed form expression for computing 

the value of the sum. The equation is useful because 

• When 𝑛 is known, the formula enables us to compute the value of the sum with fewer 

operations, as in [Examples 1,2]. 

• When 𝑛 is unknown, the equation enables us to replace the sum that has an unknown 

number of operations with an expression that has a known (finite) number of operations. 



Another equation giving a closed form expression that is equal to a sum: 

 

Formula for the Sum of a Geometric Sequence 

If 𝑟 ∈ 𝑹, 𝑟 ≠ 0,1 and 𝑛 ≥ 0, then 

1 + 𝑟 + 𝑟
2
+ 𝑟

3
+ ⋯+ 𝑟

𝑛
= ∑ 𝑟

𝑘

𝑘=𝑛

𝑘=0

=
𝑟
𝑛+1

− 1

𝑟 − 1
 

 

 

 

 

  



[Example 4] Consider the following quantity 

𝑆 = 1 + 2 + 4 +⋯+ 64 

(a) Compute 𝑆 directly by finding the sum. 

(b) Compute 𝑆 by using the formula 𝑆 =
𝑟
𝑛+1

− 1

𝑟 − 1
 

 

  



[Example 5] Consider the following quantity 

𝑆 = 1 +
1

2
+
1

4
+
1

8
 

(a) Compute 𝑆 directly by finding the sum. 

(b) Compute 𝑆 by using the formula 𝑆 =
𝑟
𝑛+1

− 1

𝑟 − 1
 

 

  



Using the formulas for the standard sums to find values for sums that are not standard 

 

[Example 6] (a) Find the sum  15 + 20 + 25 +⋯+ 2000 

 

 

 

 

 

  



(b) Find the sum 18 + 54 + 162 +⋯+ 13122 

 

  



Using Arithmetic to Prove the Closed Form Expressions for Sums 

 

Some closed form expressiong for sums can be proved easily, using arithmetic. 

 

[Example 7] Prove the formula for the sum of the first 𝑛 positive integers 

If 𝑛 ≥ 1, then 

1 + 2 + 3 +⋯+ 𝑛 = ∑ 𝑘

𝑘=𝑛

𝑘=1

=
𝑛(𝑛 + 1)

2
 

 

  



[Example 8] Prove the formula for the sum of a geometric sequence 

If 𝑟 ∈ 𝑹, 𝑟 ≠ 0,1 and 𝑛 ≥ 0, then 

1 + 𝑟 + 𝑟
2
+ 𝑟

3
+ ⋯+ 𝑟

𝑛
= ∑ 𝑟

𝑘

𝑘=𝑛

𝑘=0

=
𝑟
𝑛+1

− 1

𝑟 − 1
 

 

 

 

  



But some equations that give closed form expressiong for sums must be proven using the 

Principle of Induction. 

 

New Rule of Inference: The Principle of Induction 

𝑃(𝑎)is true 

For all integers 𝑘 ≥ 𝑎 if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is true. 

∴ For all integers 𝑛 ≥ 𝑎, 𝑃(𝑛) is true. 

Usage: 

• The letter 𝑎 represents some fixed integer. 

• The letters 𝑘 and 𝑛 represent variables whose domain is the set of all integers greater 

than or equal to 𝑎. 

• The symbol 𝑃(𝑛) represents a predicate. 

 

This new rule of inference will be used to prove statements of the form  

 

Statement 𝑆:  For all integers 𝑛 ≥ 𝑎, 𝑃(𝑛) is true.  



Strategy for using the Principle of Induction 

 

Preliminary work: 

• Identify the number playing the role of 𝑎. (Introduce it.) 

• Identify the predicate 𝑃(𝑛). (Introduce it in a sentence.) 

• Figure out what the expressions for 𝑃(𝑎), 𝑃(𝑘), 𝑃(𝑘 + 1) look like. (Write them down.) 

 

  



Build a proof of Statement 𝑺 using the following structure: 

 

Proof of Statement S: 

Basis Step: Prove that 𝑃(𝑎) is true. 

A bunch of steps may be involved. Usually a computation. 

Inductive Step: Prove that for all integers 𝑘 ≥ 𝑎 if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is true. 

Proof for Inductive Step (Direct Proof) 

(1) Suppose that 𝑘 is an integer such that 𝑘 ≥ 𝑎 and that 𝑘 ≥ 𝑎 is true. 

* 

*   a bunch of steps will be involved 

* 

(**) 𝑃(𝑘 + 1) is true. (some justification goes here.) 

End of Proof for the Inductive Step 

Conclusion: Therefore, for all integers n ≥ a, P(n) is true. (by the Principle of Induction) 

End of Proof of Statement 𝑺 

 



[Example 9] Use the Method of Induction to prove the formula for the sum of the first 𝑛 

positive integers. (This is presented as Theorem 5.2.1 on p.280 of the book.) 

 

∀𝑛 ∈ 𝒁, 𝑛 ≥ 1(1 + 2 + 3 +⋯+ 𝑛 =
𝑛(𝑛 + 1)

2
) 

 

  









In the book on page 283, you can see a proof, using the Principle of Induction, of the formula 

for the sum of a geometric sequence. (Theorem 5.2.2) 

 

If 𝑟 ∈ 𝑹, 𝑟 ≠ 0,1 then 

∀𝑛 ∈ 𝒁, 𝑛 ≥ 0(1 + 𝑟 + 𝑟
2
+ 𝑟

3
+ ⋯+ 𝑟

𝑛
=
𝑟
𝑛+1

− 1

𝑟 − 1
) 

 

  



[Example 10] Use the Method of Induction to prove the formula for the sum of the first 𝑛 

positive perfect squares. 

∀𝑛 ∈ 𝒁, 𝑛 ≥ 1(1
2
+ 2

2
+ 3

2
+ ⋯+ 𝑛

2
=
𝑛(𝑛 + 1)(2𝑛 + 1)

6
) 

 

 

  










