MATH 2301 (Barsamian) Lecture $\# 17$ Mon oct 9,2023
Pick up Handout
Sign $I_{n}$
Remember
Quiz Q5 wednesday ( $0 c+11$ )
Holiday Friday
You can pick up graded $Q_{n 12}$ Q4 tomorrow (oct 10 ) from the box outside my office, Morton 521 in the afternoon or evening

Meeting Part 1 More Related Rates Examples
[Example 1]( Involving Pythagorean. Theorem) (exercise 2.7\#20) Boat pulled towards a dock by a rope attached to bow of boat: At the dock end, the rope goes over a pulley that is 1 m higher than bow of boat. Rope is being pulled in at a rate af $1 \mathrm{~m} / \mathrm{sec}$. How fast is boat approaching dock when it is 8 m from the dock? Solution
Diagram + Variables


Equation Relating the variables

$$
a^{2}+b^{2}=c^{2} \quad \text { Pythagorean }
$$

Different w.r.t time $t$
(with respect to)

$$
\frac{d}{d t}\left(a^{2}+b^{2}\right)=\frac{d}{d t} c^{2}
$$

$$
\frac{d}{d t} a^{2}+\frac{d}{d t} b^{2}=\frac{d}{d t} c^{2}
$$

a is chon ing
So $a$ is a
So this is $a$ of
nested framsion $(a)^{2}$
need to we chain Rule


$$
\begin{aligned}
2(a) \cdot a^{\prime}+2(b) b^{\prime} & =2(c) c^{\prime} \\
2 a a^{\prime}+2 b b^{\prime} & =2 c c^{\prime}
\end{aligned}
$$

divide everything by 2

$$
\begin{aligned}
& a a^{\prime}+b b^{\prime}=c c^{\prime} \\
& b^{\prime}=0 \text { because } b \text { constant } \\
& a a^{\prime}=c c^{\prime}
\end{aligned}
$$

Solve for $a^{\prime}$

$$
a^{\prime}=\frac{c c^{\prime}}{a}
$$

Substitute in known values
figure out $c$ using

$$
\begin{aligned}
& =\frac{\sqrt{65} \cdot m \mathrm{~m}(-1 \mathrm{~m} / \mathrm{sec})}{8 \mathrm{~m}} \\
a^{\prime} & =-\frac{\sqrt{65}}{8} \frac{\mathrm{~m}}{\mathrm{sec}}
\end{aligned}
$$

The biatis approaching the dock at a rate of $\frac{\sqrt{65}}{8} \frac{\mathrm{~m}}{\mathrm{~s}}$

Pythagorean Theorem

$$
\begin{aligned}
a^{2} & +b^{2}=c^{2} \\
c & =\sqrt{a^{2}+b^{2}} \\
& =\sqrt{(8 m)^{2}+(1 m)^{2}} \\
& =\sqrt{64 m^{2}+1 m^{2}} \\
& =\sqrt{65 m^{2}} \\
& =\sqrt{65} \cdot m
\end{aligned}
$$

[Example 2] Involving basic Shapes (Similar to 2.7\#25,26)
Swimming pool is 30 ft wide, 40ft long with cross section as shown


Pool being filled at a cate of $3 \mathrm{ft} / \mathrm{min}$.
How fast is the water level rising at instant when depth is $\left(\frac{1}{2}\right) f t$ at does end?
Solution


$$
\begin{aligned}
& h^{\prime}=\text { unknown } \\
& \text { goal fond } h^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
V & =\text { area ot side. Width } \\
& \left.=\frac{d}{20}\right]^{h} \cdot 30 f t \\
& =\left(\frac{1}{2} h(d)+20 f t \cdot h\right) \cdot 30 f t \\
& =\left(\frac{1}{2} h \cdot 10 h+20 f t \cdot h\right) \cdot 30 f t
\end{aligned}
$$

We have to figure out d.


