MATH 2301 (Barsamian) Lecture \#28 (wed Nov 9,2023)
Pick Up Graded Papers
Sign In
Today: Section 4.7 Antiderivatives
Today Um: Review Session in Morton 223
Thurs 4pm: Revel Session in Morton 223
Sun ppm: Review Session in Morton 223
Friday: No class
Monday: Exam X3, Covering Chapter 4
In todays meetings of Section 100 and Section 110 , I covered slightly different material. Students from both sections should read all of these noyes to get all of the material.

Section		

L	A	S	T		N	A	M	E					

F	I	R	S	T		N	A	M	E	

Quiz Q7, Fri Nov 3, 2023 (20 min) Fall 2023 MATH 2301 (Barsamian)
No books, notes, calculators, phones.

Problem:	$[1]$	$[2]$	$[3]$	Total	$\%$
Your Score:					
Possible:	10	10	10	30	100%

[1] (10 points)

The Mean Value Theorem

If a function f and an interval $[a, b]$ satisfy the following two requirements (the hypotheses)

- f is continuous on the closed interval $[a, b]$
- f is differentiable on the open interval (a, b)
then the following statement (the conclusion) is true:
There is a number $x=c$ (at least one) with $a<c<b$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ In other words,

The slope of the tangent line at c equals the slope of the secant line from a to b.
Remark: The theorem does not give you the value of c. If a c exists, you have to figure out its value.
The function $f(x)=\frac{1}{x}$ and the interval $[1,4]$ do satisfy the two hypotheses of the Mean Value Theorem.
(a) Find all numbers c that satisfy the conclusion of the Mean Value Theorem. Show all details clearly.

Sect up the equation and solve it for C.

 Left side: We need $f^{\prime}(c)$ start by getting $f^{-1}(x)$ $f(x)=\frac{1}{x}=x^{-1}$ $f^{\prime}(x)=(-1) x^{-1-1}=-1 x^{-2}=\frac{-1}{x^{2}}$$f^{\prime}(c)=-\frac{1}{x}$
(b) Illustrate your result on the given graph of $f(x)$.

Remark: It is possible to make a reasonable illustration for (b) even if you are unable to do (a).

The Quiz continues on back \rightarrow
[2](10 points) (Suggested Exercise 4.3\#1) Let $f(x)=x^{3}-12 x+5$
(a) Using Calculus, find the intervals on which f is increasing and the intervals on which f is decreasing. Show all details clearly. (You must use Calculus. No credit for just finding y values at a bunch of x values.) Study sign behavior of $f^{\prime}(x)=3 x^{2}-12=3\left(x^{2}-4\right)=3(x+2)(x-2)$

Sig chart for $f^{\prime}(x)$

$$
\text { critical } x=-2, x=2
$$

f increasing on $(-\infty,-2]$ and $[2, \infty)$

$$
\begin{aligned}
& \left.f^{\prime}(-3)=3((-3)+2)(-3)-2\right)=(t)(-)(-1=\text { pos } \\
& f^{\prime}(0)=3((0)+2)((0)-2)=(t)(t)(-1=n 0 y \\
& f^{\prime}(3)=3((3)+2)((3)-2)=(t)(+)(t)=p 0 s
\end{aligned}
$$

f decreasing on

$$
[-2,2]
$$

(b) Find all local maximum values and local minimum values of f. Show all details clearly.

$$
\begin{aligned}
& y_{\text {max }}=f(-2)=(-2)^{3}-12(-2)+5=\cdots=21 \\
& y_{\text {min }}=f(2)=(2)^{3}-12(2)+5=\cdots=-11
\end{aligned}
$$

[3] (10 points) The graph of a function $f(x)$ is shown without gridlines or coordinate axes.
The formulas for $f(x)$ and its derivatives are

$$
\begin{aligned}
f(x) & =x e^{(-x)} \\
f^{\prime}(x) & =-(x-1) e^{(-x)} \\
f^{\prime \prime}(x) & =(x-2) e^{(-x)}
\end{aligned}
$$

(A) There is a highest point. What are its (x, y) coordinates? Explain clearly how you know.
(You don't have to prove that there is a high point. You just need to explain how you know where it is.)
high point happens where $f^{\prime}(x)=0$. So set $f^{\prime}(x)=0$, solve for x.

$$
0=f^{\prime}(x)=-(x-1) e_{\substack{(-x)}} \begin{aligned}
& \text { shismart } x=1 \\
& \text { never } \\
& \text { ser o } \\
& \text { se }
\end{aligned}=f(1)=1 e^{-1}=1 \cdot \frac{1}{e}=\frac{1}{e}
$$

(B) There is an inflection point. What are its (x, y) coordinates? Explain clearly how you know. (You don't have to prove that there is an inflection point. Just explain how you know where it is.) inflection point happens where $f^{\prime \prime}(x)=0$

$$
O=f^{\prime \prime}(x)=\underbrace{(x-2)}_{\substack{\text { this } \\ \text { must be } \\ \text { zero }}}{\underset{\substack{\text { never } \\ \text { zero }}}{(-x)} \quad \text { So } x=2}_{\text {Then } y=f(2)=2 e^{(-2)}=2 \cdot \frac{1}{e^{2}}=\frac{2}{e^{2}}}
$$

Antiderivatives (Section 4.7)

Definition of Antiderivative
words: $\underset{\text { capital }}{F(x)}$ is an antiderivative of $f(x)$
meaning: $\underset{\substack{f(x) \\ \text { lotaties }}}{ }$ is the derivative of $\underset{\text { cappral }}{F(x)}$

$$
\begin{gathered}
F^{\prime}(x)=f(x) \\
F(x) \stackrel{\text { take derivatice }}{ } f(x)
\end{gathered}
$$

diagram

Example
(a) Is $F(x)=\frac{x^{3}}{3}$ an antiderivative of $f(x)=x^{2}$?

