MATH 2301 (Barsanian) Lecture \#12, Wed Sep 27, 2023
Sit in Groups of 2 or 3
Start Working on Class Drill
(I will only hand out a Class Drill to a group.)
Sign In
Quiz Q3 on Friday

Meeting Part 1 Class Drill
Rewriting the function before differentiating
Extremely Important Skill!!

	Simplified form	=	Separate constants		Power Function Form. That is, a sum of terms of form constant \times power function That is, $a x^{p}+b x^{q}$
	$f(x)=\frac{5}{x^{2}}+\frac{9}{x}$	$=$	$5\left(\frac{1}{x^{2}}\right)+9\left(\frac{1}{x}\right)$		$5 x^{-2}+9 x^{-1}$
	$f(x)=\frac{1.2}{\sqrt{x}}-\frac{0.6}{\sqrt[3]{x^{2}}}$	$=$	$1.2\left(\frac{1}{\sqrt{x}}\right)-0.6\left(\frac{1}{\sqrt[3]{x^{2}}}\right)$		$1.2 x^{-1 / 2}-0.6 x^{-2 / 3}$
	$f(x)=\frac{5}{\sqrt[3]{x}}-\frac{6}{x^{1 / 2}}$		$\left.\frac{1}{x^{\prime} / 3}\right)-6\left(\frac{1}{x}\right.$		$5 x^{-1 / 3}-6 x^{-1 / 2}$
	$-\frac{10}{x^{3}}-\frac{9}{x^{2}}$		$\left(\frac{1}{x^{3}}\right)-9($		$-10 x^{-3}-9 x^{-2}$
تِ	$f(x)=\frac{7 \sqrt[3]{x}}{5}+\frac{3}{11 x^{2 / 5}}$		$x^{1 / 3}+\frac{3}{11} \cdot \frac{1}{x}$		$\frac{7}{5} x^{1 / 3}+\frac{3}{11} \cdot x^{-2 / 5}$
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{N}{\hat{N}} \\ & \stackrel{y}{2} \end{aligned}$	$\frac{7}{15 x^{2 / 3}}-\frac{6}{55 x}$		$\left.\frac{1}{x^{2 / 3}}\right)-\frac{6}{55}\left(\frac{1}{x^{4}}\right.$		$\frac{7}{15} x^{-2 / 3}-\frac{6}{55} x^{-7 / 5}$

Part 2: Finding a Derivative Using Sum Rule, Constant Multiple Rule, Power Rule

$$
f(x)=\frac{7 \sqrt[3]{x}}{5}+\frac{3}{11 x^{2 / 5}}
$$

(A) Rewrite $f(x)$ in power function form.

That is, rewrite it as a sum of terms of the form constant \times power function. That is, $a x^{p}+b x^{q}$. (Hint: You have already done this part on the previous page!)

(B) Find $f^{\prime}(x)$.

- Use the techniques of Section 2.5. (That is, DO NOT use the Definition of the Derivative.)
- Show all details clearly and use correct notation.
- Simplify your final answer, and rewrite it so that it does not have any negative exponents.
(Hint: You have already done the necessary simplifying on the previous page!)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{d}{5}\right) x^{1 / 3}+\left(\frac{3}{11} x^{-2 / 5}\right) \\
& =\left(\frac{7}{5} \frac{d}{d} x^{1 / 3}++\frac{3}{11}\right) \frac{d}{d x} x^{-2 / 5} x^{-n=-\frac{2}{5}} \\
& =\frac{7}{5}\left(\frac{1}{3} x^{1 / 3-1}\right)+\frac{3}{11}\left(\left(-\frac{2}{5}\right) x^{-\frac{2}{5}-1}\right) \\
& =\frac{7}{15} x^{-\frac{2}{3}}-\frac{6}{55} x^{-3 / 5} \\
& : \frac{7}{15 x^{2 / 3}}-\frac{6}{55 x^{1 / 5}}
\end{aligned}
$$

