Video for Homework H08.2

Reading: Section 8.2 Reflexivity, Symmetry, Transitivity

Homework: H08.2: 8.2\#2,4,17,26,35

Topics:

- Definition of Reflexive, Symmetric, and Transitive Relations
- Lots of examples of verifying those properties for given relations
- Proving or disproving abstract statements about those properties

Ordered Pairs, definition from Chapter 1

Notation

Given elements a and b, the symbol (a, b) denotes the ordered pair consisting of a and b together with the specification that a is the first element of the pair and b is the second element. Two ordered pairs (a, b) and (c, d) are equal if, and only if, $a=c$ and $b=d$. Symbolically:

$$
(a, b)=(c, d) \quad \text { means that } \quad a=c \text { and } b=d
$$

The Cartesian Product of Sets, definition from Chapter 1

Definition

Given sets $A_{1}, A_{2}, \ldots, A_{n}$, the Cartesian product of $A_{1}, A_{2}, \ldots, A_{n}$, denoted $\boldsymbol{A}_{\mathbf{1}} \times \boldsymbol{A}_{\mathbf{2}} \times \cdots \times \boldsymbol{A}_{\boldsymbol{n}}$, is the set of all ordered n-tuples ($a_{1}, a_{2}, \ldots, a_{n}$) where $a_{1} \in A_{1}$, $a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}$.

Symbolically:

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, a_{2} \in A_{2}, \ldots, a_{n} \in A_{n}\right\}
$$

In particular,

$$
A_{1} \times A_{2}=\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in A_{1} \text { and } a_{2} \in A_{2}\right\}
$$

is the Cartesian product of A_{1} and A_{2}.

Definition of Relation, from Section 1.3

Definition

Let A and B be sets. A relation \boldsymbol{R} from \boldsymbol{A} to \boldsymbol{B} is a subset of $A \times B$. Given an ordered pair (x, y) in $A \times B, \boldsymbol{x}$ is related to \boldsymbol{y} by \boldsymbol{R}, written $x R y$, if, and only if, (x, y) is in R. The set A is called the domain of R and the set B is called its co-domain.

The notation for a relation R may be written symbolically as follows:

$$
x \boldsymbol{R} \boldsymbol{y} \quad \text { means that }(x, y) \in \boldsymbol{R}
$$

The notation $x \not R y$ means that x is not related to y by R :

$$
x \not \boldsymbol{R} y \quad \text { means that } \quad(x, y) \notin R .
$$

Definition of Relation on a Set, Section 8.1

Definition

A relation on a set A is a relation from A to A.
a relation R from A to A

$$
\text { is a subset, } R \subseteq A \times A
$$

Inverse Relations

Definition

Let R be a relation from A to B. Define the inverse relation R^{-1} from B to A as follows:

$$
R^{-1}=\{(y, x) \in B \times A \mid(x, y) \in R\} .
$$

This definition can be written operationally as follows:
For all $x \in A$ and $y \in B, \quad(y, x) \in R^{-1} \quad \Leftrightarrow \quad(x, y) \in R$.

In Section 8.2, we will study three properties that relations may or may not have

Definition of a Reflexive Relation

Words: Relation R on set A is reflexive
Meaning: Every element of A is related to itself.
Meaning Written Formally:
using $\boldsymbol{x} \boldsymbol{R} \boldsymbol{y}$ notation: $\forall a \in A(a R a)$
using ordered pair notation: $\forall a \in A((a, a) \in R)$
Words: R is not reflexive
Meaning: There exists an element of A that is not related to itself.
Meaning Written Formally:
using x Ry notation: $\exists a \in A(R a) \quad(a \nless a)$
using ordered pair notation: $\exists a \in A((a, a) \notin R)$

Definition of a Symmetric Relation

Words: Relation R on set A is symmetric
Meaning: If one element of A is related to any second element of A, then the second element is also related to the first.

