Squeeze Theorem Worksheet

MATH 2301 (Barsamian)

Generic Hypotheses	Our Specific Hypotheses
the real number a	
the function $f(x)$	
the function $g(x)$	
the function $h(x)$	
verification that functions f, g, h satisfy $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a)	
Function f has limit $\lim _{x \rightarrow a} f(x)=L$.	
Function h has limit $\lim _{x \rightarrow a} h(x)=L$.	
Generic Conclusion	Our Specific Conclusion
Function $g(x)$ has limit $\lim _{x \rightarrow a} g(x)=L$.	Function \qquad $(x)=$ \qquad has limit $\lim _{x \rightarrow \ldots}(x)=$ \qquad

Generic Hypotheses	Our Specific Hypotheses
the real number a	
the function $f(x)$	
the function $g(x)$	
the function $h(x)$	
verification that functions f, g, h satisfy $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a)	
Function f has limit $\lim _{x \rightarrow a} f(x)=L$.	
Function h has limit $\lim _{x \rightarrow a} h(x)=L$.	
Generic Conclusion	Our Specific Conclusion
Function $g(x)$ has limit $\lim _{x \rightarrow a} g(x)=L$.	Function \qquad $(x)=$ \qquad has limit $\lim _{x \rightarrow _} \ldots(x)=$ \qquad

Generic Hypotheses	Our Specific Hypotheses
the real number a	
the function $f(x)$	
the function $g(x)$	
the function $h(x)$	
verification that functions f, g, h satisfy $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a)	
Function f has limit $\lim _{x \rightarrow a} f(x)=L$.	
Function h has limit $\lim _{x \rightarrow a} h(x)=L$.	
Generic Conclusion	Our Specific Conclusion
Function $g(x)$ has limit $\lim _{x \rightarrow a} g(x)=L$.	Function \qquad $(x)=$ \qquad has limit $\lim _{x \rightarrow \ldots}(x)=$ \qquad

Generic Hypotheses	Our Specific Hypotheses
the real number a	
the function $f(x)$	
the function $g(x)$	
the function $h(x)$	
verification that functions f, g, h satisfy $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a)	
Function f has limit $\lim _{x \rightarrow a} f(x)=L$.	
Function h has limit $\lim _{x \rightarrow a} h(x)=L$.	
Generic Conclusion	Our Specific Conclusion
Function $g(x)$ has limit $\lim _{x \rightarrow a} g(x)=L$.	Function \qquad $(x)=$ \qquad has limit $\lim _{x \rightarrow \ldots}(x)=$ \qquad

