(l)

Newton's Method (Section 4.6) Recall that a root of a function f(x) is an x value X=r such f(r) = 0. So that the point (r, f(r)) is an x intercept on the graph of f(x). Newton's Method is a way of finding an approximate value for a root r. The method starts with an initial guess, called X,. If X_i is a cost (that is if $f(X_i) = 0$) then you're done. But if X, is not a root, then Newton's Method comes up with a next guess, X2, that should be a better guess. That is f(X2) should be even closer to O than f(X,).

(a) In the triangle shown, find an equation for the slope *m* of the hypotenuse in terms of the lengths *a* and *b*.

$$m = b = rise$$

(b) Solve the equation for *a* in terms of *m* and *b*:

 $a = \frac{b}{M}$

(c) In the triangle shown, the upper right vertex lies on the graph of *f*.

How tall is the right leg?

 $b = \int (X_i)$

(d) Suppose that the hypotenuse of the triangle is known to lie on the line that's tangent to the graph of f at the point where $x = x_1$

What is the hypotenuse slope *m*?

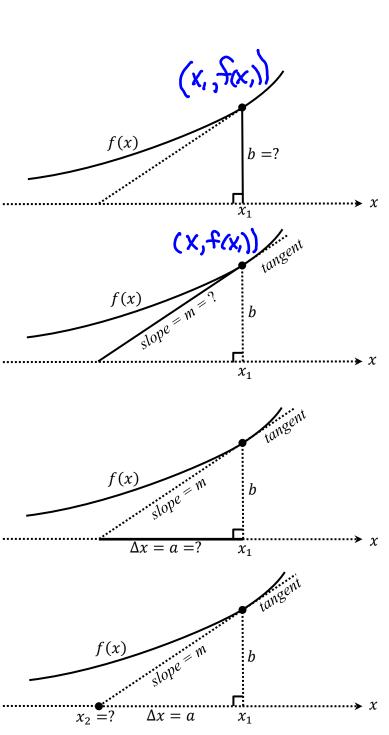
 $m = \mathcal{F}(X)$

(e) For the same triangle, what is the base Δx ?

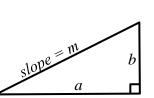
 $\Delta x = a = \frac{b}{m} = \frac{f(x_i)}{f'(x_i)}$

(f) For the same triangle, what is the x coordinate x_2 ?

 $x_{2} = \chi_{1} - \Delta \chi$ $\chi_{2} = \chi_{1} - \frac{f(\chi_{1})}{f'(\chi_{1})}$



The Class Drill continues on the next page →



Newton's Method

Given: A function f that is differentiable on an interval I and that has a root in I. That is, it is known that there exists a number r somewhere in I such that f(r) = 0. **Goal:** Find an approximate value for the root r, accurate to d decimal places. **Step 1:** Choose a value x_1 as an initial approximation of the root. (This is often done by looking at a graph.)

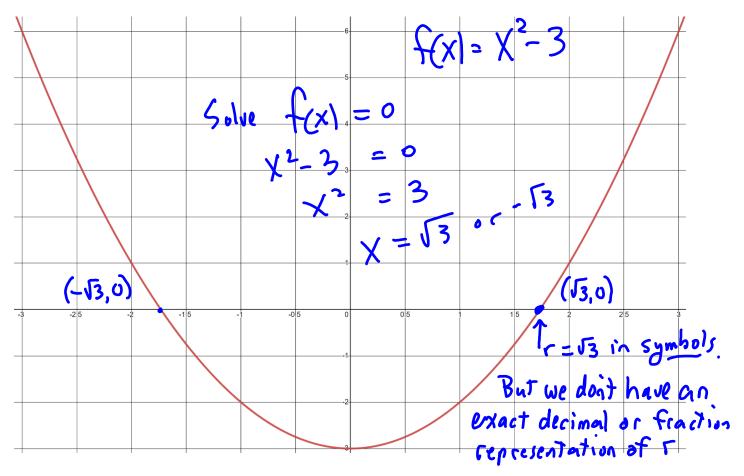
Step 2: Create successive approximations iteratively, as follows:

Given an approximation x_n , compute the next approximation x_{n+1} by using the formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Step 3: Stop the iterations when successive approximations do not differ in the first *d* places after the decimal point. The last *x* value computed is the approximation of *r*.

Let $f(x) = x^2 - 3$. Observe that the graph of f(x) shows an x intercept somewhere between x = 1 and x = 2. Using the terminology of roots, we would say that there is a root of f, that is, a number r such that f(r) = 0, and that r is somewhere between 1 and 2.



The goal is to use Newton's method to find an approximation for the root r. You will do the first three iterations only, using the initial approximation $x_1 = 3$. That is, you will find x_2 , x_3 , x_4 .