Solution Check

$$
F^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{3}}{3}\right)=\frac{1}{3} \frac{d}{d x} x^{3}=\frac{1}{3} \cdot 3 x^{2}=x^{2}=f(x) \text {. yos. }
$$

(b) Is $G(x)=\frac{\left(x^{2}+5 x+3\right)^{3}}{3}$ an antiderivative of $g(x)=\left(x^{2}+5 x+3\right)^{2}$?

Cheak:

$$
\begin{aligned}
G^{\prime}(x) & =\frac{d}{d x} \frac{\left(x^{2}+5 x+3\right)^{3}}{3}=\frac{1}{3} \frac{d}{d x} \underbrace{\left(x^{2}+5 x+3\right)^{3}}_{\text {chan cull }}=\frac{1}{3}\left[3\left(x^{2}+5 x+3\right)^{2} \cdot(2 x+5)\right] \\
& =\left(x^{2}+5 x+3\right)^{2} \cdot(2 x+5) \neq g(x)
\end{aligned}
$$

So $f(x)$ is not an antidesivatue of $g(x)$
(c) Is $H(x)=\frac{x^{3}}{3}+17$ an antidecrative of $f(x)=x^{2}$?
(hack $H^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{3}}{3}+17\right)=x^{2}+0=x^{2}=f(x)$ yes

Particular and General Antiderisatives
If $F(x)$ is an antiderivatise of $f(x)$ then any other function of the form $F(x)+C$ will also be an antiderivative.
For the function $f(x)=x^{2}$
$F(x)=\frac{x^{3}}{3}$ is a Particular antiderivative
$H(x)=\frac{x^{3}}{3}+17$ is also a Particular antiderisative these a, c actual functions
The General Antiderivative of $f(x)=x^{2}$ is the function form $\frac{X^{3}}{3}+C_{c} C_{\text {repressurts a real number constant. }}$ The General Antiderivative is called a function form, not a function, because C. has not been chosen. Once a value is chosen for c, the expression becomes an actual function that is a Particular Antiderivative.

Antidesvative culas

Rule	function	partirular a_{n} tiderivative
Power Rule	X^{n} win $x \neq-1$	$\frac{x^{n+1}}{n+1}$
Suma constant muntiple	$a f(x)+b g(x)$	$a F(x)+b 6(x)$
	$\cos (x)$	$\sin (x)$
trig	$\sin ^{n}(x)$	$-\cos (x)$
	$\sec ^{2}(x)$	$\tan (x)$
exponentials	$e^{(x)}$	$e^{(x)}$
$1 / x$	$\frac{1}{x}$	$\ln (\|x\|)$
$\log (x)$	$x \ln (x)-x$	

Examples
(a) $f(x)=X^{2^{n}} \quad$ Find a_{n} antideriv using the rules

Solution $F(x)=\frac{x^{2+1}}{2+1}=\frac{x^{3}}{3}$
(b) $f(x)=\frac{1}{x^{2}}$ Find the general antiderivative using the cults Solution rewrite $f(x)=\frac{1}{x^{2}}=x^{-2}$
General antidesiv $F(x)=\frac{x^{-2+1}}{-2+1}+c=\frac{x^{-1}}{-1}+c=(-1) \cdot \frac{1}{x}+c$
(c) $g(x)=x^{<x=x^{\prime n=1}=-\frac{1}{x}+c}$ find general antide.is

Solution $G(x)=\frac{x^{1+1}}{1+1}+c=\frac{x^{2}}{2}+c$
(d) $h(x)=1^{1=x^{p} n=0}$ find general antideriv

$$
H(x)=\frac{x^{0+1}}{0+1}+c=\frac{x}{1}+c=x+c
$$

(e) $f(x)=\frac{1}{x}$
try power cull e

The general antiderivative of $f(x)=\frac{1}{x}$ is $F(x)=\ln (|x|)+c$ using the Antiderivative rule for $1 / x$ from the table.
(f) $f(x)=5 x^{3^{4}-4 x^{7^{2}}}$
(a) Find the General Antiderivative

Solution use the sum and Constant multiple Rule and the Power Rule

$$
F(x)=5 \cdot \frac{x^{3+1}}{3+1}-4 \cdot \frac{x^{7+1}}{7+1}+c=\frac{5 \cdot x^{4}}{4}-\frac{4 x^{8}}{8}+c=\begin{aligned}
& \frac{5 x^{4}}{4}-\frac{x^{8}}{2}+c=F(x) \\
& \text { General Antiderivative }
\end{aligned}
$$

(b) Find the Particular Antidesicuative $F(x)$ such that $F(1)=10$.

Solution: Turn the equation around

$$
10=F(1)=\frac{5(1)^{4}}{4}-\frac{(1)^{8}}{2}+C=\frac{5}{4}-\frac{1}{2}+C=\frac{3}{4}+C
$$

Subtract $\frac{3}{4}$ from both sides

$$
\frac{37}{4}=C
$$

Now use this value of C to build the Particular Antiderivative

$$
F(x)=\frac{5 x^{4}}{4}-\frac{x^{8}}{2}+\frac{37}{4} \text { particular Antiderivative }
$$

end of lecture

