(a) In the triangle shown, find an equation for the slope m of the hypotenuse in terms of the lengths a and b.
$m=$

(b) Solve the equation for a in terms of m and b :
$a=$
(c) In the triangle shown, the upper right vertex lies on the graph of f.

How tall is the right leg?
$b=$

(d) Suppose that the hypotenuse of the triangle is known to lie on the line that's tangent to the graph of f at the point where $x=x_{1}$

What is the hypotenuse slope m ?

$m=$
(e) For the same triangle, what is the base Δx ?
$\Delta x=a=$

(f) For the same triangle, what is the x coordinate x_{2} ?
$x_{2}=$

The Class Drill continues on the next page \rightarrow

Newton's Method

Given: A function f that is differentiable on an interval I and that has a root in I. That is, it is known that there exists a number r somewhere in I such that $f(r)=0$.
Goal: Find an approximate value for the root r, accurate to d decimal places.
Step 1: Choose a value x_{1} as an initial approximation of the root. (This is often done by looking at a graph.)
Step 2: Create successive approximations iteratively, as follows:
Given an approximation x_{n}, compute the next approximation x_{n+1} by using the formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Step 3: Stop the iterations when successive approximations do not differ in the first d places after the decimal point. The last x value computed is the approximation of r.

Let $f(x)=x^{2}-3$. Observe that the graph of $f(x)$ shows an x intercept somewhere between $x=1$ and $x=2$. Using the terminology of roots, we would say that there is a root of f, that is, a number r such that $f(r)=0$, and that r is somewhere between 1 and 2 .

The goal is to use Newton's method to find an approximation for the root r. You will do the first three iterations only, using the initial approximation $x_{1}=3$. That is, you will find x_{2}, x_{3}, x_{4}.

For the function $f(x)=x^{2}-3$,
(a) Compute $f^{\prime}(x)$
(b) Fill out the following table. (Do the details below.)

n	x_{n}	$f\left(x_{n}\right)$	$f^{\prime}\left(x_{n}\right)$	$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
1	$x_{1}=3$			$x_{2}=$
2	$x_{2}=$			$x_{3}=$
3	$x_{3}=$			$x_{4}=$
4	$x_{4}=$			

(C) A zoomed-in graph of $f(x)$ is shown below. You'll illustrate some of your results on this graph.

- Put a point at $\left(x_{1}, 0\right)$
- Put a point at $\left(x_{1}, f\left(x_{1}\right)\right)$
- Draw the segment that connects $\left(x_{1}, 0\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$. This segment should be vertical.
- Put a point at $\left(x_{2}, 0\right)$.
- Draw the segment that passes through $\left(x_{1}, f\left(x_{1}\right)\right)$ and $\left(x_{2}, 0\right)$. This segment should appear to be tangent to the graph of $f(x)$ at the point $\left(x_{1}, f\left(x_{1}\right)\right)$.
- Put a point at $\left(x_{2}, f\left(x_{2}\right)\right)$
- Draw the segment that connects $\left(x_{2}, 0\right)$ and $\left(x_{2}, f\left(x_{2}\right)\right)$. This segment should be vertical.
- Put a point at $\left(x_{3}, 0\right)$.
- Draw the segment that passes through $\left(x_{2}, f\left(x_{2}\right)\right)$ and $\left(x_{3}, 0\right)$. This segment should appear to be tangent to the graph of $f(x)$ at the point $\left(x_{2}, f\left(x_{2}\right)\right)$.