For the function $f(x) = x^2 - 3$,

(a) Compute f'(x) $\oint (\chi) = 2\chi$

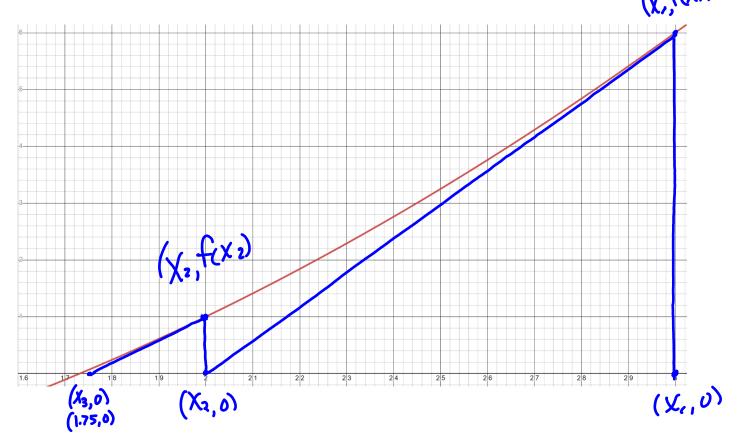
(b) Fill out the following table. (Do the details below.)

(~)					
n	x _n	$f(x_n)$	$f'(x_n)$	$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$	
1	<i>x</i> ₁ = 3	6	6	$x_2 = 3 - \frac{6}{6} = 3 - 1 = 2$	
2	$x_2 = \mathcal{L}$		4	$x_3 = \chi_2 - \frac{f(\chi_2)}{f(\chi_2)} = 2 - \frac{1}{4} = \frac{7}{4} = 1.75$	
3	$x_3 = \frac{7}{4}$	1 16	こう	$x_4 = \frac{7}{9} - \frac{1/16}{7/2} = \frac{7}{9} - \frac{1}{56} =$	
4	$x_4 = \frac{97}{56} $	1.732 14			

 $\frac{7(M)}{4/M} = \frac{1}{56} = \frac{98}{54} = \frac{1}{54}$ $f(x_1) = f(3) = 3^2 - 3 = 6$ $f'(x_i) = f'(x_i) = f(x_i) = G$ $X_2 = X_1 - \frac{f(x_1)}{f'(x_1)} = 3 - \frac{6}{6} = 3 - 1 = 2$ $f(x_2) = f(z) = 2^2 - 3 = 4 - 3 = 1$ $f'(x_1) = f'(2) = 2(2) = 4$ $f(x_3) = f(x_4) = (x_4)^2 - 3 = \frac{49}{16} - 3 = \frac{49}{16} - \frac{48}{16} = \frac{1}{16}$ $f'(X_3) = f'(Z_1) = 2(Z_1) = Z_2$ The Class Drill continues on the next page ightarrow $\frac{1}{16} = \frac{1}{16} = \frac{1}{16} = \frac{1}{8.7} = \frac{1}{56}$

(C) A zoomed-in graph of f(x) is shown below. You'll illustrate some of your results on this graph.

- Put a point at $(x_1, 0)$
- Put a point at $(x_1, f(x_1))$
- Draw the segment that connects $(x_1, 0)$ and $(x_1, f(x_1))$. This segment should be vertical.
- Put a point at $(x_2, 0)$.
- Draw the segment that passes through (x₁, f(x₁)) and (x₂, 0). This segment should appear to be tangent to the graph of f(x) at the point (x₁, f(x₁)).
- Put a point at $(x_2, f(x_2))$
- Draw the segment that connects $(x_2, 0)$ and $(x_2, f(x_2))$. This segment should be vertical.
- Put a point at $(x_3, 0)$.
- Draw the segment that passes through $(x_2, f(x_2))$ and $(x_3, 0)$. This segment should appear to be tangent to the graph of f(x) at the point $(x_2, f(x_2))$.



$$\frac{(heck: find f(X_{4}))}{f(x_{4})} = \frac{(97)^{2}}{56} = (\frac{97}{56})^{2} - 3 = \frac{9409}{3136} - \frac{3(3136)}{3136} = \frac{9409}{3136} - \frac{9408}{3136} = \frac{9409}{3136} - \frac{9408}{3136} = \frac{1}{3136} = \frac{1}{3136$$

Our list of X values

$$X_1 = 3$$
 $X_2 = 2$, $X_3 = \frac{7}{4} = 1.75$, $X_4 = \frac{97}{56}$, ...
initial guess
from Newton's method

These numbers are getting closer and closer to
the root
$$r=\sqrt{3}$$