Class Drill Part 1: The Idea Behind Newton's Method

(a) In the triangle shown, find an equation for the slope *m* of the hypotenuse in terms of the lengths *a* and *b*.

m =

(b) Solve the equation for *a* in terms of *m* and *b*:

a =

(c) In the triangle shown, the upper right vertex lies on the graph of *f*.

How tall is the right leg?

b =

(d) Suppose that the hypotenuse of the triangle is known to lie on the line that's tangent to the graph of f at the point where $x = x_1$

What is the hypotenuse slope *m*?

$$m =$$

(e) For the same triangle, what is the base Δx ?

 $\Delta x = a =$

(f) For the same triangle, what is the x coordinate x_2 ?

The Class Drill continues on the next page \rightarrow

Newton's Method

Given: A function f that is differentiable on an interval I and that has a root in I. That is, it is known that there exists a number r somewhere in I such that f(r) = 0. **Goal:** Find an approximate value for the root r, accurate to d decimal places. **Step 1:** Choose a value x_1 as an initial approximation of the root. (This is often done by looking at a graph.)

Step 2: Create successive approximations iteratively, as follows:

Given an approximation x_n , compute the next approximation x_{n+1} by using the formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Step 3: Stop the iterations when successive approximations do not differ in the first *d* places after the decimal point. The last *x* value computed is the approximation of *r*.

Let $f(x) = x^2 - 3$. Observe that the graph of f(x) shows an x intercept somewhere between x = 1 and x = 2. Using the terminology of roots, we would say that there is a root of f, that is, a number r such that f(r) = 0, and that r is somewhere between 1 and 2.

The goal is to use Newton's method to find an approximation for the root r. You will do the first three iterations only, using the initial approximation $x_1 = 3$. That is, you will find x_2 , x_3 , x_4 .

For the function $f(x) = x^2 - 3$,

(a) Compute f'(x)

(b) Fill out the following table. (Do the details below.)

n	x _n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
1	$x_1 = 3$			$x_2 =$
2	$x_2 =$			$x_3 =$
3	$x_3 =$			$x_4 =$
4	$x_4 =$			

(C) A zoomed-in graph of f(x) is shown below. You'll illustrate some of your results on this graph.

- Put a point at $(x_1, 0)$
- Put a point at $(x_1, f(x_1))$
- Draw the segment that connects $(x_1, 0)$ and $(x_1, f(x_1))$. This segment should be vertical.
- Put a point at $(x_2, 0)$.
- Draw the segment that passes through (x₁, f(x₁)) and (x₂, 0). This segment should appear to be tangent to the graph of f(x) at the point (x₁, f(x₁)).
- Put a point at $(x_2, f(x_2))$
- Draw the segment that connects $(x_2, 0)$ and $(x_2, f(x_2))$. This segment should be vertical.
- Put a point at $(x_3, 0)$.
- Draw the segment that passes through (x₂, f(x₂)) and (x₃, 0). This segment should appear to be tangent to the graph of f(x) at the point (x₂, f(x₂)).

