Video for Homework H08.1

Reading: Section 8.1 Relations on Sets

Homework: H08.1: 8.1\# 4,6,7,9,11,17,20

Topics:

- Definition of Relation on a Set
- Illustrating Relations on Finite Sets
- Using Tables
- Using Arrow Diagrams
- Using Diricted Graphs Directed Graphs
- Inverse Relations
- Unions and Intersections of Relations

Ordered Pairs, definition from Chapter 1

Notation

Given elements a and b, the symbol (a, b) denotes the ordered pair consisting of a and b together with the specification that a is the first element of the pair and b is the second element. Two ordered pairs (a, b) and (c, d) are equal if, and only if, $a=c$ and $b=d$. Symbolically:

$$
(a, b)=(c, d) \quad \text { means that } \quad a=c \text { and } b=d .
$$

The Cartesian Product of Sets, definition from Chapter 1

Definition

Given sets $A_{1}, A_{2}, \ldots, A_{n}$, the Cartesian product of $A_{1}, A_{2}, \ldots, A_{n}$, denoted $\boldsymbol{A}_{\mathbf{1}} \times \boldsymbol{A}_{\mathbf{2}} \times \cdots \times \boldsymbol{A}_{\boldsymbol{n}}$, is the set of all ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{1} \in A_{1}$, $a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}$.

Symbolically:

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\} .
$$

In particular,

$$
A_{1} \times A_{2}=\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in A_{1} \text { and } a_{2} \in A_{2}\right\}
$$

is the Cartesian product of A_{1} and A_{2}.

Definition of Relation, from Section 1.3

Definition

Let A and B be sets. A relation \boldsymbol{R} from \boldsymbol{A} to \boldsymbol{B} is a subset of $A \times B$. Given an ordered pair (x, y) in $A \times B, \boldsymbol{x}$ is related to \boldsymbol{y} by \boldsymbol{R}, written $x R y$, if, and only if, (x, y) is in R. The set A is called the domain of R and the set B is called its co-domain.

The notation for a relation R may be written symbolically as follows:

$$
\boldsymbol{x} \boldsymbol{R} \boldsymbol{y} \quad \text { means that }(x, y) \in \boldsymbol{R} .
$$

The notation $x \not R y$ means that x is not related to y by R :

$$
\boldsymbol{x} \boldsymbol{R} \boldsymbol{y} \quad \text { means that } \quad(x, y) \notin \boldsymbol{R} .
$$

Definition of Relation on a Set, Section 8.1

Definition

A relation on a set A is a relation from A to A.
[Example 1] (8.1\#15) Let $A=\{2,3,4,5,6,7,8\}$
Define a relation R on A by saying that $x R y$ means x and y have a common prime factor (a) Is $2 R 6$?
yes. $2+6$ have a common prime factor of 2 Is $6 R 2$? yes. $6+2$ have a common prime factor of 2 . Is 5R5? yes! $5 * 5$ both have a prime factor of 5 .
I2R5. No. $2 \sigma 5$ do not have any common prime factors.
Describe R explicitly by listing its elements in set roster notation.

$$
\begin{aligned}
& \text { Describe } R \text { explicitly by listing its elements in set roster notation. } \\
& \left\{\begin{array}{l}
(2,2),(2,4),(2,6),(2,8),(3,3),(4,2),(4,4),(4,6),(4,8),(5,5) \\
(6,2),(6,4),(6,6),(6,8),(7,7),(3,6),(6,3) \\
(8,2),(8,4),(8,6),(8,8)\}
\end{array}\right.
\end{aligned}
$$

Illustrating Relations on Finite Sets Using Tables
(b) Illustrate R from [Example 1] using a table
$\left(a_{1}, a_{2}\right)$

$\left(a_{1}, a_{2}\right.$	2	3	4	5	6	7	8	
2	x		x		x		x	
3		x			x			
4	x		x		x		x	
5				x				
6	x	x	x		x		x	
7						x		
8	x		x		x		x	

Illustrating Relations on Finite Sets Using Arrow Diagrams

Arrow Diagram of a Relation

Suppose R is a relation from a set A to a set B. The arrow diagram for \boldsymbol{R} is obtained as follows:

1. Represent the elements of A as points in one region and the elements of B as points in another region.
2. For each x in A and y in B, draw an arrow from x to y if, and only if, x is related to y by R. Symbolically:
```
Draw an arrow from }x\mathrm{ to }
    if, and only if, }\quad\boldsymbol{x}\boldsymbol{R}\boldsymbol{y
    if, and only if, }\quad(x,y)\inR
```


Illustrating Relations on Finite Sets Using Directed Graphs

When a relation R is defined on a set A, the arrow diagram of the relation can be modified so that it becomes a directed graph. Instead of representing A as two separate sets of points, represent A only once, and draw an arrow from each point of A to each related point. As with an ordinary arrow diagram,

For all points x and y in A,

$$
\text { there is an arrow from } x \text { to } y \quad \Leftrightarrow x R y \quad \Leftrightarrow \quad(x, y) \in R \text {. }
$$

If a point is related to itself, a loop is drawn that extends out from the point and goes back to it.

