The graph of $f(t)$ is shown at right.

The function $g(x)$ is defined by the equation

$$
g(x)=\int_{t=0}^{t=x} f(t) d t
$$

g is an area function for f

Part 1: The first goal is to build a graph of $g(x)$.
On the back of this page are eight copies of the graph of $f(t)$.
(a) Using these graphs, make eight pictures that illustrate the quantity

$$
g(x)=\int_{t=0}^{t=x} f(t) d t
$$

for the eight x values $x=0,1,2,3,4,5,6,7$
(b) Using the pictures, find the value of $g(x)$ for $x=0,1,2,3,4,5,6,7$ and write those values in the table at right.
(c) Using the data from your table, make a graph of $g(x)$ on the interval $0 \leq x \leq 7$.

x	$g(x)$
0	
1	
2	
3	
4	
5	
6	
7	

Part 2: Questions to be answered without using your graph from Part 1.
(d) What is the value of $g^{\prime}(2)$?
(e) What is the value of $g^{\prime}(5)$?
(e) At what x value does g have a local max?

$$
\frac{H}{H} \frac{H}{H}
$$

