Intermediate Value Theorem Worksheets
\(\left.$$
\begin{array}{|c|c|}\hline \text { Generic Hypotheses } & \text { Our Specific Hypotheses } \\
\hline \text { the closed interval }[a, b] & \\
\hline \text { the function } f(x) & \\
\hline \begin{array}{c}\text { verification that } f \text { is continuous on the } \\
\text { closed interval }[a, b] .\end{array}
$$ \& \\
\hline the value of f(a) \& \\
\hline the value of f(b) \& \\

\hline confirmation that f(a) \neq f(b) \& Our Specific Conclusion\end{array}\right]\)| the real number " y " |
| :---: |
| verification that y is between $f(a)$ and $f(b)$ |
| Generic Conclusion |
| "There exists at least one number c in |
| the open interval (a, b) |
| such that $f(c)=y . "$ |

Generic Hypotheses	Our Specific Hypotheses
the closed interval $[a, b]$	
the function $f(x)$	
verification that f is continuous on the closed interval $[a, b]$.	
the value of $f(a)$	
the value of $f(b)$	
confirmation that $f(a) \neq f(b)$	Our Specific Conclusion
the real number " y "	"There exists at least one number c in
the open interval_-_	
verification that y is between $f(a)$ and $f(b)$	
Generic Conclusion	"There exists at least one number c in
the open interval (a, b)	
such that $f(c)=y . "$	

Intermediate Value Theorem Worksheets
\(\left.$$
\begin{array}{|c|c|}\hline \text { Generic Hypotheses } & \text { Our Specific Hypotheses } \\
\hline \text { the closed interval }[a, b] & \\
\hline \text { the function } f(x) & \\
\hline \begin{array}{c}\text { verification that } f \text { is continuous on the } \\
\text { closed interval }[a, b] .\end{array}
$$ \& \\
\hline the value of f(a) \& \\
\hline the value of f(b) \& \\

\hline confirmation that f(a) \neq f(b) \& Our Specific Conclusion\end{array}\right]\)| the real number " y " |
| :---: |
| verification that y is between $f(a)$ and $f(b)$ |
| Generic Conclusion |
| "There exists at least one number c in |
| the open interval (a, b) |
| such that $f(c)=y . "$ |

Generic Hypotheses	Our Specific Hypotheses
the closed interval $[a, b]$	
the function $f(x)$	
verification that f is continuous on the closed interval $[a, b]$.	
the value of $f(a)$	
the value of $f(b)$	
confirmation that $f(a) \neq f(b)$	Our Specific Conclusion
the real number " y "	"There exists at least one number c in
the open interval_-_	
verification that y is between $f(a)$ and $f(b)$	
Generic Conclusion	"There exists at least one number c in
the open interval (a, b)	
such that $f(c)=y . "$	

