Class Drill: Identifying Absolute Extrema and Local Extrema on a Graph

The Extreme Value Theorem says that if a function f is continuous on a closed interval $[a, b]$, then f will have both an absolute maximum and an absolute minimum on that interval. In this drill, you investigate what can happen when f is not continuous or the interval is not closed.

The graph of a function f is shown at right.

Fill in the table below.

Interv al	Local Maxima in that interval	Local Minima in that interval	Absolute Max in that interval	Absolute Min in that interval
$[6,15]$				
$(6,15)$				
$(8,15)$				
$[2,12]$				
$(2,12)$				
$(4, \infty)$				

