Class Drill: Using Newton's Method

Newton's Method

Given: A function f that is differentiable on an interval I and that has a root in I. That is, it is known that there exists a number r somewhere in I such that f(r) = 0.

Goal: Find an approximate value for the root r, accurate to d decimal places.

Step 1: Choose a value x_1 as an initial approximation of the root. (This is often done by looking at a graph.)

Step 2: Create successive approximations iteratively, as follows:

Given an approximation x_n , compute the next approximation x_{n+1} by using the formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Step 3: Stop the iterations when successive approximations do not differ in the first d places after the decimal point. The last x value computed is the approximation of r.

Let $f(x) = x^3 - x^2 - 1$. Observe that the graph of f(x) shows an x intercept somewhere between x = 1 and x = 2. Using the terminology of roots, we would say that there is a root of f, that is, a number r such that f(r) = 0, and that r is somewhere between 1 and 2.

The goal is to use Newton's method to find an approximation for the root r. You will do the first

two iterations only, using the initial approximation $x_1 = 1$. That is, you will find x_2 and x_3 .

For the function $f(x) = x^3 - x^2 - 1$,

- (a) Compute f'(x)
- (b) Fill out the following table. (Do the details on scrap paper.)

n	x_n	$f'(x_n)$	$f(\chi_n)$
1	$x_1 = 1$		$x_2 =$
2	$x_2 =$		$x_3 =$
3	$x_3 =$		

- (C) A zoomed-in graph of f(x) is shown below. You'll illustrate some of your results on this graph.
 - Put a point at $(x_1, 0)$
 - Put a point at $(x_1, f(x_1))$
 - Draw the segment that connects $(x_1, 0)$ and $(x_1, f(x_1))$. This segment should be vertical.
 - Put a point at $(x_2, 0)$.
 - Draw the segment that passes through $(x_1, f(x_1))$ and $(x_2, 0)$. This segment should appear to be tangent to the graph of f(x) at the point $(x_1, f(x_1))$.
 - Put a point at $(x_2, f(x_2))$
 - Draw the segment that connects $(x_2, 0)$ and $(x_2, f(x_2))$. This segment should be vertical.
 - Put a point at $(x_3, 0)$.
 - Draw the segment that passes through $(x_2, f(x_2))$ and $(x_3, 0)$. This segment should appear to be tangent to the graph of f(x) at the point $(x_2, f(x_2))$.

