Squeeze Theorem Worksheet MATH 2301 (Barsamian) | Generic Hypotheses | Our Specific Hypotheses | |---|------------------------------------| | the real number a | | | the function $f(x)$ | | | the function $g(x)$ | | | the function $h(x)$ | | | verification that functions f , g , h satisfy | | | $f(x) \le g(x) \le h(x)$ | | | when x is near a (except possibly at a) | | | Function f has limit $\lim_{x \to a} f(x) = L$. | | | Function h has limit $\lim_{x \to a} h(x) = L$. | | | Generic Conclusion | Our Specific Conclusion | | Function $g(x)$ has limit $\lim_{x \to a} g(x) = L$. | Function(x) = | | | $has \ limit \ \lim_{x \to} (x) =$ | | Generic Hypotheses | Our Specific Hypotheses | |--|--| | the real number a | | | the function $f(x)$ | | | the function $g(x)$ | | | the function $h(x)$ | | | verification that functions f , g , h satisfy | | | $f(x) \le g(x) \le h(x)$ | | | when x is near a (except possibly at a) | | | Function f has limit $\lim_{x \to a} f(x) = L$. | | | Function h has limit $\lim_{x \to a} h(x) = L$. | | | Generic Conclusion | Our Specific Conclusion | | Function $g(x)$ has limit $\lim_{x\to a} g(x) = L$. | Function $\underline{\hspace{1cm}}(x) = \underline{\hspace{1cm}}$ has limit $\lim_{x \to \underline{\hspace{1cm}}} \underline{\hspace{1cm}}(x) = \underline{\hspace{1cm}}$. | ٠ | Generic Hypotheses | Our Specific Hypotheses | |--|--| | the real number <i>a</i> | | | the function $f(x)$ | | | the function $g(x)$ | | | the function $h(x)$ | | | verification that functions f , g , h satisfy | | | $f(x) \le g(x) \le h(x)$ | | | when x is near a (except possibly at a) | | | Function f has limit $\lim_{x \to a} f(x) = L$. | | | Function h has limit $\lim_{x \to a} h(x) = L$. | | | Generic Conclusion | Our Specific Conclusion | | Function $g(x)$ has limit $\lim_{x\to a} g(x) = L$. | Function $\underline{\hspace{1cm}}(x) = \underline{\hspace{1cm}}$ has limit $\lim_{x \to \underline{\hspace{1cm}}} \underline{\hspace{1cm}}(x) = \underline{\hspace{1cm}}$. | | Generic Hypotheses | Our Specific Hypotheses | |--|------------------------------------| | the real number a | | | the function $f(x)$ | | | the function $g(x)$ | | | the function $h(x)$ | | | verification that functions f , g , h satisfy | | | $f(x) \le g(x) \le h(x)$ | | | when x is near a (except possibly at a) | | | Function f has limit $\lim_{x \to a} f(x) = L$. | | | Function h has limit $\lim_{x \to a} h(x) = L$. | | | Generic Conclusion | Our Specific Conclusion | | Function $g(x)$ has limit $\lim_{x\to a} g(x) = L$. | Function(x) = | | | $has \ limit \ \lim_{x \to} (x) =$ |