MATH 2301 (Barsamian) Lecture #28 (wed Nov 9, 2023) (D

Section			

L	Α	S	Т	Ν	Α	Μ	Е		

F	Ι	R	S	Т	Ν	А	М	Е	

6....

<u>Quiz Q7, Fri Nov 3, 2023 (20 min)</u>	Problem:	[1]	[2]	[3]	Total	%
Fall 2023 MATH 2301 (Barsamian)	Your Score:					
No books, notes, calculators, phones.	Possible:	10	10	10	30	100%

[1] (10 points)

The Mean Value Theorem

If a function *f* and an interval [*a*, *b*] satisfy the following two requirements (the *hypotheses*)

• *f* is *continuous* on the *closed interval* [*a*, *b*]

• *f* is *differentiable* on the *open interval* (*a*, *b*)

then the following statement (the *conclusion*) is true:

There is a number x = c (at least one) with a < c < b such that $f'(c) = \frac{f(b) - f(a)}{b - a}$

In other words,

The slope of the *tangent line* at *c* equals the slope of the *secant line* from *a* to *b*. **Remark:** The theorem does not give you the value of *c*. If a *c* exists, you have to figure out its value.

The function $f(x) = \frac{1}{x}$ and the interval [1,4] do satisfy the two *hypotheses* of the Mean Value Theorem. (a) Find all numbers *c* that satisfy the *conclusion* of the Mean Value Theorem. Show all details clearly.

Sct up the equation and solve if for c.
Left side: we need S'(c)
Start by getting 5'(x)

$$f(x) = (\frac{1}{x}) = x^{-1}$$

 $S'(x) = (-1)x^{(-1)} = -1x^{-2} - 1$
 $f'(c) = (-\frac{1}{c^2})^{(-1)} = -1x^{-2} - 1$
(b) Illustrate your result on the given
graph of $f(x)$.
Remark: It is possible to make a
reasonable illustration for (b) even if you
are unable to do (a).
 $y = \frac{1}{x}$
 $y = \frac{1}{x}$

[2](10 points) (Suggested Exercise 4.3#1) Let $f(x) = x^3 - 12x + 5$

(a) Using Calculus, find the intervals on which *f* is *increasing* and the intervals on which *f* is *decreasing*. Show all details clearly. (You must use Calculus. No credit for just finding *y* values at a bunch of *x* values.)

[3] (10 points) The graph of a function f(x) is shown without gridlines or coordinate axes.

The formulas for f(x) and its derivatives are

$$f(x) = xe^{(-x)}$$

$$f'(x) = -(x - 1)e^{(-x)}$$

$$f''(x) = (x - 2)e^{(-x)}$$

× _____

(A) There is a highest point. What are its (*x*, *y*) coordinates? Explain clearly how you know. (You don't have to *prove* that there is a high point. You just need to explain how you know where it is.)

high point happens where
$$f'(x) = 0$$
. So set $f'(x) = 0$, solve for X .
 $O = f'(x) = -(x-1)e^{(-x)}$ So $x = 1$
this mart never So $y = f(1) = 1e^{-1} = 1 \cdot \frac{1}{e} = \frac{1}{e}$

(B) There is an inflection point. What are its (x, y) coordinates? Explain clearly how you know. (You don't have to *prove* that there is an inflection point. Just explain how you know where it is.)

Inflection point happens where
$$f''(x) = 0$$

 $O = f''(x) = (X-2)e^{(-x)}$ So $x = 2$
this never Then $y = f(2) = 2e^{(-2)} = 2 \cdot \frac{1}{e^2} = \frac{2}{e^2}$
must be zero Then $y = f(2) = 2e^{(-2)} = 2 \cdot \frac{1}{e^2} = \frac{2}{e^2}$

Antiderivatives (Section 4.7)

Definition of Antiderivative
Words:
$$F(x)$$
 is an antiderivative of $f(x)$
capital lower case
meaning: $f(x)$ is the derivative of $F(x)$
lower case
 $F'(x) = f(x)$
diagram
 $F(x)$
 $F(x)$

(4)

Example
(a) Is
$$F(x) = \frac{x}{3}^{3}$$
 an antiderivative of $f(x) = x^{2}$?
Solution (heck
 $F'(x) = \frac{d}{dx} \left(\frac{x^{3}}{3} \right) = \frac{1}{3} \frac{d}{dx}^{3} = \frac{1}{3} \cdot 3x^{2} = x^{2} = f(x)$. yes?
(b) Is $G(x) = \frac{(x^{2}+5x+3)^{3}}{3}$ an antiderivative of $g(x) = (x^{2}+5x+3)^{3}$?
Check:
 $(f'(x)) = \frac{d}{dx} \left(\frac{x^{2}+5x+3}{3} \right)^{3} = \frac{1}{3} \frac{d}{dx} \left(x^{2}+5x+3 \right)^{3} = \frac{1}{5} \left[\frac{x}{5} (x^{2}+5x+3)^{2} \cdot (2x+5) \right]$
 $= (x^{2}+5x+3)^{2} \cdot (2x+5) \neq g(x)$
So $F(x) = \frac{x}{3}^{3} + 17$ an antiderivative of $f(x) = x^{2}$?
(heck $H'(x) = \frac{d}{dx} \left(\frac{x^{3}}{3} + 17 \right) = x^{2} + 0 = x^{2} = f(x)$ yes

Particular and General Antiderivatives (5)
If F(x) is an antiderivative of f(x)
then any other function of the form F(x) + C
will also be an antiderivative.
For the function
$$f(x) = x^2$$

For the function $f(x) = x^2$
 $F(x) = \frac{x^3}{3}$ is a Particular antiderivative
 $H(x) = \frac{x^3}{3} + 17$ is also a Particular antiderivative
these are actual functions
The General Antiderivative of $f(x) = x^2$ is the
function form $\frac{x^3}{3} + C$
The General Antiderivative is called a function form, not a function, because C
has att been chosen. Once a value is chosen for C, the expression becomes an actual function
that is a Particular dividence of a complete constant.

Dernative Rules						
Rule	function	derivative				
Power Rule	X	NX ⁿ⁻¹				
Sum and cunstant multiple	af(x) + bg(x)	a f'(x) + b g'(x)				
	Sin (x)	(05(x)				
trig	c os (x)	- 510 64)				
	tan (X)	$Sec^{2}(x)$				
in we stick	e ^(X)	C ^(X)				
ext	lm(x)	⊥ ×				
1095	Xm(x)~X	ln(x)				

Antidemuative rules partscular function Rule antiderivative Power X^{n} why $X\neq -1$,nt1 Rule n+1 af(x) + bg(x)Sum + atex)+b 6ex) Constant muttiple Sih (x) (05(X) 5m(x) trig -(os(x) sec2(x) tan(x) e^(x) e^(k) exponentials ln(IXI) X ١X Xlm(X) - X ln(X) logarithms

Examples
(a) fix =
$$\chi^2$$
 Find an antideriv using the rules
Solution $F(x) = \frac{\chi^{2+1}}{2+1} = \frac{\chi^3}{3}$
(b) $f(x) = \frac{1}{\chi^2}$ Find the general antiderivative using the rules
Solution rewrite $f(x) = \frac{1}{\chi^2} = \chi^{-2}$
General antideriv $F(x) = \frac{\chi^{-2+1}}{\chi^2} + C = \frac{\chi^{-1}}{\chi} + C = (-1) + C$
(c) $g(x) = \chi$ find general antideriv
Solution $f(x) = \frac{\chi^{-1}}{\chi} + C$

->