Meaning Written Formally:
using $\boldsymbol{x R y}$ notation: $\forall a, b \in A(I f a R b$ then $b R a)$
using ordered pair notation: $\forall a \in A(\operatorname{If}(a, b) \in R$ then $(b, a) \in R)$
Words: R is not symmetric $\forall a, b \in A$

Meaning: There exist two elements of A such that the first is related to the second but the second is not related to the first.

Meaning Written Formally:
using $x \boldsymbol{R} \boldsymbol{y}$ notation: $\exists a, b \in A(a R b$ and $b R a)$

using ordered pair notation: $\exists a, b \in A((a, b) \in R$ and $(a, a) \notin R)$

Definition of a Transitive Relation

Words: Relation R on set A is transitive
Meaning: If one element of A is related to any second element and that second element is related to any third element, then the first element is also related to the third Meaning Written Formally:
using x Ry notation: $\forall a, b, c \in A(I f(a R b$ and $b R c)$ then $a R c$)
using ordered pair notation:

$$
\forall a, b, c \in A(\operatorname{If}((a, b) \in R \text { and }(b, c) \in R) \text { then }(a, c) \in R)
$$

Words: R is not transitive
Meaning: There exist three elements of A such that the first is related to the second and the second is related to the third, but the first is not related to the third.
Meaning Written Formally:
using $x \boldsymbol{R} \boldsymbol{y}$ notation: $\exists a, b, b \in A((a R b$ and $b R c)$ and $a R c)$
using ordered pair notation:

$$
\exists a, b, c \in A(((a, b) \in R \text { and }(b, c) \in R) \text { and }(a, c) \notin R)
$$

[Example 1] $A=\{0,1,2,3\}$ Define relation R on A by $R=\{(2,3),(3,2)\}$
(a) Illustrate R using a table and a directed graph.

$$
\begin{aligned}
& 01 \\
& 3 \longmapsto 2
\end{aligned}
$$

(b) Is R reflexive? If not, give a counterexample.

No 1 is not related to itself
(c) Is R symmetric ? If not, give a counterexample.
yes symmetric
(d) Is R transitive? If not, give a counterexample.
obscure $2 R_{3}$ and $3 R_{2}$ but $2 \nless 2$
not transitive
[Example 2] $A=\{0,1,2,3\}$ Define relation R on A by $R=\{(0,0),(0,1),(0,2),(1,2)\}$
(a) Illustrate R using a table and a directed graph.

(b) Is R reflexive? If not, give a counterexample.
no 1 is not related to itself
(c) Is R symmetric ? If not, give a counterexample.
no oRT bat
(d) Is R transitive? If not, give a counterexample. yes transitive
[Example 3] $A=\{0,1,2,3\}$ Define relation R on A by $R=\{(0,0),(1,1)\}$
(a) Illustrate R using a table and a directed graph.

Go
(b) Is R reflexive? If not, give a counterexample.
no 2 is not related to itself (c) Is R symmetric ? If not, give a counterexample.
yes table is symmetric across the min dragons (d) Is R transitive? If not, give a counterexample.
yes R is transitive. There are no examples that show it failing to be transitive
[Example 4] Define relation R on \boldsymbol{R} by sain $x R y$ means $x-y=2$
(a) Illustrate R using a graph.

$$
\begin{aligned}
& y=x-2 \\
& 3=5-2
\end{aligned}
$$

(b) Is R reflexive? If not, give a counterexample.
no 1 is not related to 1
$1=1-2$ is false
(c) Is R symmetric ? If not, give a counterexample.
$(5,3)$ is on the graph but $(3,5)$ is not
So R is not symmetric
(d) Is R transitive? If not, give a counterexample.
no $(7,5) \in R$ and $(5,3) \in R$ bat $(7,3) \notin R$

$$
\begin{array}{lll}
5=7-2 \\
7 R^{5}
\end{array} \quad \text { and } \begin{aligned}
3=5-2 \\
5 R^{2}
\end{aligned} \quad \text { but } \gg R^{3} 3
$$