[Example 2] (8.1\#18) Let $A=0,1,3,4,5,6$
Define a relation V on A by saying that $x V y$ means $5 \mid\left(x^{2}-y^{2}\right)$
(a) Describe V explicitly by listing its elements in set roster notation.
$0^{2}-0^{2}=0$, and $0=5.0$ so $5\left(0^{2}-0^{2}\right)$

$$
\text { Similarly }(1,)),(3,3),(4,4),(5,5),(6,6) \in V
$$

$5 \mid\left(5^{2}-0^{2}\right)$ and $5 \mid\left(0^{2}-5^{2}\right)$ So $(5,0)$ and $(0,5) \in V$
$5 \mid\left(4^{2}-1^{2}\right)$ and $5 \mid\left(1^{2}-4^{2}\right) \quad(4,1)$ and $(1, y) \in V$
3 is not related to anything

$$
\begin{aligned}
& 3 \mid\left(6^{2}-4^{2}\right) \text { and } 5\left(\left(4^{2}-6^{2}\right) \text { so }(6,4) \text { and }(4,6) \in V\right. \\
& 5\left(\left(6^{2}-1^{2}\right) \text { and } 5 \mid\left(1^{2}-6^{2}\right) \text { so }(6,1) \text { and }(1,6) \in V\right. \\
& V=\{(0,0),(0,5),(1,1),(1,4),(1,6),(3,3),(4,1),(4,4))(4,6),(5,0)((5,5),(6,1),(6,9),(6,6)\}
\end{aligned}
$$

(c) Illustrate V using an arrow diagram

$$
\begin{aligned}
& 8 \\
& 0 \\
& 5 \\
& 5
\end{aligned}
$$

Relations on sets that are described abstractly, rather than listed explicitly
[Example 3] Let $X=\{a, b, c\}$.
Recall that $\mathcal{P}(X)$ denotes the power set of X, which is the set of all subsets of X.
Define relation S on $\mathcal{P}(X)$ by saying that
$A \boldsymbol{S} B$ means that set A has the same number of elements as set B
(a) Is $\{c\} S\{b]$? yes because each set has I element.
(b) Is $\{c\}\{(b, c\}$? no! The set $\{c\}$ has element . The set $\{b, c\}$ has 2 .
(c) Is $X S X$? Yes. X has same number of clements as itself.
(d) Is $\phi \boldsymbol{S} \phi$? frae because $O=0$.
ϕ is the empty Set. Number of verenats in ϕ is 0 .

Inverse Relations

Definition

Let R be a relation from A to B. Define the inverse relation R^{-1} from B to A as follows:

$$
R^{-1}=\{(y, x) \in B \times A \mid(x, y) \in R\} .
$$

$R^{-1} \subseteq B \times A$
This definition can be written operationally as follows:

For all $x \in A$ and $y \in B, \quad(y, x) \in R^{-1} \quad \Leftrightarrow \quad(x, y) \in R$.
[Example 4] (8.1\#10) Let $A=\{3,4,5\}$ and $B=\{4,5,6\}$
Let R be the "less than relation" from A to B. That is, $x R y$ means $x<y$
(a) State explicitly which ordered pairs are in R and R^{-1} using set roster notation.

$$
\begin{aligned}
A & =(3,4,5) \quad B=(4,5,6) \\
R & =\{(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)\} \\
R^{-1} & =\{(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)\}
\end{aligned}
$$

$y R^{-1} x$	3	4	5
4	x		
5	x	x	
6	x	x	x

(c) Illustrate R and R^{-1} using arrow diagrams

Unions and Intersections of Relations
[Example 5] (8.1\#19) Let $A=\{2,4\}$ and $B=\{6,8,10\}$
Define relations R and S from A to B as follows.
Define relation R by saying that $x R y$ means $x \mid y$
Define relation S by saying that $x R y$ means $y-4=x$

$$
\begin{aligned}
& \text { State Explicitly what ordered pairs are in } A \times B, R, S, R \cup S, \text { ar dR } \\
& A \times B=\{(2,6),(2,8),(4,10),(4,6),(4,8),(4,0)\} \\
& R=\{(2,6),(2,8),(2,10),(4,8)\} \\
& S=\{(2,6),(4,8)\} \\
& R \cup S=R=\{(2,6),(2,8),(2,10),(4,8)\} \\
& R \cap S=S=\{(2,6),(4,8)\}
\end{aligned}
$$