Similar triangles

$$
\begin{gathered}
\frac{d}{h}=\frac{20}{2}=10 \\
d=10 h
\end{gathered}
$$

$V=\left(5 h^{2}+20 f t \cdot h\right) \cdot 30 f t \quad \underset{\text { variables }}{\text { equating relating }}$
Take Derivative of both sides $\frac{d}{d t}$ using Imple.t Diff
Result after some steps.

$$
V^{\prime}=\left(10 h \cdot h^{\prime}+20 f t \cdot h^{\prime}\right) \cdot 30 f t
$$

Solve for $h^{\prime}$
Result after some steps

$$
h^{\prime}=\frac{V^{\prime}}{30 f t(20 f t+10 h)}
$$

Substitute in numbers: $V^{\prime}=3 f^{3} / \min \quad h=\frac{1}{2} f t$ Result

$$
h^{\prime}=\frac{1}{250} \frac{\mathrm{ft}}{\mathrm{~min}}
$$

Meeting Part 2 Linear Approximations
Given function $f(x)$, the equation for line tangent to graph of $f$ at $x=a$ is

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

In this equation, $a, f(a), f^{\prime}(a)$ are all numbers.
Solve fir $y$ by adding $f(a)$ yo with sides

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

This equation gives us $y$ values on tangent line as a function of $x$.
Gie this function a name and a Sgmbil The Linearizatio of $f(x)$ at $a$ $\angle(x)$

## Linearizations and the Method for Finding a Linear Approximation MATH 2301 (Barsamian)

## Definition of the Linearization

Words: The linearization of $f(x)$
Meaning: The function $L(x)$ defined by the equation

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Graphical Significance: $L(x)$ describes the line that is tangent to the graph of $f(x)$ at $x=a$.

## Method for Finding a Linear Approximation

Given: a function $f(x)$ and a hard $x$ value called $\hat{x}$. (That is, it is not easy, or maybe even not possible, to compute $f(\hat{x})$ exactly by hand.)

Goal: Find an approximation for $f(\hat{x})$.

## Steps:

- Identify the function $f(x)$
- Identify the hard $x$ value, called $\hat{x}$.
- Identify an easy nearby $x$ value, called $a$. That is, such that $f(a)$ is easy to compute.
- Build the linearization of $f(x)$ at $a$. That is, build the function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

- Use the linearization to compute the number $L(\hat{x})$. That is, compute

$$
L(\hat{x})=f(a)+f^{\prime}(a)(\hat{x}-a)
$$

(This should be an easy calculation.) This number $L(\hat{x})$ is the desired approximation for $f(\hat{x})$. It is called the linear approximation for $f(\hat{x})$

Example Let $f(x)=x^{2}$
Find the linearization of $f$ at $x=3$.
Solution
we need to bald

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

get parts
$a=3 \longleftarrow x$ curd of p.o.t.

$$
\begin{aligned}
& f(a)=f(3)=(3)^{2}=9 \leftarrow y \text { coord of P.O.T } \\
& f^{\prime}(x)=2 x \\
& f^{\prime}(a)=f^{\prime}(3)=2(3)=6 \longleftarrow \text { slope }
\end{aligned}
$$

assemble equation

$$
L(x)=9+6(x-3)
$$



Oh serve $L(3)=f(3)=9$ because point of tangency But $f(3.1)=(3.1)^{2}=$ harder computation $\cdot \ldots=9.61$

$$
L(3.1)=9+6(3.1-3)=9+6(.1)=9+.6=9.6
$$

Observe: $L(3.1)$ is not the same as $f(3.1)$, but $L(3.1)$ was easier to compute than $f(3,1)$.

Because $f(3,1)$ is hard to compute, I like to think of $x=3,1$ as a "hard" $x$ value. I denote this by putting a little hat over the $x$, kind of like a dunce cap. So $\hat{x}=3.1$

The number $L(3,1)$ is called the Linear Anporxination of $f(3,1)$
That is, $L(\hat{x})$ is called the Linear Approximation of $f(\hat{x})$

In general, for a given function $f(x)$, and some hard $x$ value, denoted $\hat{x}$, such that $f(\hat{x})$ would be hard to compute, we can take a similar approach: Build a Linearization, $L(x)$, and then use that linecarization to find $L(\hat{x})$ using on early computation. The number $L(\hat{x})$ is called the Linear Apporximation of the number $f(\hat{x})$
This process of approximating is described in the second part of the handout that is included in these notes as page 8 , above. End of Lecture)