Meeting Part 2: Trick Problems
[Example 1] find derivative of $f(x)=\frac{x^{3}-12 x+7}{\sqrt{x}}$
Solution Rewrite $f(x)$ in power function firm first, then differentiate
Rewrite

$$
f(x)=\frac{x^{3}}{\sqrt{x}}-\frac{12 x}{\sqrt{x}}+\frac{7}{\sqrt{x}}=x^{5 / 2}-12 x^{1 / 2}+7 x^{-1 / 2}
$$

$$
\begin{aligned}
& \text { Differentiate } \\
& \begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} x^{5 / 2}-12 \frac{d}{d x} x^{1 / 2}+7 \frac{d}{d x} x^{-1 / 2} \\
& =\frac{5}{2} x^{5 / 2-1}-12\left(\frac{1}{2} x^{1 / 2-1}\right)+7\left(\left(-\frac{1}{2}\right) x^{-1 / 2-1}\right. \\
& =\frac{5}{2} x^{3 / 2}-6 x^{-1 / 2}-\frac{7}{2} x^{-3 / 2} \\
& =\frac{5}{2} x^{3 / 2}-\frac{6}{\sqrt{x}}-\frac{7}{2 x^{3 / 2}}
\end{aligned}
\end{aligned}
$$

Example 2] Find the value of $\lim _{h \rightarrow 0} \frac{(5+h)^{4}-625}{h}$
Sdution: Notice: there are no instructions given about how to get answer.
Consider this diagram
$g^{\prime \prime N} \cap f(x)=X^{4}$ and $a=5$, find $f^{\prime}(a)$
using Section 2.1 (build the limit)
using Section 2.3 techniques
techniques

$$
\lim _{h \rightarrow 0} \frac{(5+h)^{4}-625}{h}
$$

evaluate the
limit
(really hard)

(derivative rules)
$i^{0_{9}}$
$f^{\prime}(x)=4 x^{3}$

Substitute $X=5$

$$
f^{\prime}(5)=4(5)^{3}=4.125
$$

Example 3 Find the value of

$$
\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{3}+h\right)-\frac{1}{2}}{h}
$$

Trick: Observe that this is asking for $f^{\prime}(a)$
where $f(x)=\cos (x)$

$$
\begin{aligned}
& a=\pi / 3 \\
& \text { check: } f^{\prime}(\pi / 3)=\lim _{h \rightarrow 0} \frac{\cos (\pi / 3+h)-\cos (\pi / 3)}{h} \\
& \text { the } \\
& \text { form } \quad \text { this form does match what we wee given. } \\
& \text { get } f^{\prime}(x)=\frac{d}{d x} \cos (x)=-\sin (x) \\
& f^{\prime}(a)=f^{\prime}(\pi / 3)=-\sin (\pi / 3)=-\frac{\sqrt{3}}{2} \text { answer }
\end{aligned}
$$

Meeting Part 3 Position, Velocity, Acceleration
An object moves in 1 dimension with position function

$$
s(t)=f(t)=t^{3}-12 t^{2}+36 t
$$

position
fin not nelperel.
$t=$ time in seconds
$S(t)=$ position (at time t) in feet.
(a) Find velocity at time t.

Solution

$$
\text { velocity } V(t)=s^{\prime}(t)=\frac{d}{d t}\left(t^{3}-12 t^{2}+36 t\right)=3 t^{2}-24 t+36
$$

(b) Find velocity at time 3 seconds

Solution

$$
\begin{aligned}
& v(3)=3(3)^{2}-24(3)+36=27-72+36=-9 \frac{\mathrm{ft}}{\sec } \\
& \operatorname{sun} t=3
\end{aligned}
$$

(c) Find times when abject is at rest (not moving)

Solution: Set velocity $=v(t)=0$, solve for t

$$
\begin{aligned}
O=v(t) & =3 t^{2}-24 t+36 \\
& =3\left(t^{2}-8 t+12\right) \\
& =3(t-2)(t-6)
\end{aligned}
$$

Solutions $t=2, t=6$

Questions that we did not get to
(d) At what times is the object moving in the forward direction
(e) Find the total distance travelled by the object in the first 8 seconds.
(f) Draw a diagram to illustrate the movement of the object during the first 8 seconds
(g) Find the acceleration $a(t)$ at time t and at time $t=3$ seconds. (h) Graph $s(t), v(t), a(t)$ together on a single set of axes.
\rightarrow This whole example, including problems (d) -(b) that we did not get to in class, is very Similar to Textbook Section 2.3 Example 9 on pages 102-103. Study that example, then answer questions (d)-(h) above.

End of lecture

