Video for Homework H05.2 on Concepts from Section 5.2 Induction

Closed form Expressions of Sums
e Introducing Closed Form Expressions for two important sums
o Sum of the first n positive integers
o Sum of a Geometric Sequence
e Using the Closed Form Expressions of Sums

e Using Arithmetic to Prove the Closed Form Expressions for Sums

The Principle of Induction

Using the Principle of Induction to prove the closed form expressions for sums.
o Sum of the first n positive integers

o Sum of the first n positive perfect squares



Closed form Expressions of Sums

Sum of the first n positive integers
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It 1s known that the following equation is true

Formula for the sum of the first n positive integers
If n > 1, then
k=n

1+2+3+~--+n=2k
k=1

_n(n+1)
=———




[Example 1] Consider the following quantity
S=1+2+3+--+7
(a) Compute S directly by finding the sum.

nn+1)
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In both (a) and (b), count the number of operations used to compute S.
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(b) Compute S by using the formula § =

(\?3 %t‘ 7(7'}’1\: 13 — ﬁ :;% ‘\'\,\((5 g()&mfh:u\j
. 7 F




[Example 2] Consider the following ' N=9.0)
@+2+3+---+200

(a) Compute S directly by finding the sum.
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In both (a) and (b), count the number of operations used to compute S.
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(b) Compute S by using the formula § =




[Example 3] Consider the following quantity
S=1+2+4+3+-+n

(a) How many operations are required to compute S directly by finding the sum?
nn+1) )

(b) How many operations are required to compute S by using the formula § = >
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Definition of Closed Form Expression
A closed form expression is a mathematical expression that involves a known

(finite) number of standard operations.

Notice that the expression 1+ 2 + 3 + --- +n contains n — 1 operations. This is a finite but

unknown number. So the expression is not a closed form expression.

nn+1

But the expression ) contains exactly three operations. It is a closed form expression.

The equation 1 +2 +3 + -+ n = "(nz+1)

gives us a closed form expression for computing

the value of the sum. The equation is useful because
e When n is known, the formula enables us to compute the value of the sum with fewer
operations, as in [Examples 1,2].
e When n is unknown, the equation enables us to replace the sum that has an unknown

number of operations with an expression that has a known (finite) number of operations.



Another equation giving a closed form expression that is equal to a sum:

Formula for the Sum of a Geometric Sequence

Ifre R,r # 0,1 and n = 0, then

l+r+r2+r3+.4+r"= ) rk=
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[Example 4] Consider the following quantity / =L GH = l So N :7

S=1+2+4+---+@

(a) Compute S directly by finding the sum.
rn+1 —1
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(b) Compute S by using the formula § =




[Example 5] Consider the following quantity
G- 1\ 1
B 4

3
- \__ l\ $o N 5
(a) Compute S directly by finding the sum. - 1
(b) Compute S by using the formula § = e _1 1
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Using the formulas for the standard sums to find values for sums that are not standard
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[Example 6] (a) Find the sum 15 + 20 + 25 + --- 4+ 2000

S= 1yt uray+ 0 £2000
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(b) Find the sum 18 + 54 + 162 + -+ + 13122
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Using Arithmetic to Prove the Closed Form Expressions for Sums

——

Some closed form expressiong for sums can be proved easily, using arithmetic.
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[Example 7] Prove the formula for the sum of the first n positive integers

Ifn > 1, then
k=n

1+2+3+~~+n=zk
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[Example 8] Prove the formula for the sum of a geometric sequence

IfreR,r # 0,1 andn = 0, then
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But some equations that give closed form expressiong for sums must be proven using the

Principle of Induction.

New Rule of Inference: The Principle of Induction
P(a)is true
For all integers k > a if P(k) is true, then P(k + 1) is true.
~ For all integers n = a, P(n) is true.
Usage:
e The letter a represents some fixed integer.
e The letters k and n represent variables whose domain is the set of all integers greateq|
than or equal to a.

e The symbol P(n) represents a predicate.

This new rule of inference will be used to prove statements of the form

Statement S: For all integers n = a, P(n) is true.



Strategy for using the Principle of Induction

Preliminary work:
e Identify the number playing the role of a. (Introduce it.)
e Identify the predicate P(n). (Introduce it in a sentence.)

e Figure out what the expressions for P(a), P(k), P(k + 1) look like. (Write them down.)



Build a proof of Statement S using the following structure: .
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Proof of Statement S: ’Y\l\& ’_\:A"'“d—w
Basis Step: Prove that P(a) is true.

A bunch of steps may be involved. Usually a compuytation.

Inductive Step: Prove that for all integers k > a )f @ 1S true), then@+ 1) is true/
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Proof for Inductive Step (Direct Proof) o
(1) Suppose that k is an integer such that k > a and thatpga 1s true. eaenc
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* a bunch of steps will be involved

%k

(**) P(k + 1) is true. (some justification goes here.)

End of Proof for the Inductive Step
Conclusion: Therefore, for all integers n > a, P(n) is true. (by the Principle of Induction)

End of Proof of Statement S



[Example 9] Use the Method of Induction to prove the formula for the sum of the first n
positive integers. (This is presented as Theorem 5.2.1 on p.280 of the book.)
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In the book on page 283, you can see a proof, using the Principle of Induction, of the formula

for the sum of a geometric sequence. (Theorem 5.2.2)

Ifr € R,r # 0,1 then
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[Example 10] Use the Method of Induction to prove the formula for the sum of the first n

positive perfect squares.
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