Class Drill: Computing Definite Integrals by Using Geometry

[1] For the integral $\int_{x=2}^{x=8}\left(\frac{1}{2}\right) x-2 d x$
(a) Graph the integrand.
(b) Shade the region between the graph of $f(x)$ and the x axis that corresponds to the integral. (Shade the regions above the x axis one color and the regions below the axis a different color.)
(c) Use geometric formulas to find areas of the shaded shapes. Then find the value of the integral.
[2] For the integral $\int_{x=6}^{x=11} \sqrt{25-(x-6)^{2}} d x$
(a) Graph the integrand.
(b) Shade the region between the graph of $f(x)$ and the x axis that corresponds to the integral. (Shade the regions above the x axis one color and the regions below the axis a different color.)
(c) Use geometric formulas to find areas of the shaded shape.

Hint:

- The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ describes a circle centered at (a, b) with radius r.
- The equation $(x-a)^{2}+y^{2}=r^{2}$ describes a circle centered on the x axis at $(a, 0)$ with radius r.
- The equation $y=\sqrt{r^{2}-(x-a)^{2}}$ describes the upper semicircle of a circle centered on the x axis at $(a, 0)$ with radius r.

