Pick up new handout on Table Sign Fn

Remember: Friday Quiz Q2 (Covering sections 1.5 and 1.6)
Recitation on The Sep 19: Come Prepared

College Booksture Still has print copies of the book available at a great price. (At some point, unsold stock will be sent back to the publisher)

When you email me, or your Recitation Instructor, please

Put Regarding MATH 2301 Section ______

in the subject line

Today: Discussing Section 2.1 Rates of Change, Secant Lines Tangent Lines All definitions on the new handout.

(only some definitions are in Section 2.1)

Rates of Change and Secant and Tangent Lines (Concepts from Section 2.1)

Definition of Average Rate of Change

Words: Average Rate of Change of f from a to b

Usage: a, b are real numbers, a < b, and f is a function that is continuous on the interval [a, b].

Meaning: the number $m = \frac{f(b) - f(a)}{b - a}$

Graphical Significance: the number m is the slope of secant line that passes through points (a, f(a)) and (b, f(b))

Additional terminology: When the variable is t, representing time and the function f(t) is a position function, representing the position of an object at time t, then the average rate of change is called the average velocity from time a to time b.

Alternate presentation of average rate of change:

Words: Average Rate of Change of f from a to a + h

Usage: a, h are real numbers, $h \neq 0$, and f is a function that is continuous on an interval near a

Meaning: the number $m = \frac{f(a+h)-f(a)}{h}$

Graphical Significance: the number m is the slope of secant line that passes through points (a, f(a)) and (a + h, f(a + h))

Definition of Instantaneous of Change

Words: Instantaneous Rate of Change of f at a

Symbol: f'(a)

Spoken: The derivative of f at a

Usage: a is a real number and f is a function that is continuous near x = a

Meaning: the number $m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Additional terminology: When the variable is t, representing *time* and the function f(t) is a position function, representing the position of an object at time t, then the Instantaneous rate of change is called the *instantaneous velocity* at time a

Definition of line tangent to graph of f at x = a

The line that has these two properties

- contains the point (a, f(a)) (This point is called the point of tangency.)
- has slope m = f'(a) (This number is called the slope of the tangent line at x = a, but it is also called the slope of the graph of f(x) at x = a.)

General Point Slope Form of the Equation of the Tangent Line

The line tangent to the graph of f(x) at x = a has equation

$$(y - f(a)) = f'(a)(x - a)$$

Today: Extended Example An object mores in 1 dimension with position function

$$f(t) = 6t - t^2$$

While tis time in seconds

and f(t) is the position, in meters, at time t seconds.

(a) Find the Arerage velocity from time t=1 to t=4. Sulnting we need to find $m = \frac{f(4) - f(1)}{7-1} = \frac{f(4) - f(1)}{3}$

 $\frac{bet \ parts}{f(1)} = 6(1) - (1)^2 = 6 - 1 = 5 \text{ meters}$ f(4) = 6(4) - (4) = 24-16 = 8 mekis

So $m = \frac{8m - 5m}{4sec - 1sec} = \frac{3m}{3sec} = \frac{4}{5ec}$ average relouty

(b) Illustrate result of (a) using a graph of fex) Solution graph fel, draw scenat line, label its Slope.

> $f(t) = 6t - t^2 = \pm (6 - \pm)$ Standard form factored form

to my paratula

-te -> parabula facing down

horiz axis intercapts at (O, U) and (6, 0)

no constant term \Rightarrow y intercept at (t,y) = (0,0)Position $\bigwedge f(t) = 6t - t^2 = t/6 - t$ (4, f(3)) = (4, 8)

in seconds

Find average velocity from time t=1 to

time t=1+h, where h=2, h=10, h=10.1

Solution

We need to find

$$m = \frac{f(1+h) - f(1)}{(1+h) - f(1)} = \frac{f(1+h) - f(1)}{h}$$

We already have for = 5

Baild f(1+h) = 6(1+h) - (1+h)2

replace t with 1th

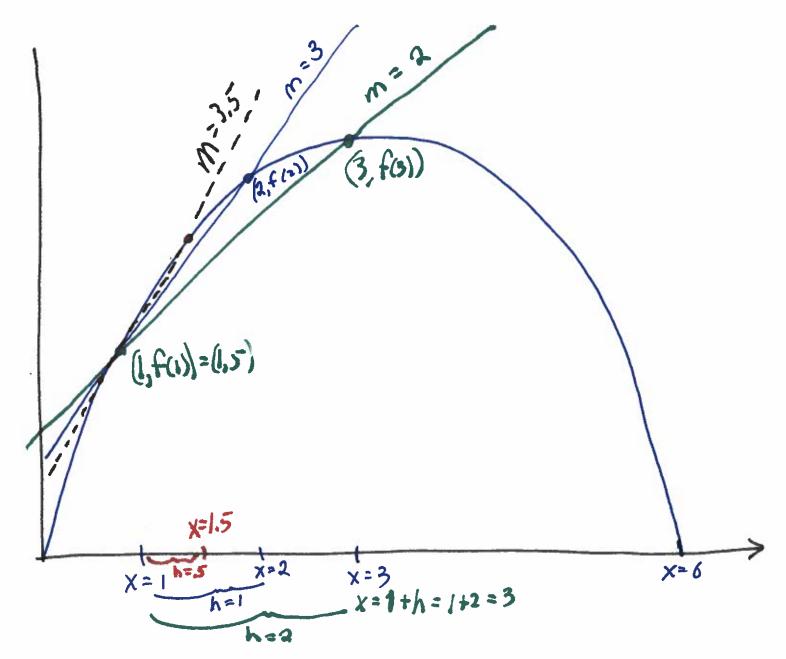
$$m = \frac{f(1+h) - f(1)}{h} = \frac{(5+4h-h^2) - 5}{h} = \frac{4h-h^2}{h} = \frac{h(4-h)}{h}$$

Since all the h values we will be using are non-zero. We can cancel h

Make Table of Values

able or	y annes
h	m = 4 - h
2	m=4-2 = 2 there are the
165	m=4-1=3 velocities
0.5	m = 4 - 0.5 = 3.5
0.1	m = 4 - 0.1 = 3.9

a) Illustrate results of (6) with a graph



© F.nd the Instruments Velocity out t=1 Solution: We need to find this

M = lim f(1+h) - f(1) meters

h > 0

h | Seconds

all the steps from page (2) westwork, including the

= lim 4 h | Canadhing because h ≠ 0

limit it a polynomial

Can we direct substitution property, sub in h= 0

$$= 4-(0)$$

Find slope of the line tangent to graph of f(t) at t=1.

Solution: We need to find

 $m = f'(1) = lm f(1+h) - f(1) = -00 = 4 \frac{meters}{second}$ using
resolt of (e)

(g) Find the equation of the line tangent to graph of f(t) at t=1 (1)

Solution we need to build this equation (y-f(q))=f'(a)(t-q) General Point Slape Form of the Equation of the Tangent Line

Get Parts

a = 1 (This is the t coordinate of the point of tangency)

f(a) = f(1) = 5 (this is they coordinate of the point of tangency)
from earlier (see page 4)

f(a) = f'(1) = 4 (this is the slope of the trangent line)
frompart(5), page 10

New Put the Parts into the Equation

(y-5) = 4 (t-1) Print slope from of the equation of the trayest line

Convert to Slope Intercept form by solving for y

y-5 = 4t-4

y = 4 t + 1 Slope intercept from of the equation of the tangent line

(h) Illustrate with graph

f(t)= 6+-t2

end of meeting