Intermediate Value Theorem Worksheets

Generic Hypotheses	Our Specific Hypotheses
the closed interval [a, b]	
the function $f(x)$	
verification that f is continuous on the	
closed interval [<i>a</i> , <i>b</i>].	
the value of $f(a)$	
the value of $f(b)$	
confirmation that $f(a) \neq f(b)$	
the real number "y"	
verification that y is between $f(a)$ and $f(b)$	
Generic Conclusion	Our Specific Conclusion
"There exists at least one number <i>c</i> in	"There exists at least one number <i>c</i> in
the open interval (a, b)	the open interval
such that $f(c) = y$."	such that $f(c) = $ "

Generic Hypotheses	Our Specific Hypotheses
the closed interval [a, b]	
the function $f(x)$	
verification that f is continuous on the	
closed interval [<i>a</i> , <i>b</i>].	
the value of $f(a)$	
the value of $f(b)$	
confirmation that $f(a) \neq f(b)$	
the real number " <i>y</i> "	
verification that y is between $f(a)$ and $f(b)$	
Generic Conclusion	Our Specific Conclusion
"There exists at least one number <i>c</i> in	"There exists at least one number <i>c</i> in
the open interval (a, b)	the open interval
such that $f(c) = y$."	such that $f(c) = $ "

Intermediate Value Theorem Worksheets

Generic Hypotheses	Our Specific Hypotheses
the closed interval [a, b]	
the function $f(x)$	
verification that f is continuous on the	
closed interval [<i>a</i> , <i>b</i>].	
the value of $f(a)$	
the value of $f(b)$	
confirmation that $f(a) \neq f(b)$	
the real number "y"	
verification that y is between $f(a)$ and $f(b)$	
Generic Conclusion	Our Specific Conclusion
"There exists at least one number <i>c</i> in	"There exists at least one number <i>c</i> in
the open interval (a, b)	the open interval
such that $f(c) = y$."	such that $f(c) = $ "

Generic Hypotheses	Our Specific Hypotheses
the closed interval [a, b]	
the function $f(x)$	
verification that f is continuous on the	
closed interval [<i>a</i> , <i>b</i>].	
the value of $f(a)$	
the value of $f(b)$	
confirmation that $f(a) \neq f(b)$	
the real number " <i>y</i> "	
verification that y is between $f(a)$ and $f(b)$	
Generic Conclusion	Our Specific Conclusion
"There exists at least one number <i>c</i> in	"There exists at least one number <i>c</i> in
the open interval (a, b)	the open interval
such that $f(c) = y$."	such that $f(c) = $ "