Day 14 (Wed Feb 8) MATH 2301 (Barsamian)

Sit in Pairs

Exam XI on Friday Covers through Seexin 2.2

Today! Continuing Section 2.2 The Derivative
as a function

[Example] (if $f(x) = x^2 - 2x - 3$

find f'(x) using the Definition of the Derivative

Solution: We need to build this limit

S'(x) = lim S(x+h) - f(x) h-ro

and find its value

Get Parts $f(x) = x^2 - 2x - 3$ $f(x) = (x^2 - 2x) - 3$ empty version $f(x+h) = (x+h)^2 - 2(x+h) - 3$ $= x^2 + 2xh + h^2 - 2x - 2h - 3$ Build the limit & find its value f(x) = lm (x3+2x1+h2-2x2h-3) = lm K(2x+h-2) = h ro K 5, rue h ro, we know h to, so we can cancel h

= lm 2x+h-2

no lunger indeterminat

2x+(0)-2

= 2x-2

(F)

MATH 2301 (Barsamian) Class Activity

The goal: Given the graph of f on the top axes on the next page, make a graph of f' on the bottom axes.

On the graph of f', the input will be x and the output will be f'(x). Remember the graphical interpretation of f'(x):

Definition of the *Derivative*

- symbol: f'(a)
- graphical interpretation: f'(a) is the number that is the slope of the line tangent to the graph of f at the point where x = a.

Part 1: Prepare the data for your graph of f' by filling out the following table.

	x	what to do on the graph of f	f'(x)
\rightarrow	0	Draw the line tangent to the graph of f at the point where $x = 0$ and find its slope m . This slope m will be the value of $f'(0)$.	0
->	1	Draw the line tangent to the graph of f at the point where $x = 1$ and find its slope m . This slope m will be the value of $f'(1)$.	0
>	2	Draw the line tangent to the graph of f at the point where $x = 2$ and find its slope m . This slope m will be the value of $f'(2)$.	3/2
\rightarrow	3	Draw the line tangent to the graph of f at the point where $\underline{x} = 3$ and find its slope m . This slope m will be the value of $f'(3)$.	33
	4	Draw the line tangent to the graph of f at the point where $x = 4$ and find its slope m . This slope m will be the value of $f'(4)$.	
	5	Draw the line tangent to the graph of f at the point where $x = 5$ and find its slope m . This slope m will be the value of $f'(5)$.	0
	6	Draw the line tangent to the graph of f at the point where $x = 6$ and find its slope m . This slope m will be the value of $f'(6)$.	-1
	7	Draw the line tangent to the graph of f at the point where $x = 7$ and find its slope m . This slope m will be the value of $f'(7)$.	-3
	8	Draw the line tangent to the graph of f at the point where $x = 8$ and find its slope m . This slope m will be the value of $f'(8)$.	-32
	9	Draw the line tangent to the graph of f at the point where $x = 9$ and find its slope m . This slope m will be the value of $f'(9)$.	0
	10	Draw the line tangent to the graph of f at the point where $x = 10$ and find its slope m . This slope m will be the value of $f'(10)$.	0

Part 2 is on the next page.

MATH 2301 (Barsamian) Class Activity Which is the Function; Which is the Derivative? In each drawing, one curve is f; the other is f'. Label them.