[Example 5] Define relation R o R by saying $x R y$ mean $x<y$

(b) Is R reflexive? If not, give a counterexample.
no I is not related to itself
(c) Is R symmetric ? If not, give a counterexample.

$$
\Lambda 0(0,2) \in R b_{u} T(2,0) \notin R
$$

$0<2$ is true $2<0$ is false
(d) Is R transitive? If not, give a counterexample.
yes if $a<b$ and $b<c$ then $b<c$
[Example 6] Define relation R on \boldsymbol{R} by saying $x R y$ means $x^{2}+y^{2}=1$
(a) Illustrate R using a graph.

(b) Is R reflexive? If not, give a counterexample.
no O is not related to itself $(0,0)$ is not on the graph
(c) Is R symmetric ? If not, give a counterexample.
yes the graph is symmetric across the main diagonal If $x^{2}+y^{2}=1$ then $y^{2}+x^{2}=1$ If $x R_{y}$ then $y R x$
(d) Is R transitive? If not, give a counterexample.
no $(1,0) \in R$ and $(0,1) \in R$ but $(1,1) \notin R$ IR O and ORI but |X|
[Example 7] Define relation R on R by saying $x R y$ means $x y=0$
(a) Illustrate R using a graph.
this any happens when $x=0$ or $y=0$

(b) Is R reflexive? If not, give a counterexample.
no $(1,1)$ is not on the graph $\mid R 1 \quad 1 \cdot 1 \neq 0$
(c) Is R symmetric ? If not, give a counterexample.
yes symmetric If $x y=0$ then $y x=0$ If $x R y$ then $y R x$
(d) Is R transitive? If not, give a counterexample.
no $(1,0) \in R$ and $(0,1) \in R$ but $(1,1) \notin R$
$1.0=0$ and $0.1=0$ ant $1.1 \neq 0$
\mathbb{R}_{0} am ORI but IP E:
[Example 8] Define relation R on \boldsymbol{R} by saying $x R y$ means $x y \neq 0$
(a) Illustrate R using a graph.
$\overline{\text { nether }} \times$ nor y is zero

(b) Is R reflexive? If not, give a counterexample.

No! $(0,0) \notin R \quad 0$ is not related to itself. $0.0 \neq 0$ is false!!
(c) Is R symmetric ? If not, give a counterexample.
is fate!?
y es. if $x y \neq 0$ then $y x \neq 0$ so if $x R_{y}$ then $y R x$
(d) Is R transitive? If not, give a counterexample.
yes If $x y \neq 0$ and $y z \neq 0$ then $x z \neq 0$ neither arezers neither are zees weave hath are nor ers If $x R y$ and $y R z$ then $x R z$.
[Example 9] Prove or disprove: If a relation R on a set A is reflexive, then R^{-1} is reflexive.
True
(1) Suppose R is a relation on set A and R is Reflexive
(2) Suppose $a \in A$
(3) Then aRa is tree (by (1) and definition of retericio)
(4) Therefore a $R^{-1} a$ is true ($h_{y}(3)$ and dot ot R^{-1})
(5) for all $a \in A$, a R^{-1} a 15^{\prime} true (by (2)am (4)
(6) Therefore R^{-1} is Reflexive $\operatorname{by}(s)$ and deft End of Proof. of redierive)
[Example 10] Prove or disprove: If a relation R on a set A is transiive, then R^{-1} is transitive.
Proof
(1) Suppose that relation R on set A is trastiots (generic portionlan element)
(2) If $c R b$ and $b R a$ then $c R_{a}(b y(1) a n d)$
(3) If $b R a$ and $c R b$ then $c R a$ cor $A N D$
(4) If $a R^{-1} b$ and $b R^{-1} c$ then $a R^{-1} c\left(\begin{array}{c}b y(3) d \text { and } \\ \text { and } \\ o f R^{-1}\end{array}\right)$ (5) Therefore R^{-1} is transitive (byc4) and detinctios End of Proof

